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Stochastic evolution equations driven by
compensated Poisson measures: existence,
uniqueness and large deviation estimates

Michael Réckner! Tusheng Zhang?
February 25, 2005

Abstract
Existence and uniqueness results are established for solutions of
stochastic evolution equations driven by Poisson point processes. Large
deviation estimates are obtained for the case of additive Poisson noise.
Tllustrating examples are provided.

AMS Subject Classification: Primary 60H15 Secondary 93E20, 35R60.

1 Introduction

Stochastic evolution equations and stochastic partial differential equations
driven by Wiener processes have been studied by many people. There exists
a great amount of literature on the subject, see, for example the monograph
[DZ]. In contrast, there has not been very much study of stochastic partial
differential equations driven by jump processes. However, it begun to gain
attention recently. In [AWZ] we obtained existence and uniqueness for solu-
tions of stochastic reaction equations driven by Poisson random mesasures.
In [F], Malliavin calculus was applied to study the absolute continuity of the
law of the solutions of stochastic reaction equations driven by Poisson ran-
dom mesasures. In [MC], a minimal solution was obtained for the stochastic
heat equation driven by non-negative Levy noise with coefficients of poly-
nomial growth. In [ML], a weak solution is established for stochastic heat
equation driven by stable noise with coefficients of polynomial growth.

In this paper, we consider the following evolution equation:
AV, = —AYidt + b(Y,)dt + o(Yy)dB, + / FYi, 2)N(dt, dz), (11)
X
Yo = heH (1.2)
in the framework of a Gelfand triple :

VCHXH CV*. (1.3)
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We look for solutions in the space of V' instead of the mild solutions in H
in contrast to the literature. The stochastic evolution equations of this type
driven by Wiener processes were first studied by E.Pardoux in [P]. A large
deviation principle for this type of stochastic evolution equations driven by
Wiener process was obtained by P.Chow in [C]. The purpose of this paper
has two folds. The first one is to establish the existence and uniqueness
for solutions of equation (1.1). Our approach is similar to the one in [P].
But, some extra care need to be taken for the jumps. We don’t use the
Galerkin approximations as in [P]. Instead, we got the solution via successive
approximations. Secondly we will study the large deviation principle and
exponential integrability of solutions of equation (1.1). We will prove that the
solution is exponentially integrable both as a random variable in D([0, 1] —
H) and in L%([0,1] — V). Thes estimates are of their own interest and also
necessary for the study of large deviations. For the large deviation principle,
we confine ourself to the case of additive Poisson noise. The situation is
quite different from the Gaussian case. If X;,7 > 0 is a Wiener process, the
solution of the equation:

1
dY = —AYdt + —dX,
n

is still Gaussian. The large deviations of Y™ follows from the well known
large deviations of Gaussian processes. However, if X;,¢ > 0 is a Lévy
process, the solution Y is no longer a Lévy process. The additive noise case
is already hard. Large deviations for Lévy processes on Banach spaces and
large deviations for solutions of stochastic differential equations driven by
Poisson measures were studied by de Acosta in [Al], [A2].

2 Framework

Let V', H be two separable Hilbert spaces such that V' is continuously, densely
imbedded in H. Identifying H with its dual we have

VCH=H CV*, (2.1)

where V* stands for the topological dual of V. Let A be a bounded linear
operator from V' to V* satisfying the following coercivity hypothesis: There
exist constants o > 0 and A > 0 such that

2(Au,u) + Mul%, > oflu||}  forallu eV, (2.2)

where (Au,u) = Au(u) denotes the action of Au € V* onu € V.

Remark that A is generally not bounded as an operator from H into H.
Let (2, F, P) be a probability space equipped with a filtration {F;} satis-
fying the usual conditions. Let {By;,t > 0} be a real-valued F;- Brownian
motion. Let (X, B(X)) be a measurable space and v(dz) a o-finite measure



on it. Let p = (p(t)),t € D, be a stationary F;-Poisson point process on
X with characteristic measure v. See [IW] for details on Poisson point pro-
cesses. Denote by N(dt,dx) the Poisson counting measure associated with
p;ie, N, A) = > cp, <t 1a(p(s)). Let N(dt,dz) := N(dt,dz) — dtv(dz)
the compensated Poisson mesasure. Let b(y), o(y) be measurable mappings
from H into H, and f(y,x) a measurable mapping from H x X into H. For
a separable Hilbert space L, we denote by M?([0,T],L) the Hilbert space
of progressively measurable, square integrable, L-valued processes equipped
with the inner product < a,b > = E[fOT < a, by > dt]. Denote by
M“2([0,T] x X, L) the collection of predictable mappings:

fls,z,w) [0, T] x X xQ — L

such that E[f [, |f(s,2,w)|3dsv(dz)] < co. Denote by D([0,T], H) the
space of all cadlag paths from [0, 7] into H. Consider the stochastic evolution
equation:

0, = —AYidt -+ b(Y,)dt + o (Y,)dB, + / (Y, 2)N(dt, dz), (2.3)
X
Yo = heH (2.4)

We introduce
(H.1) There exists a constant C' < oo such that

bW)[& + o ()l + /X [f (y, @) v (dz) < C(1+ |yf3) (2.5)

forall y € H.
(H.2) There exists a constant C' < oo such that

b(y1) — b(y2) |5 + o (1) — o(y2) |5
+ fX \f(y1,x) — f(yz,.f)@ﬂ/(dl‘)
< Cly, — l/2|%q (2.6)

for all y1,y, € H.

3 Existence and uniqueness

Proposition 3.1 Letb e M?*([0,T),H),oc € M?([0,T], H) and f € M*?([0, T]x
X, H). There exists a unique solution Y;,t > 0 to the following equation:

Y € M?*[0,7],V)n D(0,T)],H)

dY, = —AYdt+b(t,w)dt+ o(t,w)dB;
+/ f(t,z,w)N(dt, dz). (3.1)
X
Yo = heH (3.2)



Proof. We prove the existence in two steps.
Step 1. Assume b € M?([0,T],V),oc € M?*([0,T],V) and f € M**([0,T] x
X,V). Put

Ut:/Otb(s)ds—i-/oto(s)st+/0t/Xf(s,x)N(ds,dx)

It is easy to see that U € M?([0,T],V). Consider the random equation:

dUt = (—A’Ut — AUt)dt (33)
Vg = h
It is known from [L] that there exists a unique solution v to equation

(3.3) such that v € M2([0,T],V)n C([0,T),H). Set Y; := v; + U;. Then
Y € M?([0,T],V)n D([0,T], H). Moreover, it solves equation (3.1).

Step 2. General case.

Choose b, € M*([0,T],V),0, € M?([0,T],V) and f, € M**([0,T] x
X, V) such that b, — b, 0, — o in M?([0,T], H) and f,, — f in M"2([0,T] x
X, H) as n — oo. Denote by Y;" the unique solution to equation (3.1) with
b, o, f replaced by b,,0,, f,. Such a Y™ exists by step 1. By Ito’s formula,
we have

Y =Y

t
= 2 [ <yrovrmany - > ds
0

t t
+ 2/ YR Y™ bo(s) — bn(s) > ds + 2/ YR Y™ o0 (s) — om(s) > dB,
0 0

+ [ lonts) = omls)s

+ / t / <|fn(8,$)—fm(8,x)\%+2<5271—52T,fn(8,$)—fm(8,x) >H)N<ds,dx)
0 X

v f t [ 15206:8) = s ) st

In the following, C' will denote a generic constant whose values might change
from line to line. Put

(3.4)

t+ B
Mt = / / <|fn(8,$)—fm($,$)‘§{+2 < YZL_—Y;T,fn(S,.T)—fm(S,.T) >H )N(dsa dﬂ?)
0 X

Then,
1
(M, M]? =

{ 2 (‘f"(s’p(s))_fm(s’p(s))ﬁﬂ'? <YY" fu(s,0(5) = fu(s,p(5)) >u >2}

SEDy,s<t

1
2



=

<03 Ulsno) = FunlosploDlh

S€Dp,s<t

N

030 VIR ~ (s o))

s€Dy,s<t

SC Z |fn(8’p(8))_fm(8ap(8))|%l

s€Dy,s<t

+0 sup (V2 =¥ (30 Unlosplol) — Julsp) )

Oss<t s€Dyp,s<t

<C S a5 () = Fuls, () + 5 sup (Y22 — Y

4
$€Dy,s<t Oss<t

By Biirkholder’s inequality,

E[sup |M,]] < CE(IM, M);)

0<s<t

SCEL S 1alspl) = fuls (5D + 1B sup V22 = VI

$€Dy,s<t

= B[ [ 15.0) = fulo, ) dovia)] + LB swp V7~ V] (5)
= i an,x m (s, )| ydsv(dz 1 osgligts fd ™ .

