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CONVERGENCE OF RESTARTED KRYLOV SUBSPACE METHODS
FOR STIELTJES FUNCTIONS OF MATRICES∗

ANDREAS FROMMER† , STEFAN GÜTTEL‡ , AND MARCEL SCHWEITZER†

Abstract. To approximate f(A)b—the action of a matrix function on a vector—by a Krylov
subspace method, restarts may become mandatory due to storage requirements for the Arnoldi basis
or due to the growing computational complexity of evaluating f on a Hessenberg matrix of growing
size. A number of restarting methods have been proposed in the literature in recent years and
there has been substantial algorithmic advancement concerning their stability and computational
efficiency. However, the question under which circumstances convergence of these methods can
be guaranteed has remained largely unanswered. In this paper we consider the class of Stieltjes
functions and a related class, which contains important functions like the (inverse) square root and
the matrix logarithm. For these classes of functions we present new theoretical results which prove
convergence for Hermitian positive definite matrices A and arbitrary restart lengths. We also propose
a modification of the Arnoldi approximation which guarantees convergence for the same classes of
functions and any restart length if A is not necessarily Hermitian but positive real.

Key words. matrix functions, Krylov subspace methods, restarted Arnoldi method, conjugate
gradient method, shifted linear systems, shifted GMRES method, harmonic Ritz values
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1. Introduction. When approximating

f(A)b,

the action of a function of a matrix A ∈ Cn×n on a vector b ∈ Cn by m iterations of
Arnoldi’s method [8, 21,25,30], one computes an Arnoldi decomposition

AVm = VmHm + hm+1,mvm+1ê
T
m, êm = (0, . . . , 0, 1)T ∈ Rm, (1.1)

where Hm = (hij) ∈ Cm×m is an upper Hessenberg matrix and the columns of
Vm = [v1, . . . , vm] ∈ Cn×m form an orthonormal basis of Km(A, b), the mth Krylov
subspace corresponding to A and b. One then approximates f(A)b in Km(A, b) by

fm = Vmf(Hm)V Hm b = ‖b‖2Vmf(Hm)ê1, ê1 = (1, 0, . . . , 0)T ∈ Rm. (1.2)

This procedure requires storing the full Arnoldi basis and evaluating f(Hm), a
function of an m ×m matrix. When a large number m of iterations is necessary to
approximate f(A)b with the desired accuracy, e.g., when A has eigenvalues near a
singularity of f , the approximation (1.2) may be practically infeasible due to storage
limitations and/or high computational complexity. To overcome this problem a num-
ber of restarting approaches have been proposed in the literature, where—similarly
to the techniques for linear systems—after a certain number of iterations the Arnoldi
basis is discarded and a new Arnoldi cycle is started to approximate the error of the
last iterate, cf. [1, 2, 10, 11, 16, 23, 35]. While much work has been devoted to tuning
the methods towards numerical stability and efficiency, there are only few theoretical
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results concerning the convergence of these methods. Finite termination at the ex-
act solution is guaranteed—at least in exact arithmetic—for the unrestarted Arnoldi
method in the sense that there exists m ≤ n with f(A)b = ‖b‖2Vmf(Hm)ê1. This is
not the case for the restarted variant where it might happen that the approximants
do not converge to the solution at all. Such unwanted behavior is well known in the
context of restarted GMRES for linear systems; see, e.g., [24,32,37,38]. We illustrate
by an example that this is also the case for the restarted Arnoldi method.

Example 1.1. For odd n ∈ N consider the matrix

A =



1 0 · · · 0 1
1 1 0 · · · 0

0 1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 1

 ∈ Rn×n, (1.3)

which is non-singular, det(A) = 2. Let êi denote the ith canonical unit vector and
take b = ê1 and the function f(z) = z−1. This means that f(A)b = A−1b is the
solution of the linear system Ax = b, and the restarted Arnoldi method reduces to
the restarted full orthogonalization method (FOM) [30,34]. The solution of the linear
system is given by

xi =

{
1
2 if i is odd,

− 1
2 if i is even.

