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GEOMETRIC STRUCTURE FOR BERNSTEIN BLOCKS

ANNE-MARIE AUBERT, PAUL BAUM, ROGER PLYMEN,
AND MAARTEN SOLLEVELD

Abstract. We consider blocks in the representation theory of reductive
p-adic groups. On each such block we conjecture a definite geometric
structure, that of an extended quotient. We prove that this geometric
structure is present for each block in the representation theory of any
inner form of GLn(F ), and also for each block in the principal series of
a connected split reductive p-adic group with connected centre.
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1. Introduction

In [ABP1, ABPS1], we proposed a conjecture that adds a new structure
to the space of representations of a reductive p-adic group, and that further
studies the interplay between this structure and the local Langlands con-
jecture. The local Langlands conjecture predicts a relationship between the
irreducible representation of a given reductive group G defined over a local
(in the case at hand non-archimedean) field F and certain representations
of the Galois group of F as well as closely related groups. Both sides of
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this relationship have rich and interesting structure, and their correspon-
dence is at the heart of deep recent developments in different branches of
mathematics, in particular of number theory.

The conjecture that we propose refines previous (non-conjectural) work
of Bernstein on the structure of the category of smooth admissible repre-
sentations of G(F ). Bernsteins work decomposes this category into so-called
blocks and endows the set of irreducible objects in each block with a finite-
to-one map to a certain algebraic variety. We replace this variety with a dif-
ferent object of geometric nature and conjecture that this refines Bernsteins
finite-to-one map to a bijection, effectively endowing the set of irreducible
objects in each block with the structure of this geometric object.

To support this conjecture, we provide a proof for the case of the general
linear group, as well as for the simplest class of irreducible representations
of any split connected reductive group with connected centre: the principal
series representations. This conjecture and the supporting evidence provide
an interesting new insight into the structure of the smooth dual of p-adic
groups and in this way also shed some additional light onto the local Lang-
lands correspondence.

Let G be a connected reductive p-adic group. The smooth dual of G —
denoted Irr(G) — is the set of equivalence classes of smooth irreducible
representations of G. Let B(G) denote the Bernstein spectrum of G, let
s ∈ B(G), and let T s,W s denote the complex torus, finite group, attached
by Bernstein to s. For more details at this point, we refer the reader to
[Renard]. The Bernstein decomposition provides us, inter alia, with the
following data: a canonical disjoint union

Irr(G) =
⊔

Irr(G)s

and, for each s ∈ B(G), a finite-to-one surjective map

Irr(G)s → T s/W s

onto the quotient variety T s/W s. The geometric conjecture amounts to a
refinement of these statements. The refinement comprises the assertion that
we have a bijection

Irr(G)s ' T s//W s(1)

where T s//W s is the extended quotient of the torus T s by the finite group
W s. If the action of W s on T s is free, then the extended quotient is equal
to the ordinary quotient T s/W s. If the action is not free, then the extended
quotient is a finite disjoint union of quotient varieties, one of which is the or-
dinary quotient. The bijection (1) is subject to certain constraints, itemised
in §4.

In this paper, among other things, we construct an admissible bijective
map

µs : T s//W s → Irr(G)s

for each point s in the Bernstein spectrum of GLm(D) and for each point
s in the principal series of a split reductive group G with connected centre,
subject to a mild restriction on the residual characteristic p.

It is interesting to compare this with the structure of the space of Lang-
lands parameters for G, in cases where the local Langlands correspondence is
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known. For GLn(F ), one can fix a L-parameter φ and consider the collection
of L-parameters which on the inertia group of F take the same values as φ.
This set parametrizes precisely one Bernstein component Irr(GLn(F ))s, and
it is canonically in bijection with an extended quotient as above. The same
holds for inner forms of GLn(F ). But these cases are really special, because
all R-groups are trivial, both on the Galois side and on the representation
side.

For other groups one has to enhance the Langlands parameters to see
the extended quotients. For example, for SLn(F ) the space of Langlands
parameters enhanced with an irreducible representation of the component
R-group is in bijection with Irr(SLn(F )) via the local Langlands correspon-
dence. However, a Bernstein component for SLn(F ) is not necessarily in
bijection with the set of L-parameters which have a fixed restriction to the
inertia group of F , there may also be a condition on the representations of
the component groups.

More precisely, a cuspidal pair (M,σ) for SLn(F ) corresponds to an el-
liptic L-parameter φM for M , plus an irreducible representation ρM of the
component group of φM . Then it follows from the LLC for GLn(F ) that

Irr(SLn(F ))[M,σ] is in bijection with equivalence classes of pairs (φ, ρ) where
φ is an L-parameter for SLn(F ) which on the inertia group of F agrees with
φM , and ρ is an irreducible representation of the component group of φ that
extends ρM . We refer to [HiSa, ABPS2] for more background. According
to our conjecture, the set of these pairs carries the structure of an extended
quotient.

For general split groups the situation is much more complicated. Con-
sider the group of type G2 and the Bernstein component Irr(G2)s of irre-
ducible G2-representations in the unramified principal series. As shown in
[ABP2], there is an admissible bijection from Irr(G2)s to an extended quo-
tient T s//W s. The most natural choice for the associated set of Langlands
parameters is the space of enhanced unramified (i.e. trivial on the inertia
subgroup) Langlands parameters. For most unramified L-parameters this
works fine, every enhancement with an irreducible representation of the com-
ponent group gives rise to one representation in this Bernstein component.
But for a few unramified L-parameters it is trickier, some enhancements
yield representations in the principal series, whereas others point to super-
cuspidal G2-representations. In that case, the extended quotient is hidden
in the space of enhanced L-parameters: it is not the pre-image of any set
under the forgetful map

{enhanced L-parameters} → {L-parameters}.

To highlight it one needs intricate conditions on the representations of the
component groups. It seems fair to say that in general the structure of
extended quotients can not be detected with Langlands parameters alone.
In this sense our conjecture reveals some geometric structure that is not
present in the local Langlands conjecture.

The new results in this paper appear in §4, namely Theorem 4.10, Theo-
rem 4.11, and Corollary 4.13. We have constructed the simplest and most
direct proofs: for example, in §3, on the general linear group, we do not
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use the local Langlands correspondence, relying instead on the Zelevinsky
classification.

An earlier, less precise version of our conjecture was formulated in [ABP1].
That version was proven in [Sol] for Bernstein components which are de-
scribed nicely by affine Hecke algebras. These include the principal series of
split groups (with possibly disconnected centre), symplectic and orthogonal
groups and also inner forms of GLn.

