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INTRODUCTION.

In this note we describe algorithms for obtaining formulae for transformations of measures on
infinite dimensional topological vector spaces or manifolds, generated by transformations of the
domains of the measures and by transformations of the range. The important classes of manifolds
to which our results can be applied are collections of some functions, of the real variable, taking
values in a Riemannian manifold K. If K is a submanifold of R

n, for some n, t > 0, k ∈ K
then the subset Ck([0, t],K) of all continuous functions on [0, t], taking values in K and such that
f(0) = k, can be considered as a submanifold of Ck([0, t],R

n) having both finite dimension and
finite codimension. By this way one can reduce, using the constructions of the so-called surface
measure, some properties of measures and even pseudomeasures on Ck([0, t],K) to the properties
of the measures and pseudomeasures on Ck([0, t],R

n). An investigation that does not depend on
the embedding K ⊂ R

n is also possible1; in both cases one uses Feynman-type formulae obtained
via the Chernoff theorem2. Both the algorithms and the formulae are similar to what is known for
the finite-dimensional setting. But, instead of the usual densities of measures, either with respect
to the standard Lebesgue measure on finite dimensional spaces or with respect to the measure
generated by the Riemannian volume, we use the so-called generalized densities of measures (see
for example [2, 4, 5]) that in the finite dimensional case coincide with these standard densities. We
do not formulate any general definition of an infinite dimensional manifold. The use of generalized
densities is motivated by the famous theorem by A.Weil which claims that on infinite-dimensional
locally convex spaces there does not exist an analog of the Lebesgue measure, i.e, of a Borel σ-
additive σ-finite locally finite nonzero measure which is invariant with respect to translations. This
theorem implies that an infinite-dimensional space cannot be equipped with a canonical measure.

There exist two ways to overcome this problem: either to take, instead of canonical, any measure
with sufficiently good properties, e.g., a Gaussian measure, or to use generalized densities.

In what follows, all topological spaces are assumed to be Radon spaces; the σ-algebra of Borel
subsets of a topological space E is denoted by B(E). If E is a locally convex space (LCS), then
B(E) is assumed to coincide with the σ-algebra generated by the algebra A(E) of E′-cylindrical
subsets of E. We say “measure on E” instead of “measure on B(E)”.

If E is a finite-dimensional Euclidean space, then the Lebesgue measure on E is equivalent
to any Gaussian measure on E which is not concentrated on a proper subspace of E. Such a
Gaussian measure is not invariant with respect to translations, but is quasi-invariant in the sense
that any shift of the Gaussian measure is a measure which is equivalent to the original one. If
E is an infinite-dimensional LCS, then the nondegenerate (i.e., not concentrated on proper closed

1It is worth mentioning that it is just the combination of the Chernoff theorem and the construction of the surface

measure has led to the solution of some problem coming back to Onsager–Machlup and related to how geometrical

characteristics of the manifold K can be represented by some additional potential.
2This approach leads also to an alternative method of investigations of diffusion processes in Riemannian manifolds.
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subspaces) Gaussian measures on E are quasi-invariant in a weaker sense: for any such Gaussian
measure μ there exists a dense vector (even Hilbert) subspace H of E with the following property:
the image of the measure with respect to the shift along any element of H is the measure which is
equivalent to the original measure. Hence one can try to use any of such Gaussian measure instead
of the Lebesgue measure. This idea has been realized in the so called White Noise Analysis by
T. Hida.

But if on an infinite dimensional LCS E there exists at least one nondegenerate Gaussian mea-
sure, then on E there exist a continuum of nondegenerate Gaussian measures on E which are
pairwise singular; nevertheless in the frame of Hida’s approach, it is allowed to consider only one
of them.

