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Abstract

The effective performance of an alarm system is a key aspect
of asset management for any industrial installation. However,
it is not uncommon for alarm systems to be poorly configured,
leading to large amounts of alarm noise and a potentially dan-
gerous load on the operators. Here we present a novel method
for the identification of redundant or bad actors in alarm sys-
tems through the application of statistical cluster analysis. This
allows the system to be optimised to reduce the load on the
operators through existing systems change management pro-
cesses.

1 Introduction

Alarm systems play a vital safety role in alerting operators to
unexpected behaviour, and in performing forced shut-downs if
a severe danger is detected. It is well documented that failures
in alarm systems can have catastrophic consequences with in-
cidents such as the partial nuclear meltdown at Three Mile Is-
land and the Texas City refinery explosion, both having root
causes directly linked to suboptimal alarm management [1, 2].
It is therefore vital that alarm systems perform optimally as
failure to do so poses a great risk to safety, asset viability, and
profitability. The aim of this contribution is to provide a sta-
tistical analysis tool for gaining insight into the performance
of alarm systems and guiding improvements to their configu-
ration.

There are several metrics that can be used to quantify the per-
formance of an alarm system. One of the most important is
‘operator load’, which is defined as the number of alarms each
operator has to address in a given time interval. The global
standard for alarm management configuration, EEMUA 191,
allows for at most 1 alarm per operator every 10 minutes in the
context of distributed control systems (DCS) [3].

Operator load gives a good indication of how well the alarm
system is configured, and the viability of acknowledging and

actioning each alarm in the appropriate manner. Alarm cas-
cades, floods, or simply the proliferation of alarms relating to
a single physical event are very problematic in practice. Com-
plex manufacturing plants can see arrival rates of thousands of
alarms per hour, producing an operator load so large it is im-
possible for the operators to properly deal with each fault. With
such volumes it is impossible to manually prioritise the alarms
and decipher the root cause of the problem [4]. It has been
known for operators to switch off or discount ‘noisy’ alarms
with serious consequences.

With sensors becoming cheaper it has become commonplace
to install a large number across a plant, ensuring that every
physical component is monitored. Although this may be nec-
essary for some aspects of operation, it is usually unnecessary
to configure an alarm for each single sensor, a practice that has
also become common, particularly during initial configuration
or where there is a lack of management continuity.

Often, sensors and their related alarms report on physically
linked systems (e.g., temperature conduction between compo-
nents), causing several alarms for each physical ‘event’. Identi-
fication of such redundancies would facilitate the optimisation
of the alarm system, leading to a lower operator load and a
fundamentally safer facility.

Although there are extant solutions available for the configura-
tion of alarm management systems, many of them are complex
in nature. They can require a computational model of the plant
and permission to automatically intercept and suppress alarms
in real-time [5, 6, 7]. These solutions are costly, require expen-
sive and time consuming configuration, and cede control of a
safety critical system to an algorithm.

Here we present an alternative approach to alarm management
decision support which can be used to optimise the perfor-
mance of alarm systems. This approach utilises a novel method
of analysing alarm system performance which can identify
clusters of alarms that frequently act together. This detects
redundant alarms that provide little to no extra information, al-
lowing these alarms to be analysed and following industry best
practice change control processes, suppression rules enacted
or alarms to be reconfigured. This reduces operator load and
makes it easier for them to identify the physical cause of any
alarm incident.
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Fig. 1: Diagram showing basic cluster identification. Alarms
A, B and C continually sound together. Each coloured
bracket shows the search window for the corresponding
alarm (the window for alarm C is not shown). Alarm A
is the principle alarm for a cluster containing B and C
as incident alarms, and alarm B is the principle alarm
for a cluster containing alarm C as the incident alarm.
There are no alarms within the search windows of C,
therefore it is not the principle alarm for any cluster.