Acknowledgements. Thanks to Mark Reeder for drawing our attention
to the article of Kato [Kat]. We thank Joseph Bernstein, David Kazhdan,
King Fai Lai, George Lusztig, and David Vogan for enlightening comments
and discussions.

2. Statement of the conjecture

2.1. Extended quotient. Let Γ be a finite group acting on a complex
affine variety X as automorphisms of the affine variety

Γ×X → X.

The quotient variety X/Γ is obtained by collapsing each orbit to a point.
For x ∈ X, Γx denotes the stabilizer group of x:

Γx = {γ ∈ Γ : γx = x}.

c(Γx) denotes the set of conjugacy classes of Γx. The extended quotient is
obtained by replacing the orbit of x by c(Γx). This is done as follows:

Set X̃ = {(γ, x) ∈ Γ×X : γx = x}. X̃ is an affine variety and is a subvariety

of Γ×X. The group Γ acts on X̃:

Γ× X̃ → X̃

α(γ, x) =(αγα−1, αx), α ∈ Γ, (γ, x) ∈ X̃.

The extended quotient, denoted X//Γ, is X̃/Γ. Thus the extended quotient

X//Γ is the usual quotient for the action of Γ on X̃. The projection X̃ →
X, (γ, x) 7→ x is Γ-equivariant and so passes to quotient spaces to give a
morphism of affine varieties

ρ : X//Γ→ X/Γ.

This map will be referred to as the projection of the extended quotient onto
the ordinary quotient. The inclusion

X ↪→ X̃

x 7→ (e, x) e = identity element of Γ

is Γ-equivariant and so passes to quotient spaces to give an inclusion of
affine varieties X/Γ ↪→ X//Γ. This will be referred to as the inclusion of the
ordinary quotient in the extended quotient. We will denote X//Γ with X/Γ
removed by X//Γ−X/Γ.
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2.2. Bernstein spectrum. We recall some well-known parts of Bernstein’s
work on p-adic groups, which can be found for example in [Renard].

With G fixed, a cuspidal pair is a pair (M, σ) where M is a Levi fac-
tor of a parabolic subgroup P of G and σ is an irreducible supercuspidal
representation of M. Here supercuspidal means that the support of any
matrix coefficient of such a representation is compact modulo the centre of
the group. Pairs (M, σ) and (M, σ′) with σ isomorphic to σ′ are considered
equal. The group G acts on the space of cuspidal pairs by conjugation:

g · (M, σ) = (gMg−1, σ ◦Ad−1
g ).

We denote the space of G-conjugacy classes by Ω(G). We can inflate σ to
an irreducible smooth P-representation. Normalized smooth induction then
produces a G-representation IGP(σ).

For any irreducible smooth G-representation π there is a cuspidal pair
(M, σ), unique up to conjugation, such that π is a subquotient of IGP(σ).
(The collection of irreducible subquotients of the latter representation does
not depend on the choice of P.) The G-conjugacy class of (M,σ) is called
the cuspidal support of π. We write the cuspidal support map as

Sc : Irr(G)→ Ω(G).

For any unramified character ν of M, (M, σ ⊗ ν) is again a cuspidal pair.
Two cuspidal pairs (M, σ) and (M′, σ′) are said to be inertially equivalent,
written (M, σ) ∼ (M′, σ′), if there exists an unramified character ν : M→
C× and an element g ∈ G such that

g · (M, ν ⊗ σ) = (M′, σ′).

The Bernstein spectrum of G, denoted B(G), is the set of inertial equivalence
classes of cuspidal pairs. It is a countable set, infinite unless G is a split torus.
Let s = [M, σ]G ∈ B(G) be the inertial equivalence class of (M, σ) and let
Irr(G)s be the subset of Irr(G) of representations that have cuspidal support
in s. Then Irr(G) is the disjoint union of the Bernstein components Irr(G)s:

Irr(G) =
⊔

s∈B(G)

Irr(G)s.

The space Xunr(M) of unramified characters of M is in a natural way a
complex algebraic torus. Put

(2) Stab(σ) = {ν ∈ Xunr(M) | σ ⊗ ν ∼= σ}.

This is known to be a finite group, so Xunr(M)/Stab(σ) is again a complex
algebraic torus. The map

(3) Xunr(M)/Stab(σ)→ Irr(M)[M,σ]M , ν 7→ σ ⊗ ν

is bijective and thus provides Irr(M)[M,σ]M with the structure of an alge-
braic torus. The variety structure is canonical, in the sense that it does not
depend on the choice of σ in Irr(M)[M,σ]M .

The Weyl group of (G,M) is defined as

W (G,M) := NG(M)/M.
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It is a finite group which generalizes the notion of the Weyl group associated
to a maximal torus. The Weyl group of (G,M) acts naturally on Irr(M),
via the conjugation action on M. The subgroup

(4) W s := {w ∈W (G,M) | w stabilizes [M, σ]M}.
acts on Irr(M)[M,σ]M . We define

(5) T s := Irr(M)[M,σ]M

with the structure (3) as algebraic torus and the W s-action (4). We note
that the W s-action is literally by automorphisms of the algebraic variety T s,
via (3) they need not become group automorphisms. Two elements of T s

are G-conjugate if and only if they are in the same W s-orbit.
An inertially equivalent cuspidal pair (M′, σ′) would yield a torus T ′s

which is isomorphic to T s via conjugation in G. Such an isomorphism T s ∼=
T ′s is unique up to the action of W s.

The element of T s/W s associated to any π ∈ Irr(G)s is called its infini-
tesimal central character, denoted πs(π). Another result of Bernstein is the
existence of a unital finite type O(T s/W s)-algebra Hs, whose irreducible
modules are in natural bijection with Irr(G)s. The construction is such that
Hs has centre O(T s/W s) and that πs(π) is precisely the central character
of the corresponding Hs-module.

Since Irr(Hs) is in bijection with the collection of primitive ideals of Hs,
we can endow it with the Jacobson topology. By transferring this topology to
Irr(G)s, we make the latter into a (nonseparated) algebraic variety. (In fact
this topology agrees with the topology on Irr(G)s considered as a subspace
of Irr(G), endowed with the Jacobson topology from the Hecke algebra of
G.)

Summary: For each Bernstein component s ∈ B(G) there are:

(1) A finite group W s acting on a complex torus T s;
(2) A subset Irr(G)s of Irr(G);
(3) A morphism of algebraic varieties

πs : Irr(G)s −→ T s/W s.

