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• Wemodel cloaks in the context of antiplane elasticity.
• The layered medium method of Torrent and Sanchez-Dehesa is applied.
• We construct Mooney–Rivlin hyperelastic cloaks.
• The scattering cross section is plotted to assess effectiveness of cloaks.

a r t i c l e i n f o

Article history:
Available online 28 June 2013

Keywords:
Antiplane waves
Cloaking
Metamaterials
Hyperelasticity
Homogenization

a b s t r a c t

We consider the problem of how to cloak objects from antiplane elastic waves using two
alternative techniques. The first is the use of a layered metamaterial in the spirit of the
work of Torrent and Sanchez-Dehesa (2008) who considered acoustic cloaks, motivated by
homogenization theories, whilst the second is the use of a hyperelastic cloak in the spirit of
the work of Parnell et al. (2012). We extend the hyperelastic cloaking theory to the case of
a Mooney–Rivlin material since this is often considered to be a more realistic constitutive
model of rubber-like media than the neo-Hookean case studied by Parnell et al. (2012),
certainly at the deformations required to produce a significant cloaking effect. Although
not perfect, theMooney–Rivlinmaterial appears to be a reasonable hyperelastic cloak. This
is clearly encouraging for applications. We quantify the effectiveness of the various cloaks
considered by plotting the scattering cross section as a function of frequency, noting that
this would be zero for a perfect cloak.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Two principal mechanisms have been proposed as techniques to cloak specific regions of space, i.e. render them invisible
to probing incident waves, so that whatever they contain cannot be seen in the far field. These are passive and active cloaking
techniques. The former uses a material with prescribed properties which surrounds the region to be cloaked and guides
waves around this region [1–3]. The latter uses active wave sources either inside or outside the cloaked region to nullify
the field scattered from this region [4–6]. Both mechanisms have advantages and disadvantages. The applications of such
theories are clearly numerous, including vibration reduction for structures in given regions of space and ensuring that the
acoustic signatures of elastic bodies are reduced.

In this article we continue to discuss the concept of passive cloaking, here in the context of the antiplane (horizontally
polarized shear, often referred to as ‘‘SH’’) elastic wave problem. Key to determining the properties of passive materials
used for cloaking is the transformation or change-of-variables method [1,2,7] whereby the material properties of the cloak
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are defined by a spatial transformation. A fundamental aspect of transformation cloaking is that the mapped properties
correspond to rather special material properties that are often very difficult to realize in practice. This difficulty is
emphasized further in transformation elasticity. The first study of transformation theory in the field of elastodynamics
was that of Milton et al. [8] who concluded that the transformed materials are described by the Willis model, which is a
dispersive constitutive model, involving coupling between stress and velocity, in addition to anisotropic inertia [9,10].

Brun et al. [11] considered the transformation of isotropic elasticity in cylindrical coordinates and found transformed
material propertieswith isotropic inertia and elastic behaviour of Cosserat type. The governing equations for Cosserat elastic
materials [12] are the same as those of standard linear elasticity except that the elastic moduli of the cloak should not
satisfy the minor symmetry, i.e. Cjikl ≠ Cijkl (although they do satisfy the major symmetry Cklij = Cijkl). This implies a non-
symmetric stress, σij ≠ σji which depends not only on the strain eij (the symmetric part of the displacement gradient)
but also on the local rotation, which in Cartesian coordinates has the form ∂ui/∂xj − ∂uj/∂xi. In [13] Norris and Shuvalov
conducted a thorough study of transformation theory for elasticity, indicating that as in acoustics, the range of mapped
material properties is highly non-unique, thus explaining the divergence in the previously obtained results [8,11].

An alternative approach to transformation elasticity has been proposed that employs inextensible fibers embedded in an
elastic material [14–16]. This has the advantage that the effective material has isotropic density and retains both the minor
and major symmetries of the stiffness tensor although its major disadvantage is that cloaking is possible for incident waves
only from a single direction.

All such passive methods would involve complicated metamaterials that are extremely difficult to manufacture in
practice.

Recently a different approach to elastodynamic cloaking was proposed which provided an alternative to the standard
transformation theory approach. Themethod involves using nonlinear hyperelastic materials subjected to pre-stress. Linear
elastic waves propagate in the pre-stressed material. The pre-stress induces natural inhomogeneity and anisotropy in the
material and in particular themethod gives rise to a class ofmaterials displaying non-symmetric stress of the type necessary
to achieve elastodynamic cloaking. This approach was instigated by Parnell [17] and Parnell et al. [18] who considered
the antiplane wave case and used radially symmetric cylindrical pre-strain of an incompressible neo-Hookean material.
The more general in-plane two dimensional problem was considered by Norris and Parnell [19] where the lack of minor
symmetry was fully exploited and it was deduced that for near-perfect in-plane cloaking, a material possessing a semi-
linear strain energy function is required.

With a view to practical applications of the elastodynamic cloaking theory in the antiplane wave context, here we
consider a cloak construction firstly based on the approach of Torrent and Sanchez-Dehesa [20] who originally considered
the two dimensional acoustics context. We then describe the alternative hyperelastic neo-Hookean cloak and consider the
deviation of the material from neo-Hookean behaviour by considering a Mooney–Rivlin material, often described as a more
realistic model than neo-Hookean, in order to understand the implications for cloaking in practice.

The antiplane elasticwave case has not been considered extensively in the literature, presumably due to its direct analogy
with two dimensional acoustics. However because of this, it appears that no feasible, practical cloaking strategies have been
proposed in this context. The aim of this paper is therefore to fill this void.