2 Method

The proposed method identifies clusters in historical alarm
data which has been collected during the operation of a plant.
This data-mining approach removes the need to construct com-
plex models of the underlying processes, instead gaining the
relevant information from the past behaviour of the facility.
This requires very little configuration and ensures that the
alarm management team retains complete control. To access,
aggregate, and process the large datasets required the method
was built in the Sabisu platform.

2.1 Cluster Identification

Alarms that act in clusters are likely to be linked in some phys-
ical way and therefore contribute a level of redundancy that is
likely to increase the operators’ alarm load without providing
extra information.

To identify such clusters the alarm log for the system is anal-
ysed and alarms that occur often within a specified time win-
dow of one another are marked as a linked pair. Each linked
pair consists of a principle alarm (P) and an incident alarm (I),
with the principle alarm implying the incident alarm: P → I.
It may be found that one principle alarm has several corre-
sponding incident alarms, with many of these forming their
own linked sets as shown in Figure 1.

Statistical thresholds ensure that the system will only iden-
tify alarm clusters if the alarms forming them occur together
a large percentage of the time. This suggests that it is rare
to see the principle alarm without its corresponding incident
alarm(s), and therefore the incident alarm is adding very little
extra information to a physical event. It is, however, needlessly
increasing the load on the operator. The statistical thresholds
used for these calculations guarantee not only that each inci-
dent alarm is often seen with its principle alarm when com-
pared to the number of occurrences of the principle alarm, but

also that the linked pairs are seen in the alarm log relatively of-
ten. On the other hand, an alarm phenomenon seen relatively
infrequently will not be included in the analysis as the statisti-
cal confidence would not be considered high enough.

2.1.1 Dependent Alarms

Dependent alarms are a slightly different concept from alarm
clusters as the statistical threshold linking a principle to an in-
cident alarm is not necessarily met, but the incident alarm is
never seen by itself, only ever following its principle alarm.
This could identify redundancy, as with the cluster analysis, or
it could represent a distinct separate event. Dependent alarms
are automatically identified, but should be treated differently
when considering the best course of action; the alarms con-
stituting a dependent set may provide extra information com-
pared to the set’s principle alarm alone, so simply removing
the alarm may not be appropriate. However, it may be the case
that a set of dependent alarms could be replaced with a single
alarm to indicate this event.

2.2 Visualisation

Although reporting identified clusters as a simple text list is
fast to render and non-ambiguous, it is harder to see the alarms
in context and to compare the importance of clusters quickly.
Visualisation is therefore useful, providing extra insight into
the links between the alarms and giving a good overview of the
whole system. For this application two visualisation methods
were chosen; a dynamically sortable adjacency matrix and a
force directed graph. Both of these are implemented using the
D3 visualisation library (http://www.d3js.org) and the Sabisu
platform.

2.2.1 Force Directed Graph

A force directed graph (FDG) is a natural way to visualise
alarm cluster data. In this representation each alarm appears
as a node on the graph, with links between the nodes shown
with arrows. The directions of the arrows follow that of the
implications, i.e., if alarm A is the principle alarm of a linked
pair A and B then there will be an arrow from node A to node
B on the FDG.

The number and size of clusters present in the alarm system
is immediately apparent, with the directed nature of the graph
allowing quick identification of the principle alarms it is easy
to estimate the impact of applying suppression rules to an in-
dividual alarm. An example FDG is shown in Figure 2. From
this graph it can be estimated that the application of the iden-
tified suppression rules triggered on alarm A will disperse the
left cluster, reducing the number of alarms from 4 to 1 for each
occurrence of alarm A.

2.2.2 Adjacency Matrix

An adjacency matrix is a mathematical object that can be used
to represent a graph by specifying which vertices are adjacent
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to one another [8]. For our purposes it is possible to ignore the
link directions, so that the adjacency matrix M associated with
the FDG is symmetric. More precisely, we set:

Mij = Mji =

{
1, if alarms i and j are linked
0, otherwise.