It follows from (3.4) and (2.2) that

t
Elsup V" — Y] < —aF] / Y7 — Y™ ds)
0

0<s<t

+(\+ O / Y — Y ds) + CF| / ba(5) — bun(s) 4]
+0E[</0 <YPZY™ g (5)—om(s) > ds)§]+CE[/O 102(5)— 0 () Py ds]

+CE(M, M]}) + CE / /X a5 2) = fonls, ) Fydsi(de)]

Applying (3.5) we have

Elsup |V —Y"[3]
0<s<t

t t
< —aB| / Y7 — Y™|Pds] + CE] / Y YR ds)
0 0

1 t
L sup (Y — v 4 O] / 1ba(5) = bin(s) %8
0

0<s<t
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CE[/ 0u(s) — Om(5) 2ds] + CE] / [ 155.2) = fuls ) sl

(3.6)
By Gronwall’s inequality, this implies that

t
Bl sup V7 = V3] < CHEL | 1ba(s) = bn(5)s]
0

0<s<t

+0E[/ 0u(s) - >|Hdsl+0E[/ [ 155.) = fnls, ) ()

(3.7)
Therefore,
lim E[sup |[Y"-Y™3%]=0 (3.8)

n,Mm—00 <5<t

This further implies by (3.6) that Y, n > 1 is also a Cauchy sequence in
M?([0,T],V). Let Y;, ¢ > 0 denote an element in M?([0,T], V) such that

lim E[sup |Y —Y;|3] =0

n—=00 <5<t

and
t

lim E[/ IY" — Yil[2ds] = 0
0

n—0o0
Letting n — oo , we see that Y;,¢ > 0 is a solution to equation (3.1).
Uniqueness: If X;,Y; are two solutions to equation (3.1), then

dt

d(X:—Y:) — —A(Xt _ th)
{ Xo—Yy= 0

By chain rule, we have

t
|Xt—Ytﬁq:—2/ <X, -V, A(X, - Y,) >ds
0

t ¢
<—a [ X~ Yilfpds + A [ X~ Vs
0 0
By Gronwall’s inequality, we obtain that Y; = X, which completes the proof.

Theorem 3.2 Assume (H.1)and (H.2). Then there exists a unique H-
valued progressively measurable process (Y;) such that

(i)Y€M2(O,T;V)ﬂD(OTH) foranyT>0 )

(i) Y; = h— [ AY,ds+ [5 b(Y;)ds+ [y o(Yy)dBs+ [y [ f(Yse, 2)N(ds, dz)
a.s..

(iii) Yo = h € H.



Proof.

Ezxistence of solution.

Let Y,? := h,t > 0. For n > 0, define Y"** € M?(0,T;V)ND(0,T; H) to be
the unique solution to the following equation:

Ay = —AYHat 4 (Y dt + o (YY) dB,
+f (Y, 2)N(dt, dx) (3.9)
YP = h (3.10)

The solution Y™ *! of above equation exists according to Proposition 3.1. We

are going to show that {Y™,n > 1} forms a Cauchy sequence. Using It6’s
formula, we find that

e,
= 2 [ AT - s
s [ v ) - o) > s
0
w2 [ <N Yo - 007 > B,
# [ lotr) - o s
t+
« / OV 2) = O ) +2 < VI = Y0, (VI ) = FV2) ] (ds, do)
/ / FO2) = FYP, ) Pydsv(d). (3.11)
By a similar calculation as in Proposition 3.1, it follows from (3.11) that

Elsup [V =Y}
0<s<t

t t
< —aE| / Y™~ YP|[2ds] + CE / Y yn s
0 0

1 ' -
+3Elsup [¥7H = V7] + CB| / V) = D7) ]

0<s<t

+CH| / o (V") =0 (V™) 2 ds]+CE] / / FV, 2)—F (VP )R dsv(dz)]

(3.12)
Using (H.1), this implies that

t
Blsup [V — V73] <CE] / Y Y ds)
0

0<s<t

t
SB[ Wr-vrds) @)
0



Define :
gp = Elsup [Y7 - Y12, 6P = / grds
0

0<s<t
We have
gt < CGM + CGY (3.14)
Multiplying above inequality by e “*, we get that
d Gn+1 —Ct
UG e T) o pecrgn (3.15)
dt
Therefore,

t
Gt < C’eCt/ e GMds < Ce“'tGT (3.16)
0

Combining (3.14) and (3.16) we see that for a fixed T > 0, and ¢t < T,

t
gt < 021G + OGY < Cr / grds (3.17)
0

for some constant Cr. Iterating (3.17), we obtain that
CrT)"
Bl sup v+ - vrfy) < olTD
0<s<T n!
This implies that there exists Y € D([0,T], H) such that
lim E[ sup |V —Y,[%]=0

n—=00 < s<T

Using (3.12) we see that Y™ also converges to Y in M?(0,T;V). Leting
n — oo in (3.9) it is seen that Y is a solution to equation (ii) in the theorem.

