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ABSTRACT

We investigate the dynamical system of point vortices on the hyperboloid. This system has non-

compact symmetry SL(2,R) and a coadjoint equivariant momentum map. The relative equilib-

rium conditions are found and the trajectories of relative equilibria with non-zero momentum

value are described. We also provide the classification of relative equilibria and the stability crite-

ria for a number of cases, focusing on 2 and 3 vortices. Unlike the system on the sphere, this system

has relative equilibria with non-compact momentum isotropy subgroup, and these are used to il-

lustrate the different stability types of relative equilibria.

INTRODUCTION

Relative equilibria in systems of point vortices have previously been considered in detail on the

plane and on the sphere. A thorough historical summary of research of these studies can be found

in [1, 3, 9, 21] for the plane, and [11] for the sphere.

On the other hand, the case of point vortices on the hyperbolic plane has only been treated

briefly in [3, 5, 10, 17, 18] and in some greater detail in [7, 8], although none take advantage of

the geometry of the conserved quantities. As on the plane and sphere, the governing equations

of the system of point vortices on the hyperbolic plane are Hamiltonian. Kimura [10] gives a uni-

form formulation for vortex motion on the sphere (positive curvature) and on the hyperbolic plane

(negative curvature) and discusses the motion of vortex dipoles (pairs of vortices with opposite vor-

ticity). Deforming the phase space rather than the dynamics Boatto [5] and Montaldi and Tokieda

[18] show how the curvature affects the stability conditions of a ring with N vortices: for a given

radius of ring, the ring becomes Lyapunov stable as the curvature decreases and for N > 7 stability

only occurs for negative curvature. Rings of vortices on the hyperbolic plane are also mentioned

briefly in [3], and a more in-depth study is provided by Hwang and Kim [8]. In that paper, they

present conditions for relative equilibria for rings of vortices on the hyperbolic plane, and also

show that any two point vortex configuration is a relative equilibrium.

The fixed and relative equilibria of three point vortices on the hyperbolic plane were first pre-

sented by Hwang and Kim in [7]. In the present paper we recover these relative equilibrium con-

ditions using the symmetries of the system. The basic result is that relative equilibria fall into

two broad classes: either the configurations form equilateral triangles or the three points lie on a

geodesic (we call these geodesic relative equilibria). This is entirely analogous to the situation on

the plane or the sphere.
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Our principal aim is to study the stability of these relative equilibria, and one of the motivations

for this is that the symmetry group SL(2,R) is not compact. The three conserved quantities form

the components of the momentum map J, and the symmetry properties of this map allow one to

divide relative equilibria with non-zero momentum into three principal classes: elliptic, parabolic

and hyperbolic, according to their momentum value, and this plays an important role in questions

of stability.

The paper is organized as follows. In Sec. 1 we recall the basic geometry of the hyperbolic plane

and its group of symmetries SL(2,R) and in particular we discuss the coadjoint action of this group,

needed for the geometry of the momentum map. In Sec. 2 we begin with a brief discussion of

2 vortices, in which every motion is a relative equilibrium, in order to illustrate the dynamical

relevance of the three classes of momentum value. The main part of Sec. 2 discusses the case of 3

point vortices, mostly recovering results from [7], but adding information on the momentum type.

Finally, in Sec. 3 we discuss the different types of stability results for relative equilibria of two

and three point vortices. We show that every two point vortex configuration is stable relative to

SL(2,R). However, there is a finer notion of stability, namely stability relative to the subgroup

SL(2,R)µ (this is the isotropy subgroup for the momentum value µ), and this only holds when the

momentum value is elliptic, which in turn is true if the vortex strengths are of the same sign or, if

they are of opposite signs, the vortices are not too far apart, see Theorem 9.

For the stability of relative equilibria of three point vortices, we find remarkably that an equilat-

eral three vortex configuration has the exact same stability conditions of those for systems on the

plane and on the sphere, namely that they are stable whenever
∑

i< j ΓiΓ j > 0; here again stability is

relative to the subgroup SL(2,R)µ. For geodesic relative equilibria the results are incomplete due to

the complexity of the equations. We prove in Theorem 5 that the momentum value of any geodesic

relative equilibrium is either zero or elliptic, and in Section 3.2 provide some graphs showing the

stability regions for isosceles configurations.

This work is the major part of the PhD thesis [20] of one of the authors (CN-G), and details

omitted from this paper can be found in the thesis.

1 GEOMETRY & EQUATIONS OF MOTION

We begin by recalling the hyperboloid model we use for the hyperbolic plane. Alternative models,

such as the Poincaré disc and the upper half plane are of course equivalent, but the hyperboloid

model lends itself to a more straightforward representation of the momentum map.

