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AN ALGORITHM FOR THE MATRIX LAMBERT W FUNCTION∗

MASSIMILIANO FASI† , NICHOLAS J. HIGHAM‡ , AND BRUNO IANNAZZO§

Abstract. An algorithm is proposed for computing primary matrix Lambert W functions of a
square matrix A, which are solutions of the matrix equation WeW = A. The algorithm employs the
Schur decomposition and blocks the triangular form in such a way that Newton’s method can be used
on each diagonal block, with a starting matrix depending on the block. A natural simplification of
Newton’s method for the Lambert W function is shown to be numerically unstable. By reorganizing
the iteration a new Newton variant is constructed that is proved to be numerically stable. Numerical
experiments demonstrate that the algorithm is able to compute the branches of the matrix Lambert
W function in a numerically reliable way.
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1. Introduction. The Lambert W function of the complex number a is defined
implicitly through the scalar equation

wew = a, (1.1)

which has a countably infinite set of solutions for a 6= 0 and just one solution for
a = 0.

The function f(w) = wew is analytic in the whole complex plane and its derivative
is nonzero for any w 6= −1, so any solution w 6= −1 of (1.1) yields a function W (z)
analytic in a neighborhood of a and such that W (z)eW (z) = z with W (a) = w. Any
such function is said to be an analytic branch of the Lambert W function and can
be extended analytically to cover most of the complex plane except a suitable curve,
the branch cut. Any branch can be further extended on the branch cut (excluded the
singular points) in order to be continuous and differentiable (for w 6= 1) on one side
of the branch cut.

For background on the Lambert W function and details of applications we refer
the reader to [10], [13]. We follow the numbering of the branches, the notation, and
the branch cuts of [10] (see Figure 1.1). The branches are denoted by Wk(a) for
k ∈ Z, where W0(z) is the principal branch whose branch cut is (−∞,−1/e], while for
k 6= 0, the branch cut is (−∞, 0]. The extension to the branch cuts is made using the
“counter-clockwise continuity” rule [25], that is, considering the one-side limit from
above the branch cut.

For each a ∈ C \ {0} the set {Wk(a) : k ∈ Z} is the set of solutions of (1.1),
while for a = 0 the unique solution is W0(0) = 0. The latter implies that Wk(0) is
undefined for k 6= 0, namely, 0 is a singular point.
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Fig. 1.1. The ranges of the branches of the Lambert W function and the values of Wk(1) (+),
Wk(10 + 10i) (×) and Wk(−0.1) (o). The colors of the curves that separate two adjacent regions
denote the branches that the curves belong to. These curves are asymptotic to multiples of π. The
corresponding plot for the logarithm consists of horizontal strips of height 2π with boundaries at odd
multiples of π.

In the matrix case, for A ∈ Cn×n any solution of the equation WeW = A can be
called a matrix Lambert W function [11]. The solutions of this matrix equation break
into two types.

• Primary matrix Lambert W functions, defined using the theory of primary
matrix functions [20, sec. 1.2]. Each such function can be written as a poly-
nomial in A.

• Nonprimary matrix Lambert W functions, none of which can be written as a
polynomial in A.

It can be shown that the eigenvalues of any matrix Lambert W function of A are
Lambert W functions of the eigenvalues of A. A matrix Lambert W functions is
nomprimary if and only if its spectrum contains two different branches of the same
eigenvalue of A. This may happen only when A has an eigenvalue appearing in two
different Jordan blocks. Our focus here is on primary matrix Lambert W functions.

Primary matrix Lambert W functions can be described by specifying a branch for
each distinct eigenvalue of A. For an eigenvalue λ, the branch k can be freely chosen
with the following exceptions:

• if λ = 0, then we must choose k = 0, since elsewhere the scalar function is
not defined;

• if λ = −1/e appears in a nontrivial Jordan block then we must choose
k 6∈ {0,−1}; for k ∈ {0,−1} the scalar function is defined at −1/e (in fact,
W0(−1/e) = W−1(−1/e) = −1) but it cannot be extended to a differentiable
function.

Let λ1, . . . , λt be the distinct eigenvalues of A in a specific order. With the constraints
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given above, we define Wk1,k2,...,kt(A) as the primary Lambert W function whose
eigenvalues are Wk1(λ1), . . . ,Wkt(λt).

If we want the same branch k for every eigenvalue it is convenient to use the
notation Wk(A) instead of Wk,...,k(A). In this case we say that Wk(A) is an unmixed
branch of the matrix Lambert W function.

The matrix Lambert W function arises in the numerical solution and stability
analysis of delay differential (systems of) equations [5], [9], [24], [31], [32], where the
principal Lambert W function of a matrix, W0(A), is used to deduce properties of
the stability of the system. Cepeda-Gomez and Michiels [9] show with examples that
the principal branch is not sufficient to determine the stability of all systems, but
rather W−1(A) is needed as well. Thus an algorithm that can compute any branch is
required. The matrix Lambert W function has been recently considered in a problem
of quantum computing [30], where the matrix argument A is normal (A∗A = AA∗).