2.3. Statement of the conjecture. As above, G is a quasi-split connected
reductive p-adic group or an inner form of GLn(F ), and s is a point in the
Bernstein spectrum of G.

We are going to compare and contrast the two maps

ρs : T s//W s −→ T s/W s and πs : Irr(G)s −→ T s/W s.

Here πs is the infinitesimal character and ρs is the projection of the extended
quotient on the ordinary quotient. In practice T s//W s and ρs are much easier
to calculate than Irr(G)s and πs.
πs and ρs are both surjective finite-to-one maps and morphisms of alge-

braic varieties. For x ∈ T s/W s, denote by #(x, ρs), #(x, πs) the number
of points in the pre-image of x using ρs, πs. The numbers #(x, πs) are of
interest in describing exactly what happens when Irr(G)s is constructed by
parabolic induction.

Within T s/W s there are algebraic sub-varieties R(ρs), R(πs) defined by

R(ρs) := {x ∈ T s/W s | #(x, ρs) > 1}
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R(πs) := {x ∈ T s/W s | #(x, πs) > 1}
It is immediate that

R(ρs) = ρs(T s//W s − T s/W s)

R(πs) will be referred to as the sub-variety of non-isotypicality. In examples,
sub-schemes are sometimes needed.

In many examples R(ρs) 6= R(πs). Hence in these examples it is impossi-
ble to have a bijection

µs : T s//W s −→ Irr(G)s

for which

πs ◦ µs = ρs.

A more precise statement of the conjecture is that after a simple algebraic
correction (“correcting cocharacters”) ρs becomes isomorphic to πs. Thus
ρs is an easily calculable map which can be algebraically corrected to give
πs. An implication of this is that within the algebraic variety T s/W s there
is a flat family of sub-varieties connecting R(ρs) and R(πs).

Notation. As above, G is a quasi-split connected reductive p-adic group
or an inner form of GLn(F ), and s ∈ B(G). We have the tempered dual
Irr(G)temp ⊂ Irr(G). Let T s

cpt denote the set of tempered representations
in T s. Then T s

cpt corresponds to the unique maximal compact subgroup of
Xunr(M)/Stab(σ) under (3), provided that σ is tempered. Then T s

cpt is a
compact real torus. The action of W s on T s preserves T s

cpt, so we can form
the compact orbifold T s

cpt//W
s.

Conjecture. There exists a bijection

µs : T s//W s −→ Irr(G)s

with the following properties (such a bijection will be called admissible):

(1) The bijection µs restricts to a bijection

µs : T s
cpt//W

s −→ Irr(G)s ∩ Irr(G)temp

(2) The bijection µs is continuous where T s//W s has the Zariski topology
and Irr(G)s has the Jacobson topology — and the composition

πs ◦ µs : T s//W s −→ T s/W s

is a finite morphism of affine algebraic varieties.

(3) There is an algebraic family

θz : T s//W s −→ T s/W s

of finite morphisms of algebraic varieties, with z ∈ C×, such that

θ1 = ρs, θ√q = πs ◦ µs, and θ√q(T
s//W s − T s/W s) = R(πs).

(4) Correcting cocharacters. For each irreducible component c of the affine
variety T s//W s there is a cocharacter (i.e. a homomorphism of algebraic
groups)

hc : C× −→ T s
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such that

θz[w, t] = b(hc(z) · t)
for all [w, t] ∈ c, where b : T s −→ T s/W s is the quotient map.

(5) L-packets. This property is conditional on the existence of Lang-
lands parameters for the block Irr(G)s. In that case, the intersection of
an L-packet with that block is well-defined. This property refers to the
intersection of such an L-packet with the given block.

Let {c1, . . . , cr} be the irreducible components of the affine variety T s//W s.
There exists a complex reductive group H and, for every irreducible com-
ponent c of T s//W s, a unipotent conjugacy class λ(c) in H, such that: for
every two points [w, t] and [w′, t] of T s//W s:

µs[w, t] and µs[w′, t′] are in the same L-packet

if and only

(i) θz[w, t] = θz[w
′, t′] for all z ∈ C×;

(ii) λ(c) = λ(c′), where [w, t] ∈ c and [w′, t′] ∈ c′.

Notes on the conjecture. In brief, the conjecture asserts that —
once a Bernstein component has been fixed — intersections of L-packets with
that Bernstein component consisting of more than one point are “caused”
by repetitions among the correcting cocharacters. If, for any one given
Bernstein component, the correcting cocharacters h1, h2, . . ., hr are all
distinct, then (according to the conjecture) the intersections of L-packets
with that Bernstein component are singletons.

Note on (3). Here q is the order of the residue field of the p-adic field
F over which G is defined and R(πs) ⊂ T s/W s is the sub-variety of non-
isotypicality. Setting

Yz = θz(T
s//W s − T s/W s)

a flat family of sub-varieties of T s/W s is obtained with

Y1 = R(ρs), Y√q = R(πs).

Note on (4). Here, as above, points of T̃s are pairs (w, t) with w ∈
W s, t ∈ T s and wt = t. [w, t] is the point in T s//W s obtained by applying

the quotient map T̃ s → T s//W s to (w, t).
The equality θz[w, t] = b(hc(z) · t) is to be interpreted as follows. Let

c1, . . . , cr be as in (5) and let h1, . . . , hr be the cocharacters as in (4). Let

νs : T̃ s −→ T s//W s

be the quotient map.

Then irreducible components d1, . . . ,dr of the affine variety T̃ s can be
chosen with

• νs(dj) = cj for j = 1, 2, . . . , r
• For each z ∈ C× the map mz : dj → T s/W s, which is the composi-

tion

dj −→ T s −→ T s/W s

(w, t) 7−→ hj(z)t 7−→ b(hj(z)t),
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satisfies
θz ◦ νs = mz.

The cocharacter assigned to T s/W s ↪→ T s//W s is always the trivial
cocharacter mapping C× to the unit element of T s. So all the non-trivial
correcting is taking place on T s//W s − T s/W s.

3. The general linear group and its inner forms

Theorem 3.1. Let G denote an inner form of GLn(F ). Then there exists
an admissible bijection

µs : T s//W s ←→ Irr(G)s

Proof. First we consider GLn(F ) only. We will use the Zelevinsky classifica-
tion of the smooth dual Irr(G), see [Zel]. We will denote a balanced segment
of length l by

∆(σ : l) := {ν(1−l)/2σ, . . . , ν(l−1)/2σ}, σ ∈ CF , ν = |det |F(6)

The unique irreducible submodule of ∆ = ν(1−l)/2σ × · · · × ν(l−1)/2σ will
be denoted < ∆ >.