Hyperboloid model The hyperboloid model H2 of the hyperbolic plane is represented by the

upper sheet of the 2-sheeted hyperboloid,

H2 =
{(

x, y, z
)
∈R

3 | z2 −x2 − y2 = 1, z > 0
}

,

with the Riemannian metric d s2
H2

= d x2 +d y2 −d z2. This metric on R
3 induces the hyperbolic

inner product 〈·, ·〉H between X1 =
(
x1, y1, z1

)
and X2 =

(
x2, y2, z2

)
in R

3 given by

〈X1, X2〉H = x1x2 + y1 y2 − z1z2, (1)

and the hyperbolic cross product

X1 ×H X2 =
(
y1z2 − z1 y2, z1x2 −x1z2, −x1 y2 + y1x2

)
.
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Any geodesic of this model is given by the curve of intersection of H2 with a plane through the

origin [6, 7]. The hyperbolic distance d (X1, X2), between X1 and X2 ∈ H2, is naturally defined as

the path length in the hyperbolic metric of the geodesic connecting these two points. A well known

result [6] relates the hyperbolic inner product to the hyperbolic distance by

〈X1, X2〉H =−cosh (d (X1, X2)) . (2)

Symmetry group of the hyperbolic plane The symmetry group of the hyperbolic plane isSL(2,R),

the group of real 2×2 matrices of unit determinant (in fact ±I both act trivially, so one usually says

the symmetry group is the quotient PSL(2,R), but we ignore this trivial point throughout). Explic-

itly, the action in the hyperboloid model is given as matrix multiplication using the map

˜: SL(2,R) → M (3,R)

g =
(

a b

c d

)
7→ g̃ = 1

2




2(ad +bc) −2(ac −bd ) −2(ac +bd )

−2(ab −cd ) a2 −b2 −c2 +d 2 a2 +b2 −c2 −d 2

−2(ab +cd ) a2 −b2 +c2 −d 2 a2 +b2 +c2 +d 2


 ,

(3)

where M (3,R) ⊂ GL(3,R) is the group of normalised Möbius transformations [13]. That is, given

g ∈ SL(2,R) then g ·X = g̃ X . It is well-known that the action of SL(2,R) on the hyperboloid H2 ⊂R
3

is transitive and proper.

The Lie algebra sl(2,R) of SL(2,R) is given by the set of 2×2 real matrices with zero trace, and

we use the basis of sl (2,R) given by

B =
{

e1 =
(

1 0

0 −1

)
,e2 =

(
0 1

1 0

)
,e3 =

(
0 1

−1 0

)}
. (4)

Furthermore, one can identify the dual space sl(2,R)∗ with the same set of trace zero 2×2 matrices

using the natural pairing

〈µ, ξ〉 =
1

2
tr

(
ξµ

)
. (5)

The basis B
′ of sl(2,R)∗ dual to B is then given by the transposes of the elements of B. Through-

out, for elements of sl(2,R) and its dual we identify ρ̌ =
(
x, y, z

)
in R

3 with a 2×2 traceless matrix ρ

by

ρ̌ =




x

y

z


←→ρ =

(
x y + z

y − z −x

)
. (6)

This choice of basis and the vector space isomorphism (6) clearly associates ξ ∈ sl (2,R) and µ ∈
sl (2,R)∗ with ξ̌ and µ̌ ∈R

3, respectively. The matrix commutator then satisfies
[
ξ,η

]
ˇ=−2

(
ξ̌×H η̌

)
,

and therefore (6) is a Lie algebra isomorphism, hence sl(2,R) ∼= R
3 with (-2 times) the hyperbolic

cross product. Note also that detρ =−‖ρ̌‖2
H

.

Coadjoint action of SL(2,R) The non-degeneracy of the trace pairing (5) implies that the adjoint

and coadjoint actions of SL(2,R) on sl(2,R) and sl (2,R)∗ are equivalent. The coadjoint action of

g ∈ SL(2,R) on µ ∈ sl (2,R)∗ is given by matrix multiplication,

Ad∗
g−1 µ= gµg−1. (7)

Using the basis B
′ and the representation (3), this action becomes simply,

(
Ad∗

g−1 µ
)
ˇ= g̃ µ̌, (8)
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(A) Each sheet of the two-

sheeted hyperboloids is the

coadjoint orbit for a µ̌ inside C,

that is detµ> 0 and µ is elliptic.

(B) The null-cone C without the

origin is the union of the two

coadjoint orbits for µ 6= 0 such

that detµ= 0 and µ is parabolic.

The origin itself is the coadjoint

orbit of µ̌= 0.

(C) The coadjoint orbit for µ̌

outside of C is a hyperboloid of

one sheet. In this case detµ < 0

and µ is hyperbolic.

FIGURE 1: Coadjoint orbits of the action of SL(2,R) in R
3.

and the coadjoint orbits are (the connected components of) the level sets of detµ or equivalently

of ‖µ̌‖H .

In the following theorem we show that everyµ 6= 0 in sl(2,R)∗ has a coadjoint isotropy subgroup

SL (2,R)µ which is a 1-parameter subgroup generated by a Möbius transformation. We define the

type of µ as follows: µ is said to be elliptic, hyperbolic or parabolic whenever SL(2,R)µ is generated

by an elliptic, hyperbolic or parabolic Möbius transformation, respectively.

Theorem 1. Let C be the cone C =
{
µ ∈ sl (2,R)∗ | detµ= 0

}
≃ {X ∈ R

3 | ‖X ‖H = 0}. Then for µ ∈
sl (2,R)∗ the coadjoint isotropy subgroups SL(2,R)µ and coadjoint orbits are classified as follows:

1. If detµ > 0 then SL(2,R)µ ∼= SO(2,R), the type of µ is elliptic, and the coadjoint orbit is one

sheet of the hyperboloid of two sheets shown in Figure 1a.