The purpose of this work is to introduce an algorithm for computing the unmixed
branches of the Lambert W function (provided they are well-defined) of a general
matrix A ∈ Cn×n. The algorithm is rooted in the Newton iteration applied to the
matrix equation WeW −A = 0.

We follow the usual idea of considering the scalar function f(w) = wew − a,
applying Newton’s method to obtain the iteration

yk+1 =
y2
k + ae−yk

yk + 1
, (1.2)

and then translating from scalars to matrices. The resulting matrix iteration coincides
with Newton’s method applied to WeW −A = 0 when the initial value is a polynomial
of A and both are well defined. However, this iteration suffers from two problems.
First, it is numerically unstable in finite precision arithmetic. Second, it is not easy to
find a starting matrix such that the Newton iteration converges to the desired matrix
Lambert W function. We develop a heuristic strategy for the initial value based on
two different series expansions of the scalar Lambert W function, at ∞ (and 0) and
around −1/e, respectively. For any scalar a few terms of one of these two expansions
always yields a good initial value. In the matrix case we would like to use one of
the two expansions applied to A, but if A has two eigenvalues for which two different
series expansions need to be used as starting points neither of these expansions can
be used.

We are able to resolve both these problems. We identify a new iteration that
is equivalent to Newton’s method but numerically stable. Moreover, we consider an
ordered Schur form T of A such that the leading eigenvalues are the ones for which
the approximation at ∞ (and 0) yields a suitable initial value for Newton’s method
while the trailing eigenvalues are the ones for which the approximation at −1/e gives
a good initial value. Blocking T as a 2× 2 block matrix and using the Schur–Parlett
algorithm we obtain the correct evaluation of the Lambert W function on the whole
matrix A. The resulting algorithm for computing the matrix Lambert W function
requires O(n3) arithmetic operations and is much more numerically reliable than an
algorithm based on diagonalization used in [5].

The paper is organized as follows. In section 2 we give necessary background
on Fréchet derivatives and the branch cuts of the Lambert W function. Section 3
treats the choice of the initial value for Newton’s method in the scalar case. In
section 4 we derive a numerically stable form of a simplified version of Newton’s
method for the matrix Lambert W function and combine it with a suitably blocked
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Schur decomposition to construct a complete algorithm for the Lambert W function
of a matrix. Section 5 is devoted to numerical experiments.

2. Preliminaries.

2.1. The Fréchet derivative. We first give some notation and properties of the
Fréchet derivative of a matrix function that will be needed in the following sections.
The Fréchet derivative of f at A ∈ Cn×n, when it exists, is the unique linear mapping
Df(A)[E] satisfying

f(A+ E) = f(A) +Df(A)[E] + o(‖E‖)

for all E ∈ Cn×n. Since Df(A)[E] is linear in E, the vec operator, which con-
verts a matrix to a vector by stacking the columns on top of each other, yields
vec(Df(A)[E]) = K(A) vec(E), for an n2 × n2 matrix K(A) called the Kronecker
matrix. The vec operator interacts nicely with the Kronecker product; in particular,
vec(AXB) = (BT ⊗A) vec(X).

The Fréchet derivative of a matrix function at a matrix A in the direction H is
usually much more complicated than its scalar counterpart, but when H commutes
with A there is a simple expression, as shown in the following result [20, Prob. 3.8].

Lemma 2.1. Let f : Ω→ C be analytic, let Un be the subset of Cn×n comprising
matrices whose spectrum belongs to Ω, and let fn, f

′
n : Un → Cn×n be the matrix

functions induced by f and f ′ respectively. Then for any H commuting with A ∈ Un,
Dfn(A)[H] = f ′n(A)H.

For instance, if A commutes with H, then D exp(A)[H] = exp(A)H, which mimics
the scalar case. A formula for the derivative of the exponential function in a general
direction is not so simple. We will use the following expression of the Kronecker
matrix associated with the derivative of the exponential [20, Thm. 10.13]:

K(A) = (I ⊗ exp(A))f1(AT ⊗ I − I ⊗A), (2.1)

where f1(z) = (ez − 1)/z for z 6= 0 and f1(0) = 1.

2.2. Branch cuts of the Lambert W function. As noted in section 1, the
branch cut for the principal branch W0 is (−∞,−1/e], while for Wk, with k 6= 0, it
is (−∞, 0]. This choice of branch cuts is convenient because it allows simple asymp-
totic expansions for Wk(z) as z → ∞ based on the branches of the complex loga-
rithm [10]. On the other hand, it makes it complicated to understand the behaviour
of the branches W1(z) and W−1(z) in a neighborhood of the point z = −1/e.