To make the situation more invariant, it is reasonable to consider all measures on the same level.
Of course it is necessary to assume that the measures has “good enough” analytical properties,
i.e., that they are sufficiently smooth. Just such measures have the generalized densities that have
some properties of usual densities. In particular, the transformations of the generalized densities of
smooth measures on a LCS E induced by transformations of E are quite similar to the transforma-
tions of usual densities (when they exist, i.e., when dimE < ∞). Also in this frame some nonlinear
functions of measures can be defined as measures whose generalized densities are the same functions
of generalized densities of the original measures. In particular, in this way one can define the square
roots of some measures, including the Gaussian measures (a similar approach can be applied to
the Feynman pseudomeasures)3. Moreover, some similar results can be obtained for vector-valued
measures and transformations that transform both the domains and the ranges of the measures. We
conjecture that in this way one obtain certain formulae related to the so-called quantum anomalies
[7, 8] (it is worth mentioning that in [7, p. 352], it is written that the explanation of the quantum
anomalies given in [8] is false).

We expect also that some of the presented ideas will be applicable to questions of the second
quantization of complicated classical systems, such as second quantization of the so-called chore-
ographies (see, for example, [9] and the references therein).

In what follows, we consider, in the first instance, the algebraic structure of the theory and often
do not formulate the corresponding analytical assumptions.

The paper is organized as follows. In the first section, we present some essentially known results
about differentiable measures. Following that, we introduce the notion of generalized density of a
measure defined on an infinite-dimensional space or manifold.

The next two sections are related to transformations of measures, both on vector spaces and on
submanifolds of vector spaces (whose dimension and codimension are equal to infinity) generated by
transformations of the space on which the measures are defined. After that, we discuss transforma-
tions of measures induced by transformations of the range of the measure and also multiplications
of measures by functions.

We tried to make the paper as independent as possible of previous results. To do so, we formulate,
in a form suitable for our aims, some definitions that can be found elsewhere. Moreover, to clarify
the situation, we mention some notions that we do not use.

1. DERIVATIVES OF MEASURE VALUED FUNCTIONS
AND LOGARITHMIC DERIVATIVES OF MEASURES.

Let Ω be a set, B a σ-algebra of subsets of Ω and M(Ω) the vector space of all (signed, σ-
additive) measures on B. Let Mτ (Ω) denote M(Ω) equipped with a locally convex (Hausdorff)
topology, and let m : I → M(Ω) be a function on an open interval I ⊂ R. The function m is said
to be τ -differentiable at t0 ∈ I (see [3]) if there exists in Mτ (Ω) the limit

lim
t → t0,
t �= t0

m(t)−m(t0)

t
.

3It is worth mentioninig a serious problem related to generalized density: only within some special classes of measures

does there exist a one-to-one correspondences between measures and their generalized densities. But in this note we

will not discuss this problem.
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This limit is called the τ -derivative of m(t) at t0, and denoted m′(t0).

Of course, if τ1 and τ2 are (different) comparable topologies and τ1 ⊃ τ2, then τ1 differentiability
at t0 implies τ2-differentiability there, and the corresponding derivatives coincide. For this reason
we do not use the label τ in the notation m′(t).

Proposition 1. (see [3]) Let τ be the topology of setwise convergence. If m(t) � 0 for all t in a
neighborhood of t0 then m′(t0) is absolutely continuous with respect to m(t0).

Proof. If B ∈ B(Ω) and m(t0)(B) = 0, then the function t �→ m(t)(B) has a local minimum at
t0 and hence m′(t0)(B) = 0.

If the function m(t) is τ -differentiable at t0 andm′(t0) 	 m(t), then the Radon-Nikodym density
ρ(t0) of the measure m(t0) with respect to m(t) is called the logarithmic derivative of m at t0.

Example 1. Let ν be a nonnegative measure on B and, for every t ∈ I, f(t, · ) be a nonnegative
ν-integrable function on Ω, and let

m(t) = f(t, · )ν.
Suppose the derivatives of the functions t �→ f(t, x) exist at t0; then, under reasonable assumptions,
m′(t0) = f ′(t0, · )ν. Thus

m′(t0) =
f ′(t0, · )
f(t0, · )

m(t0).

Consequently, in this case,

ρ(t0)(x) =
f ′(t0, x)

f(t0, x)
=

∂

∂t
ln f(t0, x),

which explains the term ‘logarithmic derivative’.

Proposition 2 (see [3]). If a measure-valued function m(·) is differentiable on I = (a, b) and
for every t ∈ I the logarithmic derivative ρm(t) of m(t) exists, then for any c, d ∈ I with c < d, the
measure m(d) is absolutely continuous with respect to m(c) and the Radon–Nikodym derivative is

dm(d)

dm(c)
= exp

(∫ d

c

ρm(τ)dτ

)
.

