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Summary

We consider torsional wave propagation in a pre-stressed annular cylinder. Hydrostatic pressure
is applied to the inner and outer surfaces of an incompressible hyperelastic annular cylinder,
of circular cross-section, whose constitutive behaviour is governed by a Mooney–Rivlin strain
energy function. The pressure difference creates an inhomogeneous deformation field, which
modifies the inner and outer radii of the annular cylinder. We wish to determine the effect that this
pre-stress, and a given axial stretch, has on the propagation of small-amplitude torsional waves
through the medium. We use the theory of small-on-large to deduce the linear wave equation
that governs incremental torsional waves and then determine the dispersion relation for the pre-
stressed annulus by using an approximation procedure (the Liouville–Green transformation). We
show that this scheme compares well to numerical solutions except in regions very close to
turning points (of the transformed ordinary differential equation). In particular, we find that the
inhomogeneous deformation makes the coefficients of the governing ordinary differential equation
spatially dependent and affects the location of the roots of the dispersion relation. We observe that,
if the pressure on the outer surface of the annular cylinder is greater (smaller) than that on the inner,
then the cut-on frequencies are spaced further apart (closer) than they would be in the stress-free
case. This result could potentially be used to tune the propagation characteristics of the cylinder
over a range of frequencies.

1. Introduction

Over the past few decades, much interest has been focused on the effect of pre-stress on the
propagation of incremental linear waves in elastic media using the theory of small-on-large (1, 2),
where a small perturbation is applied to a body that has undergone a finite deformation. Since the
perturbation is considered to be small in relation to the initial deformation, a linearization is applied
in order to determine the characteristics of wave propagation in the pre-stressed material. Attention
has centred mainly on the effect of homogeneous deformation on wave propagation, which induces
anisotropy (examples of this are given in (3) and (4)). However, pre-stress in an inhomogeneous
material almost always leads to inhomogeneous deformations, except in special cases (see (5), where
the deformation of a one-dimensional composite bar is assumed to be piecewise homogeneous).
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Dey (6) analysed the case of initial tension in a solid rod of circular cross-section in the context of
linear elasticity. The interest was to determine how the presence of the tension affects the subsequent
propagation of torsional waves through the material. This work utilized the incremental deformation
theory derived by Biot (7). We emphasize that the pre-stress was homogeneous in this case, which
meant that the incremental equations were straightforward to solve. Of great interest, however, is how
an initial inhomogeneous pre-stress affects subsequent waves that propagate through inhomogeneous
media. To address this question, by way of specific example, we consider herein the non-linear
deformation of a cylindrical annulus and show that, for torsional waves, such a deformation leads
to a governing ordinary differential equation (ODE) whose coefficients are spatially dependent.
Non-linear pre-stress can be useful in practice, allowing us to tune materials in order to permit or
restrict waves of specific frequency ranges. Parnell described this property in (5) and it is discussed
further in subsequent articles in different contexts (8, 9). The problem discussed here has potential
applications in the automotive industry and also in the underwater engineering community.

Torsional wave propagation in the linear elastic (unstressed) regime is well understood (10).
However, if the host material is non-linear-elastic (rubber, for example) we can expect pressures
applied to the surfaces of an annular cylinder to lead to a non-linear deformation if such pressures
are of the magnitude of the shear modulus of the material; hence we can postulate the following
question: How does the difference in pressure on the surfaces of a hyperelastic annular cylinder
affect the propagation of subsequent linear elastic torsional waves? In this article we shall consider
a torsional wave propagating in an annular cylinder that is incompressible and capable of finite
deformation, with constitutive behaviour characterized by a Mooney–Rivlin strain energy function.
A related initial value problem in the case of zero pre-stress is discussed in (11), and for a solid
cylinder on pp. 148–155 of (10). In (12) Green considered the effect of a uniform extension on
torsional vibrations of a solid circular cylinder characterized by a general strain energy function, in
which thermal stresses were taken into account and showed that they were possible under isothermal
conditions, and in (13), Guz extended Green’s work to the case where the cylinder was placed in a
viscous fluid. In (14), Belward and Wright discussed the effect of a homogeneous axial stretch on
the dispersion curves of small-amplitude waves having real frequencies and complex wavenumbers,
and in (15), Ozturk and Akbarov considered torsional wave propagation in a prestretched compound
hollow circular cylinder. However, in (12–14) and (15), the pre-stress was assumed to be uniform,
that is, the stress distributions in the host materials were homogeneous. These are therefore far
simpler problems than the model to be discussed in this article, since the only effect of their imposed
pre-stress is to induce anisotropy in the media under consideration.

To the authors’ knowledge, the only other investigation of the effect of inhomogeneous pre-
stress on the propagation of torsional waves along an annular cylinder was performed by Engin and
Şuhubi (16). These authors considered ostensibly the same problem as is discussed here (although in
the absence of an axial stretch), utilizing Frobenius’ method and a variational approach to study the
effect of the pre-stress on the dispersion relations, and calculated the fundamental mode for various
values of the pressure difference. However, in (16), an unphysical boundary condition was used,
leading to results that are not in agreement to those found herein; this discrepancy is discussed in
Section 4.2 and Appendix A.

In Section 2, we use the condition of incompressibility to determine the form of the applied radial
deformation. The static equations of equilibrium are obtained and they are used to determine the
effect of the applied pressures and longitudinal stretch on the radii. In Section 3 we consider the
propagation of small-amplitude, time-harmonic waves through the finitely-deformed medium, derive
the relevant governing equation and discuss the case of zero pre-stress. In Section 3.3 we discuss
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the governing ODE, which is difficult to solve due to the spatial dependence of its coefficients,
as mentioned above, and in Section 3.4 we derive an approximate solution for the ODE using the
Liouville–Green method. In Section 4, we show the effect of the pre-stress on the dispersion curves
using both a numerical method and the Liouville–Green approximation.