Uniqueness.
Let X,Y be two solutions to (ii) in M?(0,T;V) N D(0,T; H). By Ito’s
formula,we have

Y; — Xi|%
t
- —2/ (Y, — X,, A(Y, — X,))ds
0
t
2 [ <V - Xb(Y) ~ b(X) > ds
Ot
+ 2/ <Y, - X, 0(Y)) — 0(X,) > dB,
tO
+ [ o) = o (Xfds
oot
n / / (Vs 2) — F(Xe )l +2 < Vs — Xo f(Vara) — F(X,_,2) >]
Ot X
+/0 /X\f(Y;,:E)—f(Xs,x)\fquy(dx). (3.18)

21

8

(ds,dx)



Using (H.2), it follows that
E[lY, - Xi/3]

t t
< o] / Y, — X, |3 ds] + CE] / IV, — X, %ds]
0 0

+; | sup 1Y, - X|H]+0E[ [b(Y;) — b(X,)|Fds]

0<s<t
+CE[/ lo(Y, X,)|%ds] +CE[/ / f(Yy,z) — f(X,, )| dsv(dr)]

< CE| / Y, = X, ds] (3.19)
0
Hence, X; =Y.

Next we move to a more general equation which includes terms involving
also Poisson measures. Let U be a set in B(X) such that v(X \ U) < oo.
Let g(y,x) be a measurable mapping from H x X into H. Introduce the
following conditions:

(H.3) There exists a constant C' < oo such that

)+ lo(W) [k + /U l9(y, 2)[fv(dz) < C(1+ [ylf) (3.20)

forally € H.
(H.4) There exists a constant C' < oo such that

b(y1) — b(y2) 3 + lo(y1) — o(y2) |5
+  fylaly,2) = g(y2, @) v(de) (3.21)
< Clyr — vl (3.22)

for all y;,y, € H.

Consider the stochastic evolution equation:

t
Yi=h-— /AYds—i—/b ds+/ o(Y;)dBs
0

t+ t+
//Yt, N(dt, dz) + // oY, z)N(dt,dz)  (3.23)
X\U

Theorem 3.3 Assume (H.3) and (H.4). Then there ezists a unique H-
valued progressively measurable process (Y;) such that

(1) Y € M*(0,T;V)N D(0,T; H) for any T > 0.



(i)
Y,=h— /tAYder/Otb(xg)der/ota()g)st

/t+ / (Yo, z)N(dt, dz) + /0” /X\Ug(Yt_,:E)N(dt,dx) (3.24)

(111) Yo = h € H.

Proof. Having Theorem 3.1 in hand, this theorem can be proved in the
same way as in the finite dimensional case (see [IW]). For completeness we
sketch the proof. Let 71 < 75 < - - - be the enumeration of all elements in
D ={se D,; p(s)e€ X\U}. Itis clear that 7, is an (F;)-stopping time
and lim,, o, 7, = 00. First we solve the equation on the time interval [0, 71].
Consider the equation

t t t
X, = h-— /AX ds+/ b(Xs)ds+/ o(X,)dB,
0

/ . / (X, )N (dt, dz) (3.25)

Following the same proof as Theorem 3.1 , it is seen that there exists a unique
solution Xy, ¢ > 0 to equation (3.25). Set

Y Xt;0<t<7—1a YT1—+g(Y;'1—7p(T1))7t:T1

Clearly the process {Y;' },¢[o,-] is the unique solution to equation (3.24). Now,
set B; = By, — By, p(s) = p(s + 71). We can construct the process ¥;? on
[0, 7] with respect to initial value Y = Y;!, Brownian motion B and Poisson
point process p in the same way as Y;'. Note that 7; defined with respect to
p coincides with 75 — 71. Define

th = Y;flat € [OaTl]a = Y;f—Tl’t € [Tl’TQ]

It is easy to see that {Y;}ic[o,-,] is the unique solution to equation (3.24) in
the interval [0, 73]. Continuing this procedure successively, we get the unique
solution Y to equation (3.24).

Example 3.4 Let H = L?(R?), and set
V = H)(RY) = {u € L*(R%); Vu € L*(R? = R%)}

Denote by a(z) = (a;j(z)) a matrix-valued function on R? satisfing the uni-
form ellipticity condition:

—I; < a(z) <cly for some constant ¢ € (0, 00).
c
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Let f(z) be a vector field on R¢ with f € LP(R?) for some p > d. Define

Au = —div(a(z)Vu(z)) + f(z) - Vu(z)

Then (2.2) is fulfilled for (H,V, A). Thus, for any choice of Brownian motion
B and Poisson point process p and any coefficients satisfying (H.3), (H.4)
the main results apply.