In fact, the image of a small circle around −1/e under W−1(z) comprises two
disjoint curves: the half circle below the real axis is mapped into a curve adjacent
to the branch −2 region, while the half circle above the real axis is mapped into a
curve adjacent to the branch 0 and 1 regions. Thus, on the one hand, for ε sufficiently
small, the function defined as W−1(z) in the half-circle {|z + 1/e| 6 ε : Im z > 0}
cannot be extended analytically in a neighborhood of −1/e. On the other hand, the
function defined as W−1(z) in the half circle {|z + 1/e| 6 ε : Im z < 0} can be
extended analytically in a neighborhood of −1/e. This explains the lack of symmetry
in treating the branch cut.

The situation for the branch W1 is similar (see Figure 2.1): on one hand, for ε
sufficiently small, the function defined as W1(z) in the half-circle {|z + 1/e| 6 ε :
Im z > 0} can be extended analytically in a neighborhood of −1/e. On the other
hand, the function defined as W1(z) in the half circle {|z + 1/e| 6 ε : Im z < 0}
cannot be extended analytically in a neighborhood of −1/e.
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Fig. 2.1. The image through W1(z) (right) of the complex plane with a highlighted circle around
the branch point −1/e (left). The image of the branch cut (−∞, 0) when we approach it from above
is the regular curve separating the range of W1(z) from the range of W2(z); while the image of the
same half line when we approach it from below splits in two curves meeting at the point −1: the left
one separates the range of W1(z) from that of W−1(z), the right one separates the same range from
that of W0(z). This illustrates why we treat in a different way the branch W1(z) when we approach
the negative real axis clockwise or counter-clockwise; we can loosely say that there is one branch cut
from above and two from below. The colors have been used to show what is the image of any (part
of a) branch cut.

WhileW−1(−1/e) = −1 by the counter-clockwise continuity rule, we haveW1(−1/e) 6=
−1, and thus, strictly speaking, −1/e is not a branch point for the branch 1 (while
it is a branch point for the branch −1); nevertheless, in a neighborhood of −1/e the
function W1 behaves as if it had a branch point there.

Finally, the point 0 turns out to be singular for each branch different from W0

and, in particular, limz→0 |Wk(z)| =∞ for |k| > 0.

3. Computing the scalar Lambert W function. The Lambert W function
has a qualitative behaviour comparable to the logarithm, but it cannot be computed
with the same techniques because of the lack of suitable identities. The customary
methods for computing the scalar Lambert W function are based on a suitable root-
finding method applied to the equation wew = a, such as the Newton or the Halley
methods, which guarantee local superlinear convergence for w 6= −1 and linear con-
vergence for w = −1. These methods are based on iterations of the form zi+1 = ϕ(zi)
and require determination of z0 such that zi converges to the value Wk(a) for the
k of interest. For this purpose some heuristic techniques have been proposed and
implemented. They are based on two asymptotic expansions of the function Wk(z),
which we briefly recall.

It is known that [10, eq. (4.18)] for each k one has, as z →∞,

Wk(z) = `1 − `2 +

∞∑
k=0

∞∑
m=1

ckm
`m2
`m+k
1

, ckm =
(−1)m+k−1

m!
S(k +m, k + 1), (3.1)

where `1 = log z + 2πik, `2 = log `1, and S(k + m, k + 1) is a (signed) Stirling cycle
number of first kind [27, p. 631]. Here, for a nonzero z ∈ C, log z denotes the principal
logarithm, which is the solution of the equation ex = z having imaginary part in the
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strip {z ∈ C : −π < Re(z) 6 π}. It has been proved that the same expansion holds
for z → 0 and k 6= 0 (see [10] and the references therein). The expansion implies

Wk(z) = `1 − `2 +
`2
`1

+
`2(`2 − 2)

2`21
+
`2(2`22 − 9`2 + 6)

6`31
+O

(∣∣∣∣`2`1
∣∣∣∣4
)
, (3.2)

which holds either as z → 0 and k 6= 0 or as z →∞.
Another expansion is known for z → −1/e, which converges to W0(z) in a neigh-

borhood of −1/e, to W−1 when Im(z) > 0 and z approaches −1/e, and to W1 when
Im(z) < 0 and z approaches −1/e (compare the discussion in section 2.2 about the
choice of the branches). The way to construct the series can be found in [10, p. 350];
the first few terms are

Wk(z) = −1 + p− 1

3
p2 +

11

72
p3 + · · · , p = (−1)|k|

√
2(ez + 1). (3.3)

A widely used strategy [10], [29] is to choose as initial guess for the selected root-
finding algorithm one of the two expansions (up to a certain term) that is hopefully
sufficiently close to Wk(z) to guarantee convergence.