2. Initial finite (static) deformation

Here we consider the combined extension and inflation of an incompressible, annular cylinder with
circular cross-section and initial inner and outer radii A and B, respectively. This problem can be
found in several textbooks (1, 2) but we present it here in a notation consistent with the rest of
this article. We will assume that the annular cylinder is isotropic and that its constitutive behaviour
may be described by a strain energy function, W = W (I1, I2, I3), where Ij are the principal strain
invariants of the deformation (1, 2). Since it is incompressible, I3 = 1, in the usual notation, and
thus W = W (I1, I2). We suppose that radial pressures are applied on the inner and outer radii of the
cylinder (which would occur, for example, if the cylinder were immersed in an inviscid fluid) so that
under such loading the inner and outer radii are deformed to a and b, respectively. We also assume
a constant axial stretch.

Due to the geometry there must be no displacement in the azimuthal direction, and so the above
deformation can be described by

R = R(r), � = θ, Z = z/λ, (2.1)

in which (R,�,Z) and (r, θ, z) are cylindrical polar coordinates in the undeformed and deformed
configurations respectively, R(r) is a function to be determined from the radial equation of
equilibrium, and λ is a real constant representing the axial stretch. Note the convention introduced
in (2.1) above, namely, upper case variables correspond to the undeformed configuration whilst
lower case corresponds to the deformed configuration. Here, it will be convenient for us to derive
equations in terms of coordinates in the deformed configuration, hence the form assumed in (2.1).

Position vectors in the undeformed and deformed configurations are

X =
⎛
⎝R cos�

R sin�
Z

⎞
⎠ =

⎛
⎝R(r) cos θ

R(r) sin θ
z/λ

⎞
⎠ , x =

⎛
⎝ r cos θ

r sin θ
z

⎞
⎠ . (2.2)

Using (2.1), it can be shown that the principal stretches for this deformation in the radial, azimuthal
and longitudinal directions are respectively

λr = dr

dR
= 1

R′(r)
, λθ = r

R
= r

R(r)
, λz = λ, (2.3)

where prime denotes differentiation with respect to r. We define the deformation gradient tensor
by F = Grad x, where Grad represents the gradient operator with respect to the undeformed
configuration. In our case, we have

F =
⎛
⎝λr 0 0

0 λθ 0
0 0 λz

⎞
⎠ =

⎛
⎝1/R′(r) 0 0

0 r/R(r) 0
0 0 λ

⎞
⎠ . (2.4)
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For an incompressible material, we must have J = det F = 1, and so

λrλθλz = λr

R(r)R′(r)
= 1, (2.5)

which is an ordinary differential equation that we can solve simply to obtain

R(r) =
√
λ(r2 + α), (2.6)

where α is a constant defined by

α = A2

λ
− a2 = B2

λ
− b2. (2.7)

Note that (2.6) gives the same form for R as in (17) (α is equivalent to M in (17)).
From (18), the Cauchy stress tensor for an incompressible material is given by

T = F
∂W

∂F
+ QI, (2.8)

where W is the strain energy function of the material under consideration, I is the identity tensor
and Q is a Lagrange multiplier associated with the incompressibility constraint and referred to as an
arbitrary hydrostatic pressure. As mentioned in Section 1, we use the Mooney–Rivlin strain energy
function:

W = μ

2
(S1(I1 −3)+S2(I2 −3)) = μ

2
(S1(λ2

r +λ2
θ +λ2

z −3)+S2(λ2
rλ

2
θ +λ2

rλ
2
z +λ2

θλ
2
z −3)). (2.9)

Here, μ is the ground state shear modulus of the material under consideration, and S1 and S2 are two
material parameters that sum to one.

Componentwise, (2.8) is equivalent to

Tij = Fiα
∂W

∂Fjα
+ Qδij, (2.10)

where δij is the Kronecker delta. We note that since F is diagonal in the cylindrical coordinate system
we are using, so is T and therefore for the strain energy function in (2.9) we find that

Trr =
[
χS1 +

(
1

λ
+ λ2χ

)
S2

]
μ

λ
+ Q,

Tθθ =
[

S1

χ
+
(

1

λ
+ λ2

χ

)
S2

]
μ

λ
+ Q, (2.11)

Tzz =
[
λS1 +

(
2 + α2

r4χ

)
S2

]
λμ+ Q.

where for convenience we have defined χ = χ (r) = (r2 + α)/r2.
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In the case considered here, the static equations of equilibrium, div T = 0 (where div signifies the
divergence operator with respect to the deformed configuration), reduce to

∂Trr

∂r
+ 1

r
(Trr − Tθθ ) = 0,

∂Tθθ
∂θ

= 0,
∂Tzz

∂z
= 0, (2.12)

which then become
∂Q

∂r
= μα2S

r3(α + r2)
,

∂Q

∂θ
= ∂Q

∂z
= 0, (2.13)

where we have defined S = S1/λ+ λS2. Therefore, Q depends only on r and can be expressed as

Q = −μS

2

(
log

(
r2

r2 + α

)
+ α

r2

)
+ Q0, (2.14)

where Q0 is a constant that can be deduced from the boundary conditions. This result can be used in
(2.11) to determine explicit expressions for the stresses Trr , Tθθ and Tzz.