(1.4)

When the restarted Arnoldi method with restart length m < n is applied to the linear

system Ax = b, the first Arnoldi basis V
(1)
m and the upper Hessenberg matrix H

(1)
m

in (1.1) are given by

V (1)
m = [ê1, ê2, . . . , êm] and H(1)

m =


1 0 · · · 0

1 1
. . .

...
...

. . .
. . . 0

0 · · · 1 1

 ∈ Rm×m. (1.5)

The matrix H
(1)
m is clearly non-singular, thus the Arnoldi approximation x

(1)
m =

V
(1)
m

(
H

(1)
m

)−1
ê1 from (1.2) is defined. A simple calculation shows that the corre-

sponding residual r
(1)
m = b − Ax (1)

m satisfies r
(1)
m = êm+1. To describe the situation

for further restart cycles let us agree that the lower indices ` in the canonical unit
vectors ê` are to be understood modulo n, i.e., ên+1 ≡ ê1, and so on. The second

restart cycle computes the Arnoldi basis V
(2)
m = [êm+1, . . . , ê2m], the same Hessen-

berg matrix H
(2)
m = H

(1)
m , and the residual r

(2)
m = ê2m+1. Continuing in this manner

we obtain that in all restart cycles the Hessenberg matrices are equal to the one
from (1.5) and that in the kth cycle the Arnoldi basis consists of the canonical unit

vectors ê(k−1)m+1, . . . , êkm, and r
(k)
m = êkm+1.

As a consequence, restarted FOM does not converge, since its residuals do not
tend to 0, for any restart value m ∈ {1, . . . , n − 1}. We note that in this example A
is normal and has the eigenvalues 1 + exp(2πij/n) (j = 1, . . . , n) which all lie in the
right half plane. We refer to [33] for further investigations of the arbitrary convergence
behavior of restarted FOM.
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Example 1.1 illustrates that we cannot guarantee the convergence of a restarted
Arnoldi method unless additional assumptions on A and/or f are made. We restrict
ourselves to the class of Stieltjes functions (see, e.g., [4, 5, 18]), which can be repre-
sented as a Riemann–Stieltjes integral

f(z) =

∫ ∞
0

1

t+ z
dµ(t), (1.6)

with respect to a function µ(t) which is monotonically increasing and positive on
[0,∞) and satisfies the condition∫ ∞

0

1

t+ 1
dµ(t) <∞. (1.7)

Simple examples of Stieltjes functions arise if µ(t) is a piecewise constant step
function with a finite number of (positive) jumps ξi at points ti, i.e.,

f(z) =
∑r

i=0

ξi
ti + z

.

Many other Stieltjes functions correspond to a differentiable function µ(t). In this
case (1.6) can be written as an ordinary (improper) Riemann integral∫ ∞

0

µ′(t)

t+ z
dt, (1.8)

cf., e.g., [18]. Two important examples of Stieltjes functions of this type are

z−α =
sin(απ)

π

∫ ∞
0

t−α

t+ z
dt for α ∈ (0, 1)

and

log(1 + z)

z
=

∫ ∞
1

t−1

t+ z
dt. (1.9)

More examples of Stieltjes functions can be found in, e.g., [4, 5, 18].
The few theoretical results concerning the convergence of the restarted Arnoldi

method for matrix functions available in the literature [2, 10] are based on approxi-
mation theory and make use of bounds for the error of interpolating polynomials for
certain classes of analytic functions, using the connection between Krylov subspace
methods and polynomial interpolation (as explained in, e.g., [12,30]). Here we take a
different approach, using the intimate relation between Arnoldi’s method for matrix
functions and FOM for families of shifted linear systems [34], as well as a similar
relation with the “shifted GMRES” method from [15].

The remainder of this paper is organized as follows. In section 2 we briefly review
the ideas behind restarted Krylov subspace methods for f(A)b without going into
algorithmic details. We also reproduce known convergence results for the restarted
Arnoldi method in this section and formulate a new result on the monotonic decrease
of the Euclidean norm of the error. In section 3 we discuss the relation between the
Arnoldi approximation of matrix functions and FOM for families of shifted linear
systems. In section 4 we prove convergence of the restarted Arnoldi method with
arbitrary restart length for Stieltjes functions and a class of related functions when



4 A. FROMMER, S. GÜTTEL AND M. SCHWEITZER

A is Hermitian positive definite. Thick restarts as a means towards accelerating
convergence are briefly discussed in section 5. A modification of Arnoldi’s method
using harmonic Ritz values as interpolation points and the corresponding convergence
theory for non-Hermitian, positive real matrices are presented in section 6. We end
with results of some numerical experiments in section 7.