In Section 2 we describe the transformation theory of cloaking and apply the method of Torrent and Sanchez-Dehesa to
the antiplane problem.We follow this in Section 3 by considering the hyperelastic cloak, reviewing the neo-Hookean theory
and then showing how the problem is solved in the Mooney–Rivlin case. In Section 4 we quantify the effectiveness of the
various mechanisms by plotting the corresponding scattering cross section. This quantity would be zero for a perfect cloak.
We conclude in Section 5.

2. Transformation cloaking, homogenization and metamaterials

2.1. Transformation cloaking

Consider an unbounded homogeneous linear elastic material with shear modulus µ0 and density ρ0 and introduce a
Cartesian coordinate system (X, Y , Z) and cylindrical polar coordinate system (R, Θ, Z)with some common originO. Planar
variables are related in the usual manner, X = R cosΘ, Y = R sinΘ . Suppose that there is a time-harmonic line source,
polarized in the Z direction and located at (R0, Θ0), with circular frequency ω and amplitude C (which is a force per unit
length in the Z direction). This generates antiplane elastic waves with the only non-zero displacement component in the Z
direction of the form U = ℜ[W (X, Y ) exp(−iωt)]. The displacementW is governed by

∇X · (µ0∇XW ) + ρ0ω
2W =

C
R0

δ(R − R0)δ(Θ − Θ0) (2.1)

where ∇X indicates the gradient operation in the ‘‘untransformed’’ frame.
The assumedmapping for a cloak for antiplanewaves (cf. two dimensional acoustics) expressed in plane cylindrical polar

coordinates, takes the form of the identity mapping for all R > R2 and

r = g(R), θ = Θ, z = Z, for 0 ≤ R ≤ R2, (2.2)
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for some chosen monotonically increasing function g(R) with g(0) ≡ r1 ∈ [0, R2), g(R2) = R2 ∈ R such that R2 < R0,
i.e. the line source remains outside the cloaking region. The cloaking region is thus defined by r ∈ [r1, r2] where r2 = R2. We
use upper and lower case variables for the untransformed and transformed configurations respectively. Under this mapping
the form of the governing equation (2.1) remains unchanged for R = r > R2, whereas for 0 ≤ R ≤ R2, corresponding to the
transformed domain r1 ≤ r ≤ r2, the transformed equation takes the form (in transformed cylindrical polar coordinates
r, θ = Θ)

1
r

∂

∂r


rµr(r)

∂w

∂r


+

µθ (r)
r2

∂2w

∂θ2
+ d(r)ω2w = 0 (2.3)

where (see Eqs. (26), (27) in [13])

µr(r) =
µ2

0

µθ (r)
= µ0

R
r
dg
dR

, d(r) = ρ0
R
r


dg
dR

−1

. (2.4)

Hence, both the shear modulus and density must be inhomogeneous and the shear modulus must be anisotropic. Material
properties of this form cannot be constructed exactly since the shear modulus µθ becomes unbounded as r → r1 (the inner
boundary of the cloak). In this limit the density behaves as d = (pcr1)−1ρ0R2−p

+ · · · where p, c > 0 define the mapping in
the vicinity of the inner boundary according to r = r1+cRp

+· · · as R → 0. In practice of course approximations are required
as described in e.g. [21–23]. Note that, as expected [13], the total mass is conserved since, regardless of the mapping, the
integral of the density d(r) over r ∈ [r1, r2] is πR2

2ρ.
A frequently quoted example due to its simplicity is the mapping

g(R) = r1 + R

r2 − r1

r2


(2.5)

so that the required cloak properties are

µr(r) = µ0


1 −

r1
r


, µθ (r) = µ0


r

r − r1


, d(r) = ρ0


1 −

r1
r

 r2
r2 − r1

2

. (2.6)

We note that µr and d tend to zero and µθ becomes unbounded as r → r1 on the inner boundary of the cloak.

2.2. Metamaterial cloak construction via homogenization

From the transformation method above it is clear that a perfect cloak cannot be produced (as should be expected).
However if amaterialwhichhas approximately the sameproperties canbe constructed (we call thismaterial ametamaterial)
the cloak could be achieved approximately, i.e. some wave scattering will occur but its magnitude in comparison to the
incident energy will be small. In order to achieve this we require a metamaterial which has a very small mass density and
radial shear modulus near the inner cloak boundary but also a very large azimuthal shear modulus near the inner boundary.
Additionally the material must be structured in such a way so that the material properties are inhomogeneous and vary
radially in the manner described in (2.6) above. One can imagine various mechanisms for producing such anisotropy and
inhomogeneity. One such schemewas proposed by Torrent and Sanchez-Dehesa [20] in the acoustics context. They imagined
using a layered medium as depicted in Figs. 1 and 2 with each layer itself possessing constant material properties. The
radial variation in moduli is therefore piecewise constant and induces anisotropy. It becomes a better approximation to the
required metamaterial properties as we increase the number of layers as we shall see below. The construction of a finely
layeredmedium itself is a rather difficult engineering task and since we also require the properties of the layers to vary with
radial distance (by using some additional microstructure within each layer) this increases the technological difficulty.