If we label the hydrostatic pressures applied to the inner and outer surfaces of the annulus,
respectively, as pin and pout, then, upon applying the boundary conditions Trr |r=a = −pin and
Trr |r=b = −pout, and rewriting the result in terms of the undeformed radii A and B and the parameter
α, we find that

pout − pin = μS

⎛
⎝ (B2 − A2)α

2(A2 − λα)(B2 − λα)
+ log

⎛
⎝A

B

√
B2 − λα

A2 − λα

⎞
⎠
⎞
⎠ . (2.15)

Therefore, if we know the undeformed radii A and B, the applied pressure difference pout − pin, the
material constants μ, S1 and S2, and the applied stretch λ, (2.15) can be used to determine the value
of α, which can in turn be used to determine the deformed radii a and b from (2.7).

3. Incremental deformations

We now consider the propagation of small-amplitude time-harmonic waves through the finitely
deformed medium. We use the theory of small-on-large, linearizing about a non-linear deformation
state (2). The total displacement field may be represented by

U = U + u. (3.1)

where U is the displacement field derived from the finite deformation (2.1) and u is the incremental
displacement. Here, we take the incremental displacement in the form of a torsional wave:

u = Re
{

(0, v(r), 0)ei(kz−ωt)
}
, (3.2)

and assume that |u| � |U|.
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In Appendix A, we show that the incremental equation governing v is

(
1 + α

r2

)
v′′(r) + 1

r

(
1 − α

r2

)
v′(r) +

(
β2 − 1 + αδ

r2
+ α

r4

)
v(r) = 0, (3.3)

where

β2 = k2
0 − k2λ2S1

S
− δ, δ = k2λS2

S
, (3.4)

in which k2
0 = ρω2/μ is the zeroth order torsional wavenumber of an unstressed cylinder,ρ represents

the mass density, α is defined in (2.7) and we recall that S = S1/λ+ λS2.
If we assume that the pressures on the deformed surfaces of the annulus are unaffected by the

incremental deformation then (3.3) is subject to the boundary conditions (derived in Appendix A)

v′(a) − v(a)

a
= v′(b) − v(b)

b
= 0. (3.5)

We note that these boundary conditions are different to those derived in (16), as we discuss in
Appendix A.

3.1 The case of zero pre-stress

To study the effects of pre-stress it is first useful to examine torsional waves in the absence of such
static loads. Zero pre-stress corresponds to the situation when α = 0 and λ = 1 and in this case (3.3)
reduces to

v′′(r) + 1

r
v′(r) +

(
ω2

c2
− k2 − 1

r2

)
v(r) = 0, (3.6)

where c2 = μ/ρ. This is Bessel’s equation and is the standard linear elastic torsional wave equation
(10). The solution of (3.6) is thus

v(r) = C1J1(sr) + C2Y1(sr), (3.7)

where J1 and Y1 are the first-order Bessel functions of the first and second kind respectively and
s2 = ω2/c2 − k2. Imposing the conditions (3.5), we obtain the classical dispersion relation

asJ0(as) − 2J1(as)

bsJ0(bs) − 2J1(bs)
= asY0(as) − 2Y1(as)

bsY0(bs) − 2Y1(bs)
. (3.8)

This dispersion relation leads to the well-known result that a thicker cylindrical annulus (smaller
value of a/b, with a = 0 in the solid cylinder limit) will allow more modes of propagation for a given
fixed frequency than a thin annular cylinder. Our main interest here is how this dispersion relation is
modified by the non-linear elastic pre-stress and its dependence on the Mooney–Rivlin strain energy
function parameter S1 = 1 − S2. In Fig. 1, we plot the frequencies of the first, second and third roots
of (3.8) as a function of annulus thickness, a/b, with b = 1. We note that ω/c → ∞ as a/b → 0.
This is due to the fact that no torsional modes propagate in an infinitesimally thin cylindrical annulus.
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Fig. 1 The first (solid), second (dashed) and third (dotted) cut-on frequencies of (3.8) as a function of a/b

3.2 Analytical solution in the case of ω = k = 0

It is useful to examine the case whenω = k = 0, to see if the boundary value problem has a consistent
solution. The governing ODE (3.3) reduces to

(
1 + α

r2

)
v′′(r) + 1

r

(
1 − α

r2

)
v′(r) − 1

r2

(
1 − α

r2

)
v(r) = 0, (3.9)

for which an analytical solution can be found as

v(r) = C1r + C2r log

(
r2

r2 + α

)
, (3.10)

where C1 and C2 are arbitrary constants.
Applying the boundary conditions (3.5) gives C2 = 0 and C1 is unspecified. This shows that for

any magnitude of pre-stress, there will always be a non-trivial solution with ω = k = 0; hence the
fundamental mode will always pass through the origin when the dispersion curves are plotted, as we
will see later.

3.3 Non-zero pre-stress: singularity structure

Note that in the case of non-zero pre-stress the governing equation (3.3) has regular singular points at
r = 0, r = √

αi and r = −√
αi and an irregular singular point at r = ∞. All other points are ordinary

points. To the authors’ knowledge (3.3) is not a standard and classified ODE,1 so we will investigate

1 However, we thank the editor for pointing out that (3.3) can be rewritten as a confluent form of Heun’s equation (see
§31.2(ii) of (19)).
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the solution. Note that it is difficult to solve due to the spatial dependence of its coefficients and the
singular nature of the zero pre-stress limit.

The Frobenius method can be used to determine an approximate solution in the case when a, b <√|α| or a, b >
√|α| in terms of an infinite series and these cases are considered in (16). However,

when a ≤ √
α and b ≥ √

α, the singularity will always lie within the annulus and so the Frobenius
method breaks down. Since we are interested in this possibility, in the following section we present
a Liouville–Green approximate solution of the ODE.