Example 3.5 Stochastic evolution equations associated with fractional Lapla-
cian:

dY, = AYidt +b(Y;)dt + o(Yy)dB, + f(Yi_,z)N(dt,dz), (3.26)
Y, = heH, (3.27)

where A, denotes the generator of the symmetric a-stable process in R,
0 <a< 2. A, is called the fractional Laplacian operator. It is well known
that the Dirichlet form associated with A, is given by

—u(y))(v(z) —v(y))
R

pe) = ermy: [ [ MO iy < o)

where K (d, ) = 02037~ sin(%5)L(4£2)1(2). To study equation (3.26),

we choose H = LQ(Rd), and V = D(S) with the inner product < u,v >=
E(u,v) + (u,v)2(ray.
Define

Au = —A,

Then (2.2) is fulfilled for (H, V, A). See [FOT] for details about the fractional
Laplacian operator. Thus, for any choice of Brownian motion B and Poisson
point process p and any coefficients satisfying (H.3), (H.4) the main results

apply.

4 Large deviations estimates

(H.5) There exists a measurable function f on X satisfying

sup f(y,2)|m < f(2) (4.28)
and
/X (F(2))2exp(af (z))v(dz) < 0o, forall a0 (4.29)

In this section, for simplicity we assume that b = 0,0 = 0 in equation (1.1).
Again denote by Y; the solution of (1.1).

11



Lemma 4.1 For g € C¢(H), M} = exp(g(Vs) — g(y) — fot h(Y;)ds) is an
Fi-local martingale, where

h(y) =< —Ay,g'(y) > +/ (explg(y+f(y,x))—g(y)]-1— < ¢'(y), f(y,x) >)v(dx)

X

Proof. Applying 1to’ s formula first to exp(g(Y;)) and then integration by
parts to exp(g(Y:) — g9(y))exp(— fo Y;)ds) proves the lemma.

Proposition 4.2 Assume (2.2) with A\ = 0 and also (H.5). Then for any
[>0,
Elexp(l sup |Yi|m)] < oco.
0<t<1

Proof. It is sufficient to show that for any [ > 0, there exists a constant
(] such that
P(sup |Yi|lg >7) < Cre™ (4.30)

0<t<1

For A > 0, set g(y) = (1 + Aly[%)z. Then
g'y) =M1+ Alyli) 2y

_3 _1
g"(y) = =N+ Aylo) 2y x y + AL+ Alyl|y) 2 I

where Iy stands for the identity operator. It is easy to see that

1
sup|g”(y)] <A, suplg'(y)| < A2
Yy Yy

Moreover,
< —Ay,g'(y) >= A1+ Ayl}) 72 < —Ay,y ><0 (4.31)

for y € V. Write G(y) = e9®). By Taylor expansion, there exists # between
0 and 1 such that

explg(y + f(y, 7)) — g(y)] —1— < ¢'(y), f(y, z) >
=e WGy + f(y,2)) — Gly) — Gly) < ¢ (v), f(y, ) >]

= 2o <Gy +0f(5,7), f(3,7) X (3, ) > (4.32)

Note that
G"(y) =GW)g'(y) x ¢'(y) + G(v)9" (v)
It follows that

G" (W)l < AG(y),  forall ye H (4.33)
By (4.32),

lexplg(y + f(y,2)) —g(y)] — 1— < ¢'(y), f(y,z) > |

12



< Xexp(g(y + 0f(y,z)) — 9W)|f (v, 2)|%
= )\exp(< g'(y + elf(yax))a 9f(y,a:) >)|f(y,x)|§{

< Xexp(A2|f (y, ) )| (v, 2) - (4.34)

Applying Lemma 4.1, with the above choice of g, M} = exp(9(Y;) — g(y) —

fot h(Y;)ds) is an Fi-local martingale, where

h(y) =< —Ay,¢'(y) > +/ (explg(y+£(y, 7)) —9(y)]-1— < ¢'(y), f(y, z) >)v(dx)

< /X Nezp(NE £ (y, )\ £ (4, ) v (d)

< / Nexp(\ (@) ) | F () Byv(dz) = My < oo (4.35)
X
We now show (4.30). We have

P(sup |Viz >r) = P(sup g(¥z) > (14 \r?)?)
0<t<1 0<it<1

= P(sup (409 - g(0) - | h(Yo)ds + g(a) + [ nos) = (42

0<t<1

< P(sup (50 ~ o(0) - | h(¥)ds) + g(a) + My > (14 Ar)h)

0<t<1

= P(sup (9() - g(z) - / h(Y2)ds) > (1+ M)} — g(z) — My)

0<t<1

< B[ sup Mflezp(—(1+ Ar?)? + g(z) + M,) (4.36)
0<t<1

Choosing A large enough and using the martingale inequality, we obtain
(4.30).

Proposition 4.3 Assume (2.2) with A\ = 0 and also (H.5). Then for any
[>0,

Elexp(l]|Y|| £2(j0,115v))] < 00.