(1)

By representing the entries of the adjacency matrix M on a
square grid (a so-called ‘sparsity plot’), clusters of alarms can
easily be identified. More precisely, given a link between alarm
i and alarm j, the entry Mij will be coloured. Different colours
are used to group grid squares that are members of the same
cluster, with the opacity of the square relating to the strength
of the connection.

The adjacency matrix can be sorted in three ways, each sorting
giving a different insight:

i. Ordering the columns and rows of M by alarm name
makes it easy to locate an alarm of interest and quickly
identify the key alarms it is linked with.

ii. Cluster ordering attempts to group each cluster together
so that their relative sizes can be assessed.

iii. Ordering by frequency, which is a measure of the ‘con-
nectivity’ of an alarm. For an individual alarm, the more
alarms linked with it, and the more times it appears in
the alarm log, the higher its frequency. This allows each
alarm to be ranked by its effect on the alarm load, with the
worst offending alarms in the top left of the matrix. This
provides an alternative ranking method to cluster size, as
although size is a good indicator it could be beneficial
to deal with smaller clusters that are more active first, as
they could have a larger overall effect on the alarm load.
An example alarm graph is shown in Figure 2, with the
symmetric adjacency matrix ignoring the link directions
shown below.

2.3 Suppression Rules and Removal

The results of this analysis provide information about redun-
dancy in the alarm system, which can be dealt with in different
ways depending on the underlying cause.

2.3.1 True Redundancy

True redundancy occurs when an alarm provides no extra in-
formation to the operator under any circumstances; the redun-
dancy is detected for all modes of operation and is entirely
independent of the running conditions of the facility. If true re-
dundancy is detected it would be recommended that the alarm
is removed from the system entirely.

2.3.2 Mode Dependent Redundancy

Mode dependent redundancy indicates that during certain
times the alarm may provide useful information, but becomes

A

B C D

E

FG H

A B C D E F G H
A 0 1 1 0 0 0 1 0
B 1 0 1 0 0 0 0 0
C 1 1 0 0 0 0 0 0
D 0 0 0 0 1 0 0 0
E 0 0 0 1 0 1 0 1
F 0 0 0 0 1 0 0 1
G 1 0 0 0 0 0 0 0
H 0 0 0 0 1 1 0 0

Fig. 2: A simple force directed graph example showing the
links between alarms (above). The adjacency matrix
(below) does not take into account the link directions
and is therefore symmetric.

unimportant during certain running modes, e.g., when a certain
feedstock is being used, or the product slate is changed. Re-
moval of the alarm would be undesirable, however, mode de-
pendent suppression rules triggered during the redundant pe-
riods of the alarm should be implemented. This reduces the
alarm load without compromising the safety of the facility by
retaining the important information delivered by the alarm sys-
tem.

The specific suppression rules used depend on the settings used
to analyse the system, with incident alarms suppressed on de-
tection of their principle alarm for the same length of time as
the window used for the cluster identification. For example, if
a 30 s search window was used, the incident alarms are sup-
pressed for 30 s whenever the principle alarm is detected.

2.3.3 Suppression Safety

Any suppression rules are assessed as part of the alarm man-
agement change control process to ensure that it is safe to
suppress the alarm for the specified period. For high priority
alarms it may not be possible to apply the specific suggested
rule, but a shorter suppression window may still be beneficial.
To quantitatively determine this the cluster analysis could be
performed with a shorter search window.

3 Case Study

A two week section of alarm log data from a large-scale indus-
trial plant was made available for analysis. On-site alarm ex-
perts considered the system to perform in an acceptable man-
ner, but were interested in finding ways in which its perfor-
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Fig. 3: A force directed graph (FDG) of the identified clusters
from the industrial alarm data. The principle alarm for
the largest cluster is marked with a red arrow.

mance could be optimised further. This analysis was per-
formed with a minimum link threshold of 70%, a minimum
count threshold of 50 occurrences, and a search window width
of 30 s.