3.4 Liouville–Green solution

Let us restate the original ODE for incremental waves:

(
1 + α

r2

)
v′′(r) + 1

r

(
1 − α

r2

)
v′(r) +

(
β2 − 1 + αδ

r2
+ α

r4

)
v(r) = 0. (3.11)

First divide (3.11) by the term multiplying the highest derivative so that it can be written as

v′′(r) + P(r)v′(r) + Q(r)v(r) = 0, (3.12)

with P(r) and Q(r) defined as

P(r) = 1

r

r2 − α

r2 + α
, Q(r) = 1

r2 + α

(
r2β2 − (1 + αδ) + α

r2

)
. (3.13)

We can now eliminate the first derivative in (3.12) using a standard transformation of the dependent
variable v (20),

v(r) = w(r)e− 1
2

∫
P(r) dr, (3.14)

so that (3.12) is transformed into the following ODE

w′′(r) + q(r)w(r) = 0. (3.15)

Here the polynomial quotient function q(r) is defined as

q(r) = q̂(r̂)

b2
, (3.16)

where

q̂(r̂) = 4β̂2r̂6 + (4α̂(β̂2 − δ̂) − 3)r̂4 − 2α̂(2α̂δ̂ + 3)r̂2 + α̂2

4r̂2(r̂2 + α̂)2
, r̂ = r

b
, (3.17)

α̂ = α

b2
= 1

λ

(
B

b

)2

− 1, β̂2 = b2β2 = k̂2
0 − k̂2λ2S1

S
− δ̂, δ̂ = b2δ = k̂2λS2

S
, (3.18)

and
k̂2

0 = b2k2
0, k̂2 = b2k2. (3.19)

Note that we have introduced the hat notation (·̂) to signify that the above variables are all
non-dimensional.
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Assuming for now that q(r) is a positive and twice continuously differentiable function, we apply
the Liouville–Green (LG) transformation (20) by defining

ξ (r) =
∫ r √

q() d, W(ξ ) = {ξ ′(r)} 1
2 w(r(ξ )). (3.20)

Upon doing this we obtain the governing equation

d2W
dξ2

+ (1 − ϕ(ξ ))W(ξ ) = 0, (3.21)

where

ϕ(ξ (r)) = ψ(r) = 4 q(r)q′′(r) − 5
{
q′(r)

}2

16 {q(r)}3
= − 1

{q(r)}3/4

d2

dr2
{q(r)}− 1

4 . (3.22)

If the function ϕ is assumed small and hence can be neglected, then independent solutions of (3.21)
are e±i ξ . Restoring the original dependent (w) and independent (r) variables we obtain

w(r) = C1 (q(r))−
1
4 eiξ (r) + C2 (q(r))−

1
4 e−iξ (r), (3.23)

where C1 and C2 are constants of integration. Notice that the restriction q(r) > 0 ensures that the
solutions (3.23) are wave-like. When q(r) changes its sign in the interval of r under consideration,
we have then what are conventionally called turning points or transition points of the ODE (zeros
of q). In that case the appropriate approximation functions are the Airy (one turning point) or Weber
parabolic cylinder functions (two turning points) (20). The error in this approximation is obviously
dependent on the behaviour of the neglected function ϕ(ξ (r)) = ψ(r). If {q(r)}−1/4 is small or
slowly varying then we have a good approximation for the ODE. Finally, when q(r) is positive and
the interval under consideration is far from the turning point(s) it can be shown that the functions
e±iξ are suitable ones for the approximate solution of the ODE.

Our final step is to transform back to the original dependent variable v using the transformation
(3.14):

v(r) = w(r)e− 1
2

∫
P(r̂) dr = w(r)e− 1

2 log((α+r2)/r). (3.24)

Upon doing this we obtain the final form of the approximate solution of the ODE

v(r) = C1 (q(r))−
1
4 eiξ (r)− 1

2 log((α+r2)/r) + C2 (q(r))−
1
4 e−iξ (r)− 1

2 log((α+r2)/r). (3.25)

Notice that the LG approximation implies the transformation of the independent variable r into ξ (r),
obtained via the integration of the square root of the function q(r). For many problems, an explicit
form for this integral is not generally available. However, in Appendix B we show that for the present
problem this integral can be explicitly evaluated in terms of the three incomplete elliptic integrals
and elementary functions; see (B.9).

In Figs 2 and 3 we give plots of the curves q̂(r̂) = 0 (and hence q(r) = 0) for specific values
of α̂ and δ̂ (the regions below the curves are the regions where q̂(r̂) is negative). In the plots r̂
ranges over the horizontal axis and β̂ ranges over the vertical axis. We observe that increasing the
value of α̂ improves the range over which the method is expected to work (for which q̂(r̂) > 0),
whereas increasing δ̂ has the opposite effect. Increasing |α̂| corresponds to increasing pre-stress,
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Fig. 2 Curves of q̂(r̂) = 0. Solid line: α̂ = 0, δ̂ = 0; dashed line: α̂ = 0.01, δ̂ = 0
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Fig. 3 Curves of q̂(r̂) = 0. Solid line: α̂ = 0.1, δ̂ = 0; dashed line: α̂ = 0.1, δ̂ = 5
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Fig. 4 Curves of q̂(r̂) = 0. Dashed line: α̂ = 0.087, δ̂ = 0; dotted line: α̂ = 0.157, δ̂ = 3. The solid line is
β̂ = 5.14, the smallest non-zero value β̂ can take for a stress-free annular cylinder

α̂ > 0 corresponds to pout > pin and α̂ < 0 corresponds to pout < pin. Increasing δ̂ corresponds to
increasing dependence of the particular strain energy function on the parameter S2.

