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Abstract. The Fréchet derivative Lf of a matrix function f : Cn×n → Cn×n is used in a variety
of applications and several algorithms are available for computing it. We define a condition number
for the Fréchet derivative and derive upper and lower bounds for it that differ by at most a factor 2.
For a wide class of functions we derive an algorithm for estimating the 1-norm condition number that
requires O(n3) flops given O(n3) flops algorithms for evaluating f and Lf ; in practice it produces
estimates correct to within a factor 6n. Numerical experiments show the new algorithm to be much
more reliable than a previous heuristic estimate of conditioning.
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1. Introduction. Condition numbers are widely used in numerical analysis for
measuring the sensitivity of the solution to a problem when the input data is subject
to small perturbations such as rounding or measurement errors [14]. For matrix
functions the condition number is intimately related to the Fréchet derivative. The
Fréchet derivative of f : Cn×n �→ Cn×n is a mapping Lf (A, ·) : Cn×n �→ Cn×n that is
linear in its second argument and for any E ∈ Cn×n satisfies

(1.1) f(A+ E)− f(A)− Lf(A,E) = o(‖E‖).
The Fréchet derivative of a matrix function also arises as an object of interest in its
own right in a variety of applications, of which some recent examples are the com-
putation of correlated choice probabilities [1], computing linearized backward errors
for matrix functions [6], analysis of complex networks [7], [8], Markov models of can-
cer [9], computing matrix geometric means [21], nonlinear optimization for model
reduction [25], [26], and tensor-based morphometry [30]. Software for computing
Fréchet derivatives of matrix functions is available in a variety of languages [16].

The aims of this work are to define the condition number of the Fréchet derivative,
obtain bounds for it, and construct an efficient algorithm to estimate it. We first recall
the definition of the condition number of a matrix function f . The absolute condition
number of f is defined by

condabs(f,A) := lim
ε→0

sup
‖E‖≤ε

‖f(A+ E)− f(A)‖
ε

and is characterized as the norm of the Fréchet derivative [15, Thm. 3.1], [27]:

(1.2) condabs(f,A) = max
‖E‖=1

‖Lf(A,E)‖.
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C618 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

In practice the relative condition number

(1.3) condrel(f,A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖ = max

‖E‖=1

‖Lf(A,E)‖‖A‖
‖f(A)‖

is more relevant. The two condition numbers are closely related, since

(1.4) condrel(f,A) = condabs(f,A)
‖A‖
‖f(A)‖ .

Associated with the Fréchet derivative is its Kronecker matrix form [15, eq.

(3.17)], which is the unique matrix Kf(A) ∈ Cn2×n2

such that for any E ∈ Cn×n,

(1.5) vec(Lf(A,E)) = Kf (A) vec(E) = (vec(E)T ⊗ In2) vec(Kf(A)),

where vec is the operator which stacks the columns of a matrix vertically from first
to last and ⊗ is the Kronecker product. The second equality is obtained by using the
formula

vec(Y AX) = (XT ⊗ Y ) vec(A)

in the special case, with x ∈ Cn,

(1.6) Ax = vec(Ax) = (xT ⊗ In) vec(A).

The principal use of the Kronecker form is that its norm, estimated via the 1-norm or
2-norm power methods, for example, gives an estimate of condabs(f,A) [15, sect. 3.4],
[22].

To investigate the condition number of the Fréchet derivative we will need higher
order Fréchet derivatives of matrix functions, which were recently investigated by
Higham and Relton [19]. We now summarize the key results that we will need from
that work.

The second Fréchet derivative L
(2)
f (A,E1, E2) ∈ Cn×n is linear in both E1 and

E2 and satisfies

(1.7) Lf (A+ E2, E1)− Lf(A,E1)− L
(2)
f (A,E1, E2) = o(‖E2‖).

Higham and Relton show that a sufficient condition for the second Fréchet derivative

L
(2)
f (A, ·, ·) to exist is that f is 4p − 1 times continuously differentiable on an open

set containing the eigenvalues of A [19, Thm. 3.5], where p is the size of the largest
Jordan block of A. This condition is certainly satisfied if f is 4n−1 times continuously
differentiable on a suitable open set. In this work we assume without further comment
that this latter condition holds: it clearly does for common matrix functions such as
the exponential, logarithm, and matrix powersAt with t ∈ R or indeed for any analytic

function. Under this condition it follows that L
(2)
f (A,E1, E2) is independent of the

order of E1 and E2 (which is analogous to the equality of mixed second order partial
derivatives for scalar functions) [19, sect. 2].

One method for computing Fréchet derivatives is to apply f to a 2n× 2n matrix
and read off the top right-hand block [15, eq. (3.16)], [24]:

(1.8) f

([
A E
0 A

])
=

[
f(A) Lf(A,E)
0 f(A)

]
.

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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THE CONDITION NUMBER OF THE FRÉCHET DERIVATIVE C619

Higham and Relton [19, Thm. 3.5] show that the second Fréchet derivative can be
calculated in a similar way, as the top right-hand block of a 4n× 4n matrix:

(1.9) L
(2)
f (A,E1, E2) = f

⎛⎜⎜⎝
⎡⎢⎢⎣
A E1 E2 0
0 A 0 E2

0 0 A E1

0 0 0 A

⎤⎥⎥⎦
⎞⎟⎟⎠ (1 : n, 3n+ 1: 4n).

There is also a second order Kronecker matrix form [19, sect. 4], analogous to

(1.5) and denoted by K
(2)
f (A) ∈ C

n4×n2

, such that for any E1 and E2,

vec(L
(2)
f (A,E1, E2)) = (vec(E1)

T ⊗ In2)K
(2)
f (A) vec(E2)(1.10)

= (vec(E2)
T ⊗ vec(E1)

T ⊗ In2) vec(K
(2)
f (A)).(1.11)

Note that K
(2)
f (A) encodes information about L

(2)
f (A)—the Fréchet derivative of

Lf (A)—in n6 numbers. Our challenge is to estimate the condition number of Lf in
just O(n3) flops.