In order to induce the necessary anisotropy we introduce a cell which consists of two isotropic layers. The properties of
each layer vary radially with the cell position as depicted by the different shadings in Fig. 2. The effective antiplane shear
properties of such a two layered cell with properties µ1, ρ1 and µ2, ρ2 with volume fraction φ of phase 1 material, are [24]

µ∗

r =


φ

µ1
+

(1 − φ)

µ2

−1

, µ∗

θ = φµ1 + (1 − φ)µ2, ρ∗
= φρ1 + (1 − φ)ρ2. (2.7)

We note that we have assigned the property in the direction perpendicular to the layer surfaces as µ∗
r whereas that in the

parallel direction isµ∗

θ neglecting the curvature effects here. As in [20] let us choose φ = 1/2 so that both layers are of equal
thickness. Therefore (2.7) become

µ∗
r

µ0
= 2


µ0

µ1
+

µ0

µ2

−1

,
µ∗

θ

µ0
=

1
2µ0

(µ1 + µ2),
ρ∗

ρ0
=

1
2ρ0

(ρ1 + ρ2) (2.8)

where we have introduced the ‘‘background’’ material properties of the exterior region µ0 and ρ0 in order to
nondimensionalize.
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Fig. 1. Cloak with outer radius r2 and inner radius r1 . A zoom into the rectangular region highlighted is given in Fig. 2 where see therefore that locally the
material is approximately a layered medium.

Fig. 2. Local geometry of the cloak—i.e. a layered medium. Each ‘‘cell’’ consists of two layers—here denoted with alternating shading. Local effective
properties of the two layer medium are determined from classical expressions for effective properties of layered media.

These properties vary from cell to cell because we choose different material properties for the two individual layers
in each cell. This therefore permits us to determine the necessary material properties within the cell by equating these
homogenized properties (as functions of r) with the required cloaking properties. Clearly in practice the effective properties
would be piecewise constant but as the layer thickness gets smaller this dependence becomes smoother.

The choice of approach is non-unique. As an example, let us first setµ2 = µ2
0/µ1 so that if we now consider the effective

properties to be a (continuous) function of r we require the homogenized properties of the layered cloak to take the form

µ∗
r (r)
µ0

= 2


µ0

µ1(r)
+

µ1(r)
µ0

−1

,
µ∗

θ (r)
µ0

=
1
2


µ0

µ1(r)
+

µ1(r)
µ0


. (2.9)

Equating µ∗

θ with the necessary cloak property µθ as given for a specific mapping in (2.6), and solving for µ1 we obtain

µ1(r) = µθ (r) +


µ2

θ (r) − µ2
0 (2.10)

so that

µ1(r)
µ0

=
r

(r − r1)
+


r

r − r1

2

− 1. (2.11)

This also fixes the function µ2(r) via the relation µ2 = µ2
0/µ1 and ensures that the shear modulus cloaking properties are

achieved.
To prescribe the appropriate density one option is to set the phase speeds of each layer to be equal c1(r) = c2(r). We

wish to equate the effective density ρ∗ with the cloaked density property d(r) so that

ρ∗(r) =
1
2
(ρ1(r) + ρ2(r)) = ρ0


1 −

r1
r


α2 (2.12)
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Fig. 3. A cloak consisting of 50 layers (N = 25) constructed via the homogenizationmethod. The incidentwave is a planewave of unit amplitude impinging
from the right.

Fig. 4. A cloak consisting of 200 layers (N = 100) constructed via the homogenization method. The incident wave is a plane wave of unit amplitude
impinging from the right.

where we have introduced α = r2/(r2 − r1). Substituting ρ1(r) = µ1(r)c21 (r) and ρ2(r) = µ2(r)c21 (r) into (2.12) then yields

c21 (r) =
2ρ0α

2(r − r1)
r(µ1(r) + µ2(r))

(2.13)

fromwhichwe can determine ρ1(r) and ρ2(r). Alternatively, one could insist that for example ρ1(r) has the same functional
dependence on r as µ1(r) which then fixes ρ2(r) via (2.12).

Suppose we have N cells in the cloak, i.e. we have a total of 2N layers in the region between r = r1 and r = r2. These are
the alternating 0 and 1 phases but where the material properties of these phases vary with r . The layer thickness is

δ =
(r2 − r1)

2N
. (2.14)

The ordering of the layers does not matter, so begin on the inner face of the cloak with phase 1, then 2. We assign the
(constant) material properties of the nth layer as those of the inhomogeneous functions evaluated at their outer interface,
i.e. on r = r1 + nδ, n = 1, 2, . . . , 2N so that the outermost layer (a phase 2 layer) has properties evaluated at r = r2.
Proceeding in this manner also avoids the obvious singularity at r = r1.

In Figs. 3 and 4 we illustrate the use of the above technique in the situation where there are 50 and 200 layers within
the cloak region. The phase properties, varying as a function of r are chosen using the technique above. In this case we have
chosen R2 = 2r1 and kr1 = 4π which are the same parameters as those used in [20]. The point source is located at (R0, Θ0) as
above. In order to solve this scattering problemwewrite down the solution to the governing equation (Helmholtz equation)
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in the mth layer analytically via the standard separation of variables expansion, i.e.

wm(r, θ) =

∞
n=−∞

(cmnH(1)
n (kmR) + dmnH(2)

n (kmr))ein(θ−θ0) (2.15)

where km is the wavenumber in themth layer and H(j)
n is the Hankel function of nth order and jth type (j = 1, 2 correspond

to outgoing and incoming waves respectively). We satisfy continuity of displacement and traction on each of the interfaces
between the layers with a traction free condition on r = r1. On r = R2 we impose continuity of traction and displacement
with the solution in the external medium, i.e.