We know that, for a stress-free annular cylinder with a = 0 (the solid cylinder limit), the smallest
non-zero value β̂ can take is approximately 5.14. Increasing the inner radius from 0 increases the
smallest non-zero value of β̂ (see Fig. 1 and note that in this figure, increasing ω/c corresponds to
increasing β̂). We have also shown that increasing the value of α̂ improves the range of validity of
the LG method. Therefore, in Fig. 4 we show that for α̂ greater than approximately 0.087 the LG
method should work for all neo-Hookean annular cylinders. However, for a greater value of δ̂ this
critical value of α̂ is increased. Note that Fig. 6 reveals that, for negative pressures, the distance to
the first non-zero root of the dispersion curves decreases slowly, and so we expect that the region
where the LG method is inaccurate increases slowly too.

4. Dispersion curves: predictions via numerical and Liouville–Green solutions

4.1 Neo-Hookean case

In the neo-Hookean case, we have S2 = 0 and therefore δ = 0, so the dispersion relations can be
determined simply by determining the values of β which satisfy the boundary conditions. Using a
standard numerical solver one can obtain an interpolating polynomial solution for v(r) for particular
values of a and b. The numerical solver used in this article was NDSolve in Mathematica 8.
Alternatively, the LG solution (Section 3.4) can be used. Either method can be employed to find
values of β2 which satisfy the boundary conditions, and hence define the dispersion curves for the
problem.
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Fig. 5 Prediction of cut-on frequencies using Liouville–Green method (solid) and a numerical solver (dashed)
for a = 0.5, b = 1, S2 = 0, α = 1

For both methods, we apply the boundary condition derived in Appendix A.2 on r = a, and
also arbitrarily choose the torsional wave eigensolution to have amplitude v(a) = 1. We then plot
v′(b) − v(b)/b as a function of β in order to determine the values of β which correspond to the cut-on
frequencies for the problem (that is, when this function vanishes). In Fig. 5 we plot v′(b) − v(b)/b
as a function of β for a = 0.5, b = 1, S2 = 0, α = 1. Note that, as expected, the agreement is better
for larger values of β.

We note that the numerical solver always predicts β = 0 as a root, which is the fundamental mode.
In this case we have k2

0 − k2λ(λS1 + S2) = 0, and hence

k2 = k2
0

λ(λS1 + S2)
. (4.1)

We observe from (4.1) that the only modification to the fundamental mode is a change in gradient,
which is dependent on the longitudinal stretch factor, λ, and S1 or S2.

By plotting the dispersion curves for various values of a, b, λ and α, it can be observed that a
positive value of α (which corresponds to pin > pout) causes the roots of the dispersion curves to
be spaced further apart, whilst a negative value of α (which corresponds to pin < pout) causes them
to be spaced more closely. It can also be observed that for λ > 1 (corresponding to a longitudinal
stretch), the cut-on frequencies are closer together and the dispersion curves are less steep, whilst
for λ < 1 (corresponding to a longitudinal compression) the cut-on frequencies are spaced further
apart and the dispersion curves are steeper.

In Fig. 6, we show the first three cut-on frequencies as a function of (pout − pin)/(Sμ) for a
neo-Hookean (S1 = 1, S2 = 0) annular cylinder with a = 0.5 and b = 1 using the numerical
solution. In Fig. 7, we do the same with A = 0.5 and B = 1. In Fig. 8 we give the dispersion curves
for a neo-Hookean (S1 = 1, S2 = 0) annular cylinder with a = 0.5 and b = 1, with λ = 1 and
(pout − pin)/(Sμ) = 0, 1.96, and 3.55. In Fig. 9 we give the same, but for A = 0.5 and B = 1. Note
that Figs 8 and 9 were produced using a numerical solver rather than the LG method.
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Fig. 6 First (solid), second (dashed) and third (dotted) cut-on frequencies for a pre-stressed neo-Hookean
(S1 = 1, S2 = 0) cylinder as a function of (pout − pin)/(Sμ) with a = 0.5 and b = 1
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Fig. 7 First (solid), second (dashed) and third (dotted) cut-on frequencies for a pre-stressed neo-Hookean
(S1 = 1, S2 = 0) cylinder as a function of (pout − pin)/(Sμ) with A = 0.5 and B = 1
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Fig. 8 Dispersion curves for a neo-Hookean (S1 = 1, S2 = 0) annular cylinder of deformed inner radius 0.5
and outer radius 1, with λ = 1 and (pout − pin)/(Sμ) = 0 (solid), 1.96 (dashed) and 3.55 (dotted)
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Fig. 9 Dispersion curves for a neo-Hookean (S1 = 1, S2 = 0) annular cylinder of initial inner radius 0.5 and
outer radius 1, with λ = 1 and (pout − pin)/(Sμ) = 0 (solid), 1.96 (dashed) and 3.55 (dotted)

4.2 Mooney–Rivlin case

In the Mooney–Rivlin case, δ 	= 0, and so the dispersion relations cannot be determined by the value
of β alone. In this case we evaluate the boundary condition v′(b) − v(b)/b = 0 as a two-dimensional
function of k and k0 = ω/c and plot the regions where this function equals zero. These plots are our
dispersion curves. In Fig. 10 we plot the dispersion curves for a Mooney–Rivlin (S1 = 0.8, S2 = 0.2)
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Fig. 10 Dispersion curves for a Mooney–Rivlin (S1 = 0.8, S2 = 0.2) annular cylinder of deformed inner
radius 0.5 and outer radius 1, with λ = 1 and (pout − pin)/(Sμ) = 0 (solid), 1.96 (dashed) and 3.55 (dotted)

annular clyinder with a = 0.5 and b = 1, with λ = 1 and (pout − pin)/(Sμ) = 0, 1.96, and 3.55.
Fig. 10 was produced using a numerical solver.