2. Restarted Arnoldi approximations for f(A)b. The main idea when re-
starting Arnoldi’s method for matrix functions is to apply an additive correction

f (2)
m = f (1)

m + e(1)
m ,

where f
(1)
m denotes the approximation (1.2) obtained from m iterations of the standard

Arnoldi method and e
(1)
m is an approximation of the error f(A)b − f

(1)
m obtained by

m iterations of a new Arnoldi cycle. Repeated application of this additive correction

leads to approximations f
(k)
m for f(A)b with

f (k)
m = f (k−1)

m + e(k−1)
m , k = 2, 3, . . . .

A requirement for employing this approach is to have a representation of the error

f(A)b − f
(1)
m in the form e

(1)
m (A)v (1), with a new function e

(1)
m (z) and a new vector

v (1), in order to again apply Arnoldi’s method for approximating it. A first result in

this direction was given in [10], characterizing the restart function e
(1)
m (z) as the mth

order divided difference [6] of f(z) with respect to the Ritz values, i.e., the eigenvalues
of Hm; see also [23]. For functions representable by a “Cauchy-type” integral, an
integral representation of the restart function instead of a representation using divided
differences was given in [16], which was then used to develop a numerically stable
restart procedure. We rephrase this result for Stieltjes functions.

Theorem 2.1. Let f be a Stieltjes function. Assume spec(A) ∩ (−∞, 0] =
∅ and denote by fm the mth Arnoldi approximation (1.2) to f(A)b. Assume that
spec(Hm) = {θ1, . . . , θm} satisfies spec(Hm) ∩ (−∞, 0] = ∅ and define

em(z) = (−1)m+1‖b‖2γm
∫ ∞

0

1

wm(t)
· 1

z + t
dµ(t), z 6∈ (−∞, 0], (2.1)

where wm(t) = (t+ θ1) · · · (t+ θm) and γm =
∏m
i=1 hi+1,i. Then

f(A)b − fm = em(A)vm+1, (2.2)

where vm+1 is the (m+ 1)st Arnoldi vector.
This result is contained in [16, Thm 3.2] for the case when µ is differentiable and

thus f is of the form (1.8).∗ For general µ the proof of (2.2) can be done in an identical
manner, so we refrain from reproducing it here. Inductively, Theorem 2.1 also yields

a representation for the error f(A)b − f
(k)
m of the restarted Arnoldi approximation

f
(k)
m after k restart cycles. For its formulation we continue to systematically use an

upper index in brackets to distinguish quantities from the various cycles. We then
have

f(A)b − f (k)
m = e(k)

m (A)v
(k)
m+1, (2.3)

∗In [16] the integration interval is (−∞, 0], i.e., the integration variable t is transformed as t→ −t.
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where

e(k)
m (z) = (−1)k(m+1)‖b‖2

(∏k

j=1
γ(j)
m

)∫ ∞
0

1∏k
j=1 w

(j)
m (t)

· 1

z + t
dµ(t). (2.4)

For f a Stieltjes function and A Hermitian positive definite, the Ritz values θi are
all real and positive. The conditions spec(A)∩(−∞, 0] = ∅ and spec(Hm)∩(−∞, 0] =
∅ are then always fulfilled, and the nodal polynomial wm(t) = (t + θ1) · · · (t + θm) is
positive for t ≥ 0. Therefore, 1/wm(t) is also positive, and there exists a constant
α > 0 such that 1/wm(t) ≤ α

1+t for t ≥ 0. Together with (1.7) this shows that

µ̃(t) =

∫ t

0

1

wm(τ)
dµ(t)

is defined and has a finite value for all t ≥ 0. Since

dµ̃(t) =
1

wm(t)
dµ(t),

this yields the following proposition.
Proposition 2.2. Let f be a Stieltjes function and A ∈ Cn×n be Hermitian

positive definite. Then the error function em(z) from (2.1) is a scalar multiple of a
new Stieltjes function,

em(z) = (−1)m+1‖b‖2γm
∫ ∞

0

1

z + t
dµ̃(t). (2.5)

In Algorithm 1 we summarize a generic form of the restarted Arnoldi method
based on an error function representation. We refer the reader to [16] for a detailed
description of the method when the restart function from (2.2) is evaluated via nu-
merical quadrature, or to [2] for a different approach using a rational approximation
of f .