Proof. Let Z, = fol(l + \Y;|2) 2| |Y,]|2ds. We first prove that

P(Zy > 1) < exp(—aAr + My + (1 + A|z|%)?), (4.37)

where M) is the same constant as in (4.35). For A > 0, define g(y) =
(1+ Ay[%)z. Using (2.2) we have

_1
< —Ay,d(y) >= A1+ ANylH) 2 < —Ay,y >
< —aX(1+Ay[%) 2 |yl% (4.38)

13



So the estimate in (4.35) can be strengthened as follows:

h(y) < —aA(1+ Ay|%) 2| |y|[2 + M, (4.39)

Let M/, ¢t > 0 be defined as in the proof of Proposition 4.2. By (4.39), we
have

1
P(Z> 1) = Plad [ 1+ AN:[h) HIYi s > axn
0

< Pl +ax [0+ ATV s > )

= P00 ~ o) - [ ns + ) + [ s
rax [+ A ) HIYalds > an

< PO ~ o) — [ HORS) + ) + 00y > )

= P(g(v) — g(a) - / h(Y.)ds) > ar — g(z) — M)
< E[M{]ezp(—aAr + g(z) + M)

< exp(—aAr + g(z) + M) (4.40)

which proves (4.37). It is easy to see from (4.37) that for any [ > 0, one can
choose A; > 0 large enough so that Efexp(lZ),)] < co.Now for every A > 0,

1 3
Y] 220100y = ( / ||Ys|\2vds)
1

1 1 : :
< ( / (1+A\n|é)-f||m|\2vds) (1+A sup m@)
0

0<s<1

1
1 1 2
< §ZA+§(1+A sup \Ysl?q)

(4.41)
0<s<L1

By Holder inequality, for [ > 0,

Elexp(l||Y||z2(0,1-v))]

2 0<s<1

1
1 1 E
< E[exp(ilZA)eacp(—l<1 + A sup |Y:s|%r> )]

< (Blen(123)])  (Elean(t(1 A sup m@);)]); (1.42)

0<s<L1
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According to (4.37), we can choose A such that Elexp(lZ))] < co. On the

2
other hand Elexp(l (1 + Asupge,<; |Ysl7 | )] < oo for all X > 0 according to

Proposition 4.2. So we conclude that Elexp(l||Y||12(0,1]-v))] < oo proving
the Propiosition.

From now on we confine ourself to the special situation where f(y,z) =
f(z) is independent of y. Let f™(xz),m > 1 denote a sequence of Borel
measurable functions in L?(X — H,v). Consider the stochastic evolution
equations with additive noise:

—x—/ AY'ds + — / / f(z)Ny(ds, dx) (4.43)

DA —/ AY"™ds + — / / f™(x)Ny(ds, dz) (4.44)
0

where N, (ds, dz) denotes the compensated Poisson measure with intensity
measure nv.

Lemma 4.4 If a,, := sup, |f™(z) — f(z)|a = 0 as m — oo, then for any
6>0

1
lim limsup —logP( sup |Y;"" —Y*|y > 0) = —c0 (4.45)

m—=0 pyco T 0<t<1

Proof. Set Xi"™ = (V"™ —Y;). Then it is seen that

X o / X"mds+/ / (" (@)~ f(@)Na(ds. o)

Let h(y) be the function defined in the proof of Proposition 4.2 with f re-
placed by - o (f™ — f). Similarly as in the proof of Proposition 4.2 we have

1 1
) < ¢ [ eanle157(0) = F@) 1@ - @) )Po(da) < en
X m m
Applying the estimate (4.36) we get that for r > 0,

P(sup | X" ) < exp(—(1+ Ar®)2 + 1+ cn)

0<t<1

This gives that

P(sup [Y,"™ — Y}y > 6) = P(sup |X]"|y > —~0)
0<t<1 0<t<1 Qm

<erp(—(1+ )\(£(5)2)% +1+cn)

am

Therefore,

lim sup —logP( sup |V =Yy > 0)
n—oo T 0<t<1
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1 )
< limsup —[— (1 + A(—=6)2)% + 1 + en]

n—oo n m

< —)\i +c
a’m

Taking m — oo we get that

1
lim limsup —logP( sup |Y;"" — Y|y > 0) = —

m=0 psco N 0<t<1

For g € D([0,1] — V), define ¢(g) € D([0,1] — H) N L3([0,1] — V) as
the solution to the following equation:

oo = - | Agu(g)ds +9(t) (4.46)

Lemma 4.5 The mapping ¢ from D([0,1] — V) into ¢(g) € D([0,1] —
H)N L?([0,1] = V) is continuous in the topology of uniform convergence.