3.1 Cluster Identification

As can be seen in Figure 3, several clusters of varying sizes
were identified. The largest cluster contains 13 alarms, with a
principle alarm directly identifiable from the FDG. There are
also a relatively large number of linked alarms, which could
also have a significant effect on the alarm load. Some of the
clusters contain alarms that are also members of other clusters,
meaning that the larger cluster can be separated into two or
more sub-clusters that share one or more incident or principle
alarms. These appear as connections between alarms of differ-
ent colours on the FDG. If the sub-clusters share an incident
alarm it is likely that two suppression rules would need to be
implemented to completely disperse the cluster.

Figures 4–6 show the different adjacency matrix orderings for
the data. The name ordering in Figure 4 is useful in find-
ing specific alarms, but does not group clustered alarms to-
gether. However, it is clear that even with this sorting clusters
are present, which indicates that alarms with similar names
are acting together. If alarms are named using a hierarchical
structure, (e.g., Pump3 Alarm-A, Pump3 Alarm-B, etc. . . )
this would be predicted, as due to inherent redundancy several
alarms from the same area are triggering together for single
events.

Figure 5 shows the adjacency matrix ordered by cluster, pro-

Fig. 4: Adjacency matrix of the industrial alarm data ordered
by alarm name.

Fig. 5: Adjacency matrix of the industrial alarm data ordered
by cluster. This attempts to group all of the alarms that
are members of the same cluster into square blocks on
the matrix.
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Fig. 6: Adjacency matrix of the industrial alarm data ordered
by frequency. This orders each alarm by its connectiv-
ity, with the most active alarms in the top left of the
matrix and the least active in the bottom right.

viding similar information to the FDG. The sizes of the clusters
are easily assessed, with the number of diagonal elements in a
group indicating the cluster size. From this view it is easy to
see that there are a number of small clusters and one larger
cluster. The elements that lie off the diagonal indicate alarms
that are members of more than one cluster.

The frequency ordering in Figure 6 shows which alarms are
most active in the system. This is an important view as it pro-
vides a method of intelligently ranking the clusters. The large
cluster appears in the top left of the matrix, indicating that this
would be the most beneficial cluster to target first, though given
its size relative to the rest of the alarm clusters and prominence
in other views this might be expected. However, without this
ordering view it would be difficult to prioritise the smaller clus-
ters; the 2-alarm blue cluster has a higher frequency than the
larger 3-alarm orange cluster (both marked with red arrows in
Figure 6), which shows that a greater effect on the alarm load
would be seen by addressing this smaller cluster first. This
ranking mechanism is important as the alarm system changes
will be enacted through the site’s change management system,
and therefore will not be implemented immediately.

3.2 Alarm System Improvements

The initial performance level of the considered alarm sys-
tem is good, with an acceptable operator load under normal
conditions and relatively small number of clusters identified
through this analysis. However, it is still possible to improve
this system, and the application of the suggested suppression
rules from this analysis reduces the average operator load over

the two week period by more than 12%, eliminating 6233
alarms. The load was reduced by much larger amounts dur-
ing highly active periods, significantly improving safety during
these times by alleviating the pressure on the operators.

4 Discussion

The efficient operation of an alarm management system is a
key part of effective asset management. Not only does a poorly
performing alarm system have severe safety implications, but
also the timely acknowledgement and amendment of faults
leads to a reduction in unexpected downtime. Greater clarity
in the control room also allows operators and shift managers to
make better decisions, running the plant more efficiently and
profitably.

As shown in the example case study the alarm management
software developed using Sabisu provides a highly effective
method for identifying redundancy in alarm systems. The sug-
gested suppression rules also give important information on
how to rectify this, with upper limits on suppression windows
required to eliminate clusters of alarms.

The visualisation tools allow extensive analysis to be per-
formed by the user, with both high-level overviews of the sys-
tem as well as mechanisms to dissect the internal structure of
the alarm interactions. Through these methods the importance
of the identified clusters can be assessed based on their impact
on operator load and the appropriate decision made.