w(r, θ) = wi + ws =
C

4iµ0
H(1)

0 (k0S) +

∞
n=−∞

(−i)nanH(1)
n (k0r)ein(θ−Θ0) (2.16)

where S =


(x − X0)2 + (y − Y0)2 and k0 is the wavenumber in the host medium and we note the ‘‘incident’’ and
‘‘scattered’’ partition of the field. The coefficients an are the scattering coefficients which should be small if cloaking is
successful. This solution scheme generates a large algebraic systemwhichwe invert numerically for the coefficients cmn, dmn
and an. This approach is described in further detail in [25].We plot the field in Figs. 3 and 4 for the cases of 50 layers (N = 25)
and 200 layers (N = 100) respectively. We see the qualitative improvement in cloaking (reduction of the shadow to the
left) when we increase the number of layers from 50 to 200. We have taken Θ0 = 0 and considered the limiting case of an
incident plane wave of unit amplitude which is derived by taking the limit R0 → ∞ together with source strength

C → 2iµ0


2πk0R0ei(

π
4 −k0R0). (2.17)

Note that very few papers introduce a quantitative measure of the success of cloaking via metamaterials. What we will do
here is to introduce such a measure, i.e. the scattering cross section γ (see (4.3)) and calculate its magnitude. We do this
later when comparing the transformation (layered metamaterial) approach and the hyperelastic method which we shall
introduce shortly.

An alternative to the above metamaterial construction would be to begin with a cell which itself is transversely isotropic
so that the initial homogenization step is not required. As noted earlier, although the above metamaterial construction is
feasible it is certainly formidable.

3. Hyperelastic cloaking

In [17] a new method to generate elastic cloaks was proposed which used the notion of nonlinear pre-stress of a
hyperelastic neo-Hookeanmaterial capable of large deformation. That thiswas possiblewas due to the fact that the antiplane
wave field scattered froma cylindrical cavity is invariant under pre-stress for a neo-Hookeanmaterial. Scattering coefficients
in the deformed configuration depend only on the initial cavity radius R1 and therefore provided that this is small compared
with the incident wavelength, scattering from the inflated cavity of radius r1 will be negligible regardless of the relative size
of r1 and the incidentwavelength. Thereforewe can conclude that an object placed inside the inflated cavity regionwould be
near-invisible (i.e. cloaked) upon choosing R1 appropriately. In [17] the pre-stress affected the entire elastic domain however
and therefore its influence was felt by both the source and receiver. In [18] this analysis was extended in order to generate a
finite cloak by combining in-plane hydrostatic pressure with an axial stretch. Let us discuss here the general theory, briefly
illustrating the special result for neo-Hookean materials and then showing how the theory extends to the Mooney–Rivlin
material context.

3.1. Initial hyperelastic pre-stress

With reference to Fig. 5, let us consider an unbounded linear elastic material within which is located a cylindrical cavity
of radius R2. Let us assume that the density of the elastic medium is ρ0 and that its axial shear modulus (corresponding to
shearing on planes parallel to the axis of the cylindrical cavity) is µ0. Additionally we take a cylindrical annulus of isotropic
incompressible hyperelastic material with associated shear modulus µ and density ρ (and possibly other material constants
which we shall discuss later) and with inner and outer radii R1 and R2 respectively with R1 ≪ R2. The exact nature of
this latter relationship will be described later. We shall consider deformations of the cylindrical annulus in order that it
can act as an elastodynamic cloak to incoming antiplane elastic waves. We deform the material so that its inner radius is
significantly increased (to r1) but its outer radius R2 remains unchanged. The deformed cylindrical annulus can then slot
into the existing cylindrical cavity region within the unbounded (unstressed) domain. The cloak properties µ and ρ can be
chosen arbitrarily but it transpires that upon choosing their relationships with the exterior properties as µ = λzµ0 and
ρ = λzρ0 (where λz = λ is the uniform axial stretch to be introduced below) an explicit solution can be found since this
retains the invariance property described in [17] as well as satisfying the necessary continuity conditions on r = R2.

The Cauchy stress for an incompressible material is [26]

T = F
∂W

∂F
+ Q I, (3.1)
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Fig. 5. The incompressible neo-Hookean cylindrical annulus is pre-stressed as depicted on the right. This annulus then creates a cloak when slotted into
a cylindrical cavity in an unbounded elastic medium, as illustrated on the left.

where W is the strain energy function (SEF) of the material under consideration (i.e. neo-Hookean, Mooney–Rivlin, etc.)
which imparts information about the constitutive behaviour into the model. Also here F is the deformation gradient, I is
the identity tensor and Q is the scalar Lagrange multiplier associated with the incompressibility constraint which we shall
describe shortly.

We consider the initial deformation of the cylindrical annulus domain as depicted in Fig. 5. The deformation is induced
by applying a uniform axial stretch λz = λ and a radial pressure difference po − pi where po and pi denote the pressures
applied to the outer and inner face of the cylindrical annulus respectively. The deformation is described by the mapping

R = R(r), Θ = θ, Z = z/λ, (3.2)

where (R, Θ, Z) and (r, θ, z) are cylindrical polar coordinates in the undeformed and deformed configurations respectively.
Note the convention introduced in (3.2), i.e. that upper case variables correspond to the undeformed configuration whilst
lower case corresponds to the deformed configuration. This is analogous to the notation used for untransformed and
transformed configurations in (2.2) but whereas the latter was a mapping which enables the necessary cloak properties
to be determined, the former is a physical deformation.