The unique irreducible submodule of < ∆1 > × · · ·× < ∆r > will be
denoted < ∆1, . . . ,∆r >.

Let O denote the set of finite multisets of segments. For each a ∈ O, a 6= ∅
one can choose an ordering (∆1, . . . ,∆r) of a, satisfying [Zel, 6.1(a)]. By
[Zel, 6.4] the representation < ∆1, . . . ,∆r > depends only on a, and will be
denoted < a >. For the empty multiset ∅ ∈ O define π(∅) =< ∅ > to be the
trivial representation of the group GL0 = {e}.

According to the Zelevinsky classification [Zel], there is a bijection

O →
⊔

Irr(GLn(F )), a 7→< a >

A special case. With n = dk, the cuspidal pair

(M,ω) := (GLd(F )k, σ⊗k)

determines a point s in the Bernstein spectrum B(GLn(F )), and the Bern-
stein variety D/Sk, where D = Ψ(GLd(F )k and Sk is the symmetric group.

Let γ ∈ Sk be made of N disjoint cycles of lengths l1, . . . , lN . Consider
the multiset

δ(σ : γ) :=
N⊔
j=1

∆(σ : lj)(7)

Give each segment an unramified twist: this is a generalisation of Bernstein’s
method, who restricts himself to segments of length 1 — the method can be
traced to Hecke via §2.4 in Tate’s thesis.

Let ψ = (ψ1, . . . , ψN ) with each ψj an unramified quasicharacter of GLd(F ),
define

δ(σ : γ : ψ) :=

N⊔
j=1

∆(ψjσ : lj)(8)

and consider the orbit

{δ(σ : γ : ψ) : ψ ∈ Ψ(GLd(F )N )}



10 A.-M. AUBERT, P. BAUM, R. PLYMEN, AND M. SOLLEVELD

of δ(σ : γ) via the action of the complex torus Ψ(GLd(F )N ). If all the lengths
lj are distinct then this orbit is a complex torus of dimension N ; if all the

lengths are equal then this orbit is the symmetric product SymN (C×). In
any event, this orbit is a complex affine algebraic variety, the quotient of a
complex torus by a finite group. This variety creates an analytic neighbour-
hood of < δ(σ : γ) >.

Extended quotient Write (λ1, . . . , λ1, . . . , λs, . . . , λs) for the cycle type
of γ, where the λis are distinct, and λj occurs with multiplicity ei in the
integer partition λ of k. Define

β(σ : γ : ψ) := (M, (ψ1σ)⊗λ1 ⊗ (ψ2σ)⊗λ1 ⊗ · · · ⊗ (ψNσ)⊗λs)

We have

Dγ = {β(σ : γ : ψ) : ψ ∈ Ψ(GLd(F )N )}
The centralizer of γ is the direct product of wreath products:

Z(γ) =
s∏
i=1

(Z/λiZ oSei)

The cyclic groups act trivially on Dγ and so we have

Dγ/Z(γ) = Dγ/(Se1 × · · · ×Ses) = Syme1C× × · · · × SymesC×

a variety isomorphic (modulo an affine space) to a complex torus of dimen-
sion s. The smooth dual is (locally) a smooth variety. Now we construct
the map

Dγ/Z(γ)→ Irr(G)s, β(σ : γ : ψ) 7→ δ(σ : γ : ψ)

Since D//Sk =
⊔
Dγ/Z(γ) we obtain the map

µs : D//Sk ' Irr(G)s(9)

The general case. In the general case, define

δ :=

r⊔
j=1

δ(σj : γj)

where the σj remain inequivalent after unramified twist. Let

s = s1 × · · · × sk.

Then we have

T s//W s ' T s1//W s1 × · · · × T sk//W sk(10)

' Irr(G)s(11)

The cocharacters. These are already present in each segment:

∆(σ : l) := {q(1−l)/2σ, . . . , q(l−1)/2σ}

The flat family. This is given by the family of hypersurfaces∏
i 6=j

(zi − tzj) = 0

the point being that t = q gives the variety of non-isotypicality, thanks to
the classical result [Zel, Theorem 4.2].
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The tempered dual. If we insist that σ has unitary central character,
then the tempered case is immediate by restriction to unramified unitary
twists.

The inner form GLm(D). Here D is a F -division algebra of dimension
d2 over its centre F . The classification of Irr(GLm(D)) is via multisets of
segments

(12) δ(σ : `) =
{
ν
s(σ)(1−`)/2
D σ, . . . , ν

s(σ)(`−1)/2
D σ

}
,

where we have σ ∈ CD, νD = |Nrd|F , and s(σ) is the length of the Zelevin-
sky segment attached to the inverse image JL−1(σ) of σ by the Jacquet-
Langlands correspondence, see [Tad] (combined with [Bad] when F has pos-
itive characteristic).

Every unramified character ψD of GLm(D) is of the form ψ ◦ Nrd for
some unramified character ψ of GLmd(F ). Since JL−1(ψDσ) = ψJL−1(σ),
we get that s(ψDσ) = s(σ). Then the proof of (10) and (11) then carries
over without change. �

Langlands parameters. The local Langlands correspondence

recF : Irr(G) ' Φ(G)

is not needed in the above proof. The relation with §1.1 is

recF < a t b > = recF < a > ⊕ recF < b > ∀a, b ∈ O(13)

recF < ∆(σ : l) > = recF (σ)⊗R(l) ∀σ ∈ CF(14)

where R(l) is the l-dimensional irreducible representation of SL2(C).
We note that the formula

β(σ : γ : ψ) 7→
N⊕
j=1

recF (ψjσ)⊗R(lj)

secures a bijective map

ηs : T s//W s → Φ(G)

for which

ηs = recF ◦ µs

4. Principal series of split reductive groups with connected
centre

4.1. The Langlands parameter Φ. Let G be a connected reductive p-adic
group, split over F , with connected centre, and let T be a split maximal
torus in G. Let G, T denote the Langlands dual groups of G, T . The
principal series consists of all G-representations that are obtained with par-
abolic induction from characters of T . We will suppose that the residual
characteristic p of F satisfies the hypothesis in [Roc, p. 379].