The elimination of clusters has a positive effect on alarm sys-
tem performance, even for relatively efficient systems such as
the one shown in the case study. It is predicted that a greater
impact would be seen when analysing a poorly configured sys-
tem where clusters of redundant alarms are more frequent and
larger. The analysis was performed quickly, with the results
returned by the software in ∼3 s. This includes the generation
of a text list identifying principle alarms and their clusters, as
well as the necessary data to produce the FDG and adjacency
matrix visualisations.

4.1 Dependent Alarms

The analysis from the given case study focuses entirely on the
identified clusters and does not include the dependent alarm
results. This is because dependent alarms potentially indicate
groups of alarms that can be revised and replaced with a single
alarm. This is especially true if the same group appears in the
cluster analysis and the dependent results. However, to enact
changes of this nature a longer time period would need to be
analysed.

However, the initial dependent results suggested 10 clusters
of alarms that should be investigated, several of which were
identified by the on-site alarm management team as responses
to a single physical event.
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4.2 Journal Alarms

Although the emphasis in alarm management optimisation is
often on the operator load, it is still beneficial to process ‘jour-
nal alarms’ that do not produce an audible alert and provide
information about non-critical aspects of operation. Although
these are often not a safety concern they could act as prin-
ciple alarms for non-journal audible alarms, and so could be
used to trigger appropriate suppression rules to disperse clus-
ters. Logging large numbers of events is also undesirable due
to the resulting strain on the network and database connection.
As journal alarms also form clusters the proposed method is
effective in alleviating this strain.

Journal alarms can also be used to elucidate the cause of some
alarm clusters, and in doing so show where it may be useful to
upgrade some key journal alarms that were acting as principle
alarms in a cluster, while suppressing the incident alarms. This
would alert the operator to the event at the earliest possible
stage whilst still reducing their overall load.

4.3 Modes of Operation

Many industrial assets can run in different modes depending
on the current conditions, e.g., a different feedstock being used
for a petrochemical manufacturing process, a change in the re-
quired product quality, or variations in environmental condi-
tions. Therefore it cannot be assumed that an alarm system
will behave in the same way indefinitely, though its behaviour
is likely to be constant throughout each mode of operation. It
is therefore beneficial to run cluster analysis for each operating
mode to ensure the correct settings are in place. With an anal-
ysis time of ∼3 s it is possible to quickly prepare and repeat
the analysis periodically to ensure any emerging clusters are
identified.

4.4 Future Work

Work on extending the functionality of the alarm analysis soft-
ware through the automatic estimation of the alarm system
transition matrix is well advanced. This allows higher order
links between alarms to be found, effectively highlighting any
links between clusters. This provides another method of clus-
ter ranking by identifying any clusters that in-turn may lead to
other clusters being activated [8].

Within this work the transition matrix is also used for predic-
tive purposes to estimate the future state of the alarm system
[8]. This is done in a semi real-time way to predict short-term
future behaviour, or alternatively to assess the characteristic
behaviour of the alarm system under certain conditions. For
example, it could be used to track the predicted progression of
alarms given the activation of every alarm in a certain area of
the facility, or to track the overall number of alarms given the
activation of a large portion of the system, i.e., given 80% ac-
tivation of alarms how many are active within the next 4 time
steps. This would provide information on whether the number
of alarms tends to increase, decrease or remain constant within
the system.

5 Conclusions

The alarm management optimisation software developed using
Sabisu provides a novel method to enhance the performance of
industrial alarm systems. The identification of redundancy al-
lows a significant reduction in the operators’ alarm load with-
out compromising safety. The visualisation tools provide a
high level of insight into the current state of the alarm sys-
tem, and simple suppression rules are provided to disperse any
detected clusters. The decision support nature of this method
ensures that the alarm management team remains in complete
control of the system, with all changes being incorporated
through the site’s existing change management structure.
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