In our implementation we use Newton’s method as the root-finding algorithm and
we choose as initial value one of the two functions

ϕk(z) = `1 − `2 + `2/`1, ψk(z) = −1 + (−1)|k|
√

2(ez + 1), (3.4)

the former being a truncation of (3.2) and the latter a truncation of (3.3). In partic-
ular,

• for k = 0, we choose z0 = ψ0(z) for |z−1/2| < 3/2, and z0 = ϕ0(z) otherwise;
• for k = 1, we choose z0 = ψ1(z) for |z + 1/2| < 1/3 with Im z < 0, and
z0 = ϕ1(z) otherwise;

• for k = −1, we choose z0 = ψ−1(z) for |z + 1/2| < 1/3 with Im z > 0, and
z0 = ϕ−1(z) otherwise;

• for |k| > 1, we choose z0 = ϕk(z) for any z ∈ C \ {0}.
These choices are based on numerical experiments. We describe just the choice for
k = 0; the others follow from similar experiments.

We consider a discretization Q̃ of the subset Q = {z = a+ ib : |a|, |b| 6 3} of the

complex plane and run Newton’s method for each z ∈ Q̃ with z0 = ϕk(z) (or with
z0 = ψk(z)). Let N be a fixed positive integer. If the value Wk(z) is approximated
within a specific tolerance in m < N steps then we set sk(z) = m, otherwise sk(z) is

set to N . In this way, we have a function sk : Q̃→ {0, 1, . . . , N}, and assigning a color
to each element of {0, . . . , N} we obtain an illustration of the convergence behaviour
of the Newton method.

In Figure 3.1 we show the result of the experiment for k = 0, together with the
circle |z−1/2| = 3/2. As one can see, choosing the approximation z0 = ϕk(z) outside
the circle gives convergence in no more than 7 steps (blue and green area of left plot),
while choosing the approximation z0 = ψk(z) for z inside the circle gives convergence
in no more than 8 steps (light green area of the right plot).

Notice that the chosen areas for the initial values are somewhat arbitrary. For
instance, for k = 0, we have put the center at z = 1/2 and the radius R = 3/2 for
simplicity, but any 1.35 6 R 6 1.60 would give the same convergence properties.
A similar argument can be used for |k| = 1, yielding a range of useful radii which
includes the interval 0.25 6 R 6 0.40. This fact gives some flexibility when designing
the algorithm for computing the matrix Lambert W function.
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Fig. 3.1. Level curves revealing the convergence of Newton’s method to W0(z) with |Re z| 6 3
and | Im z| 6 3 by choosing z0 = ϕ0(z) (left) and z0 = ψ0(z) (right), together with the circle
|z − 1/2| 6 3/2. Dark blue means less than four iterations for convergence, dark red more than
eleven or lack of convergence.

4. Newton’s method for the matrix Lambert W function.

4.1. Local convergence. Let F (W ) = WeW−A, where W,A ∈ Cn×n. To com-
pute the Lambert W function we consider Newton’s method applied to the equation
F (W ) = 0. The sequence is obtained through the iteration

Xk+1 = Xk −DF (Xk)−1[F (Xk)], k = 0, 1, 2, . . . , (4.1)

for an initial guess X0. Let W∗ be a solution of F (W ) = 0. From the standard theory
of Newton’s method we know that if DF (W∗) is nonsingular then the sequence (4.1)
converges quadratically to W∗ for any X0 sufficiently close to W∗.

The computation of the Newton step using (4.1) is not recommended since it
would require dealing with n2 × n2 matrices, in view of Lemma 4.2 below. Hence the
Newton method cannot be used in this form.

However, assuming that the starting matrix is a polynomial in A it is possible to
simplify Newton’s method to a more computationally useful formula, which directly
generalizes Newton’s method in the scalar case:

Yk+1 =
(
Y 2
k +Ae−Yk

)
(Yk + I)−1 =: G(Yk), k = 0, 1, 2, . . . , (4.2)

for an initial guess Y0 ∈ P(A), where P(A) is the set of polynomials in the matrix
A. We call this iteration simplified Newton’s method. The equivalence between the
regular and simplified Newton methods is proved in the next result.

Theorem 4.1. Let A ∈ Cn×n and X0 = Y0 ∈ P(A). If both sequences Xk of
(4.1) and Yk of (4.2) are well defined then Xk = Yk ∈ P(A) for all k > 0.

Proof. We use an induction argument. Let Xk = Yk ∈ P (A). We know that
Hk := Xk+1 −Xk is the unique solution of the linear system DF (Xk)[Z] = −F (Xk).
We prove that Kk := Yk+1 − Yk = (Ae−Yk − Yk)(Yk + I)−1 solves the same linear
system, whence Yk+1 = Xk+1. Using Lemma 2.1, we have

DF (Xk)[Kk] = DF (Yk)[Kk] = Kke
Yk + Yke

YkKk = Kk(Yk + I)eYk

= (Ae−Yk − Yk)eYk = −F (Yk) = −F (Xk),
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and the proof is completed.
The equivalence of the two methods on the set P(A) does not imply that they are

equivalent in a neighborhood of a solution of F (W ) = 0. This is problematic because
in finite precision arithmetic we cannot guarantee that for formula (4.2) the computed

iterates Ỹk stay in P(A). The components of Ỹk in the subspace complementary to
P(A), which are created by rounding errors, will be small initially but they can
potentially grow greatly.