We denote the collection of all Bernstein components of G of the form
s = [T , χ]G by B(G, T ) and call these the Bernstein components in the
principal series. The union

Irr(G, T ) :=
⋃

s∈B(G,T )

Irr(G)s
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is by definition the set of all irreducible subquotients of principal series
representations of G.

Choose a uniformizer $F ∈ F . There is a bijection t 7→ ν between points
in T and unramified characters of T , determined by the relation

ν(λ($F )) = λ(t)

where λ ∈ X∗(T ) = X∗(T ). The space Irr(T )[T ,χ]T is in bijection with T
via t 7→ ν 7→ χ⊗ν. Hence Bernstein’s torus T s is isomorphic to T . However,
because the isomorphism is not canonical and the action of the group W s

depends on it, we prefer to denote it T s.
Let WF denote the Weil group of F , let IF be the inertia subgroup of

WF . Let Wder
F denote the closure of the commutator subgroup of WF , and

write Wab
F = WF /W

der
F . The group of units in oF will be denoted o×F .

Next, we consider conjugacy classes in G of continuous morphisms

Φ: WF × SL2(C)→ G

which are rational on SL2(C) and such that Φ(WF ) consists of semisimple
elements in G.

Let B2 be the upper triangular Borel subgroup in SL2(C). Let BΦ(WF×B2)

denote the variety of Borel subgroups of G containing Φ(WF × B2). The

variety BΦ(WF×B2) is non-empty if and only if Φ factors through Wab
F , see

[Reed, §4.2]. In that case, we view the domain of Φ to be F× × SL2(C):

Φ: F× × SL2(C)→ G.

In this section we will build such a continuous morphism Φ from s and data
coming from the extended quotient of second kind. In Section 4.3 we show
how such a Langlands parameter Φ can be enhanced with a parameter ρ.

The uniformizer $F gives rise to a group isomorphism o×F × Z → F×,
which sends 1 ∈ Z to $F . Let T0 denote the maximal compact subgroup of
T . As the latter is F -split,

(15) T ∼= F× ⊗Z X∗(T ) ∼= (o×F × Z)⊗Z X∗(T ) = T0 ×X∗(T ).

BecauseW does not act on F×, these isomorphisms areW-equivariant if we
endow the right hand side with the diagonalW-action. Thus (15) determines
a W-equivariant isomorphism of character groups

(16) Irr(T ) ∼= Irr(T0)× Irr(X∗(T )) = Irr(T0)×Xunr(T ).

Lemma 4.1. Let χ be a character of T , and let [T , χ]G be the inertial class
of the pair (T , χ) as in §3. Let

s = [T , χ]G .(17)

Then s determines, and is determined by, theW-orbit of a smooth morphism

cs : o×F → T.

Proof. There is a natural isomorphism

Irr(T ) = Hom(F×⊗ZX∗(T ),C×) ∼= Hom(F×,C×⊗ZX
∗(T )) = Hom(F×, T ).

Together with (16) we obtain isomorphisms

Irr(T0) ∼= Hom(o×F , T ),

Xunr(T ) ∼= Hom(Z, T ) = T.
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Let χ̂ ∈ Hom(F×, T ) be the image of χ under these isomorphisms. By the
above the restriction of χ̂ to o×F is not disturbed by unramified twists, so we
take that as cs. Conversely, by (16) cs determines χ up to unramified twists.
Two elements of Irr(T ) are G-conjugate if and only if they areW-conjugate
so, in view of (17), the W-orbit of the cs contains the same amount of
information as s. �

We define

Hs := ZG(im cs).

The following crucial result is due to Roche [Roc].

Lemma 4.2. The group Hs is connected, and the finite group W s is the
Weyl group of Hs:

W s =WHs

Proof. See [Roc, p. 394 – 395]. �

4.2. Comparison of different parameters. We clarify some issues with
different varieties of Borel subgroups and different kinds of parameters aris-
ing from them.

We start with the following data: a point s = [T , χ]G and an L-parameter

Φ: F× × SL2(C)→ G

for which

Φ|o×F = cs.

This data creates the following items:

t := Φ($F , I),(18)

H := Hs = ZG(im cs),(19)

M := M s = ZH(t).(20)

We note that Φ(o×F ) ⊂ Z(H) and that t commutes with Φ(SL2(C)) ⊂M .
For α ∈ C× we define the following matrix in SL2(C):

Yα =
(
α 0
0 α−1

)
.

For any q1/2 ∈ C× the element

(21) tq := tΦ
(
Yq1/2

)
satisfies the familiar relation tqxt

−1
q = xq. Indeed

tqxt
−1
q = tΦ(Yq1/2)Φ ( 1 1

0 1 ) Φ(Y −1
q1/2

)t−1

= tΦ
(
Yq1/2 ( 1 1

0 1 )Y −1
q1/2

)
t−1

= tΦ
(

1 q
0 1

)
t−1 = xq.

(22)

Recall that B2 denotes the upper triangular Borel subgroup of SL2(C). No-
tice that Φ(o×F ) lies in every Borel subgroup of H, because it is contained in
Z(H). We abbreviate ZH(Φ) = ZH(im Φ) and similarly for other groups.

Lemma 4.3. The inclusion map ZH(Φ) → ZH(t, x) is a homotopy equiva-
lence.
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Proof. Our proof depends on [CG, Prop. 3.7.23]. There is a Levi decompo-
sition

ZH(x) = ZH(Φ(SL2(C)))Ux

where ZH(Φ(SL2(C)) a maximal reductive subgroup of ZH(x) and Ux is the
unipotent radical of ZH(x). Therefore

(23) ZH(t, x) = ZH(Φ)ZUx(t)

We note that ZUx(t) ⊂ Ux is contractible, because it is a unipotent complex
group. It follows that

(24) ZH(Φ)→ ZH(t, x)

is a homotopy equivalence. �

If a group A acts on a variety X, let R(A,X) denote the set of irreducible
representations of A appearing in the homology H∗(X).

The variety of Borel subgroups of G which contain Φ(WF × B2) will be

denoted BΦ(WF×B2)
G and the variety of Borel subgroups of H containing

{t, x} will be denoted Bt,xH .
Lemma 4.3 allows us to define

A := π0(ZH(Φ)) = π0(ZH(t, x)).

Theorem 4.4. We have

R(A,BΦ(WF×B2)) = R(A,Bt,xH ).