Algorithm 1: Restarted Arnoldi method for f(A)b from [10] (generic version).

Given: A, b, f , m

Compute the Arnoldi decomposition AV
(1)
m = V

(1)
m H

(1)
m + h

(1)
m+1,mv

(1)
m+1ê

T
m

with respect to A and b.

Set f
(1)
m := ‖b‖V (1)

m f(H
(1)
m )ê1.

for k = 2, 3, . . . until convergence do

Determine the error function e
(k−1)
m (z).

Compute the Arnoldi decomposition AV
(k)
m = V

(k)
m H

(k)
m + h

(k)
m+1,mv

(k)
m+1ê

T
m

with respect to A and v
(k−1)
m+1 .

Set f
(k)
m := f

(k−1)
m + V

(k)
m e

(k−1)
m (H

(k)
m )ê1.

There are two main results on the convergence of the restarted Arnoldi method
in the literature so far. In [10] it is proven that for entire functions of order one (this
class contains the exponential function as an important special case), superlinear
convergence can be guaranteed for all restart lengths m.
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Theorem 2.3 (Theorem 4.2 and Corollary 4.3 in [10]). Let A ∈ Cn×n, b ∈ Cn,
and let f be an entire function of order one. Then there exist constants C and γ
independent of m and k such that

‖f(A)b − f (k)
m ‖2 ≤ C

γkm−1

(km− 1)!
‖b‖2 for all k. (2.6)

The proof of Theorem 2.3 relies on convergence results for polynomials of best
uniform approximation to entire functions of order one, see [13].

The second main convergence result, proven in [1], relies on a different approach.
It uses the fact that the sequence of Ritz values being generated by the restarted
Arnoldi method with restart length m = 1 applied to a Hermitian positive definite
matrix A asymptotically alternates between only two values ϑ1 and ϑ2, so that the
corresponding approximation can be asymptotically characterized as an interpolation
process with only two nodes. Using several additional results on the asymptotic
behavior of the Arnoldi basis vectors, it was then proven in [1] that the restarted
Arnoldi approximation with m = 1 converges at least linearly for a class of functions
which contains the Stieltjes functions.

Theorem 2.4 (Corollary 5.5 in [1]). Let A ∈ Cn×n be Hermitian positive definite,
b ∈ Cn, and let λmin and λmax denote the smallest and largest eigenvalue of A,
respectively. Let f be a function analytic in [λmin, λmax] which has no singularities
in C \ R. Then the restarted Arnoldi method with restart length m = 1 converges to
f(A)b with asymptotic convergence factor at least

λmax − λmin

|ζ − λmax|+ |ζ − λmin|
, (2.7)

where ζ is a singularity of f which is closest to [λmin, λmax].
Note that Arnoldi with restart length m = 1 can be seen as a generalization of

the method of steepest descent for matrix functions (see [2]). While the two-cyclic
behavior of Ritz values can also be observed for larger restart lengths, a generalization
of Theorem 2.4 for m > 1 is currently unknown.

A third, weaker but noteworthy result is from [14], see also [7].
Theorem 2.5. Let f be a Stieltjes function, A ∈ Cn×n Hermitian positive definite

and let fm denote the approximation obtained with m iterations of Arnoldi’s method
(without restarts). Then

‖f(A)b − fm+1‖2 < ‖f(A)b − fm‖2 for all m with fm 6= f(A)b,

i.e., the Euclidean norm of the error decreases strictly monotonically.
In the light of Proposition 2.2 this generalizes to the restarted Arnoldi method.
Corollary 2.6. Under the assumptions of Theorem 2.5, the approximations

f
(k)
m obtained via the restarted Arnoldi method satisfy

‖f(A)b − f (k+1)
m ‖2 < ‖f(A)b − f (k)

m ‖2 for all k unless f (k)
m = f(A)b.