The theory in [20, sec. 4.9.4] says that for stability of an iteration with iteration
function g at the fixed point W we need Dg(W ) to have bounded powers. The latter
condition holds if ρ(Dg(W )) < 1 (where ρ denotes the spectral radius), or if Dg(W )
is idempotent. In this case errors will not be amplified to first order when iterates
are in the neighborhood of W . To test the stability of the iteration G we find the
Kronecker matrix form of the Fréchet derivative.

Lemma 4.2. Let W be a solution of F (W ) = 0, and assume that −1 is not an
eigenvalue of W . Then the Kronecker matrix representation of DG(W ) is

K(W ) =
(
(W + I)−T ⊗ I

)(
WT ⊗ I − (I ⊗W )f1(I ⊗W −WT ⊗ I)

)
,

where f1(z) = (ez − 1)/z for z 6= 0 and f1(0) = 1.
Proof. First we compute the derivative of the function G, using the product and

chain rules:

G(Y )[H] = (Y H +HY +ADe−Y [−H])(Y + I)−1

− (Y 2 +Ae−Y )(Y + I)−1H(Y + I)−1.

At a fixed point W we have (W 2 +Ae−W )(W + I)−1 = W and thus

DG(W )[H] = (HW −ADe−W [H])(W + I)−1.

Using (2.1) we obtain

K(W ) =
(
(W + I)−T ⊗ I

)
×
[
WT ⊗ I − (I ⊗A)(I ⊗ exp(−W ))f1(I ⊗W −WT ⊗ I)

]
,

which implies the result.
Using Lemma 4.2 we can express the stability condition in terms of the spectrum

Λ(W ) of W . A sufficient condition for stability is that

h(λ, µ) < 1, h(λ, µ) = max
λ,µ∈Λ(W )

∣∣∣∣λ− µf1(µ− λ)

λ+ 1

∣∣∣∣ . (4.3)

It is not difficult to find examples where the condition is violated, so we conclude that
Newton’s method can be unstable in a rather large number of cases.

In our previous work we have on several occasions been able to manipulate an
unstable iteration into an equivalent stable iteration [18], [21], [22], [23]. Inspired by
these results, we were able to find a stable variant of the simplified Newton method,
namely,

Z0 ∈ Cn×n, H0 = (Ae−Z0 − Z0)(Z0 + I)−1,

Zk+1 = Zk +Hk,

Hk+1 =
(
(Zk + (Zk + I)Hk)e−Hk − Zk+1

)
(Zk+1 + I)−1.

k = 0, 1, . . . (4.4)
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The equivalence of (4.2) and (4.4) and the stability of (4.4) are proved in the following
result. When the sequences are converging we have Zk → W and Hk → 0 and thus
we are interested in fixed points of the iteration of the type [WT 0]T .

Theorem 4.3. Let A ∈ Cn×n and Y0 = Z0 ∈ P(A). The sequence Yk of (4.2)
is well defined if and only if the sequence Zk of (4.4) is well defined and we have
Yk = Zk for k > 0. Moreover, if

ϕ

([
Z
H

])
=

[
Z +H(

(Z + (Z + I)H)e−H − Z −H
)
(Z +H + I)−1

]
then for any E,F ∈ Cn×n and fixed point [WT 0]T such that −1 is not an eigenvalue
of W we have

Dϕ

([
W
0

])[
E
F

]
=

[
E + F

0

]
,

and thus Dϕ ([W0 ]) is idempotent.
Proof. The equivalence between the two sequences is proved by induction. First,

observe that, when −1 is not in the spectrum of Y0, we have Y1 − Y0 = H0 and thus
Z1 = Y1. Then, assuming that k > 1 steps have been performed and that Yh = Zh
for h 6 k, we can construct Yk+1 if and only if we can construct Zk+1, that is when
−1 is not an eigenvalue of Yk. To prove that Yk+1 = Zk+1 it is enough to prove that
Hk = Yk+1 − Yk, and this follows from

Hk =
(
(Yk−1 + (Yk−1 + I)Hk−1)e−Hk−1 − Yk

)
(Yk + I)−1

= (Ae−Yk−1e−Hk−1 − Yk)(Yk + I)−1 = Yk+1 − Yk,

where we have used the equality Ae−Yk = (Yk + I)(Yk+1 − Yk) + Yk, which follows
from (4.2), the fact that eU+V = eUeV when U and V commute, and the inductive
hypothesis.

The statement about Dϕ can be proved by a straightforward but tedious compu-
tation that we will omit.