The principal stretches for this deformation are

λr =
dr
dR

=
1

R′(r)
, λθ =

r
R(r)

, λz = λ. (3.3)

For an incompressible material λrλθλz = 1, implying

R(r) =


λ(r2 + M), (3.4)

whereM = R2
2(λ

−1
− 1) is a constant determined by imposing that the outer wall of the cylindrical annulus remains fixed,

i.e. R(R2) = R2. The deformation (3.4) is easily inverted to obtain r(R). Given incompressibility and the fixed outerwall of the
annulus, we may induce this deformation by either (i) prescribing the axial stretch λ which then determines the deformed
inner radius r1 and the radial pressure difference required tomaintain the deformation or (ii) prescribing the radial pressure
difference which then determines the deformed inner radius r1 and the axial stretch λ.

We shall discuss the radial pressure difference shortly but either way we can obtain λ and then substitute this into (3.4).
Imposing the requirement that R(r1) = R1 and using the form ofM given above gives rise to the useful relation

λ =
R2
2 − R2

1

R2
2 − r21

. (3.5)

In this problem only diagonal components of the Cauchy stress are non-zero, being given by (no sum on the indices)

Tjj = tj(r) + Q (3.6)

for j = r, θ, z, where

tr(r) = λr
∂W

∂λr
, tθ (r) = λθ

∂W

∂λθ

, tz(r) = λz
∂W

∂λz
. (3.7)
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The second and third of the static equations of equilibrium div T = 0 (where div signifies the divergence operator in the
deformed configuration) merely yield Q = Q (r). The remaining equation

∂Trr
∂r

+
1
r
(Trr − Tθθ ) = 0, (3.8)

can be integrated using (3.6)–(3.7) to obtain Q (r). Writing Trr |r=R2 = −po, Trr |r=r1 = −pi we find

pi − po =

 r=R2

r=r1

1
r


λθ

∂W

∂λθ

− λr
∂W

∂λr


dr. (3.9)

Given λ and thus r1 via (3.5), this equation prescribes the required pressure difference. For practical reasons it would appear
sensible to take po = 0 since this pressure needs to be maintained when slotted into the external medium.

3.2. Incremental antiplane waves

We assume that the cylindrical annulus has been pre-stressed in the manner described above and slotted into the
unbounded elastic material with perfect bonding at r = R2. We then consider small amplitude antiplane wave propagation
through this pre-stressed medium, instigated by a time-harmonic antiplane line source located at (R0, Θ0) with R0 > R2. In
r > R2 the antiplane wave with corresponding displacement which we shall denote by w(r, θ), is governed by (2.1).

In the region r1 ≤ r ≤ R2, the wave satisfies a different equation since this annulus region has been pre-stressed
according to the deformation (3.2) and (3.4). We can obtain the governing equation using the theory of small-on-large,
see the appendix of [17] for specific details and [26] for the general theory. It transpires that the wave in this region satisfies

1
r

∂

∂r


rµr(r)

∂w

∂r


+

µθ (r)
r2

∂2w

∂θ2
+ ρω2w = 0, (3.10)

which we see has identical form to (2.3) with d(r) = ρ (a constant) but where µr and µθ are here the instantaneous shear
moduli relating the incremental stresses to strains. These are related via

τrz = µr
∂w

∂r
, τrθ =

µθ

r
∂w

∂θ
, (3.11)

where here τij is the incremental Cauchy stress associated with the antiplane wave. It was shown in [17] that for the neo-
Hookean caseµr(r) = tr(r) andµθ (r) = tθ (r) defined by (3.7) above, although note that herewe have also incorporated the
axial stretchwhichwas not considered in [17]. For amore general SEFwe do not have these equalities and the instantaneous
moduli are different to tj. In general they are given by

µr(r) =
λ2
r

J


λrWr − λzWz

λ2
r − λ2

z


µθ =

λ2
θ

J


λθWθ − λzWz

λ2
θ − λ2

z


. (3.12)

In general, solving the incremental equation (3.10) analytically is not possible. Let us describe the neo-Hookean case
briefly where analytical solutions can be found for a special case, before considering amore general case where they cannot.

3.3. The neo-Hookean case

In [17] it was shown that (3.10) can be solved analytically in the neo-Hookean case when the SEF is given by

WNH =
µ

2
(λ2

r + λ2
θ + λ2

z − 3). (3.13)

This can be seen in a straightforward manner by introducing the identity mapping for r > R2 and

R2
= λ(r2 + M), Θ = θ, for r1 ≤ r ≤ R2 (3.14)

which corresponds to the actual physical deformation (3.4). Finally defineW (R, Θ) = w(r(R), θ(Θ)). It is then straightfor-
ward to show that the equation governing wave propagation in the entire domain R ≥ R1 is (2.1), provided that we choose
µ = λµ0 and ρ = λρ0. These relations ensure that the wavenumbers in the exterior and cloak regions are the same and
they alsomaintain continuity of traction on R = R2. This invariance property enables us to determine the analytical solution
(and associated scattering coefficients) explicitly. If µ ≠ λµ0 or ρ ≠ λρ0 the invariance breaks down and we would have
to solve the equations in the manner to be described below for the Mooney–Rivlin material.