2. If µ= 0 then SL(2,R)µ = SL(2,R) and the coadjoint orbit is the origin.

3. If detµ= 0 and µ 6= 0 then SL(2,R)µ ∼=
{(

1 t

0 1

)
, t ∈R

}
. Hereµ is parabolic and the coadjoint

orbit is one sheet of C with the origin removed.

4. If detµ< 0 then SL(2,R)µ ∼=
{(

t 0

0 t−1

)
, t ∈R

+
}

, µ is hyperbolic and the coadjoint orbit is a

one sheeted hyperboloid as shown in Figure 1c.

Here ∼= means conjugate subgroups of SL(2,R).

Proof. The case µ= 0 is trivial. For µ 6= 0, the proof consists in showing that given X1 with the same

sign of determinant then Gµ
∼=GX1

.

Consider µ with positive determinant, that is, the vector µ̌ is inside the null-cone C. The null-

cone C is asymptotic to H2 and is the boundary of all vectors of this type. Therefore the line

through µ̌ intersects H2 at some point µ̌′, and there always exists k 6= 0 such that µ̌′ = kµ̌ ∈ H2,

which consequently implies Gµ =Gµ′ .

Let X1 = (0,0,1) ∈ H2. It is not hard to show that there exists g ∈ SL (2,R) such that g · X1 =
Adg X1 = µ′. This implies gGX1

g−1 =Gµ′ and GX1
∼=Gµ′ =Gµ. The result is now easily obtained by

calculating the isotropy subgroup of X̌1 = (0,0,1) ∈H2.
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(A) µ̌ inside C (elliptic) (B) µ̌ on C (parabolic) (C) µ̌ outside C (hyperbolic)

FIGURE 2: Intersection of the hyperbolic normal plane Pµ with H2, classified in terms of

the position of µ̌ with respect to the null-cone C=
{
µ̌ | detµ= 0

}
.

A similar argument works in the other two cases, taking X̌1 = (0,1,1) for the parabolic case and

X̌1 = (1,0,0) for the hyperbolic case.

There is an appealing geometric description of the SL(2,R)µ-orbits in H2 as follows. Let Pµ

denote the hyperbolic normal plane passing through µ̌,

Pµ :=
{

X̌ ∈R
3 |

〈
X̌ − µ̌, µ̌

〉
H

= 0
}

.

It follows from (8), and the fact that the inner product (1) is invariant under the coadjoint action

that Pµ is invariant under the action of g̃ for g ∈ SL(2,R)µ.

Since H2 is itself invariant under the coadjoint action, a simple consequence of this is that

the curve Pµ∩H2 remains invariant under the coadjoint action of SL(2,R)µ. It follows that if ν ∈
Pµ∩H2 then the SL(2,R)µ-orbit of ν is this curve of intersection. Furthermore, this curve is a conic

of the type (ellipse, hyperbola or parabola) related to its isotropy group, and coincides with the type

of µ as defined in Theorem 1. This can be seen in Figure 2. For other points ν ∈H2, one can replace

µ by a scalar multiple of µ (which necessarily has the same isotropy group), which replaces Pµ by

a parallel plane, whose intersection with H2 is the SL(2,R)µ-orbit of ν.

Phase space We now return to the system of N point vortices on the hyperbolic plane H2. Let X̌i

be the vector from the origin in R
3 to the i th vortex Xi ∈H2, and denote its vorticity by Γi (assumed

to be nonzero). A candidate for the manifold of the dynamical system of N point vortices consists

of N copies of the hyperboloid H2 ×·· ·×H2. However, configurations that lead to infinite energy

must be avoided, and this is achieved by discarding the set of collisions

∆= {X = (X1, . . . , XN )∈H2 ×·· ·×H2 | two or more Xi coincide} .

Hence, the phase space is given by M =H2×·· ·×H2 \∆. Neglecting collisions of vortices guaran-

tees the action of SL(2,R) on M to be free.

The dynamics on M are determined by the vector field

Ẋr =
1

π

∑

p 6=r

Γp

X̌p ×H X̌r
〈

X̌r , X̌p

〉2

H
−1

(9)

with r ∈ {1, .., N }. This equation differs from the differential equations derived by Kimura in [10] by

a factor of 2, which is explained by the choice of the basis B of the Lie algebra in (4).
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This system is Hamiltonian, where the symplectic structure on H2 is derived from the natural

Lie-poisson structure on sl(2,R)∗ given by

{F,G}(µ) =
〈
µ,

[
dF (µ), dG(µ)

]〉
,

where F,G are two smooth functions on sl(2,R)∗, and dF (µ) ∈ (sl(2,R)∗)∗ ≃ sl(2,R). The resulting

symplectic structure on the coadjoint orbit H2, called the Kostant-Kirillov-Souriau (KKS) form is

given as follows. Let µ ∈H2 and u, v ∈ TµH2 then the KKS form is

ωH2

(
µ
)

(u, v)=
µ̌ · (ǔ ×H v̌)

2‖µ̌‖2
, (10)

where ‖µ̌‖2 =
∑3

i=1µ
2
i

is the Euclidean norm. The symplectic from on M depends on the vorticities

as

ωM (·, ·) =
N∑

i=1

ΓiωH2
(·, ·)i . (11)

The Hamiltonian for the system is as constructed by Kimura [10], which in terms of the hyper-

bolic inner product is given by

H =−
1

4π

∑
ΓiΓ j ln

〈X̌i , X̌ j 〉H +1

〈X̌i , X̌ j 〉H −1
. (12)

Note that if all vorticities have the same sign, as two point vortices in H2 get closer, i.e. as the

hyperbolic distance between them tends to 0, the Hamiltonian tends to ∞, as expected when a

collision occurs. On the other hand if two points get far apart, the hyperbolic distance tends to ∞
and the contribution of their interaction to the total energy is 0.