Proof. This statement is equivalent to [Reed, Lemma 4.4.1] with a minor
adjustment in his proof. To translate into Reeder’s paper, write

tq = τ, Yq = τu, x = u, t = s.

The adjustment consists in the observation that the Borel subgroup B of
H contains {x, tq, Yq} if and only if B contains {x, t, Yq}. This is because

t = tqY
−1
q . Therefore, in the conclusion of his proof, Bτ,uH , which is Btq ,xH ,

can be replaced by Bt,xH . �

In the following sections we will make use of two different but related
kinds of parameters.

4.3. Enhanced Langlands parameters. For a Langlands parameter as

in (28), the variety of Borel subgroups BΦ(WF×B2)
G is nonempty, and the

centralizer ZG(Φ) of the image of Φ acts on it. Hence the group of com-

ponents π0(ZG(Φ)) acts on the homology H∗
(
BΦ(WF×B2)
G ,C

)
. We call an

irreducible representation ρ of π0(ZG(Φ)) geometric if

ρ ∈ R
(
π0(ZG(Φ)),BΦ(WF×B2)

G

)
.

We define an enhanced Langlands parameter for G to be a such pair (Φ, ρ).
The group G acts on these parameters by

(25) g · (Φ, ρ) = (gΦg−1, ρ ◦Ad−1
g )

and we denote the corresponding equivalence class by [Φ, ρ]G.
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Definition 4.5. Let Ψ(G)sen denote the set of Hs-conjugacy classes of en-
hanced parameters (Φ, ρ) for G such that we have Φ|o× = cs.

For technical reasons it seems necessary to impose some mild restrictions
on the residual characteristic of the local non-archimedean field F . We use
the conditions in [Reed, §5], which exclude some primes depending on G.

Theorem 4.6. [Reed]
Assume the above mild restrictions on the residual characteristic.

(1) There is a canonical bijection

Irr(G)s ' Ψ(G)sen.

(2) It maps Irr(G)s ∩ Irr(G)temp onto the set of enhanced Langlands
parameters (Φ, ρ) for which Φ(F×) is bounded.

(3) If σ ∈ Irr(G)s corresponds to (Φ, ρ), then the cuspidal support πs(σ) ∈
T s/W s, considered as a semisimple conjugacy class in Hs, equals
Φ
(
$F , Yq1/2

)
.

Proof. (1) This is Reeder’s classification of the constituents of a given prin-
cipal series representation, see [Reed, Theorem 1, p.101 – 102].
(2) Reeder’s work is based on that of Kazhdan–Lusztig, and it is known
from [KL, §8] that the tempered G-representations correspond precisely to
the set of bounded enhanced L-parameters in the setting of [KL]. As the
constructions in [Reed] preserve temperedness, this characterization remains
valid in Reeder’s setting.
(3) The element Φ

(
$F , Yq1/2

)
∈ Hs is the same as tq in Subsection 4.2 (up

to Hs-conjugacy). In the setting of Kazhdan–Lusztig, it is known from [KL,
5.12 and Theorem 7.12] that property (3) holds. As for (2), this is respected
by the constructions of Reeder that lead to (1). �

4.4. Affine Springer parameters. As before, suppose that t ∈ H is
semisimple and that x ∈ ZH(t) is unipotent. Then ZH(t, x) acts on Bt,xH and
π0(ZH(t, x)) acts on the homology of this variety. In this setting we say that

ρ1 ∈ Irr
(
π0(ZH(t, x))

)
is geometric if it belongs to R

(
π0(ZH(t, x)),Bt,xH

)
.

For the affine Springer parameters it does not matter whether we consider
the total homology or only the homology in top degree. Indeed, it follows
from [Shoji, bottom of page 296 and Remark 6.5] that any irreducible rep-

resentation ρ1 which appears in H∗
(
Bt,xH ,C

)
, already appears in the top

homology of this variety. Therefore, we may refine Theorem 4.4 as follows:

Theorem 4.7.
R(A,BΦ(WF×B2)) = Rtop(A,Bt,xH ),

where top refers to highest degree in which the homology is nonzero, the real
dimension of Bt,xH .

We call such triples (t, x, ρ1) affine Springer parameters for H, because
they appear naturally in the representation theory of the affine Weyl group
associated to H. The group H acts on such parameters by conjugation, and
we denote the conjugacy classes by [t, x, ρ1]H .

Definition 4.8. The set of H-conjugacy classes of affine Springer parame-
ters will be denoted Ψ(H)aff .
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For use in Theorem 4.10 we recall the parametrization of irreducible
representations of X∗(T ) o WH from [Kat]. Kato defines an action of

X∗(T ) o WH on the top homology Hd(x)(B
t,x
H ,C), which commutes with

the action of π0(ZH(t, x)) induced by conjugation of Borel subgroups. Let
ρ1 ∈ Irr

(
π0(ZH(t, x))

)
. By [Kat, Theorem 4.1] the X∗(T ) oWH -module

Homπ0(ZH(t,x))

(
ρ1, Hd(x)(B

t,x
H ,C)

)
is either irreducible or zero. Moreover every irreducible representation of
X∗(T ) oWH is obtained in this way, and the data (t, x, ρ1) are unique up
to H-conjugacy. So Kato’s results provide a natural bijection

(26) Ψ(H)aff → Irr(X∗(T ) oWH).

This generalizes the Springer correspondence for finite Weyl groups, which
can be recovered by considering the representations on which X∗(T ) acts
trivially.

In [KL, Reed] there are some indications that the above kinds of parame-
ters are essentially equivalent. Theorem (4.9) allows us to make this precise
in the necessary generality.

Theorem 4.9. Let s be a Bernstein component in the principal series, as-
sociate cs : o×F → T to it as in Lemma 4.1 and let Hs be as in (18). There
are natural bijections between Hs-equivalence classes of:

• enhanced Langlands parameters for G with Φ
∣∣
o×F

= cs;

• affine Springer parameters for Hs.

In other words we have

Ψ(G)sen ' Ψ(Hs)aff .