For convenience let us restrict ourselves to the case of µ = λµ0 and ρ = λρ0. Since (3.14) corresponds to the actual
deformation, the inner radius r1 maps back to R1. Therefore with the appropriate choice of cloak material properties, the
scattering problem in the undeformed and deformed configurations are equivalent. We can therefore solve the equation in
the undeformed configuration and thenmap back to the deformed configuration to find the physical solution. Decomposing
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Fig. 6. Cloaking of antiplane shear waves. Line source is located at k0r = k0R0 = 8π, Θ0 = 0, shown as a white circle. Plots of the total field. Upper left:
A region of (nondimensionalized) radius k0r1 = 2π is cloaked using a classic linear elastic cloak g(R) = r1 + R


R2−r1
R2


in 2π ≤ k0r ≤ 4π . Upper right:

Scattering from a cavity of radius k0R1 = 2π/20 in an unstressed medium. Lower left: A ‘‘pre-stress’’ cloak in 2π ≤ k0r ≤ 4π generated from an annulus
with initial inner radius k0R1 = 2π/20. Lower right: Scattering from a cavity with radius k0R1 = 2π in an unstressed medium. Scattering and the shadow
region presence in the latter is significant, as compared with that for an equivalent sized cavity for the ‘‘pre-stress’’ cloak.

the solution into incident and scattered parts W = Wi + Ws, we have Wi =
C

4iµ0
H(1)

0 (k0S) where we have defined the

wavenumber k0 via k20 = ρ0ω
2/µ0 and S =


(X − X0)2 + (Y − Y0)2. We recall that H(1)

n is the Hankel function of the first
kind of order n introduced above. The scattered field is written in the form [17]

Ws(R) =

∞
n=−∞

(−i)nanH(1)
n (k0R)ein(Θ−Θ0). (3.15)

Satisfaction of the traction free boundary condition on R = R1 gives an. Wewant the wave field with respect to the deformed
configuration, so we map back in order to find w = wi + ws. The incident wave is most conveniently determined by using
Graf’s addition theorem in order to distinguish between the regions r < R0 and r > R0, aswas described in [17]. The incident
and scattered fields are then, respectively,

wi(r) =
C

4iµ0

∞
n=−∞

ein(θ−θ0) ×

H(1)
n (k0R0)Jn(k0


λ(r2 + M)), r1 ≤ r < R2,

H(1)
n (k0R0)Jn(k0r), R2 ≤ r < R0,

H(1)
n (k0r)Jn(k0R0), r > R0,

(3.16)

ws(r) = −
C

4iµ0

∞
n=−∞

ein(θ−θ0)
J′n(k0R1)

H(1)
n

′

(KR1)
H(1)

n (KR0)

×


H(1)

n


k0


λ(r2 + M)


, r1 ≤ r < R2,

H(1)
n (k0r), r ≥ R2.

(3.17)

The key to cloaking is to ensure that the scattered field is small compared with the incident field, i.e. an ≪ 1. Note from
(3.17) that an are solely dependent on the initial annulus inner radius R1 (and source distance R0) but are independent of
the deformed inner radius r1. Therefore we must choose R1 such that k0R1 ≪ 1 which will ensure negligible scattering. In
Fig. 6 we illustrate the neo-Hookean hyperelastic cloak, comparing with the classical transformation cloak which can only
be achieved by using a metamaterial of the type described in Section 2.



W.J. Parnell, T. Shearer / Wave Motion 50 (2013) 1140–1152 1149

3.4. The Mooney–Rivlin case

The neo-Hookeanmodel for hyperelasticmaterials is an approximationwhich is acknowledged towork up to ‘‘moderate’’
strains. Clearly here, the larger the strain we induce the larger the deformed cavity and the more effective the cloaking is.
Therefore we are certainly interested in the large strain regime. An improved model for hyperelastic materials of a rubber
nature is the so-calledMooney–Rivlin model with associated strain energy function

WMR =
µ

2


S1(λ2

r + λ2
θ + λ2

z − 3) + (1 − S1)(λ2
r λ

2
θ + λ2

r λ
2
z + λ2

θλ
2
z − 3)


(3.18)

where S1 ∈ [0, 1] is an additional material parameter.
As some background to the above, the neo-Hookean model was apparently first proposed by Treloar in his 1943

paper [27]. It was shown by Rivlin, in 1948 [28], that the deformation produced on a unit cube of such a material by the
action of three equally and oppositely directed forces acting normally on its faces is uniquely determined provided that the
forces per unit area, measured in the deformed state, are specified. The Mooney–Rivlin model was proposed by Mooney in
his 1940 paper [29] and the same uniqueness theorem as above was proved by Rivlin in [30] for this model.

In this case the wave equation in the cloak region cannot be solved explicitly. It therefore has to be solved numerically
inside this finite domain. Outside the cloak region we represent the field in the form w = wi + ws where

wi(r) =
C

4iµ0

∞
n=−∞

ein(θ−θ0) ×


H(1)

n (k0R0)Jn(k0r), R2 ≤ r < R0,

H(1)
n (k0r)Jn(k0R0), r > R0,

(3.19)

and

ws(r) =

∞
n=−∞

(−i)naMR
n H(1)

n (k0r)ein(θ−θ0) (3.20)

and we must understand how the scattering coefficients aMR
n vary with pre-stress. From the analysis above we know that at

fixed frequency, they are invariant under pre-stress in the neo-Hookean case which makes it ideal for cloaking.
In the cloak region we denote the wave field as wc and we pose the total field in the modal expansion

wc(r, θ) =

∞
n=−∞

(−i)nFn(r)ein(θ−θ0). (3.21)