This paper is organized as follows. In section 2 we define the absolute and relative
condition numbers of a Fréchet derivative, relate the two, and bound them above and
below in terms of the second Fréchet derivative and the condition number of f . The
upper and lower bounds that we obtain differ by at most a factor 2. Section 3 relates

the bounds to the Kronecker matrixK
(2)
f (A) at the cost, for the 1-norm, of introducing

a further factor n of uncertainty, and this leads to an O(n3) flops algorithm given in
section 4 for estimating the 1-norm condition number of the Fréchet derivative. We
test the accuracy and robustness of our algorithm via numerical experiments in section
5. Concluding remarks are given in section 6.

2. The condition number of the Fréchet derivative. We begin by propos-
ing a natural definition for the absolute and relative condition numbers of a Fréchet
derivative and showing that the two are closely related. We define the absolute con-
dition number of a Fréchet derivative Lf(A,E) by

(2.1) condabs(Lf , A,E) = lim
ε→0

sup
‖ΔA‖≤ε
‖ΔE‖≤ε

‖Lf(A+ΔA,E +ΔE)− Lf(A,E)‖
ε

,

which measures the maximal effect that small perturbations in the data A and E can
have on the Fréchet derivative. Similarly, we define the relative condition number by

(2.2) condrel(Lf , A,E) = lim
ε→0

sup
‖ΔA‖≤ε‖A‖
‖ΔE‖≤ε‖E‖

‖Lf(A+ΔA,E +ΔE)− Lf(A,E)‖
ε‖Lf(A,E)‖ ,

where the changes are now measured in a relative sense. By taking ΔA and ΔE
sufficiently small we can rearrange (2.2) to obtain the approximate upper bound
(2.3)
‖Lf(A+ΔA,E +ΔE)− Lf(A,E)‖

‖Lf(A,E)‖ � max

(‖ΔA‖
‖A‖ ,

‖ΔE‖
‖E‖

)
condrel(Lf , A,E).

A useful property of the relative condition number is its lack of dependence on

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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C620 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

the norm of E: for any positive scalar s ∈ R,

condrel(Lf , A, sE) = lim
ε→0

sup
‖ΔA‖≤ε‖A‖
‖ΔE‖≤sε‖E‖

‖Lf(A+ΔA, sE +ΔE)− Lf(A, sE)‖
ε‖Lf(A, sE)‖

= lim
ε→0

sup
‖ΔA‖≤ε‖A‖

‖ΔE/s‖≤ε‖E‖

‖Lf(A+ΔA,E +ΔE/s)− Lf (A,E)‖
ε‖Lf(A,E)‖

= condrel(Lf , A,E).(2.4)

Furthermore we can obtain a similar relationship to (1.4) relating the absolute
and relative condition numbers. This is useful since it allows us to state results and
algorithms using the absolute condition number before reinterpreting them in terms
of the relative condition number.

Lemma 2.1. The absolute and relative condition numbers of the Fréchet derivative
Lf are related by

condrel(Lf , A,E) =
condabs(Lf , A, sE)‖E‖

‖Lf(A,E)‖ , s =
‖A‖
‖E‖ .

Proof. Using (2.4) and setting s‖E‖ = ‖A‖ and δ = ε‖A‖ we have

condrel(Lf , A,E) = condrel(Lf , A, sE)

= lim
ε→0

sup
‖ΔA‖≤ε‖A‖
‖ΔE‖≤εs‖E‖

‖Lf(A+ΔA, sE +ΔE)− Lf (A, sE)‖
ε‖Lf(A, sE)‖

=
‖A‖

‖Lf(A, sE)‖ lim
δ→0

sup
‖ΔA‖≤δ
‖ΔE‖≤δ

‖Lf(A+ΔA, sE +ΔE)− Lf (A, sE)‖
δ

=
condabs(Lf , A, sE)‖A‖

‖Lf(A, sE)‖ =
condabs(Lf , A, sE)‖E‖

‖Lf(A,E)‖ .

In order to bound the relative condition number we will derive computable bounds
on the absolute condition number and use the relationship in Lemma 2.1 to translate
them into bounds on the relative condition number. We first obtain lower bounds.

Lemma 2.2. The absolute condition number of the Fréchet derivative satisfies
both of the lower bounds

condabs(Lf , A,E) ≥ condabs(f,A),

condabs(Lf , A,E) ≥ max
‖ΔA‖=1

‖L(2)
f (A,E,ΔA)‖.

Proof. For the first bound we set ΔA = 0 in (2.1) and use the linearity of the
derivative:

condabs(Lf , A,E) ≥ lim
ε→0

sup
‖ΔE‖≤ε

‖Lf(A,E +ΔE)− Lf (A,E)‖
ε

= lim
ε→0

sup
‖ΔE‖≤ε

‖Lf(A,ΔE)‖
ε

= condabs(f,A).

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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THE CONDITION NUMBER OF THE FRÉCHET DERIVATIVE C621

Similarly, for the second bound we set ΔE = 0 and obtain, using (1.7),

condabs(Lf , A,E) ≥ lim
ε→0

sup
‖ΔA‖≤ε

‖Lf(A+ΔA,E)− Lf (A,E)‖
ε

= lim
ε→0

sup
‖ΔA‖≤ε

‖L(2)
f (A,E,ΔA) + o(‖ΔA‖)‖

ε

= lim
ε→0

sup
‖ΔA‖≤ε

‖L(2)
f (A,E,ΔA/ε)‖

= max
‖ΔA‖=1

‖L(2)
f (A,E,ΔA)‖.(2.5)

Next, we derive an upper bound.
Lemma 2.3. The absolute condition number of the Fréchet derivative satisfies

condabs(Lf , A,E) ≤ max
‖ΔA‖=1

‖L(2)
f (A,E,ΔA)‖ + condabs(f,A).