Momentum map and its equivariance This is central to our analysis, and this is where the hy-

perboloid model is so useful. The momentum map is J : M → sl(2,R)∗ is given simply by

J(X1, . . . , XN ) =
N∑

i=1

Γi Xi . (13)

See for example [18] for details, and how the same formula can be made to hold for vortices in the

Euclidean plane.

Whenever the symmetry group is semisimple the momentum map of a symplectic manifold

can be chosen to be coadjoint equivariant, as was shown by Souriau [25]. Since the KKS form is

invariant and it defines the symplectic structure (11), the momentum map (13) does satisfy this

equivariance, that is

J
(
g ·X

)
=Ad∗

g−1 J(X )

for all g ∈ SL(2,R), X ∈ M . By Noether’s theorem the momentum map is a conserved quantity

under the flow of every invariant Hamiltonian.

2 RELATIVE EQUILIBRIA

Throughout this section we write G = SL(2,R) for convenience. A point Xe in phase space is a rela-

tive equilibrium if its group orbit is invariant under the dynamics, or equivalently, if the trajectory
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(A) µ̌ inside C, with Γ1 = 1 and

Γ2 = 3.

(B) µ̌ on C, with Γ1 = 1 and

Γ2 =− 1
2 .

(C) µ̌ outside C, with Γ1 = 1 and

Γ2 =−1.

FIGURE 3: Trajectories of the vortices for µ̌ inside, outside and on the null-cone C.

through Xe is contained in the group orbit. Since the momentum value µ = J(Xe ) is a conserved

quantity (by Noether’s theorem), the level sets J−1
(
µ
)

are invariant under the flow of the Hamilto-

nian system. This also means that we must restrict our attention to the action of Gµ, implying that

a configuration Xe is a relative equilibrium if Gµ ·Xe remains invariant.

Consequently, if dimGµ = 1 then the trajectory of a relative equilibrium follows the Gµ-orbit,

and in our point vortex model this occurs whenever µ 6= 0.

2.1 TWO POINT VORTICES

For a two point vortex configuration Xe = (X1, X2) ∈ M , the implicit function theorem implies

dimJ−1
(
µ
)
= 1. We additionally know that Gµ · Xe ⊂ J−1

(
µ
)
, so they must be (locally) equal, hence

Gµ ·Xe is indeed invariant. In conclusion, any two point vortex configuration Xe is a relative equi-

librium.

It also follows that any two vortex configuration has non-zero momentum value µ= J(Xe ) (for

otherwise G · Xe is 3-dimensional and contained in J−1(0)). Thus, as shown in Figure 3, the trajec-

tories of X1 and X2 are the conics determined by the determinant of the momentum value µ.

For example the vortex dipole Γ1 = −Γ2 = 1, treated before by Kimura [10] and recently by

Hwang and Kim [8], Xe has momentum value µ with determinant less than zero. Therefore Gµ

is related to an hyperbolic Möbius transformation, and the trajectories of the vortices are on hy-

perbolas parallel to each other (Figure 3c) (and as Kimura points out, their midpoint follows a

geodesic).

2.2 THREE POINT VORTICES

With more than two vortices the conditions for a relative equilibrium are not so straightforward.

Considering the orbit space M /SL(2,R), an invariant group orbit is just a point that is invariant

under the dynamics. Thus a relative equilibrium Xe is an equilibrium point in the reduced space.

Given that the level sets J−1
(
µ
)

are invariant under the flow of Hamiltonian, a relative equilibrium

must be a critical point of the restriction H |J−1(µ), see for example [14]. Hence if there exists ξ ∈
sl (2,R) such that Xe is a critical point of the augmented Hamiltonian Hξ(X ) = H (X )−

〈
µ,ξ

〉
, then

Xe is a relative equilibrium.

In practice, we write H as a function on (R3)N , so must add the constraint that X ∈ M . We do

this by including Lagrange multipliers λr , and thus Xe = (X1, . . . , XN ) is a relative equilibrium if it is

a critical point of

Hξ (Xe )=−
1

4π

N∑

r 6=s

ΓrΓs ln

(〈Xr , Xs〉H +1

〈Xr , Xs〉H −1

)
−

3∑

i=1

N∑

r=1

τiξiΓr X i
r +

N∑

r=1

λr (〈Xr , Xr 〉H +1) (14)
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where X j =
(

X 1
j

, X 2
j

, X 3
j

)
∈H2, with vortex strengths Γ j (for j = r, s) and

τi =
{

1 if i = 1,2,

−1 if i = 3,

and λr is the corresponding Lagrange multiplier.