Proof. Let v(g) = ¢i(g) — g(t). it is easy to see that v(g) satisfies the

equation:
¢ t
g) = x—/ Avs(g)ds—/ Ag(s)ds
0 0

It suffices to show that the mapping
v(-) : D([0,1] = V) — D([0,1] = H)n L*([0,1] = V)

is continuous. Taking 8 < «, where « is the constant in (2.2), by chain rule
and using (2.2),

(oe(gn) — vr(g) 4 = —2 / < A(2(gn) — 0(9)). va(gn) — vs(g) > dis

_2/ < A(gn — 9)(5), v5(g0) — vs(g) > ds
< a/ [v5(gn) — )||Vds+A/0 |05 (9n) — vs(9)7ds

V* ds

2 / 05(gn) — 5(9) ]| A(gn — 9)(5)|
< a/ 0s(ga) — )|\Vds+A/ 10 (gm) — s(9) %yds
+B/ os(gn) — >||Vds+cﬂ/ 1A(gn — 9)(5)][}-ds

This gives that

ou(9n) = vl + (o= B / lo2(92) = vs(o)] s



t t
<) / (04 (9n) — vs(g)Pyds + Cil Al / g — 9(5) |2 ds

Applying Gronwall’s inequality it is easy to deduce that the mapping v(-) is
continuous, which completes the proof.

Let f € L*(X — V,v). For | € V*, define F(l) = [,[exp(< f(z),l >
) —1— < f(x),l >]v(dx). Set, for z € V,

F*(2) = sulz[< 2,0 > —F(l)] (4.47)

Let Y™ be the solution of (4.43) with f € L*(X — V,v). Let u, denote the
law of Y on D([0,1] — H).

Proposition 4.6 {u,,n > 1} satisfies a large deviation principle on D([0,1] —
H) with a rate functional I defined as follows: let k € D([0,1] — H), if
g(t) = k(t) —x + fOtAk(s)ds,t > 0 belongs to D([0,1] — V) and ¢ €
LY([0,1] = V), I(k) = [} F*(¢'(s))ds; otherwise I(k) = oc.

Proof. Let v, be the law of L [ [ f(2)N,(ds,dz) on D([0,1] — V). It
is proved in [A2] that {v,,n > 1} satisfies a large deviation principle on
D([0,1] — V) with a rate functional Iy given as follows: if g € D([0,1] — V)
and ¢’ € L}([0,1] — V), Io(g) = [, F*(¢'(s))ds; otherwise I(g) = oo. By
lemma 4.5, we know that p, is the image measure of v, under the continuous
map ¢. The Proposition 4.6 follows now from the contraction principle.

Now assume f € L?(X — H,v). Let u, be the law of the solution Y™ in
equation (4.43). Combing Lemma 4.4, Proposition 4.6 and Theorem 4.2.16
in [DZ] we obtain the following proposition.

Proposition 4.7 If there exists f™ € L*(X — V,v),m > 1 such that a,, =
sup, | f™(x) — f(z)|g — 0 as m — oo, then {u,,n > 1} satisfies a weak large
deviation principle on D([0,1] — H) with rate function given by

I(k) :=supliminf inf I,(z),

§>0 mM—0oo ZeBk,é

where By, 5 = {2;8UPg<s<1 |25 — ks|m < 0}, Iy 1s the rate function defined in
Proposition 4.6 with f replaced by f™.

Let f € L*(X — H,v). Forl € H, define F(l) = [, [exp(< f(z),l >)—1- <
f(z),l >|v(dx). Set, for z € H,

F*(z) = sup[< z,l > —F(l)] (4.48)

leEH

Define a functional Iy(-) on D([0,1] — H) as follows: if g € D([0,1] — H)
and ¢’ € L*([0,1] — H), Iy(g9) = fol F*(g'(s))ds; otherwise I(g) = cc.
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Lemma 4.8 Leta > 0.Then G = {|¢'|; Io(9) < a} is uniformly integrable on
the probability space ([0,1], B, m), where m denotes the Lebesgue measure.