To prove this, it is sufficient to check that the function μ defined by

μ(t) = exp

(∫ t

a

ρm(τ)dτ

)
m(a)

satisfies the differential equation μ′(t) = ρm(t)μ(t) with initial condition μ(a) = m(a).

Remark 1. The proposition 2 can be considered as an abstract version of the Cameron-Martin–
Girsanov–Maruyama–Ramer formula.

Let Ω be a separable Banach space and B the σ-algebra of Borel subsets of Ω. Let ν ∈ M(Ω),
and for h ∈ Ω define the function

mh
ν : (−ε, ε) −→ Mτ (Ω)

by, for A ∈ B,
mh

ν (t)(A) = ν(A+ th).

The measure ν is said to be (τ -)differentiable along h if the function mh
ν is differentiable at t = 0

and if moreover (mh
ν )

′(0) 	 mh
ν (0); that is, if the logarithmic derivative of mh

ν exists at t = 0. This
logarithmic derivative of mh

ν at t = 0 is denoted βν(h, · ) and is called the logarithmic derivative of
ν along h.

The logarithmic derivative of a measure along a vector was introduced in [1]. In the same paper,
it was also proved that if τ is the topology, in the space of measures, of setwise convergence, then
the τ -differentiability of mh

ν at t = 0 alone implies that the logarithmic derivative of mh
ν exists at

t = 0. It is also known that if τn is the topology defined by the norm equal to the total variation
and τc is any locally convex topology between τn and the topology defined by all smooth bounded
cylindrical functions, then τc-differentiability along h implies τn-differentiability.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 21 No. 3 2014
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2. GENERALIZED DENSITIES OF MEASURES

Let Dν be the collection of elements h ∈ Ω along which the measure ν is differentiable. It is
known [1] that Dν is a vector subspace of Ω. Let H be a vector subspace of Dν and suppose ν is
nonnegative.

Definition 1. A generalized H-density of ν is a function FH
ν : H → R

+ whose logarithmic
derivative along each h ∈ H coincides with βν(h, ·).

We assume that the function βν : H×H → R allows to reconstruct ν in a class of measures (this
implies that H is dense in Ω). It follows that the generalized density also allows to reconstruct ν.
In some cases, it is convenient to assume that H is a Hilbert subspace of Ω; this means that H is
equipped with a structure of a Hilbert space, the embedding H → Ω being continuous (with the
dense image).

Example 1. Let Ω be a Hilbert space and νB be a Gaussian measure on Ω with correlation
operator B and mean value equal to zero (this means that the Fourier transform ν̃B of ν is defined

by ν̃B(x) = e−
(Bx,x)

2 ), then the generalized density of νB is any function on
√
BΩ defined by

FH
νB (x) = ce−

(B−1x,x)
2 , where c > 0 (each such function can be also called a version of the generalized

density). This means that if dimΩ < ∞, then the usual density is a version of the generalized density.

If ν = νB1
+ νB2

and H =
√
B1Ω ∩

√
B2Ω, then the generalized density of ν is any function on

H defined by FH
ν (x) = c1e

−
(B

−1
1

x,x)

2 + c2e
−

(B
−1
2

x,x)

2 (so the generalized densities of ν constitute a
two-dimensional vector space).

To define a generalized density of a measure ν on Ck([0, t],K), whereK is a Riemannian manifold,
k ∈ K, it is necessary to be able to define the derivative of a measure along a vector field. A vector
field on a manifold M (which can be a vector space) is a mapping h : M → M. The definition of
a differentiability of the measure ν on Ω and of the logarithmic derivative of ν along vector field
(both on vector space and on manifold) is completely similar to the definition of the differentiability
of the measure ν and the logarithmic derivative of ν along a vector. We denote the logarithmic
derivative of ν along a vector field h by βh

ν (·). A sketch of a proof of the following proposition can
be found in [4, 5].