Proof. Notice that by linearity of the second argument of Lf ,

condabs(Lf , A,E) = lim
ε→0

sup
‖ΔA‖≤ε
‖ΔE‖≤ε

‖Lf(A+ΔA,E +ΔE)− Lf (A,E)‖
ε

≤ lim
ε→0

sup
‖ΔA‖≤ε
‖ΔE‖≤ε

(
‖Lf(A+ΔA,E)− Lf (A,E)‖

ε

+
‖Lf(A+ΔA,ΔE)‖

ε

)

≤ lim
ε→0

sup
‖ΔA‖≤ε

‖Lf(A+ΔA,E)− Lf (A,E)‖
ε

+ lim
ε→0

sup
‖ΔA‖≤ε
‖ΔE‖≤ε

‖Lf(A+ΔA,ΔE/ε)‖.(2.6)

The first term on the right-hand side of (2.6) is equal to max‖ΔA‖=1 ‖L(2)
f (A,E,ΔA)‖

by (2.5). For the second half of the bound (2.6) we have, using (1.7) and the fact that

L
(2)
f (A,E1, E2) is linear in E2,

lim
ε→0

sup
‖ΔA‖≤ε
‖ΔE‖≤ε

‖Lf (A+ΔA,ΔE/ε)‖ = lim
ε→0

sup
‖ΔA‖≤ε
‖ΔE‖≤ε

∥∥Lf(A,ΔE/ε) + L
(2)
f (A,ΔE/ε,ΔA)

+ o(‖ΔA‖)∥∥
= lim

ε→0
sup

‖ΔA‖≤ε
‖ΔE‖≤ε

‖Lf (A,ΔE/ε) +O(ε)‖

= lim
ε→0

sup
‖ΔE‖≤ε

‖Lf (A,ΔE/ε)‖ = condabs(f,A).

Combining the two halves of the bound gives the result.
We now give the corresponding bounds for the relative condition number.
Theorem 2.4. The relative condition number of the Fréchet derivative Lf satis-

fies condrel(Lf , A,E) ≥ 1 and

max(condabs(f,A), sM)r ≤ condrel(Lf , A,E) ≤ (condabs(f,A) + sM)r,

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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C622 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

where s = ‖A‖/‖E‖, r = ‖E‖/‖Lf(A,E)‖, and M = max‖ΔA‖=1 ‖L(2)
f (A,E,ΔA)‖.

Proof. To show condrel(Lf , A,E) ≥ 1 we can use Lemmas 2.1 and 2.2, along with
the linearity of Lf (A,E) in E, as follows:

condrel(Lf , A,E) =
condabs(Lf , A, sE)‖E‖

‖Lf(A,E)‖
≥ condabs(f,A)‖E‖

‖Lf(A,E)‖

=
max‖Z‖=1 ‖Lf(A,Z)‖‖E‖

‖Lf(A,E)‖

=
max‖Z‖=1 ‖Lf(A,Z)‖
‖Lf(A,E/‖E‖)‖ ≥ 1.

For the other inequalities apply Lemma 2.1 to Lemmas 2.2 and 2.3 similarly.

Theorem 2.4 gives upper and lower bounds for condrel(Lf , A,E) that differ by
at most a factor 2. During our numerical experiments in section 5 we found that
typically condabs(f,A) and sM were of comparable size, though on occasion they
differed by many orders of magnitude. Finding sufficient conditions for these two
quantities to differ significantly remains an open question which will depend on the
complex interaction between f , A, and E.

There are already efficient algorithms for estimating condabs(f,A) based on ma-
trix norm estimation [15, sect. 3.4] in conjunction with methods for evaluating the
Fréchet derivative [2], [3], [4], [17]. The key question is therefore how to estimate the

maximum of ‖L(2)
f (A,E,ΔA)‖ over all ΔA with ‖ΔA‖ = 1. This is the subject of the

next section.

3. Maximizing the second Fréchet derivative. Our techniques for estimat-
ing the required maximum norm of the second Fréchet derivative are analogous to
those for estimating condabs(f,A), so we first recall the latter.

We begin by considering the Frobenius norm, because the condition number of a
matrix function can be computed as [15, eq. (3.20)]

(3.1) condabs(f,A) = max
‖E‖F=1

‖Lf(X,E)‖F = ‖Kf(X)‖2.

In practice we usually estimate condabs(f,A) in the 1-norm by ‖Kf(A)‖1, which is
justified by the inequalities [15, Lem. 3.18]

(3.2)
condabs(f,A)

n
≤ ‖Kf(A)‖1 ≤ n condabs(f,A).

To estimate ‖Kf(A)‖1 the block 1-norm power method of Higham and Tisseur [20] is
used [15, Alg. 3.22]. This approach requires around 4t matrix–vector products in total
(using both Kf(A) and Kf (A)

∗) and produces estimates rarely more than a factor
3 from the true norm. The parameter t is usually set to 2, but can be increased for
greater accuracy at the cost of extra flops.

Using (1.10) we obtain a result similar to (3.1) for maximizing the norm of the

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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THE CONDITION NUMBER OF THE FRÉCHET DERIVATIVE C623

second Fréchet derivative:

max
‖ΔA‖F=1

‖L(2)
f (A,E,ΔA)‖F = sup

‖ vec(ΔA)‖2≤1

‖ vec(L(2)
f (A,E,ΔA))‖2

= sup
‖ vec(ΔA)‖2≤1

‖(vec(E)T ⊗ In2

)
K

(2)
f (A) vec(ΔA)‖2

= ‖(vec(E)T ⊗ In2

)
K

(2)
f (A)‖2.(3.3)

The next result shows that using the 1-norm instead gives the same accuracy
guarantees as (3.2).

Theorem 3.1. With M = max‖ΔA‖1≤1 ‖L(2)
f (A,E,ΔA)‖1, we have

1

n
M ≤ ‖(vec(E)T ⊗ In2)K

(2)
f (A)‖1 ≤ nM.