The subtlety of the stabilization process can be seen from the fact that the variant
of (4.4)

Z0 ∈ Cn×n, H0 = (Ae−Z0 − Z0)(Z0 + I)−1,

Zk+1 = Zk +Hk,

Hk+1 =
(
(Zk +Hk(Zk + I))e−Hk − Zk+1

)
(Zk+1 + I)−1

k = 0, 1, . . . (4.5)

is unstable. Notice that (4.5) differs from the stable variant (4.4) only in that the
equation for Hk+1 contains the product Hk(Zk+I) instead of (Zk+I)Hk. This small
change in the iteration results in the derivative not always having a spectral radius
less than or equal to 1 at a fixed point of the type [WT 0]T .

4.2. Choice of the initial value. To design an algorithm for computing a
primary matrix Lambert W function we need to devise a strategy to find a starting
matrix for (4.4).

Let A be a square matrix whose distinct eigenvalues are λ1, . . . , λt. Consider a
matrix iteration of the type

Xk+1 = R(Xk, A), k = 0, 1, . . . ,
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where R(x, a) is a rational function of both of its arguments. It is known [20,
Thm. 4.15] (see also [23]) that with X0 ∈ P(A) the iteration converges if the scalar

sequences x
(j)
k+1 = R(x

(j)
k , λj), with x

(j)
0 = P (λj), converge for j = 1, . . . , t. It is

not difficult to show that theorem is true also for R(x, a) = (x2 + ae−x)/(x + 1).

In particular, if x
(j)
k converges to Wkj (λj), for any j, then the matrix sequence Xk

converges to the solution of the matrix equation WeW = A whose eigenvalues are
Wk1(λ1), . . . ,Wkt(λt), which is the primary matrix function Wk1,...,kt(A).

In order to compute the matrix Lambert W function Wk1,...,kt(A) through New-
ton’s method it is therefore sufficient to choose a matrix in P(A) whose eigenvalues
yield sequences converging to Wk1(λ1), . . . ,Wkt(λt). In general this is very compli-
cated, but it can be simplified if one needs an unmixed branch Wk(A).

We have seen in section 3 a heuristic strategy for the choice of the initial values
such that the Newton method should converge to any branch of Wk(z). The initial
value is chosen as one of the two approximations ϕk(z) and ψk(z) defined in (3.4). In
particular, for |k| > 1 and for any z 6= 0 the initial value x0 = ϕk(z) gives a sequence
xk converging to Wk(z). Thus, in order to obtain a sequence converging to Wk(A) it
is enough to choose X0 = ϕk(A).

For |k| 6 1 the situation is more complicated, since we have two different strategies
for the initial value depending on where z lies. In particular we have determined a
region where we will choose x0 = ϕk(z) and a region where we will choose x0 =
ψk(z). In the matrix case, we have a stable method for computing Wk(A) for A
whose eigenvalues all belong to Uk, where we choose X0 = ϕk(A), and for A whose
eigenvalues all belong to Vk, where we choose X0 = ψk(A). Nevertheless, it may
happen that A has eigenvalues in both regions and then neither X0 = ϕk(A) nor
X0 = ψk(A) give the desired branch of the matrix Lambert W function.

To overcome this problem we use a strategy borrowed from the Schur–Parlett
algorithm [14], [28]. We consider a Schur form T of the matrix A, ordered such that
T is a 2× 2 block matrix whose (1, 1) block contains the eigenvalues in Uk and whose
(2, 2) block contains the eigenvalues in Vk. Hence we write the matrix and its Lambert
W function as

T =

[
T11 T12

0 T22

]
, Wk(T ) =

[
X11 X12

0 X22

]
, (4.6)

where the size of T11 and X11 equals the number of eigenvalues λ of A belonging
to Uk, say m. Notice that m can be n or 0, in which case T = T11 and T = T22,
respectively.

Since all the eigenvalues of T11 and T22 belong to the region of convergence of
Newton’s method with initial value X0 = ϕ(T ) and X0 = ψ(T ), respectively, we can
use Newton’s method to calculate X11 = Wk(T11) and X22 = Wk(T22), and since
W (T ) is a primary function of T we have the commutativity condition[

X11 X12

0 X22

] [
T11 T12

0 T22

]
=

[
T11 T12

0 T22

] [
X11 X12

0 X22

]
. (4.7)

We can determine X12 by equating (1, 2) blocks to obtain the Sylvester equation

T11X12 −X12T22 = X11T12 − T12Z2, (4.8)

which has a unique solution since the matrices T11 and T22 have no eigenvalues in
common [19, chap. 16].