Proposition 3. Let H be a Hilbert subspace of Ω, h be a vector field on Ω such that h(Ω) ⊂ H
and let the derivative h′

H(x) ∈ L(H) of h along H be a trace class operator for any x, the function
x �→ trh′(x) being ν-integrable. Then

βh
ν (x) = βν(h(x), x) + trh′(x)

Remark 2. If h is a Hamiltonian vector field, then

βh
ν (x) = βν(h(x), x);

this identity is the infinitesimal version of the Liouville theorem about the conservation of the phase
volume (which actually does not exist if dimΩ = ∞).

Corollary 1. (to Proposition 3) A function F : H → R is a generalized H-density of ν if and
only if for any vector field h on Ω such that h(Ω) ⊂ H the following identity holds:

log F ′(x)h(x) = βh
ν − trh′(x)

for any x ∈ H.

This corollary motivates a definition of the generalized density of a measure on a manifold.

Let M be an infinite-dimensional manifold and let H be a (dense) Hilbert submanifold of M
(the definition of a Hilbert submanifold is similar to the definition of a Hilbert subspace). We say
that a measure η on M is H-differentiable if it is differentiable along any vector field h on M such
that h(M) ⊂ H and trh′(x) = 0 for any x ∈ M.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 21 No. 3 2014
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Definition 2. Let η be a measure on M which is H-differentiable. A generalized H-density of
η is a function FH

η : H → R
+ having the following property: for any vector field h on M such that

h(M) ⊂ H and trh′(x) = 0 one has (log FH
η )′(x)h(x) = βh

ν .

Remark 3. An analog of Corollary 1 also holds here.

3. TRANSFORMATIONS OF MEASURES ON VECTOR SPACES
GENERATED BY TRANSFORMATIONS OF THE SPACES

We use the notation and assumptions of the preceding section. Let ψ be a mapping of Ω into
itself that is twice (Fréchet) differentiable along H. Suppose that the function

H −→ R, x �−→ Fν(ψ(x))

Fν(x)
det(ψ′(x))

is well-defined and can be extended by continuity to the whole space Ω; for this extension, we keep
the same notation. Let μ be the image of ν with respect to ψ; that is, μ = ψ∗ν.

Theorem 1. The Radon-Nikodym density dμ/dν satisfies

dμ

dν
(x) =

Fν(ψ(x))

Fν(x)
det(ψ′(x)).

One approach to proving this is based on ideas from [4]. In that paper, one uses, roughly speaking,
a homotopy between the mapping ψ and the identity map sending x to x.

One can also use some finite-dimensional approximations for μ and ν.

4. TRANSFORMATIONS OF MEASURES ON MANIFOLDS
GENERATED BY TRANSFORMATIONS OF MANIFOLDS

The analog of Theorem 1 of the preceding section is valid for measures on manifolds. This
means that to obtain explicit formulae for transformations of the measures it is sufficient to find
the generalized density of the measure. The aim of this section is to obtain the generalized density
of the Wiener measure on the space of continuous functions, taking values in a compact Riemannian
manifold S, generated by the Brownian motion in the manifold. We use here the approach described
briefly in the introduction.

Let S be a compact Riemannian submanifold of Rn (any Riemannian manifold can be embedded
isometrically into Euclidean space). Let Γ > 0, a ∈ S and define

ΩRn = Ca([0,Γ], R
n)

to be the vector space of all continuous functions g on [0,Γ] taking values in R
n equipped with the

Wiener measure W , and such that g(0) = a, and for X ⊂ R
n define ΩX = Ca([0,Γ], X) ⊂ ΩRn to

be the subset consisting of those functions taking values in X.
For any ε > 0, let Sε be the ε-neighborhood of S in R

n. Let W ε
S be the measure on (Borel subsets

of) ΩRn defined by

W ε
S(A) =

W (ΩSε
∩A)

W (ΩSε
)

.

One can prove (see [6]) that

W ε
S −→ fWR

n

S

in the weak topology onM(ΩRn) defined by the duality between M(ΩRn) and the set of all bounded
smooth cylindrical functions. Here WR

n

S is the measure on ΩRn defined by

WR
n

S (A) = WS(A ∩ ΩS),

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 21 No. 3 2014
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where WS is the Wiener measure on ΩS , and the function f is defined by f(ξ) = 0 if ξ /∈ ΩS and
otherwise

f(ξ) = exp

(∫ Γ

0

(
1
8a(ξ(τ)) −

1
4R(ξ(τ))

)
dτ

)
,

where R(x) is the scalar curvature and a(x) the mean curvature of S at x.