This yields the governing ordinary differential equation

1
r

d
dr


rµr(r)

dFn
dr


+


ρω2

−
µθ (r)
r2


Fn = 0 (3.22)

where

µr(r) =
Tµ

λ2


1 +

m
r2


, µθ (r) =

Tµ

λ2


1 −

m
(r2 + M)


(3.23)

where m = MS1λ/T and T = 1 + (λ − 1)S1. Eq. (3.22) is solved numerically in the cloak region subject to dFn/dr = 0 on
the inner boundary (traction free) and continuity of displacement and traction with the solution in the exterior domain on
r = R2, the latter condition being defined by

µr(r)
∂wc

∂r


r=R2

=


µ0


∂wi

∂r
+

∂ws

∂r


r=R2

. (3.24)

Note the simplification µr(R2) = µ/λ2 upon using M = R2
2(λ

−1
− 1). We can eliminate the scattering coefficients aMR

n
between the two conditions at R = R2 which leads to the single condition

1
k0λ

F′

n(R2) −


H(1)

n
′

(k0R2)

H(1)
n (k0R2)


Fn(R2) =

C
4iµ0(−i)n

H(1)
n (k0R0)


J′n(k0R2) −

Jn(k0R2)

H(1)
n (k0R2)


(3.25)

on r = R2. This approach is frequently known in the literature as a ‘‘Dirichlet to Neumannmapping’’. This condition together
with the traction free condition, dFn/dr = 0 on r = r1, closes the system and enables a numerical solution to be found once
material properties are specified. The scattering coefficients are then determined by substituting the solution in either of
the continuity conditions at r = R2. Various aspects of this condition, including the behaviour of the derivative of the
Hankel function, pertaining to non-reflecting boundary conditions for time domain solutions in two and three dimensions
are discussed in [31].

Here, the ODE (3.22) was solved inMathematica 7, using the commandNDSolve. In particular the Gelfand–Lokutsiyevskii
chasing method is used [32]. The AccuracyGoal was set to 10 digits and the WorkingPrecision was set to 50.
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We have not yet specified the shear modulus and density of the cloak region nor the additional parameter S1. We
note here again that in fact in the neo-Hookean case the only reason to choose µ = λµ0 and ρ = λρ0 was to ensure
the invariance under mapping and hence the ability to determine analytically the scattering coefficients under pre-stress.
Choosing different material properties would lead to different scattering coefficients determined by a numerical solution.

To avoid an exhaustivematerial parameter investigation let us fix S1 ≠ 1 for theMooney–Rivlin case and chooseµ = λµ0
and ρ = λρ0 as in the neo-Hookean case. A more general parameter study will be conducted elsewhere.

Using the hyperelastic cloaking technique, the anisotropic, inhomogeneous material moduli in the cloaking region,
defined by (3.23), are induced naturally by the pre-stress and therefore exotic metamaterials devised by the use of upscaling
(homogenization) procedures, as described in the previous section are not required. Furthermore such metamaterials by
their nature require a microstructure of finite size so that dispersive effects will become apparent at some frequency. This
will not be the case in the context of hyperelastic cloaks since the naturally induced properties are continuously varying.
Additionally the density of the cloak is homogeneous in the hyperelastic case.

An additional advantage of pre-stress, is that the resulting incrementalmoduli in such problems do not possess theminor
symmetries. This is therefore a very useful property in the more general elastodynamic setting where classical linear elastic
materials cannot be used as has been described in [19].

4. Results

We wish to ascertain quantitatively the effectiveness of cloaking using the techniques introduced above. In order to do
this we need a measure of the magnitude of scattering. A convenient such quantity is the scattering cross section (SCS). It
is convenient to measure this for an incident plane wave and therefore in the theory above we fix Θ0 = 0 and take the
appropriate limit R0 → ∞ together with the source strength limit (2.17) in order to yield an incident left propagating plane
wave of unit amplitude, i.e. wi = e−ik0x. In this limit, we also note that on the right hand side of (3.25)

C
4iµ0(−i)n

H(1)
n (k0R0) → 1. (4.1)

Given the general form of a scattered antiplane wave field as

ws =

∞
n=−∞

(−i)nanH(1)
n (k0r)ein(θ−Θ0) (4.2)

where an are the associated scattering coefficients, we define the scattering cross section for antiplane wave scattering from
an inclusion of radius r1 as [33]

γ =
2

k0r1


|a0|2 + 2

∞
n=1

|an|2


. (4.3)

We note that for plane wave incidence on a traction free cavity in an otherwise uniform elastic medium we would have

an = −
J′n(k0r1)

H(1)
n

′

(k0r1)
(4.4)

and this case therefore corresponds to having no cloak around the cavity. This is clearly a useful comparison case. Wewould
of course expect that having a good cloak leads to a reduction in scattering as compared with this case.

In order to provide a fair comparison of results let us fix the inner and outer radii of the cloak as r1 = 2π and R2 = 4π
respectively.We then plot γ as a function of k0r1 by varying k0 which is equivalent to considering incidentwaves of different
wavelengths (or frequencies). For the hyperelastic cloak we fix the initial inner radius as R1 = π/10. Reducing R1 further
would further reduce the associated scattering cross section.