Proof. Making use of (1.10), for the lower bound we obtain

max
‖ΔA‖1≤1

‖L(2)
f (A,E,ΔA)‖1 ≤ sup

‖ΔA‖1≤1

‖ vec(L(2)
f (A,E,ΔA))‖1

= sup
‖ΔA‖1≤1

‖(vec(E)T ⊗ In2)K
(2)
f (A) vec(ΔA)‖1

≤ sup
‖ vec(ΔA)‖1≤n

‖(vec(E)T ⊗ In2)K
(2)
f (A) vec(ΔA)‖1

= n sup
‖ vec(ΔA)‖1≤1

‖(vec(E)T ⊗ In2 )K
(2)
f (A) vec(ΔA)‖1

= n‖(vec(E)T ⊗ In2)K
(2)
f (A)‖1.

For the upper bound, using (1.10) again,

max
‖ΔA‖1≤1

‖L(2)
f (A,E,ΔA)‖1 ≥ 1

n
sup

‖ΔA‖1≤1

‖ vec(L(2)
f (A,E,ΔA))‖1

=
1

n
sup

‖ΔA‖1≤1

‖(vec(E)T ⊗ In2)K
(2)
f (A) vec(ΔA)‖1

≥ 1

n
sup

‖ vec(ΔA)‖1≤1

‖(vec(E)T ⊗ In2)K
(2)
f (A) vec(ΔA)‖1

=
1

n
‖(vec(E)T ⊗ In2)K

(2)
f (A)‖1.

Explicitly computing matrix–vector products with (vec(E)T⊗In2)K
(2)
f (A) and its

conjugate transpose is not feasible, as computing K
(2)
f (A) costs O(n7) flops [19, Alg.

4.2]. Fortunately we can compute the matrix–vector products implicitly since, by
(1.10),

(vec(E)T ⊗ In2)K
(2)
f (A) vec(V ) = vec(L

(2)
f (A,E, V )),

where the evaluation of the right-hand side costs only O(n3) flops using (1.9). This
is analogous to the relation Kf(A) vec(V ) = vec(Lf (A, V )) used in the estimation of
Kf (A) in the 1-norm [15, Alg 3.22].

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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C624 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

Similarly, we would like to implicitly compute products with the conjugate trans-

pose
[
(vec(E)T ⊗ In2 )K

(2)
f (A)

]∗
so that the entire 1-norm estimation can be done in

O(n3) flops. To do so we need the following result.
Theorem 3.2. Let f be analytic on an open subset D of C for which each

connected component is closed under conjugation and let f satisfy f(z) = f(z) for all
z ∈ D. Then for all k ≤ m and A with spectrum in D,

L
(k)
f (A,E1, . . . , Ek)

∗ = L
(k)
f (A∗, E∗

1 , . . . , E
∗
k).

Proof. Our proof is by induction on k, where the base case k = 1 is established
by Higham and Lin [17, Lem. 6.2]. Assume that the result holds for the kth Fréchet
derivative, which exists under the given assumptions. Then, since the Fréchet deriva-
tive is equal to the Gâteaux derivative [19],

L
(k+1)
f (A,E1, . . . , Ek+1)

∗ =
d

dt

∣∣∣∣
t=0

L
(k)
f (A+ tEk+1, E1, . . . , Ek)

∗.

Using the inductive hypothesis the right-hand side becomes

d

dt

∣∣∣∣
t=0

L
(k)
f (A∗ + tE∗

k+1, E
∗
1 , . . . , E

∗
k) = L

(k+1)
f (A∗, E∗

1 , . . . , E
∗
k+1).

The conditions of Theorem 3.2 are not very restrictive; they are satisfied by
the exponential, the logarithm, real powers At (t ∈ R), the matrix sign function, and
trigonometric functions, for example. The condition f(z) = f(z) is, in fact, equivalent
to f(A)∗ = f(A∗) for all A with spectrum in D [18, Thm. 3.2 and its proof]. Under
the conditions of the theorem it can be shown that

(3.4) Kf (A)
∗ = Kf (A

∗),

which is implicit in [15, pp. 66–67] and [17], albeit not explicitly stated there (and
this equality will be needed in the appendix). Matrix–vector products with Kf (A)

∗

can therefore be computed efficiently since

(3.5) Kf(A)
∗ vec(V ) = Kf(A

∗) vec(V ) = vec(Lf (A
∗, V )) = vec(Lf (A, V

∗)∗),

using Theorem 3.2 for the last equality. The next result gives an analog of (3.4) for[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
.

Theorem 3.3. Under the conditions of Theorem 3.2, for A ∈ Cn×n with spectrum
in D, [

(vec(E)T ⊗ In2)K
(2)
f (A)

]∗
= (vec(E∗)T ⊗ In2)K

(2)
f (A∗).

Proof. We will need to use the Kronecker product property

(3.6) (A⊗B)(C ⊗D) = AC ⊗BD.

We also need the commutation (or vec-permutation) matrix Cn ∈ Cn2×n2

, which is a
permutation matrix defined by the property that for A ∈ Cn×n, vec(AT ) = Cn vec(A).
It is symmetric and satisfies, for A,B ∈ Cn×n and x, y ∈ Cn [10], [23, Thm. 3.1],

(A⊗B)Cn = Cn(B ⊗A),(3.7)

(xT ⊗ yT )Cn = yT ⊗ xT .(3.8)
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THE CONDITION NUMBER OF THE FRÉCHET DERIVATIVE C625

We will prove that the two matrices in the theorem statement are equal by showing
that they take the same value when multiplied by the arbitrary vector v = vec(V ),
where V ∈ Cn×n. Multiplying both sides by v and taking vec of the right-hand side
we find that we need to show[

(vec(E)T ⊗ In2)K
(2)
f (A)

]∗
v = (vT ⊗ vec(E∗)T ⊗ In2) vec(K

(2)
f (A∗)).