The measure fWR
n

S is just the surface measure which we mentioned in the introduction. But the
generalized density of the surface measure is the restriction to ΩS of the generalized density of W ;
therefore, to get the generalized density of WS , it is sufficient to take the product of this restriction
and the function f−1. Hence the following theorem holds.

Theorem 2. Let H be the Sobolev space W 1
2 ([0,Γ], S). Then the generalized H-density of the

Wiener measure WS is defined by

F (ξ) =
1

f(ξ)
exp

(
−1

2

∫ Γ

0

(ξ̇(τ))2dτ

)
.

5. SOME OTHER TRANSFORMATIONS OF MEASURES

In this section we consider two special transformations of Gaussian measures: powers of Gaussian
measures and multiplications of Gaussian measures by Gaussian exponents. Similar results can also
be obtained for some other classes of measures.

Definition 3. Let ψ : R+ → R
+ be a smooth function and let ν be a measure whose generalized

H-density is Fν . Then ψ(ν) is a measure whose generalized H-density is ψ ◦ Fν .

This measure is well-defined only for special classes of functions ψ and measures ν. We will not
discuss these classes here.

Example 2. The function Fν defined on R
n by Fν(x) = cBe

− (B−1x,x)
2 is the usual density of

the Gaussian measure, but the function ψ ◦ Fν need not be a density of a Gaussian measure. Even
if ψ(x) = xa, a > 0, then already the function ψ ◦ Fν is not the usual density of the Gaussian
measure, but is still the generalized R

n-density of the Gaussian measure.
In the infinite-dimensional case, the density does not exist, but for the latter function ψ the

function x �→ ψ(e−
(B−1x,x)

2 ) is the generalized H-density of the (unique) Gaussian measure.
The powers of measures can be needed to define the Schrödinger quantization of infinite-

dimensional Hamiltonian systems.

Namely, if Q × P ia s phase space of a Hamiltonian system, H : Q × P → R
1 is a classical

Hamiltonian function, then the pseudodifferential operator Ĥν in the L2(Q, ν), where ν is a Gaussian
measure can be calculated as follows:

Ĥ(ϕ
√
ν) = (Ĥνϕ)

√
ν

where Ĥ is the naturally defined PDO in the space of measures on Q.
The generalized densities can also be used to calculate the product of a Gaussian measure and a

Gaussian exponent or, what is the same, to calculate integrals of the Gaussian exponent, on infinite
dimensional spaces, with respect to Gaussian measures. Below we will drop the prefix H in the
expression “H-densities”. To do this calculation, it is convenient to use, for generalized densities,
infinite renormalization and take, for the renormalized generalized density of the Gaussian measure
with the correlation operator B, the formal expression

1

(2π)n/2
√
detB

e−
(B−1x,x)

2 .
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Of course this formal expression does not define a function of x because if B is a trace class
operator, then detB = 0.

Nevertheless, formal calculations with such “renormalized generalized density” can lead to cor-
rect formulae. Here is an example. Let ν be as above the Gaussian measure with correlation operator

B and hence with the renormalized generalized density 1√
detB

e−
(B−1x,x)

2 . Then the integral

∫
e−

(Ax,x)
2 ν(dx)

can be calculated as follows:

1√
detB

e−
(Ax,x)

2 e−
(B−1x,x)

2 =

√
det(B−1 +A)√

detB
√

det(B−1 +A)
e−

((B−1+A)x,x)
2 =

√
det(B−1 +A)√
det(I +BA)

e−
((B−1+A)x,x)

2 .

This implies that ∫
e−

(Ax,x)
2 ν(dx) = (det(I +BA))−

1
2 .

To obtain a proof of this fact, one can apply the machinery from [12].

Remark 3. Some results of the paper can be extended to the so-called pseudomeasures, includ-
ing the Feynman pseudomeasure [12].

The first draft of the paper was written when O. G. S. visited J. M. in Manchester. O. G. S.
thanks the University of Manchester for hospitality and excellent work conditions. Also O. G. S.
thanks the Russian Foundation for Basic Research.
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