Note that 〈Xr , Xs〉H =
∑3

i=1τi X i
r X i

s , thus ∂
∂X i

r
〈Xr , Xs〉H = τi X i

s , and

∂Hξ

∂X i
r

= τi

(
Γr

2π

∑

p 6=r

Γp

X i
p

〈
Xr , Xp

〉2

H
−1

−Γr ξi +λr X i
r

)
= 0. (15)

Therefore the general condition for relative equilibria is given as the solutions of the following

equation of angular velocity ξ

ξi =
1

2π

∑

p 6=r

Γp

X i
p

Lpr
+
λr

Γr
X i

r , ∀r ∈ {1,2, . . . N } and i ∈ {1,2,3} , (16)

where Lpr denotes
〈

Xp , Xr

〉2

H
−1 = sinh2(d (Xr , Xp )). An important observation is that the angular

velocity ξ satisfies Ẋr = ξ×H Xr . This means that a relative equilibrium Xe rotates "hyperbolically"

around ξ as shown in [7, Proposition 2].

Classification In this section we provide the classification of relative equilibria of three point

vortices, which is strikingly similar to the classification for the plane and the sphere. The following

result is obtained by solving (16) for

X1 =
(
x1, y1, z1

)
,

X2 = (0,0,1) , (17)

X3 =
(
x3, y3, z3

)
.

Any other set of three point vortices is equivalent to this one by hyperbolic rotations. Since the

dynamics are preserved by that type of transformation, the same relative equilibrium conditions

follow for any other X .

Theorem 2. Every relative equilibrium of three point vortices in the hyperbolic plane is either an

equilateral triangle or a geodesic configuration.

The result is obtained by calculating the solutions of (16) for configurations of the form given

in (17).

Remark 3. As mentioned in the introduction, a geodesic on the hyperboloid model H2 is the

intersecting curve of a plane through the origin with H2. As pointed out in [7], and unlike the

system on the sphere, it is not possible to have an equilateral configuration in a geodesic of the

hyperboloid model. Therefore, for an equilateral configuration

V = 〈X1, X2 ×H X3〉H 6= 0.

Although not mentioned explicitly in [7], their formulae (17–19) lead to the same result of rela-

tive equilibria derived here. Furthermore, X1, X2 and X3 are linearly independent in R
3, implying

that J(Xe ) = Γ1 X1 +Γ2 X2 +Γ3X3 6= 0 for every equilateral configuration. Thus the Gµ orbit of an

equilateral relative equilibrium is one of the conics described in Section 1.
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The next two theorems present the conditions on the vorticities Γ for relative equilibria of three

point vortices. The complete proofs in [20] consist in finding any restrictions on Γ for the existence

of the angular velocity ξ in (16).

Theorem 4. Every equilateral configuration Xe of point vortices (X1, X2, X3) in M is a relative equi-

librium. The angular velocity of Xe is given by

ξ=
1

2πL
J(X1, X2, X3) , (18)

where L = 〈Xi , X j 〉2
H

−1 for i 6= j .

Note that L = sinh2(d (Xi , X j )) as follows from (2). Since for equilateral configurations J 6= 0, it

follows from (18) that these are never equilibria (it is also easy to see this geometrically from first

principles).

Theorem 5. Let Xe = (X1, X2, X3) ∈ M be a configuration of point vortices on a geodesic of the hy-

perboloid, with vorticity vector Γ= (Γ1,Γ2,Γ3). Suppose X2 lies between X1 and X3 on the geodesic,

and let Li j = 〈Xi , X j 〉2
H

−1. Then Xe is a relative equilibrium point if and only if
√

L23 (L13 −L12)Γ1 +
√

L13 (L23 −L12)Γ2 +
√

L12 (L23 −L13)Γ3 = 0 (19)

Moreover, the momentum value µ of a geodesic relative equilibrium is either zero or elliptic.

Proof. The proof of expression (19) is derived by computing the relative equilibrium conditions

(16) for

X1 =
(

x1,0,

√
1+x2

1

)
,

X2 = (0,0,1) ,

X3 =
(
−x3,0,

√
1+x2

3

)
, (20)

in terms of Li j where x1 =
p

L12, x3 =
p

L23.

For the type of momentum, we first consider isosceles geodesic configurations, that is x1 =
x3. Straightforward calculations show that for Equation (19) to be satisfied Γ1 = Γ3 must hold.

Conversely, substituting L13 in terms of L12 and L23 in (19) with Γ1 = Γ3 leads to L12 = L23. Under

this vorticity condition, the determinant of the momentum value µ= J(X1, X2, X3) is

detµ=
(

2Γ1

√
1+x2

1 +Γ2

)2

, (21)

therefore detµ> 0 for all Γ2 6= −2Γ1

√
1+x2

1 , otherwise µ= 0. Suppose now that x1 6= x3 andΓ1 6= Γ3,

the determinant of the momentum value is

detµ = 8
(Γ1x1 −Γ3x3)2

k2

(((
1

4
+x2

3

)
x2

1 +
1

4
x2

3

)
x3x1

√
1+x2

3

√
1+x2

1+

+
(

1

8
+

3

4
x2

3 +x4
3

)
x4

1 +
(

3

4
x4

3 +
3

8
x2

3

)
x2

1 +
1

8
x4

3

)
,

where k = (x1 −x3)(x1 +x3)
(
x3

√
1+x2

1 +x1

√
1+x2

3

)
. Recall that x1 > 0 and x3 > 0, hence µ is ellip-

tic provided x1Γ1 6= Γ3x3, otherwise µ= 0.