10



This algorithm has one weak point: if an eigenvalue of T11 is near to an eigenvalue
of T22 then the Sylvester equation may be ill-conditioned [19, sec. 16.3]. The problem
can be partially solved by observing that the circle which separates the two regions is
not a sharp division of the two regions of convergence (see the discussion at the end of
section 3), so a slightly smaller or larger circle yields the same convergence results. If
two eigenvalues of A are very near to the circle but in different regions it is possible to
reduce or increase the radius of the circle in order to let the two eigenvalues belong to
the same region. Nevertheless, there is no a priori lower bound independent of A on
the gap between the eigenvalues in T11 and those in T22 (the Schur-based algorithm
in [4] for the matrix unwinding function also has no lower bound on the gap between
the eigenvalues in different blocks).

4.3. The algorithm. We now state our algorithm for computing the matrix
Lambert W function using the stabilized Newton method. The algorithm is for the
unmixed case. It can be adapted for the mixed case by a more sophisticated blocking
strategy, but we will not consider that here.

Algorithm 1. Input: an integer k, a matrix A ∈ Cn×n such that Wk(A) exists.
Output: Wk(A).

1 Compute the (real) Schur form A = Q∗TQ of A.
2a. If k = 0, choose 1.35 6 r0 6 1.60 in order to maximize the gap between the

eigenvalues in the two regions V = {|z−1/2| < r0} and U = {|z−1/2| > r0}.
2b. If k = 1, choose 0.25 6 r0 6 0.40 in order to maximize the gap between

the eigenvalues in the two regions V = {|z + 1/2| < r0, Im z < 0} and
U = C \ V = {|z + 1/2| > r0} ∪ {|z + 1/2| < r0, Im z > 0}.

2c. If k = −1, choose 0.25 6 r0 6 0.40 in order to maximize the gap between
the eigenvalues in the two regions V = {|z + 1/2| < r0, Im z > 0} and
U = C \ V = {|z + 1/2| > r0} ∪ {|z + 1/2| < r0, Im z < 0}.

2d. If |k| > 1 set U = C and V = ∅.
3. Reorder the Schur form of A in order to have T as in (4.6), such that the

eigenvalues of T11 (possibly an empty matrix) belong to U and the eigenvalues
of T22 (possibly an empty matrix) belong to V (this task can be accomplished
by applying a unitary similarity as explained in [6]).

4a. If T11 is nonempty then compute X11 = Wk(T11) as the limit of (4.4) with
Z0 = L1−L2+L3, where L1 = log T11+2πikI, L2 = logL1, and L3 = L2L

−1
1 .

For better accuracy, H0 should be evaluated as H0 = (L1e
−L3−W )(I+W )−1,

where W = L1 + L2 − L3.
4b. If T22 is nonempty (which implies |k| 6 1) then compute X22 = Wk(T22) as

the limit of (4.4) with Z0 = (−1)k(2eT22 + 2I)1/2 − I.
5. Solve the Sylvester equation (4.8) for X12 (this task can be accomplished

using the Bartels and Stewart algorithm [7]).

6. Form Wk(T ) =

[
X11 X12

0 X22

]
and recover Wk(A) by reversing the similari-

ties of steps 3 and 1.

The matrix exponentials and logarithms in step 4 are evaluated using the algo-
rithms of Al-Mohy and Higham [1], [2], which exploit triangularity. The matrix square
roots in step 4b are evaluated using the Björck–Hammarling recurrence [8], with the
efficient blocked implementation of [16].

It is worth noting that Newton iterations for matrix functions are invariably
started with a scalar multiple of I or A [20]; our choice of nontrivial functions of A
as starting matrices is novel.
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When A is real and has no real eigenvalues on (−∞,−1/e), it can be proved
that W0(A) is real (for instance, using [21, Thm 3.2]). In this case, a real Schur
decomposition can be employed in the algorithm, since the sets U and V are symmetric
about the real axis, so a nonreal eigenvalue and its complex conjugate belong to the
same convergence region and hence can go in the same block. (In contrast, for the
Schur–Parlett algorithm usually only the complex Schur form can be used [4], [14]).
The logarithm evaluations are now done using the algorithm of Al-Mohy, Higham, and
Relton [3], which is designed for real matrices and works entirely in real arithmetic.

5. Numerical experiments. We present some numerical experiments to illus-
trate the behaviour of our algorithm in finite precision arithmetic. The tests are per-
formed using MATLAB R2011b, for which the unit roundoff is u = 2−53 ≈ 1.1×10−16.

The algorithm is compared with a diagonalization approach that computes A =
M diag(λ1, . . . , λn)M−1 and then forms Wk(A) = M diag

(
Wk(λ1), . . . ,Wk(λn)

)
M−1.

This approach has been used in earlier work [5] but is obviously applicable only when
A has a complete set of eigenvectors.

The Schur–Parlett algorithm (implemented in the MATLAB function funm) is of
limited use, since it is designed for entire functions. For multivalued functions it could
group eigenvalues across a branch cut, leading to a wrong branch. The possibility of
constructing a suitable modification of the Schur–Parlett algorithm for multivalued
function is still under investigation.