Manipulating the left-hand side we have[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
v = K

(2)
f (A)∗

(
vec(E)⊗ In2

)
v

= K
(2)
f (A)∗

(
vec(E)⊗ v

)
using v = 1⊗ v and (3.6)

=
[(
vec(E)⊗ v

)T ⊗ In2

]
vec(K

(2)
f (A)∗) by (1.6)

=
[
((Cn ⊗ In2)(vec(E∗)⊗ v))T ⊗ In2

]
vec(K

(2)
f (A)∗)

=
[(
(vec(E∗)T ⊗ vT )(Cn ⊗ In2)

)⊗ In2

]
vec(K

(2)
f (A)∗) using Cn = CT

n

= (vec(E∗)T ⊗ vT ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗) by (3.6) and In2 ⊗ In2 = In4

= (vT ⊗ vec(E∗)T ⊗ In2)(Cn2 ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗),

using (3.8) for the last equality. Therefore it remains to show that

(Cn2 ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)),

the proof of which can be found in the appendix.
Theorem 3.3 shows that we can compute matrix–vector products with the conju-

gate transpose as[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
vec(V ) = (vec(E∗)T ⊗ In2)K

(2)
f (A∗) vec(V )

= vec(L
(2)
f (A∗, E∗, V )) by (1.10)

= vec(L
(2)
f (A,E, V ∗)∗),(3.9)

where the final equality is from Theorem 3.2. Therefore the block 1-norm estimator

can be used to estimate efficiently ‖(vec(E)T ⊗ In2)K
(2)
f (A)‖1 in Theorem 3.1.

4. An algorithm for estimating the relative condition number. We are
now ready to state our complete algorithm for estimating the relative condition num-
ber of a Fréchet derivative in the 1-norm.

In the following algorithm we use the unvec operator, which for a vector v ∈ Cn2

returns the unique matrix in C
n×n such that vec(unvec(v)) = v.

Algorithm 4.1. Given A ∈ Cn×n, E ∈ Cn×n, and f satisfying the conditions
of Theorem 3.2 this algorithm produces an estimate γ of the relative condition number
condrel(Lf , A,E). It uses the block 1-norm estimation algorithm of [20] with t = 2,
which we denote by normest (an implementation is [12, funm condest1]).

1 Compute f(A) and Lf (A,E) via specialized algorithms such
as those in [2], [4], or [17] if possible. Alternatively, compute Lf (A,E) by
finite differences, the complex step method [3], or (1.8).
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C626 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

2 Compute an estimate c of condrel(f,A) using [15, Alg. 3.22] and normest.
3 c← c‖f(A)‖1/‖A‖1 % Now c = condabs(f,A).
4 s = ‖A‖1/‖E‖1
5 Estimate μ = ‖ (vec(E)T ⊗ In2

)
K

(2)
f (A)‖1 using normest with lines 7–14.

6 γ = (c+ sμ)‖E‖1/‖Lf(A,E)‖1
7 . . . To compute (vec(E)T ⊗ In2)K

(2)
f (A)v for a given v:

8 V = unvec(v)

9 Calculate W = L
(2)
f (A,E, V ) using (1.9) for example.

10 Return vec(W ) to the norm estimator.

11 . . . To compute
[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
v for a given v:

12 V = unvec(v)

13 Calculate W = L
(2)
f (A,E, V ∗) using (1.9) for example.

14 Return vec(W ∗) to the norm estimator.

Cost: Around 9 Fréchet derivative evaluations for Lf (A,E) and condrel(f,A),
plus about 8 second Fréchet derivative evaluations. The cost depends on which par-
ticular methods are chosen to compute the Fréchet derivatives required in lines 1 and 2

and L
(2)
f (A,E, V ), but the total cost is O(n3) flops.

The quality of the estimate returned by Algorithm 4.1 depends on the quality of
the underlying bounds and the quality of the computed norm estimate. The estimate
has a factor 2 uncertainty from Theorem 2.4 and another factor n uncertainty from
(3.2) and Theorem 3.1. The norm estimates are usually correct to within a factor 3,
so overall we can expect the estimate from Algorithm 4.1 to differ from condrel(f,A)
by at most a factor 6n.

Even though the Fréchet derivative L
(2)
f (A,E1, E2) is linear in E1 and E2, the

scaling of E1 and E2 may affect the accuracy of the computation. Heuristically we
might expect that scaling E1 and E2 so that ‖A‖1 ≈ ‖E1‖1 ≈ ‖E2‖1 would give good
accuracy. When implementing Algorithm 4.1 we scale E1 and E2 in this way before
taking the derivatives and rescaling the result.

5. Numerical experiments. Our experiments are all performed in MATLAB
R2013a. We examine the performance of Algorithm 4.1 for the matrix logarithm
and matrix powers At with t ∈ R using the Fréchet derivative evaluation algorithms
from [4] and [17], respectively. Throughout this section u = 2−53 denotes the unit
roundoff. Since the Fréchet derivative algorithms in question have been shown to per-
form in a forward stable manner in [4] and [17] (assessed therein using the Kronecker
condition number estimator that we will show tends to underestimate the true condi-
tion number) we expect their relative errors to be bounded by the condition number
times the unit roundoff.

We will compare Algorithm 4.1, denoted in this section by condest FD, with three
other methods in terms of the accuracy and reliability of using the estimated value of
condrel(Lf , A,E)u as a bound on the relative error

‖L̂f(A,E)− Lf (A,E)‖1
‖Lf(A,E)‖1 ,

where L̂f (A,E) is the computed Fréchet derivative. Unfortunately, we cannot directly
assess the quality of our condition number estimates as we have no way to compute
the exact condition number condrel(Lf , A,E).

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

6/
14

 to
 8

6.
5.