It is remarkable that for any geodesic configuration of three vortices Xe there can always be

found a set of vorticities Γ such that Xe is a relative equilibrium. Conversely, for given values of the

vorticities there is a 1-parameter family of inequivalent geodesic relative equilibria.
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Equilibria It is interesting to ask which of the relative equilibria are in fact (fixed) equilibria. This

was answered by Hwang and Kim [7], who showed that a necessary and sufficient condition for an

equilibrium is that

∑

i

Γi (Γ j +Γk )Xi = 0 (22)

where i , j ,k is a cyclic permutation of 1,2,3, and this is only possible if
∑

i< j ΓiΓ j < 0.

A particular case is the isosceles geodesic equilibrium whose stability we will consider again

at the end of the paper. A calculation using (19) shows that if L12 = L23 then Γ3 = Γ1 for a relative

equilibrium, and, as shown in the proof of Theorem 5 above, its momentum value µ is elliptic if

a = 〈X1, X2〉H 6= Γ2

2Γ1
, otherwise µ = 0. Taking the hyperbolic inner product of the condition (22)

with X2 and combining with the value of a just given leads to

Γ2 =
Γ1a

1−a
. (23)

Therefore, a configuration Xe with Γ1 = Γ3 and Γ2 given by (23) is an isosceles equilibrium config-

uration. Furthermore, the momentum value of Xe is elliptic.

3 STABILITY OF RELATIVE EQUILIBRIA

Before presenting any of our stability results, we begin by recalling the notions of (nonlinear) sta-

bility for relative equilibria symmetric Hamiltonian systems. Let G be the group of symmetries,

and J : M → g∗ be the momentum map, where M is the phase space.

The first notion is G-stability of a relative equilibrium: this is the usual definition of Lyapunov

stability but using G-invariant open sets. Specifically, a relative equilibrium xe is G-stable if for

every G-invariant neighbourhood V of xe there exists a G-invariant neighbourhood U of xe such

that any trajectory intersecting U lies entirely within V . Since the dynamics on M projects to

dynamics on the orbit space (or shape space) M /G , and the relative equilibrium projects to an

equilibrium point, this is equivalent to Lyapunov stability of this projected equilibrium.

As the momentum is conserved, one can also study stability within a level-set of the momen-

tum, J−1(µ) (for the appropriate value of µ). The system on this level set is invariant under Gµ (by

definition of Gµ), and so the natural notion of stability is Lyapunov stability relative to Gµ on this

level set; this is called leafwise stability.

A finer notion of stability was introduced by Patrick [22], and this is stability relative to a sub-

group G ′ of G , and in particular the subgroup Gµ (but here the stability is relative to all perturba-

tions of the initial condition, not just those with the same momentum value). The definition is the

same as that above, with G replaced by G ′. It is straightforward to show that if xe is G ′-stable, then

it is also G-stable.

Before progressing further, we describe the standard criterion for stability, known as formal sta-

bility, and based on Dirichlet’s criterion for stability of an equilibrium. Given a symmetric Hamil-

tonian system, a symplectic normal space at a point x is any choice of complement N1 to Tx (Gµ ·x)

in (dJx )−1(0). It is a symplectic space, and for free actions it can be naturally identified with the

tangent space to the symplectic reduced space. If x is a relative equilibrium, it is said to be for-

mally stable if the restriction of the Hessian of the augmented Hamiltonian to (any) symplectic

normal space is positive or negative definite. (If N1 = 0 this condition is empty.) The question

that in general needs addressing is whether formal stability implies stability, and if so whether it is

Gµ-stability or simply G-stability, or leafwise stability.
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In order to answer this question, we need to introduce the notions of split and regular points

in momentum space, see [12, 23].

Definition 6. (1) Let µ ∈ g∗ and G0
µ the identity component of Gµ. One says that µ is split if there

exists a G0
µ- invariant complement nµ to gµ in g.

(2) A point µ ∈ g∗ is regular if dimgν =dimgµ for every ν in a neighbourhood of µ.

(3) A point µ ∈ g∗ is of Hausdorff type if there is a neighbourhood U of G ·µ in g∗/G within which

G ·µ can be separated by disjoint open sets from any other point in U .

Proposition 5 of [23] states that every regular µ is of Hausdorff type, and that if µ is split then it

is of Hausdorff type if there exists a G0
µ-invariant inner product on gµ.

Patrick [22] proves that formal stability implies Gµ-stability for relative equilibria for compact

groups. This was extended by Lerman and Singer [12], who showed that formal stability implies

Gµ-stability for proper group actions and relative equilibria with split momentum value, provided

in addition there is a Gµ-invariant inner product on g∗. The more general result due to Patrick,

Roberts and Wulff is the following.

Theorem 7 ([23]). Let xe be a relative equilibrium for a Hamiltonian system with a free and proper

action of a symmetry group G.

1. Suppose xe is formally stable and that µ= J (xe ) is of Hausdorff type. Then xe is G-stable.

2. Suppose xe is G-stable with µ= J (xe ). If there exists a G0
µ invariant inner product on g∗, then

xe is G0
µ-stable.