In Fig. 7 we plot γ for the case of a layered cloak as introduced above and we plot this for an increasing number of layers
2j, j = 1, 2, . . . 8. The number of cells N as defined above is N = 2j−1. We also plot the case of scattering with no cloak (the
red curve, notable by its lack of oscillations). For low frequencies k0r1 < 1 scattering is always small and sowe pay attention
mainly to higher frequencies when k0r1 > 1. As the number of layers increases we see significant reduction in scattering
cross section, to the extent that for k0r1 > 1 and in the plot range considered, by the timewe reach 128 layers γ ≃ 0.01 and
for 256 layers γ ≃ 0.001. We note that we need at least 32 layers before a significant cloaking effect is achieved, although
16 layers achieves good cloaking up to around k0r1 = π with an approximate reduction in scattering of 90%. The reason
for the poor performance for small N is clearly because by having a small number of layers we are introducing a number of
large impedance mismatches and hence significant scattering. The magnitudes of these mismatches reduce significantly as
we increase the number of layers. We note the oscillations in the plotted curves which are clearly associated with the fact
that the cloak is constructed from layers of finite width.

In Fig. 8 we retain a number of plots from the layered case (the cases of 4, 16, 64 and 256 layers) in order to compare
these resultswith thehyperelastic case. Theneo-Hookean cloak exhibits outstanding cloakingperformance, the results being
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Fig. 7. Plot (on a logarithmic scale) of the scattering cross section for the layered metamaterial cloak with an increasing number of layers 2, 4, 8, 16,
32, 64, 128 and 256 (black then blue curves, top to bottom). We also plot the case of no cloak to enable comparison (red curve with no oscillations). The
improvement at larger N is clear. We note the oscillations for the cloak case are due to the layers being of finite width. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Plot (on a logarithmic scale) of the scattering cross section for the layered metamaterial cloak with an increasing number of layers 4, 16, 64 and
256 (top to bottom—curves with oscillations) together with the corresponding plots for the hyperelastic cloaks (smooth monotonic curves) corresponding
to neo-Hookean, Mooney–Rivlin S1 = 0.9 and S1 = 0.8 (bottom to top). The initially uppermost (red) smooth curve is associated with scattering when no
cloak is present, which enables useful comparisons to be made. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

equivalent to the 256 layermetamaterial. Whilst theMooney–Rivlinmaterials do not achieve the same level of performance
as the neo-Hookean cloakwe see that formuch of the parameter range considered γ ≃ 0.1. This amounts to a 90% reduction
in scattering which in practical terms is extremely useful.

All of the hyperelastic results could be bettered by reducing R1, i.e. increasing the amount of pre-stress. This would be
particularly useful in the context of the Mooney–Rivlin cloak.

5. Conclusions

We have considered two mechanisms by which cloaks can be constructed in the context of antiplane elastic wave
scattering. Firstly we showed how the method of Torrent and Sanchez-Dehesa [20] is applied in this context for a given
transformation (and hence given cloak properties). The homogenization results of layered elastic media are used in order
to match to the required cloak properties and the properties of individual layers are then predicted. Each layer is required
to have different material properties. We then extended the hyperelastic cloak approach from the neo-Hookean case to
the (perhaps more realistic) Mooney–Rivlin context. The latter constitutive model has been employed for a large group of
hyperelastic rubberymaterials atmoderate to large deformations. In order to quantify the effectiveness of the various cloaks
employed we then plotted the scattering cross section. Bothmechanisms can lead to a significant reduction in scattering for
a broad range of frequencies. In the case of the layered metamaterial for the example considered here we need around 32
layers for a significant reduction in scattering. The case of 256 layers is approximately equivalent here to the neo-Hookean
cloak which exhibits superlative cloaking performance, achieving reductions in scattering of more than 99%. Although the
Mooney–Rivlin cloak achieves more modest results, with scattering reductions of around 90% for k0r1 up to around π
(wavelength of the same order as the diameter of the region to be cloaked), the performance could be bettered by using
a smaller initial inner radius of the cloak annulus. Of course this is limited by the ability to generate this pre-stress.

In conclusion, both layered materials and hyperelasticity theoretically provide useful cloaking techniques, giving
significant reductions in scattering. The layered metamaterial is limited by the ability to generate materials with this type
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of complex microstructure whereas the hyperelastic cloak is limited by the magnitude of pre-stress required and stability
of the material under this loading. It would be of great interest to assess these theoretical predictions experimentally.

Clearly the main aim of cloaking is for objects placed inside the cloak region to be invisible to an observer in the far
field. This requires the (antiplane) traction free cavity boundary condition to be maintained on the inner boundary of the
cloak. This is required for metamaterial and hyperelastic cloaks of course. In order for this to be a successful cloaking
mechanism then, any contact between the object and the inner cloak boundary should ensure as little coupling into antiplane
deformation as possible. A related topic is to consider different boundary conditions on the inner cloak surface. If for example,
a rigid wall condition is instead prescribed we do not obtain cloaking in the classical sense, i.e. the scattered field is not in
general weak. In this case what we find is more akin to an illusion effect in that what is seen in the far field is the same
response as a small rigid cylinder.

As regards extensions to the work described above, one could ask whether it is possible to cloak non-circular regions via
hyperelastic pre-stress. It is not immediately clear whether the incremental equations associated with such deformations
would be invariant or near-invariant so as to be useful for cloaking. One starting point would be to take a small elliptical
cavity, assume a deformation of the type (3.4) which would deform the ellipse into a new ellipse, requiring the traction
on the inner cavity to be non-uniform. This would yield invariant incremental equations in the context of neo-Hookean
hyperelasticity however which would then be of use in the cloaking context. These and other related issues will be
considered in follow-up work.
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