Proof. An L-parameter gives rise to the ingredients t, x in an affine Springer
parameter in the following way. Consider an L-parameter

Φ: F× × SL2(C)→ G

Let x0 = ( 1 1
0 1 ) ∈ SL2(C). Set

t := Φ($F , 1), x := Φ(1, x0)

Conversely, we work with the Jacobson–Morozov theorem [CG, p. 183]. Let
x be a unipotent element in M0. There exist rational homomorphisms

(27) γ : SL2(C)→M0 with γ(x0) = x,

see [CG, §3.7.4]. Any two such homomorphisms γ are conjugate by elements
of ZM◦(x). Define the Langlands parameter Φ as follows:

(28) Φ: F× × SL2(C)→ G, (u$n
F , Y ) 7→ cs(u) · tn · γ(Y )

for all u ∈ o×F , n ∈ Z, Y ∈ SL2(C).
Note that the definition of Φ uses the appropriate data: the semisimple

element t ∈ T , the map cs, and the homomorphism γ (which depends on x).
Since x determines γ up to M◦-conjugation, cs, x and t determine Φ up

to conjugation by their common centralizer in G. Notice also that one can
recover cs, x and t from Φ and that

(29) h(α) := Φ(1, Yα)
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defines a cocharacter C× → T .
The pair (t, x) is enough to recover the conjugacy class of Φ. A refined

version of the Jacobson–Morozov theorem says that the same goes for the
pair (tq, x), see [KL, §2.3] or [Reed, Section 4.2].

To complete Φ, (t, x) or (tq, x) to a parameter of the appropriate kind, we
must add an irreducible representation ρ or ρ1. Then the result follows from
Theorem 4.7. �

4.5. The labelling by unipotent classes. Let s ∈ B(G, T ) and construct
cs as in Section 4.1. We note that the set of enhanced Langlands parameters
Φ(G)sen is naturally labelled by the unipotent classes in H:

(30) Φ(G)s,[x]
en :=

{
(Φ, ρ) ∈ Φ(G)sen | Φ

(
1, ( 1 1

0 1 )
)

is conjugate to x
}
.

Via Theorem 4.9 the set Φ(G)sen is naturally in bijection with Ψ(H)aff . In
this way we can associate to any of the parameters in Theorem 4.9 a unique
unipotent class in H:

(31)
Irr(G)s =

⋃
[x]

Irr(G)s,[x],

Ψ(H)aff =
⋃

[x]
Ψ(H)

[x]
aff .

Recall from Section 2.1 that

T̃ s = {(w, t) ∈W s × T s | wt = t}

and T s//W s = T̃ s/W s. In general it can already be hard to define any
suitable map from Φ(G)sen to T s//W s, because it is difficult to compare the
parameters ρ for different Φ’s. It goes better the other way round and with
Ψ(H)aff as target. In this way will transfer the labellings (31) to T s//W s.

Theorem 4.10. There exists a continuous bijection T s//W s → Ψ(Hs)aff

such that:

• it respects the canonical projections to T s/W s;
• for every unipotent class x of Hs, the inverse image of the set of

affine Springer parameters with unipotent part x is a union of con-
nected components of T s//W s.

Proof. First we take another look at (26). By Clifford theory (confer the ap-
pendix of [RaRa]) the number of irreducible representations of X∗(T )oWH

which have an X∗(T )-weight t ∈ T equals |Irr(WH
t )|, whereWH

t denotes the
isotropy group of t in WH . Hence this is also the number of affine Springer
parameters with this particular t. Recall from Subsection 2.1 that also

|Irr(W s
t )| = |{y ∈ T s//W s | ρs(y) = W st}|.

Fix a Borel subgroup BH of H containing T , and choose a set of representa-
tives Us ⊂ BH for the unipotent classes of H. Every commuting pair (t, x)
with t ∈ H semisimple and x ∈ H unipotent is conjugate to one in the Borel
group BH , because the union of all Borel groups is H. Conjugating by a
suitable element of BH , one can simultaneously achieve that t ∈ T . Hence
every affine Springer parameter is conjugate to one with t ∈ T and x ∈ U s.

For x ∈ Us we endow ZT (x) with a ”multiplicity” functionmx, that assigns
to every t ∈ ZT (x) the number of ρ1 ∈ Irr(ZH(t, x)) such that τ(t, x, ρ1) is
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nonzero. Two pairs (t, x) and (t′, x) with t, t′ ∈ T can only be conjugate if
t′ = w(t) for some w ∈W s. Hence one can count the number of equivalence
classes of affine Springer parameters with a particular t by looking at the
values of mx on the W s-orbit of t. One needs only the maximum of mx(wt)
over w ∈W s, and this is achieved whenever mx(wt) > 0.

In view of (26) and the above, we obtain for every t ∈ T :
(32) ∑
x∈Us|∃wx∈W s:wx(t)∈ZT (x)

mx(wx(t)) = |Irr(W s
t )| = |{y ∈ T s//W s | ρs(y) = W st}|.

It follows that every x ∈ Us and every natural number m,

ZT (x)≥m := {t ∈ ZT (x) : mx(t) ≥ m}
is a union of irreducible components (T s)wi of the varieties (T s)w, for suitable
w ∈W s.

We construct maps from the sets ZT (x)≥m to T s//W s with recursion.
Start with an x ∈ Us for which ZT (x) has minimal dimension. Then consider
the largest m for which ZT (x)≥m is nonempty. Choose irreducible compo-
nents (T s)wi as above, which together have the same projection on T s/W s

as ZT (x)≥m, and match these with ZT (x)≥m, in a way which respects the
canonical projections on T s/W s.

For the next step, remove these components from T s//W s and decrease
the multiplicity mx(t) by 1 for every t ∈ ZT (x)≥m. Repeat the above con-
struction with the new data. This is possible because (32) remains valid for
the new data.

Combining all these maps gives a bijection T s//W s → Ψ(H)aff which
satisfies (1) and (2). It is continuous if we endow Ψ(H)aff with the following
topology: a set V ⊂ Ψ(H)aff is open if and only if

{(t, x) | (t, x, ρ1) ∈ V for some ρ1}
is open in the direct product of T with the set of unipotent classes in H. �

Theorem 4.11. Let G be a split reductive p-adic group with connected cen-
tre, with a mild restriction on the residual characteristic p. Then, for each
point s in the principal series of G, we have a continuous bijection

µs : T s//W s → Irr(G)s.

It maps T s
cpt//W

s onto Irr(G)s ∩ Irr(G)temp.