35
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



THE CONDITION NUMBER OF THE FRÉCHET DERIVATIVE C627

For our tests we need to choose the matrices A and E at which to evaluate the
Fréchet derivative and its condition number. For A we use the same test matrices as
in [4] and [17]. These (mostly 10 × 10) matrices are from the Matrix Computation
Toolbox [11], the MATLAB gallery function, and the literature. Ideally we would
choose the direction E as a direction that maximizes the relative error above; however,
it is unclear how to do so without resorting to expensive optimization procedures.
Instead we choose the direction E to be a matrix with normal (0, 1) distributed
elements, but we give a specific example of a worst case direction for the matrix
logarithm in section 5.3.

To compute an accurate value of Lf (A,E), used solely to calculate the relative
errors mentioned above, we evaluate (1.8) in 250 digit precision by performing the di-
agonalization V DV −1 = [X E

0 X ], applying f to the diagonal matrix D, and returning
the (1, 2) block. If the matrix [X E

0 X ] is not diagonalizable we add a random pertur-
bation of norm 10−125 to make the eigenvalues distinct. This idea was introduced
by Davis [5] and has been used in [4] and [17]. These high precision calculations are
performed in the Symbolic Math Toolbox.

We compare our algorithm against three approximations. The first is

condrel(Lf , A,E) ≈ ‖Lf(A+ΔA,E +ΔE)− Lf(A,E)‖1
ε‖Lf(A,E)‖1 ,

where ΔA and ΔE are chosen to have normal (0, 1) distributed elements and then
are scaled so that ‖ΔA‖1/‖A‖1 = ‖ΔE‖1/‖E‖1 = ε = 10−8 (cf. (2.2)). We would
expect this method to generally underestimate the condition number since ΔA and
ΔE are unlikely to point in the directions of greatest sensitivity. This estimate will be
referred to as the random method throughout this section. Since this method requires
only two Fréchet derivative evaluations (as opposed to around 17 for Algorithm 4.1)
one possible extension of this method would be to run it k times and take the mean
as an estimate of the condition number. Further experiments, not reported here, took
k = 5, 10, and 20 without seeing any significant change in the results.

Our next alternative approximation is

condrel(Lf , A,E) ≈ ‖Kf(A+ΔA) −Kf(A)‖1
ε‖Kf(A)‖1 ,

where Kf(A) is the Kronecker form of the Fréchet derivative in (1.5), and ΔA is gen-
erated with normal (0, 1) distributed elements and then scaled so that ‖ΔA‖1/‖A‖1 =
ε = 10−8. This heuristic approximation has been used in [2], [4], but has two draw-
backs. First, the dependence on E is ignored, which (see Lemmas 2.2 and 2.3) es-
sentially corresponds to neglecting an additive condabs(f,A) term and so could lead
to underestimating the condition number. Second, the random direction ΔA will
generally not point in the direction in which Kf(A) is most sensitive, again leading
to underestimation. We refer to this as the Kronecker method in our experiments.
This method costs O(n5) flops and is therefore the most expensive. We might also
try running this method k times and taking the mean of the results, in an attempt to
better estimate the condition number. Further experiments averaging k = 5, 10, and
20 runs of this algorithm made no significant difference to the results.

The final approximation method for comparison is a modification of Algorithm 4.1
that estimates the second Fréchet derivative by the finite difference approximation

L
(2)
f (A,E, V ) ≈ t−1

(
Lf (A + tV, E) − Lf(A,E)

)
for a small t instead of using (1.9).

This is done by invoking funm condest1 from the Matrix Function Toolbox [11] on the
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C628 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON
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condest_FD
fin_diff
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Fig. 1. Relative errors of computed Llog(A,E) and estimates of condrel(Llog, A, E)u for 66 test
matrices sorted by decreasing value of condest FD.

function g(A) = Lf (A,E) with the option to use finite differences selected, with the
default value t = 10−8. We will refer to this method as fin diff in our experiments.
This method has essentially identical cost to Algorithm 4.1, the only difference being
the computation of the second Fréchet derivatives.

5.1. Condition number of Fréchet derivative of matrix logarithm. In
our first experiment we compute the Fréchet derivative of the logarithm of 66 test
matrices using the algorithm of Al-Mohy, Higham, and Relton [4]. Figure 1 shows the
normwise relative errors and the estimates of condrel(Llog, A,E)u.

We see that fin diff and condest FD give similar output in most cases, as do
Kronecker and random, though neither of these latter two seems able to yield values
higher than 10−8 (the length of the finite difference step used in the algorithm). All
four methods agree on which problems are well conditioned. On the right-hand side of
the figure we see that some relative errors are slightly above the estimates. However
all are within a factor 2.7 of the estimate from condest FD, which is much less than
the factor 6n we can expect in the worst case, as explained at the end of section 4.

For the ill conditioned problems both Kronecker and fin diff fail to return
condition number estimates for some of the test matrices, as indicated by the broken
lines at the left end of Figure 1. This is due to a perturbed matrix A + V having
negative eigenvalues during the computation of the Fréchet derivatives using finite
differences, which raises an error since the principal matrix logarithm and its Fréchet
derivative are not defined for such matrices. In principle this same problem could
happen when using the random method. Since condest FD computes bounds on the
second Fréchet derivative without perturbing A it does not encounter this problem.
In section 5.3 we analyze the second test matrix in more detail and find that, despite
the error bound being pessimistic, the condition number truly is as large as estimated
by fin diff and condest FD.

5.2. Condition number of Fréchet derivative of matrix power. Our sec-
ond experiment compares the algorithms on the function At with t = 1/15 over 60 test
matrices from the previous set, where the Fréchet derivative is computed using the
algorithm of Higham and Lin [17]. Figure 2 shows the normwise relative errors and
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THE CONDITION NUMBER OF THE FRÉCHET DERIVATIVE C629

10 20 30 40 50 60

10−15

10−10

10−5

100

Rel. Err.
condest_FD
fin_diff
Kronecker
random

Fig. 2. Relative errors of computed Lxt(A,E) and estimates of condrel(Lxt , A, E)u, with t =
1/15, for 60 test matrices sorted by decreasing value of condest FD.

the estimated quantities cond(Lxt , A,E)u, sorted by decreasing condest FD. Again
we see that the condition number estimates from Kronecker and random are bounded
above by about 10−8, though the actual relative errors are sometimes much higher.