The trends observed in the Mooney–Rivlin case are the same as those in the neo-Hookean case
except that in the latter case (when S1 = 1, S2 = 0), α does not affect the gradients of the dispersion
curves, whereas in the Mooney–Rivlin case, a positive value of α decreases their gradients and a
negative value increases them.

We note that the fundamental mode always passes through the point (ω/c, k) = (0, 0) and is
always non-dispersive. This result corrects that of Engin and Şuhubi (16) where the fundamental
mode was deduced to be dispersive due to the erroneous boundary conditions used.

5. Conclusion

In this article, we have studied the problem of torsional wave propagation in a pre-stressed Mooney–
Rivlin hyperelastic annular cylinder. The pre-stress consists of a uniform longitudinal stretch and
hydrostatic pressures imposed on the inner and outer surfaces of the cylinder, thus altering the radii.
Importantly, the latter generates an inhomogeneous deformation in the cylinder.

The theory of small-on-large was used to derive the incremental equation in the pre-stressed
configuration. It was shown that this equation was difficult to solve due to the spatial dependence of
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its coefficients and the singular limit of the equation in the case of zero pre-stress. In Section 3.4, we
presented a Liouville–Green approximation to the solution of the ODE and discussed when we expect
this to be a good approximation. It was shown that for α̂ > 0.087 we expect the LG approximation
to be good for a neo-Hookean annular cylinder of any size, and this was confirmed by comparison
with a numerical solution of the boundary value problem.

We noted that a positive value of α (which corresponds to pout > pin) causes the roots of the
dispersion curves to be spaced further apart, whilst a negative value ofα (corresponding to pout < pin)
causes them to be spaced more closely. In the neo-Hookean case (when S1 = 1, S2 = 0), α does
not affect the gradients of the dispersion curves, whereas in the Mooney–Rivlin case, a positive
value of α decreases their gradients and a negative value increases them. We also noted that for
λ > 1 (corresponding to a longitudinal stretch) the cut-on frequencies move closer together and the
dispersion curves are less steep, whilst for λ < 1 (corresponding to a longitudinal compression) the
cut-on frequencies move further apart and the dispersion curves are steeper.

In conclusion, we have conducted a small-on-large study into the effect of inhomogeneous pre-
stress on torsional wave propagation. The dependence of the cut-on frequencies on the pre-stress
could potentially be used to tune which modes are able to propagate over a given range of frequencies.
For example, if it was required to reduce the number of torsional modes that propagate along an
annular cylinder at a given frequency, we have demonstrated that applying a large enough pressure
on the outer surface would achieve this. Potential areas of further work would be a study into the
effect of the elastic parameter S2 on the stated results, and an investigation of whether the behaviour
of the cylinder would be similar for other choices of strain energy function.
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APPENDIX A

A. Incremental deformations

A.1 Incremental equations of motion

We consider a perturbation to the initial deformation in the form of a torsional wave and wish to determine
the incremental equation governing this wave using the theory of small-on-large. We will use an adaptation of
Ogden’s notation, following the method outlined in (2) which we summarize below. We denote the incremental
displacement by u and for torsional waves this takes the form

u = (0, v(r)eikz, 0)e−iωt, (A.1)

and its gradient with respect to the deformed configuration is given by

γ = grad u =
⎛
⎜⎝ 0 −v/r 0

v′(r) 0 ikv
0 0 0

⎞
⎟⎠ ei(kz−ωt). (A.2)

The push forward of the nominal stress for an incompressible material is given by

ζ = Fs = M : γ + qI − Qγ , (A.3)

where s is the incremental nominal stress tensor, and M is the push forward of the elasticity tensor defined by

Mijkl = ∂2W

∂Fjm∂Fln
FimFkn, (A.4)

often denoted by A0 and q is the increment of Q. We will assume that q = q(r, z) (that is, independent of θ
since there is no θ dependence in either the pre-stress or the perturbation).
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The incremental equations of motion are then given by

div ζ = ρ
∂2u

∂t2
, (A.5)

where ρ is the density of the body, which remains constant throughout the deformation, since we are considering
an incompressible material.

Using (A.5), we observe that the radial and axial equations give respectively

∂ζ11

∂r
= 0,

∂ζ33

∂z
= 0, (A.6)

and the azimuthal equation is given by

∂ζ12

∂r
+ ∂ζ32

∂z
+ ζ12 + ζ21

r
= −ρω2v(r)ei(kz−ωt). (A.7)

Now, from (18) we have Miijj = λiλjWij , and, when i 	= j, λi 	= λj ,

Mijij = λiWi − λjWj

λ2
i − λ2

j

λ2
i , Mijji = λjWi − λiWj

λ2
i − λ2

j

λiλj,

where

Wi = ∂W

∂λi
, Wij = ∂2W

∂λi∂λj
,

and we note that, in the above, there is no implied summation over repeated indices and, for all other combinations
of i, j, k and l, we have Mijkl = 0.