In our setting with a free action of G = SL(2,R), for anyµ ∈ sl(2,R)∗ the isotropy subgroups Gµ =
G0

µ are given in Theorem 1, and one sees µ is split if and only if it is not parabolic, and every non-

zero µ is both regular and of Hausdorff type. Furthermore, there is a Gµ invariant inner product on

g∗ if and only if µ is elliptic.

Since in our setting the action is free, we restrict attention to that case with no further mention.

(For non-free actions see [19] and references therein.)

3.1 TWO POINT VORTICES

Theorem 8. Every trajectory of the two point vortex system in the hyperbolic plane is an SL(2,R)-

stable relative equilibrium.

Proof. While this does follow from Theorem 7(1) above (since µ 6= 0 and hence regular, and formal

stability is trivial as N1 = 0), this is in fact trivial and needs no general theory: since every point

in the phase space is a relative equilibrium, it follows that every point in the orbit space is an

equilibrium, and hence in the orbit space every point is stable.

To deduce Gµ-stability from Theorem 7 above, the momentum value must be elliptic.

Theorem 9. Let Xe = (X1, X2) ∈ M be two point vortices with vorticities Γ1,Γ2 and hyperbolic dis-

tance c = d (X1, X2). Suppose the momentum value is given by µ = J(X1, X2) ∈ sl(2,R)∗. Then Xe is

SL(2,R)µ- stable if the vortex strengths are of the same sign or, if they are of opposite sign, the vortices

satisfy c < | ln |Γ1|− ln |Γ2| |. Otherwise it is only leafwise stable.

Proof. The momentum value µ of Xe is elliptic for Γ1

Γ2
>−e−c or Γ1

Γ2
<−ec .
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3.2 THREE POINT VORTICES

In this setting, the symplectic normal space N1 is of dimension 2 if µ 6= 0 and is zero if µ = 0 (be-

cause dimgµ = 1 or 3 respectively). Pekarsky and Marsden [24] find a symplectic normal space for

three point vortices on the sphere which we adapt below for the hyperbolic case. We treat the case

of µ= 0 at the end of this section.

Proposition 10. Let Xe = (X1, . . . , X3) ∈ M be a relative equilibrium of a set of point vortices with

vorticities Γ = (Γ1, . . . ,Γ3) with µ 6= 0. Suppose that D1 and D2 are two independent vectors in R
3,

such that the plane they span does not contain any of the vortices. Then N1 = 〈η,ζ〉 is a symplectic

normal space at Xe , where

η= (a1D1 ×H X1, . . . , a3D1 ×H X3),

ζ= (b1D2 ×H X1, . . . ,b3D2 ×H X3) ,

}
∈ TXe

M

with ai , bi defined by

∑

i

Γi ai D1 ×H Xi = 0,

∑

i

Γi bi D2 ×H Xi = 0.

Equilateral triangles The G and Gµ-stability of the equilateral triangle depends on the vorticities

only and not on the size of the triangle, and the dependence is the same as for point vortices on

the sphere and on the plane.

Theorem 11. An equilateral configuration Xe = (X1, X2, X3) ∈M with vorticities Γ1,Γ2,Γ3 and mo-

mentum value µ= J (Xe ) is SL(2,R)µ-stable if

∑

i 6= j

ΓiΓ j > 0. (24)

However, if ∑

i 6= j

ΓiΓ j < 0, (25)

then Xe is SL(2,R)-unstable.

Proof. From Proposition 10

η :=




1
Γ1

(D1 ×H X1)
1
Γ2

(D1 ×H X2)

(0,0,0)


 and ζ :=




(0,0,0)
1
Γ2

(D2 ×H X2)
1
Γ3

(D2 ×H X2)


 ,

with D1 = X1 + X2 and D2 = X2 + X3, generate a symplectic normal space N1 at Xe . The calcula-

tions are very similar to those on the sphere, and one finds that the relative equilibrium is formally

stable if and only if
∑
ΓiΓ j > 0. We know that any equilateral configuration has non-zero and,

therefore, regular momentum value µ. Thus the SL(2,R)-stability condition follows from Theorem

7(1), provided (24) holds.
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Γ1

Γ2

Γ3

SL(2,R)µ-stable

SL(2,R)µ-stable

SL(2,R)-unstable

FIGURE 4: Graph of the cone
∑

i 6= j
ΓiΓ j = 0 and corresponding stability properties.

Moreover, µ is either elliptic, parabolic or hyperbolic, with determinant

detµ= 2k
∑

i 6= j

ΓiΓ j +
∑

i

Γ
2
i , (26)

where k = −
〈

Xi , X j

〉
H

> 0 represents the size of the triangle—see Eq. (2). Thus for µ parabolic

or hyperbolic only (25) holds, that is xe is SL(2,R) unstable. Consequently, every parabolic or hy-

perbolic xe is SL(2,R)µ unstable. If µ is elliptic, the SL(2,R)µ stability results follow from Theorem

7(2).

Corollary 12. Every hyperbolic and parabolic equilateral relative equilibrium is SL(2,R), and a for-

tiori SL(2,R)µ, unstable. ä

Remark 13. The expressions for G-stability conditions for three equilateral vortices on the hyper-

boloid coincide with those for the system on the plane [2] and on the sphere [17, 24].