The methods return similar condition number estimates for the well conditioned
problems but give very different results on the ill conditioned problems in the first 10
test cases. In particular fin diff, Kronecker, and random do not provide reliable
error bounds for the badly conditioned cases, their bounds being several orders of
magnitude lower than the observed relative errors for test matrices 6 and 9. There
is also some significant overestimation by fin diff on test matrix 8. In contrast,
condest FD provides reliable error bounds for all the ill conditioned problems.

Similar experiments with the matrix exponential, not reported here, show analo-
gous results: both condest FD and fin diff give good bounds on the relative errors
while Kronecker and random generally underestimate them. The only difference is
that fin diff also gives good bounds for the ill-conditioned problems, instead of
failing or giving spurious results as above.

5.3. An ill conditioned Fréchet derivative. In this section we give a more
detailed analysis of the Fréchet derivative of the logarithm on test problem 2 of Fig-
ure 1. The matrices A and E are

A =

[
e(π−10−7i) 1000

0 e(π+10−7i)

]
, E =

[
0.3 0.012
−0.76 −0.49

]
.

This example is particularly interesting because the condition number estimated by
Algorithm 4.1 is large, condrel(Llog, A,E) ≈ 1.5 × 1020, but we observed a relative
error of around 10−10 when computing the Fréchet derivative in our experiments. We
will show that a tiny perturbation to A that greatly changes Llog(A,E) exists.

What we need to do is find a matrix V with ‖V ‖1 = 1 such that ‖L(2)
log(A,E, V )‖1

is large, since by Theorem 2.4 this will imply that condrel(Llog, A,E) is large. Such
a V can be obtained as output from the 1-norm estimator. However, we will obtain
it from first principles by applying direct search optimization [13], with the code
mdsmax from [11] that implements the algorithm from [28], [29]. Direct search yields
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C630 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

the putative optimal point

V =

[
0.1535 + 0.1535i 0.1535 + 0.1535i
0.1535 + 0.7677i 0.1535 + 0.1535i

]
,

shown to four significant figures, for which ‖L(2)
log(A,E, V )‖1 = 1.4×1044. Calculating

the Fréchet derivatives Llog(A,E) and Llog(A+uV,E) in 250 digit arithmetic—using
the procedure outlined at the beginning of this section—leads to a relative difference of

‖Llog(A+ uV,E)− Llog(A,E)‖1
‖Llog(A,E)‖1 = 1.0318,

showing that the Fréchet derivative evaluation is extremely sensitive to perturbations
in the direction V . We were fortunate not to experience this sensitivity during the
evaluation of Llog(A,E). This computation confirms that, as condest FD suggests, a
relative perturbation of order u to A can produce a change of order 1 in the Fréchet
derivative. But as we saw in the experiments, ill conditioning is not identified consis-
tently by the approximations from fin diff, Kronecker, or random.

6. Conclusion. We have defined, for the first time, the condition number of
the Fréchet derivative of a matrix function and derived an algorithm for estimating it
(Algorithm 4.1) that applies to a wide class of functions that includes the exponential,
the logarithm, and real matrix powers. In practice, the algorithm produces estimates
within a factor 6n of the true 1-norm condition number at a cost of O(n3) flops,
given O(n3) flops algorithms for computing the function and its Fréchet derivative.
The norms being estimated by the algorithm involve n4 × n2 matrices, so structure
is being exploited. An interesting open question is whether the highly structured
nature of the second Fréchet derivative and its Kronecker form can be exploited to
gain further theoretical insight into the conditioning of the Fréchet derivative.

The new algorithm is particularly useful for testing the forward stability of algo-
rithms for computing Fréchet derivatives, and for this purpose our experiments show
it to be much more reliable than a heuristic estimate used previously.

Appendix. Continued proof of Theorem 3.3. This section completes the
proof of Theorem 3.3. We need to show that

(Cn2 ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)).

We will begin by showing that vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)Cn) which (after some

manipulation) reduces the problem to one showing that

(A.1) (Cn2 ⊗ In2) vec(K
(2)
f (A∗)) = vec(K

(2)
f (A∗)).

Before proceeding we recall that Cn is a permutation matrix corresponding to
some permutation σ on the integers from 1 to n2. This permutation can be defined
by the property that when vec(Ei) = ei is the ith standard basis vector then

(A.2) Eσ(i) = ET
i ,

which follows from the observation that Cn vec(Ei) = Cnei = eσ(i) = vec(Eσ(i)) along
with Cn vec(Ei) = vec(ET

i ).
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THE CONDITION NUMBER OF THE FRÉCHET DERIVATIVE C631

Expanding [19, Alg. 4.2] for the case k = 2, (or from [19, eq. (4.4)]), we see that

K
(2)
f (X) ∈ Cn4×n2

is made from n2 × 1 blocks[
K

(2)
f (X)

]
ij
= vec(L

(2)
f (X,Ej , Ei)), i, j = 1 : n2,

so that applying Cn to the right of K
(2)
f (A∗) permutes its columns and[

K
(2)
f (A∗)Cn

]
ij
= vec(L

(2)
f (A∗, Eσ(j), Ei))

= vec(L
(2)
f (A∗, ET

j , Ei))

= vec(L
(2)
f (A,Ej , E

T
i )

∗),

because L
(2)
f (A∗, F,G) = L

(2)
f (A,F ∗, G∗)∗ by Theorem 3.2. Similarly K

(2)
f (A)∗ is

made from 1× n2 blocks[
K

(2)
f (A)∗

]
ij
= vec(L

(2)
f (A,Ei, Ej))

∗, i, j = 1 : n2.