As a measure of the accuracy of a computed approximation Ŵ to Wk(A) we

consider the Frobenius norm relative error ‖W̃ −Ŵ‖F /‖W̃‖F , where W̃ is a reference
solution computed by using the diagonalization approach at high precision (with the
variable precision arithmetic of the Symbolic Math Toolbox) and then rounding the
result to double precision.

Another measure of quality is the relative residual of Ŵ ,

ρ(Ŵ ,A) =
‖Ŵ exp(Ŵ )−A‖F
‖Ŵ exp(Ŵ )‖F + ‖A‖F

. (5.1)

As pointed out by Deadman and Higham [15], the difficulty with such residuals is
knowing how small we can reasonably expect them to be. Rather than carry out a
perturbation analysis as in [15], here we will take advantage of the availability of W̃

and we will simply compare the residual of Ŵ with that of W̃ .
Experiment 1. To compare our Algorithm 1 with the diagonalization approach,

we consider the matrix

A(ε) =

[
1 1
0 1 + ε

]
,

whose eigenvector matrix becomes increasingly ill conditioned as ε→ 0. In Figure 5.1
we plot the relative error of the two methods for computing W−1(A), for ε = 10−t

with t varying from 1 to 16. As expected the diagonalization approach loses accuracy
as ε tends to zero while our method has accuracy independent of the eigenvector
conditioning.

A similar figure is obtained considering any other branch of the Lambert W
function.

Experiment 2. We pick 47 matrices of size 10×10 from the MATLAB gallery

function. We compare the error in computing W0(A) for Algorithm 1 and the diag-
onalization approach. In Figures 5.2 and 5.3 we show the relative residuals and rel-
ative errors, respectively. Figure 5.3 also shows an estimate of cond(W0, A)u, where
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Algorithm 1
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Fig. 5.1. Relative errors in computing W−1(A), with A of (5.1), with ε = 10−t, for Algorithm 1
and the eigenvector approach.

cond(W0, A) is a 1-norm condition number for W0 defined in the usual way for matrix
functions [20, sec. 3.1] and estimated using the code funm_condest1 from the Matrix
Function Toolbox [17], [20, Alg. 3.20].

As one can see in Figure 5.2 the residual for Algorithm 1 is never more than a
couple of orders of magnitude larger than that of the reference solution, whereas di-
agonalization gives much larger residuals than Algorithm 1 on a number of problems.
Consistent with this behavior, Figure 5.3 shows that Algorithm 1 has error less than
cond(W0, A)u in almost every case, whereas the error for diagonalization greatly ex-
ceeds cond(W0, A)u in several cases. For all the matrices tested the Newton iteration
required no more than 9 steps to converge for each of the (at most two) diagonal
blocks.

Experiment 3. We repeat the previous test but now computing W−1(A), in
order to show that our method is able to compute also the non-principal branches
of the Lambert W function. We have removed singular matrices from the test, since
W−1(z) has a singularity for z = 0. The residuals are plotted in Figure 5.4, which
shows a similar behaviour to the case of W0(A).
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Fig. 5.2. Residuals in computing W0(A), where A ∈ Cn×n ranges over a set of 47 matrices
chosen from the MATLAB gallery function. The results are ordered by nonincreasing residual of
the reference solution.
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Fig. 5.3. Relative errors in computing W0(A), where A ∈ Cn×n ranges over 47 matrices
chosen from the MATLAB gallery function. The results are ordered by nonincreasing value of
cond(W0, A)u.
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Fig. 5.4. Residuals in computing W−1(A), where A ∈ Cn×n varies over 45 matrices chosen
from the MATLAB gallery function. The results are ordered by nonincreasing residual of the
reference solution.
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6. Concluding remarks. Corless and Jeffrey [12] call the Lambert W function
“the first nontrivial example of a multivalued function”, since the logarithm (its close
relative) and the inverse trigonometric functions have such a regular branch structure
that a new notation is not needed to specify the branch. We have presented the
first numerically reliable algorithm for computing an arbitrary branch of the matrix
Lambert W function. Corless and Jeffrey also comment that “the multivalued nature
of W ‘stress tests’ naming conventions, numerics on branches, computer-aided anal-
ysis, and the results of series computations”. To that list we can add the evaluation
of a non-entire function of a triangular matrix. To derive our algorithm we had to
construct a numerically stable Newton iteration, formulate starting matrices that are
nontrivial functions of the matrix of interest (in contrast to other Newton iterations
for matrix functions), and use a Schur form with a novel blocking. Our algorithm
builds on previous work on matrix functions in that it employs algorithms for the
matrix exponential, logarithm, and square root. Empirically, the algorithm produces
residuals within a couple of orders of magnitude of those of a reference solution.

Given the wide range of situations in which the scalar Lambert W function
arises [10], we can expect to see more of the matrix version, both in practical ap-
plications, such as those cited in section 1, and in more theoretical studies, such as
that in [26] concerning chain rules for matrix functions.
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