Proof. G is uniformly integrable if and only if
(i) G is equi-absolutely continuous, i.e., for any given ¢ > 0, there exists
6 > 0 such that m(A) < ¢ implies [, |g'|zm(ds) < ¢ for all g € G.
. 1
(ii) sup,eg J, l9'|lm(ds) < oo.
We will modify the proof of Theorem 3.1 in [A2] to get (i) and (ii). Let
ai,b;,1 = 1,..n be any given numbers such that 0 < a; < by < as < by <
- < ap < by, < 1. For any partition 7 = {t{ = a; <t} <--- <t =0b} of
[ai, b;] and any 0t € H with |5}y <1, define B € M([0,1], H) by

p= ZZm T t}cl

i=1 k=0

where M([0,1], H) denotes the space of H — valued vector measures on
([0,1], B). Let p be the law of fo [ f(x)N(ds,dz) on H. Denote by fi
the characteristic functional of u. Then,

1
/ logi(B(s, 1])ds = Zzlogu — th1)
0

i=1 k=0
Let p > 0. By the characterization of I in [A2], for ¢ € G, we have

1 n  im
p/ <g,dB>=p) > <g(ti)— gt 1),m >
0

i=1 k=0

< / logii(pB(s, 1))ds + Io(g)

n  im
< SUPUOQM i) D 0D () + Lo(g)
=1 k=0

n

< log(/H exp(plz|g)p(dx)) z:(bz —a;)+a (4.49)

Taking superemum in (4.48) over all possible ni € H with |ni|z <1 we get

n

ZZ l9(t) — g(ti-)|m < p 1log(/ exp(plz|m)u(dr)) > (b —a;) + p'a

1=1 k=0 =1

(4.50)
Let V(g)[a, b] denote the total variation of g over the interval [a,b]. Taking
superemum in (4.49) over all possible partitions we obtain

n b;
S V(g)[as, b 2 / ) s = / 19/(5) | mds
i1 Uz, (aishi)
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n

<o oy [ eaplplalwude) S ti=a)+p e (@5D

i=1
For every ¢ > 0, choose first p, large enough such that py la < 5. Set § =

slo5 log ([, exp(pla|m)u(de))] e, T UL, (a;, b;) C [0,1] with m(UiL, (s, b:) <
4, by (4.50 ) we have fuﬂ_l(ai oy 19'(s)|nds < e. for all g € G. This implies (i).

Take particularly a; = 0,b; = 1 in the above proof to see that (ii) also holds.

Let T}, t > 0 denote the semigroup generated by —A. For g € L'([0,1] —
H), define the operator

¢
Ry(t) :/ Ti sg9(s)ds, t>0,
0

which is the mild solution of the equation:

o) =~ [ Ast)ts + [ als)as.

Proposition 4.9 Assume that Ty, t > 0 are compact operators. If G C
LY([0,1] — H) is uniformly integrable, then S = R(G) is relatively compact
in C([0,1] — H).

Proof. The proof is a modification of the proof of Proposition 8.4 in [PZ].
According to the infinite dimensional version of the Ascoli-Arzela theorem
we need to show
(i) for every t € [0, 1] the set {Rg(t); g € G} is relatively compact in H;
(ii) for every & > 0 there exists 6 > 0 such that if 0 < s <t < 1;t—5s <6,

[Rg(t) — Rg(s)|p <e forall geg (4.52)

To prove (i), fix t € (0,1] and define for € > 0 Reg(t) = Ot_s Ty _sg(s)ds.
Since

t—e
Reg(t) = Tg/ Ty c—s9(s)ds
0

and T,,e > 0 is compact, {R°g(t), g € G} is relatively compact in H for every
€ > 0. On the other hand,

Ro(0) = Rl <M [ 1o(6)lnas, (453

where M = supicjo,17||T3||- Since G is uniformly integrable, (4.52)implies that

lim._osup |R°g(t) — Rg(t)|g =0
9€g

which further implies that {Rg(t); g € G} is also relatively compact. Let us
now prove (ii). For 0 <t <t+4u <1, we have

|Rg(t +u) — Rg(t)| g
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t t+u
< [ 1 Tusas =Tl s + [ | Tovallos) s
0 t
=1y + 11
By the uniform integrability of G, it is clear that

t+u
hmsupII“<Mhmsup/ lg(s)|uds =0

0 geg 0 geg

Since the semigroup T is compact, ||T;1y—s — T;—s|| = 0 for any t — s > 0 as
u — 0. By the dominated convergence theorem, we have that

llm/ | Tiru—s — Ti—s||ds =0 (4.54)
Now we prove
hm sup Iy =0 (4.55)
=0 geg

For given € > 0, sine G is uniformly integrable one choose p > 0 such that
2M fg|>p 19(s)|mds < § for all g € G. For the fixed p > 0 above, there exists
0 > 0 such that u < § implies that

| ™

t
p/ ||71t—|—ufs - ,thstS S
0

for all t € [0,1]. Therefore if u < 4, for all g € G, t € [0, 1],

J;Z/H ||7}+u_s—Tt_5|||g(s)|Hd8+/ | Tiyus — Tisll|g(s) | mds
g|>p

lg|<p

t
<M |m@mw+p/unﬂﬂ—zbmw
0

lg/>p
<e (4.56)

This proves (ii), hence the Proposition.
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