To continue, note that K
(2)
f (A∗)Cn and K

(2)
f (A)∗ are of sizes n4×n2 and n2×n4,

respectively, and so cannot be equal, though we need only prove that their vector-

izations are equal. We need to show that each n2 × n2 block column of K
(2)
f (A)∗ is

equal to the “unvec” of the corresponding n4× 1 column of K
(2)
f (A∗)Cn. That is, for

j = 1 : n2 we want to show that
(A.3)⎡⎢⎢⎣

vec(L
(2)
f (A,E1, Ej))

∗
...

vec(L
(2)
f (A,En2 , Ej))

∗

⎤⎥⎥⎦ =
[
vec(L

(2)
f (A,Ej , ET

1 )
∗) · · · vec(L

(2)
f (A,Ej , ET

n2)∗)
]
.

To do so, we will expand the rows and columns then show they are equal elementwise.
Since [19]

L
(2)
f (A,Ek, Ej) =

d

dt

∣∣∣∣
t=0

Lf (A(t), Ek), A(t) = A+ tEj ,

the left-hand side of (A.3) can be written as⎡⎢⎢⎣
vec(L

(2)
f (A,E1, Ej))

∗
...

vec(L
(2)
f (A,En2 , Ej))

∗

⎤⎥⎥⎦= d

dt

∣∣∣∣
t=0

⎡⎢⎣ eT1 vec(Lf (A(t), E1)) · · · eTn2vec(Lf (A(t), E1))
...

. . .
...

eT1 vec(Lf (A(t), En2 )) · · · eTn2vec(Lf(A(t), En2 ))

⎤⎥⎦ .

Similarly, using (A.2) on the right-hand side of (A.3) we have

vec(L
(2)
f (A,Ej , E

T
i )

∗) =
d

dt

∣∣∣∣
t=0

Cnvec(Lf (A(t), Eσ(i))),

and therefore the right-hand side of (A.3) can be written as[
vec(L

(2)
f (A,Ej , ET

1 )
∗) · · · vec(L

(2)
f (A,Ej , ET

n2)∗)
]

=
d

dt

∣∣∣∣
t=0

⎡⎢⎢⎣
eTσ(1)vec(Lf (A(t), Eσ(1))) · · · eTσ(1)vec(Lf (A(t), Eσ(n2)))

...
. . .

...

eTσ(n2)vec(Lf (A(t), Eσ(1))) · · · eTσ(n2)vec(Lf(A(t), Eσ(n2)))

⎤⎥⎥⎦ .
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Suppressing the dependence on t, we need to prove that

eTj vec(Lf (A,Ei)) = eTσ(i) vec(Lf (A,Eσ(j))),

since these are the (i, j) elements of the left- and right-hand side of (A.3), respectively
(with the complex conjugation removed from both sides). Beginning from the right-
hand side we have

eTσ(i) vec(Lf (A,Eσ(j))) = eTi Cn vec(Lf (A,Eσ(j)))

= eTi vec(Lf(A∗, Ej)) by (A.2)

= eTi (e
T
j ⊗ In2)vec(Kf (A∗)) by (1.5)

= eTi (e
T
j ⊗ In2)vec(Kf (A)∗) by (3.4)

= eTi (e
T
j ⊗ In2)Cn vec(Kf (A))

= eTi (In2 ⊗ eTj ) vec(Kf(A)) by (3.8)

= eTj (e
T
i ⊗ In2) vec(Kf(A))

= eTj vec(Lf (A,Ei)) by (1.5),

as required, which completes the proof of

vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)Cn).

To complete the result we need to prove (A.1). To make the notation slightly
easier we will use X = A∗ from now on. By [23, Thm. 3.1 (i)] we can write

Cn2 =

n2∑
j=1

eTj ⊗ In2 ⊗ ej,

where ek ∈ C
n2

, and so the left-hand side of (A.1) becomes

(Cn2 ⊗ In2) vec(K
(2)
f (X)) =

⎛⎝ n2∑
j=1

eTj ⊗ In2 ⊗ ej ⊗ In2

⎞⎠ vec(K
(2)
f (X))

=
n2∑
j=1

vec
(
(In2 ⊗ ej ⊗ In2)K

(2)
f (X)ej

)

=

n2∑
j=1

vec
(
(In2 ⊗ ej ⊗ In2) vec(K

(1)
f (X,Ej))

)

=

n2∑
j=1

vec
(
(ej ⊗ In2)K

(1)
f (X,Ej)

)

=

n2∑
j=1

vec
(
ej ⊗K

(1)
f (X,Ej)

)

= vec

⎛⎜⎜⎝
⎡⎢⎢⎣
K

(1)
f (X,E1)

...

K
(1)
f (X,En2)

⎤⎥⎥⎦
⎞⎟⎟⎠ ,
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whereK
(1)
f (X,Ei) is defined in [19, sect. 4]. To show that this is equal to vec(K

(2)
f (X))

we can write the two vectors out elementwise. For vec(K
(2)
f (X)) we know from

[19, Alg. 4.2] that

(A.4) vec(K
(2)
f (X)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(L
(2)
f (X,E1, E1))

...

vec(L
(2)
f (X,E1, En2))

vec(L
(2)
f (X,E2, E1))

...

vec(L
(2)
f (X,En2 , En2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

whereas

vec

⎛⎜⎜⎝
⎡⎢⎢⎣
K

(1)
f (X,E1)

...

K
(1)
f (X,En2)

⎤⎥⎥⎦
⎞⎟⎟⎠ = vec

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
(1)
f (X,E1)e1

K
(1)
f (X,E2)e1

...

K
(1)
f (X,E1)e2

...

K
(1)
f (X,En2)en2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= vec

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(L
(2)
f (X,E1, E1))

...

vec(L
(2)
f (X,En2 , E1))

vec(L
(2)
f (X,E1, E2))

...

vec(L
(2)
f (X,En2 , En2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is equal to (A.4) since L
(2)
f (X,F,G) = L

(2)
f (X,G, F ), by the ordering indepen-

dence noted in section 1.
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