Proof. To get µs, apply Theorems 4.9, 4.6.(1) and 4.10.
By Theorem 4.10 T s

cpt//W
s is first mapped bijectively to the set of pa-

rameters in Ψ(H)aff with t compact. From the proof of Theorem 4.9 we see
that the latter set is mapped onto the set of enhanced Langlands parame-
ters (Φ, ρ) with Φ

∣∣
o×F

= cs and Φ($F ) compact. These are just the bounded

enhanced Langlands parameters, so by Theorem 4.6.(2) they correspond to
Irr(G)s ∩ Irr(G)temp. �

4.6. Correcting cocharacters and L-packets. In this section we con-
struct the correcting cocharacters on the extended quotient T s//W s. As
conjectured in Section 2.3, these show how to determine when two elements
of T s//W s give rise to G-representations in the same L-packets.
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Every enhanced Langlands parameter (Φ, ρ) naturally determines a cochar-
acter hΦ and elements θ(Φ, ρ, z) ∈ T s by

(33)
hΦ(z) = Φ

(
1,
(
z 0
0 z−1

) )
,

θ(Φ, ρ, z) = Φ
(
$F ,

(
z 0
0 z−1

) )
= Φ($F )hΦ(z).

Although these formulas obviously do not depend on ρ, it turns out to be
convenient to include it in the notation anyway. However, in this way we
would end up with infinitely many correcting cocharacters, most of them
with range outside T . To reduce to finitely many cocharacters with values
in T , we will restrict to enhanced Langlands parameters associated to x ∈ Us,
as in the proof of Theorem 4.10.

Recall that (31) and Theorem 4.10 determine a labelling of the connected
components of T s//W s by unipotent classes in H. This enables us to define
the correcting cocharacters: for a connected component c of T s//W s with
label (represented by) x ∈ Us we take the cocharacter

(34) hc = hx : C× → T, hx(z) = γx
(
z 0
0 z−1

)
.

Let c̃ be a connected component of T̃ s that projects onto c and appears
as (T s)wi in the proof of Theorem 4.10. This can always be achieved by
adjusting by element of W s. We define

(35)
θ̃z : c̃→ T s, (w, t) 7→ t hc(z),

θz : c→ T s/W s, [w, t] 7→W st hc(z).

Lemma 4.12. Let [w, t], [w′, t′] ∈ T s//W s. Then µs[w, t] and µs[w′, t′] are
in the same L-packet if and only if

• [w, t] and [w′, t′] are labelled by the same unipotent class in H;
• θz[w, t] = θz[w

′, t′] for all z ∈ C×.

Proof. Suppose that the two G-representations µs[w, t] = π(Φ, ρ) and
µs[w′, t′] = π(Φ′, ρ′) belong to the same L-packet. By definition this means
that Φ and Φ′ are G-conjugate. Hence they are labelled by the same unipo-
tent class, say [x] with x ∈ Us. By choosing suitable representatives we may
assume that Φ = Φ′ and that {(Φ, ρ), (Φ, ρ′)} ⊂ Φ(G)s,xen . Then

θ(Φ, ρ, z) = θ(Φ, ρ′, z) for all z ∈ C×.

Although in general θ(Φ, ρ, z) 6= θ̃z(w, t), they differ only by an element of
W s. Hence θz[w, t] = θz[w

′, t′] for all z ∈ C×.
Conversely, suppose that [w, t], [w′, t′] fulfill the two conditions of the

lemma. Let x ∈ Us be the representative for the unipotent class which
labels them. From the constructions in Theorem 4.10 we see that there are
representatives for [w, t] and [w′, t′] such that t(Tw)◦ and t′(Tw

′
)◦ centralize

x. Then

θ̃z(w, t) = t hx(z) and θ̃z(w
′, t′) = t′ hx(z)

are W s conjugate for all z ∈ C×. As these points depend continuously on z
and W s is finite, this implies that there exists a v ∈W s such that

v(t hx(z)) = t′ hx(z) for all z ∈ C×.

For z = 1 we obtain v(t) = t′, so v fixes hx(z) for all z.
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Consider the minimal parabolic root subsystem RP of R(G,T ) that sup-
ports hx. In other words, the unique set of roots P such that hx lies in a
facet of type P in the chamber decomposition of X∗(T )⊗Z R. We write

TP = {t ∈ T | α(t) = 1 ∀α ∈ P}◦.

Then t(Tw)◦ and t′(Tw
′
)◦ are subsets of TP and v stabilizes TP . It fol-

lows from [Opd, Proposition B.4] that hx(q1/2)tTP and hx(q1/2)t′TP are
residual cosets in the sense of Opdam. By the above, these two residual
cosets are conjugate via v ∈ W s. Now [Opd, Corollary B.5] says that the

pairs (hx(q1/2)t, x) and (hx(q1/2)t′, x) are H-conjugate. Hence the associ-
ated Langlands parameters are conjugate, which means that µs[w, t] and
µs[w′, t′] are in the same L-packet. �

Corollary 4.13. Properties 1–5 from Section 2.3 hold for µs as in Theorem
4.11, with the morphism θz from (35) and the labelling by unipotent classes
in Hs from (31) and Theorem 4.10.

Together with Theorem 4.11 this proves the conjecture from Section 2.3
for all Bernstein components in the principal series of a split reductive p-adic
group with connected centre (with mild restrictions on the residual charac-
teristic).

Proof. Property (1) was already shown in Theorem 4.11. By the definition
of θz (35), property (4) holds. Property (3) is a consequence of property (4),
in combination with Theorems 4.6.(3), 4.11 and 4.10. Property (2) follows
from Theorem 4.11 and property (3). Property 5 is none other than Lemma
4.12. �
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[Shoji] T. Shoji, Green functions of reductive groups over a finite field, PSPM 47 (1987),

Amer. Math. Soc., 289–301.
[Sol] M. Solleveld, On the classification of irreducible representations of affine Hecke al-

gebras with unequal parameters, Represent. Theory 16 (2012), 1–87.
[Tad] M. Tadic, Representation theory of GL(n) over a p-adic division algebra and uni-

tarity in the Jacquet-Langlands correspondence, Pacific J. Math. 223 (2006) 167 –
200.

[Zel] A.V. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Sci. Ec.
Norm. Sup. 13 (1980), 154–210.

I.M.J.-PRG, U.M.R. 7586 du C.N.R.S., U.P.M.C., Paris, France
E-mail address: aubert@math.jussieu.fr

Mathematics Department, Pennsylvania State University, University Park,
PA 16802, USA

E-mail address: baum@math.psu.edu

School of Mathematics, Southampton University, Southampton SO17 1BJ,
England and School of Mathematics, Manchester University, Manchester
M13 9PL, England

E-mail address: r.j.plymen@soton.ac.uk plymen@manchester.ac.uk

Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, the
Netherlands

E-mail address: m.solleveld@science.ru.nl