Aref [2] showed that a three point vortex configuration on the plane, a relative equilibrium with∑
i 6= j

ΓiΓ j = 0 is marginally stable. Meanwhile, for the system on the sphere, Marsden, Pekarsky and

Shkoller [15] performed numerical integrations and observed changes of the stability for
∑

i 6= j
ΓiΓ j =

0. The conjecture that a Hamiltonian bifurcation occurs has also been mentioned in the references

[17, 24].

We have performed numerical integrations in Maple for equilateral configurations on the hy-

perboloid, which suggest that a bifurcation occurs at
∑

i 6= j
ΓiΓ j = 0. Note that this is actually the

equation of a cone as shown in Figure 4. The configurations for which
∑

i 6= j
ΓiΓ j < 0 have a set of Γ’s

outside this cone, so these points are SL(2,R)-unstable. On the other hand, any equilateral config-

uration with Γ’s inside the cone is a SL(2,R)µ-stable relative equilibrium, and follows the trajectory

of an ellipse rotating around its momentum value and is therefore periodic.

Isosceles geodesic relative equilibria
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Theorem 14. Let Xe = (X1, X2, X3) ∈ M be a configuration of point vortices lying on a geodesic of

the hyperboloid with vorticities Γ1,Γ2,Γ3 = Γ1 and momentum µ = J (Xe ). Suppose 〈X1, X2〉H =
〈X2, X3〉H = a 6= Γ2

2Γ1
then µ is elliptic. Furthermore, let

A (Γ1,Γ2, a)=
1

Γ1

(
512A1 (Γ1,Γ2, a)+ A2 (Γ1,Γ2, a)

)
, (27)

with

A1 (Γ1,Γ2, a) = Γ
2
1a9 −2Γ1a8

(
Γ1 −

Γ2

4

)
+a7

(
−

5

4
Γ

2
1 +2Γ1Γ2

)

+2a6
(
Γ1 +

Γ2

4

)(
Γ1 −Γ2

)
+
Γ1a5

4
(Γ1 −8Γ2)

+
Γ2a4

16
(8Γ2 +Γ1)−

Γ1Γ2

32

(
a2 −

1

2

)
,

and

A2 (Γ1,Γ2, a)= Γ1a5 +
1

2
Γ2a4 −

5

4
Γ1a3 −

11

8
Γ2a2 +

1

4
Γ1a −

1

8
Γ2.

If A (Γ1,Γ2, a) > 0 then Xe is SL(2,R)µ-stable. Conversely if A (Γ1,Γ2, a) < 0 then Xe is SL(2,R)-

unstable. In addition, if Xe is also an equilibrium point, then Xe is SL(2,R)µ-stable for all a ∉
(−1.191,−1.106). Finally, if a = Γ2

2Γ1
then µ= 0 and hence not a regular point.

Proof. In the proof of Theorem 5 we showed that detµ > 0 for all a 6= Γ2

2Γ1
, otherwise µ = 0. By

Theorem 10, a symplectic normal space N1 to Xe is generated by

η :=




1
Γ1

(D1 ×H X1)
1
Γ2

(D1 ×H X2)

(0,0,0)


 and ζ :=




1
Γ1

(D2 ×H X1)
2k
Γ2

(D2 ×H X2)
1
Γ3

(D2 ×H X3)


 ,

where D1 = X1+X2, D2 = (0,1,0) and k =−
√

x2
1 +1. Given that µ is regular and elliptic, the stability

condition (27) is derived from testing the definiteness of the Hessian of (14) restricted to N1.

Recall from Section 2.2, that an isosceles geodesic relative equilibrium is also in equilibrium

provided Γ2 = Γ1a
1−a . Given that a <−1 for all Xe , we obtain A (Γ1,Γ2, a) > 0 for a ∉ (−1.191,−1.106).

Zero momentum The symplectic normal space of µ = 0 is trivial. As discussed in Example 4

of [23], a configuration with µ = 0 is trivially leafwise stable and, G-stable if the angular velocity

ξ points into the null-cone C. Simple calculations show that the angular velocity of a geodesic

configuration with momentum value µ= 0 is always elliptic, hence µ= 0 is SL(2,R)-stable.

Despite the complexity of (27), we can get an idea of the stability of Xe by looking at Figure

5, where the stability regions for Γ1 = Γ3 = 1 are plotted. The second diagram is a close up of the

bottom-right portion of the first diagram and the stability conditions can be seen with more detail

for vortices that are close to each other, that is for small values of a. The dashed blue line represents

a = Γ2

2Γ1
, in which case µ= 0 and Xe is SL (2,R)-stable as the angular velocity ξ is elliptic.

Geodesic configuration with three different lengths Additional information of this general case

can be found in [20]. For this type of configuration the computation of the Hessian is rather in-

volved, and further analysis is required to provide general stability criteria for relative equilibria

of this system. Nevertheless it is of particular use the fact that as for the isosceles case, a relative

equilibrium must have either elliptic or zero momentum value.
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Γ2

a

Γ2

a

100

0

-30 -1-5

0

-5

-10

-1-1.5 -1.3

detµ = 0

FIGURE 5: Stability of isosceles geodesic relative equilibria for Γ1 = Γ3 = 1 as a function of Γ2

and a. The white region represents SL(2,R)µ-stable relative equilibria, and the red region

represents SL(2,R)-unstable relative equilibria
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