Therefore, using the Mooney–Rivlin strain energy function in (A.3), we have

ζ11 = q, ζ22 = q, ζ33 = q, (A.8)

ζ12 =
(

S2μ+ λ2Q

λ2r
v(r) + 1

λ

(
1 + α

r2

)
(S1 + λ2S2)μv′(r)

)
ei(kz−ωt), (A.9)

ζ21 = −
(

(S1 + λ2S2)μr

λ(α + r2)
v(r) + S2μ+ λ2Q

λ2
v′(r)

)
ei(kz−ωt), (A.10)

ζ23 = −ik

(
λr2S2μ

α + r2
+ Q

)
v(r)ei(kz−ωt), (A.11)

ζ32 = ikλ

(
αS2

r2
+ λS1 + S2

)
μv(r)ei(kz−ωt), (A.12)

which, referring to (A.7), leads to the governing equation for v, (3.3). Also (A.6) give

∂q

∂r
= ∂q

∂z
= 0, (A.13)

so that q = q(r, z) must be a constant. The boundary conditions, to be discussed next, determine this constant.

 at U
niversity of M

anchester on N
ovem

ber 19, 2013
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/
http://qjmam.oxfordjournals.org/


[11:42 11/11/2013 hbt014.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 483 465–488

TORSIONAL WAVES IN A PRE-STRESSED ANNULAR CYLINDER 483

A.2 Boundary conditions

We apply the condition that the perturbation v(r) does not affect the pressure on the surfaces r = a, b of the
deformed annulus. For this to hold, we must have

Tnds = −pnds, (A.14)

where T is the total Cauchy stress, n is the total normal, ds is an area element in the perturbed configuration, p
represents either pin or pout, depending on which boundary is under consideration, and we note that, from the
static boundary conditions, we have

Tn ds = −pn ds, (A.15)

where n is the outer unit normal to the boundary and ds is an area element in the statically deformed configuration.
Nanson’s formula (2) for an incompressible material, applied to the incremental deformation gives

nds = f −T n ds, (A.16)

where f = I + γ is the deformation gradient tensor associated with the perturbation. Using (A.16) in (A.14),
and subtracting (A.15), we obtain Tf −T n ds − Tn ds = −pf −T n ds + pn ds, which, using T = T + τ , gives

(τ f −T + T(f −T − I))n = p(I − f −T )n, (A.17)

where τ is the Cauchy stress associated with the perturbation. To derive an expression for τ in terms of known
quantities, we note that, for an incompressible material,

T = FS, (A.18)

and
T = FS, (A.19)

where F = fF is the total deformation gradient tensor, S = S + s is the total nominal stress tensor, and S is the
nominal stress in the statically deformed configuration.

Now, (A.18) can be rewritten as

T + τ = (I + γ )F(S + s) = FS + Fs + γFS + O(|u|2), (A.20)

hence, using (A.3) and (A.19), and neglecting O(|u|2) terms, we have

τ = ζ + γT. (A.21)

Now,
f −T − I = I − γ T − I + O(|u|2) = −γ T + O(|u|2). (A.22)

Hence, (A.17), to first order in |u|, becomes

τn = Tγ T n + pγ T n. (A.23)

Equation (A.23) simplifies to q = 0 and

v′(a) − v(a)

a
= v′(b) − v(b)

b
= 0. (A.24)
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We note that Engin and Şuhubi (16) decomposed the total normal as n = n + n′, where n′ is a small vector
associated with the perturbation, but instead of applying (A.14), they applied

Tn = −pn, (A.25)

therefore, neglecting the contribution from the perturbation term −pn′. This leads to erroneous results and
means that their fundamental mode does not have a dispersion curve that passes through the origin. This is in
contrast to results shown in Figs 8–10, and is inconsistent with the analytical results revealed in Section 3.2.

APPENDIX B

B. Elliptic integral representation of ξ ()

Consider the following indefinite integral representation of ξ (r) as defined in Section 3.4,

ξ (r) =
∫ r √

q() d =
∫ r

√
4β2(6 + a2

4 + a1
2 + a0)

2(2 + α)
d, (B.1)

with a2 = [4α(β2 + δ) − 3]/(4β2), a1 = 2α(2αδ − 3)/(4β2), a0 = α2/(4β2) and noting that α, β2 and δ are
real with δ � 0. If we make a change of integration variable via z = 2, (B.1) can be recast, after rationalizing
the numerator, as ∫ r √

q() d = |β|
2

∫ ζ R(z)√
�(z)

dz (B.2)

with ζ = r2 and with R(z) and
√
�(z) defined as

R(z) = (z + z1)(z + z2)(z + z3)

z(z + α)
,
√
�(z) = √(z + z1)(z + z2)(z + z3). (B.3)

Here −z1, −z2 and −z3 are the roots of the cubic equation with real coefficients, �(z) = z3 + a2z2 + a1z +
a0 = 0. The integrand of (B.2) is a rational function of z and

√
�(z). For repeated roots of �(z), the integral

can be expressed in terms of elementary functions. For non-repeated roots, it can be expressed in terms of three
incomplete elliptic integrals as follows,

F(φ|m) =
∫ φ

0

dθ(
1 − m sin2 θ

)1/2
, E(φ|m) =

∫ φ

0

(
1 − m sin2 θ

)1/2
dθ,

�(n;φ|m) =
∫ φ

0

dθ(
1 − n sin2 θ

) (
1 − m sin2 θ

)1/2
.

These Legendre integrals are known, respectively, as elliptic integrals of the first, second and third kinds. We
shall use here elliptic integrals in the most general form, with φ defined as the real or complex amplitude, m the
real or complex modulus and n the real or complex parameter.Additionally, we assume 1− sin2 φ ∈ C\(−∞, 0]
and 1 − m sin2 φ ∈ C\(−∞, 0], except that one of them may be 0 and 1 − n sin2 φ ∈ C\{0} (see §19.2(ii)
of (19)).
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Using polynomial long division and partial fraction expansion, we may rewrite R(z) as

R(z) = C1 + z + C2

z
+ C3

z + α
, (B.4)

with C1 = E1 − α, C2 = E3/α, C3 = (α3 − E1 α
2 + E2 α − E3)/α and the so called elementary symmetric

polynomials E1 = z1 + z2 + z3, E2 = z1z2 + z1z3 + z2z3, and E3 = z1z2z3. Hence, ξ (ζ ) can be expressed in
four parts by

I1(ζ ) = |β|
2

C1

∫ ζ 1√
�(z)

dz, I2(ζ ) = |β|
2

∫ ζ z√
�(z)

dz,

I3(ζ ) = |β|
2

C2

∫ ζ 1

z
√
�(z)

dz, I4(ζ ) = |β|
2

C3

∫ ζ 1

(z + α)
√
�(z)

dz.

B.1 Integration of I1

The cubic polynomial �(z) can be transformed into bi-quadratic form using the substitution z = t2 − z1.
Traditionally z1 is chosen as the real root, however this is not a restriction here, since we shall use elliptic
integrals in their most general form (with complex arguments). Hence, defining d = 1/

√
z3 − z1, and after two

additional transformations, d2t2 + 1 = u−2 and u = sin θ , I1 becomes

I1 = |β|
2

C1

∫ τ 2cd√
(1 + c2t2)(1 + d2t2)

dt = −(2d)
|β|
2

C1

∫ υ du√
1 − m u2

√
1 − u2

= −(2d)
|β|
2

C1

∫ φ

0

dθ√
1 − m sin2 θ

= −(2d)
|β|
2

C1 F(φ|m),

where I1() is expressed in terms of the real or complex modulus m and the real or complex amplitude φ defined
hereafter as

m = 1 − d2

c2
, φ = arcsin

{[
1 + d2

(
2 + z1

)]− 1
2

}
, (B.5)

with c = 1/
√

z2 − z1 and d = 1/
√

z3 − z1.

B.2 Integration of I2

Using z = t2 − z1 we can write I2(τ ) = I21(τ ) + I22(τ ) with

I21 = |β|
2

∫ τ −2cd z1√
(1 + c2t2)(1 + d2t2)

dt, I22 = |β|
2

∫ τ 2cd t2√
(1 + c2t2)(1 + d2t2)

dt.

Hence I21 can be easily derived, following Section B.1, as

I21() = (2d z1)
|β|
2

F(φ|m). (B.6)

The derivation of I22 is considerably more lengthy. Using d2t2 + 1 = u−2 we may write

I22 = −|β|
d

{∫ υ du

u2
√

1 − mu2
√

1 − u2
−
∫ υ du√

1 − mu2
√

1 − u2

}
.
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Using the following relations

d

du

(√
1 − mu2

√
1 − u2

u

)
= mu2√

1 − mu2
√

1 − u2
− 1

u2
√

1 − mu2
√

1 − u2
,

∫ υ m u2√
1 − mu2

√
1 − u2

du =
∫ υ du√

1 − mu2
√

1 − u2
−
∫ υ

√
1 − mu2√
1 − u2

du,

∫ υ
√

1 − mu2√
1 − u2

du =
∫ φ

0

√
1 − m sin2 θ dθ = E(φ|m)

to obtain I22, we may finally express I2() as

I2 = |β|
2

⎧⎪⎨
⎪⎩

2

d

√
1 − m sin2 φ

√
1 − sin2 φ

sin φ
+ 2

d
E(φ|m) + 2dz1 F(φ|m)

⎫⎪⎬
⎪⎭ . (B.7)

B.3 Integration of I3 and I4

Again employing z = t2 − z1 and d2t2 + 1 = u−2, we may recast I3 as

I3 = |β|
2

C2

∫ τ 2cd(
t2 − z1

)√
(1 + c2t2)(1 + d2t2)

dt

= 2d3(
z1 d2 + 1

) |β|
2

C2

∫ υ u2(
u2 − ν2

) 1√
1 − mu2

√
1 − u2

du,

with ν2 = 1/(z1d2 + 1). Rewriting u2/(u2 − ν2) = 1 + ν2/(u2 − ν2) and then setting u = sin θ we obtain

I3 = 2d3(
z1d2 + 1

) |β|
2

C2

{∫ υ du√
1 − mu2

√
1 − u2

+
∫ υ ν2 du(

u2 − ν2
)√

1 − mu2
√

1 − u2

}

= 2d3(
z1d2 + 1

) |β|
2

C2

{∫ φ

0

dθ√
1 − m sin2 θ

−
∫ φ

0

dθ(
1 − n1 sin2 θ

)√
1 − m sin2 θ

}

= 2d3(
z1d2 + 1

) |β|
2

C2 {F(φ|m) −�(n1; m|φ)} ,

with n1 = (z1d2 + 1). The derivation of I4 is obtained following the same steps as in I3, hence

I4 = 2d3

((z1 − α)d2 + 1)

|β|
2

C3 {F(φ|m) −�(n2; m|φ)} , (B.8)

with n2 = ((z1 − α)d2 + 1).
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Adding I1, I2, I3 and I4 we finally obtain an integral representation for the independent variable ξ in the LG
transformation,

ξ (r) = |β|
2

{
2

d

√
1 − m sin2 φ

√
1 − sin2 φ

sin φ
+ 2

d
E(φ|m) + D1 F(φ|m)

+ D2�(n1;φ|m) + D3�(n2;φ|m)

}
, (B.9)

with constants D1, D2 and D3 defined as

D1 = 2d (z1 − C1)+ C2
2d3

n1
+ C3

2b3

n2
, D2 = −C2

2d3

n1
, D3 = −C3

2d3

n2
. (B.10)
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