Corollary 2.6 only shows that the errors are monotonically decreasing in the Eu-
clidean norm, but it does not state that the errors tend to 0. However, it complements
the asymptotic result from Theorem 2.4 for Stieltjes functions (and restart length
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m = 1) as it shows that the convergence is monotone in the Euclidean norm from the
very first cycle.

The next two sections will show that moving from the Euclidean norm to the
energy norm will allow us to give stronger convergence results for Stieltjes functions
of Hermitian positive definite matrices.

3. Approximating f(A)b and the FOM iterates for shifted linear sys-
tems. For t ≥ 0 let xm(t) = ‖b‖2Vm(Hm + tI)−1ê1 denote the mth FOM iterate for
the shifted linear system

(A+ tI)x = b

with initial guess x0(t) = 0 and spec(A)∩(−∞, 0] = ∅. For the Arnoldi approximation
fm for f(A)b with a Stieltjes function f(z) =

∫∞
0

1
t+z dµ(t) we then have

fm = ‖b‖2Vmf(Hm)ê1 =

∫ ∞
0

‖b‖2Vm(Hm + tI)−1ê1 dµ(t) =

∫ ∞
0

xm(t) dµ(t).

The respective FOM residuals rm(t) = b − (A+ tI)xm(t) satisfy

rm(t) =
(−1)m+1‖b‖2γm

wm(t)
vm+1. (3.1)

This is known from [31], and it also follows by applying (2.1) to the function f(z) =
(z + t)−1 represented as a Stieltjes function with the step function µ having exactly
one jump of size 1 at t. Using Theorem 2.1 we see that the error em = f(A)b − fm
can be represented as

em = em(A)vm+1 =

∫ ∞
0

(A+ tI)−1rm(t) dµ(t) =

∫ ∞
0

em(t) dµ(t), (3.2)

where em(t) = (A+tI)−1b−xm(t) is the error of the mth FOM iterate for the system
(A+ tI)x = b. A similar result holds for analytic functions using the Cauchy integral
representation; see, e.g., [11, 21,30].

We proceed to show that this representation carries over to the restarted case, thus
following [11] where this was done for functions with a Cauchy integral representation.
Restarting FOM for the system (A+ tI)x = b after k cycles of length m means that

given the current approximation x
(k)
m and its residual r

(k)
m we compute a correction

for x
(k)
m by applying m iterations of FOM to the system (A + tI)e(k)(t) = r

(k)
m (t),

yielding

x (k+1)
m (t) = x (k)

m (t) + e(k)
m (t) with e(k)

m (t) = ‖b‖2V (k)
m (H(k)

m + tI)−1ê1.

Inductively, using (3.1), we see that for all t ≥ 0 the residual r
(k)
m (t) satisfies

r (k)
m (t) = (−1)k(m+1)‖b‖2

∏k
j=1 γ

(j)
m∏k

j=1 w
(j)(t)

v
(k)
m+1.

Using (2.3) and (2.4), this shows that for the errors e
(k)
m = f(A)b − f

(k)
m os the

restarted Arnoldi approximations f
(k)
m we have

e(k)
m = e(k)

m (A)v
(k)
m+1 =

∫ ∞
0

(A+ tI)−1r (k)
m (t) dµ(t) =

∫ ∞
0

e(k)
m (t) dµ(t). (3.3)
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Our approach to prove convergence of the restarted Arnoldi method for Stieltjes
functions is based on known convergence results for the (restarted) FOM iterates for
(A + tI)x = b. For A Hermitian positive definite and t ≥ 0, the matrix A + tI is
Hermitian positive definite as well and (restarted) FOM is mathematically equivalent
to (restarted) CG. Of course, restarted CG seems not to be a method with great
practical use. However, the convergence theory available for CG can also be applied
to restarted CG, and this will allow us to establish the convergence of the restarted
Arnoldi method for Stieltjes functions of Hermitian positive definite matrices in the
next section. We end the present section by recalling the classical convergence result
for CG which uses the energy norm

‖e‖A =
√
eHAe .

Theorem 3.1 (see, e.g., [31]). Let A ∈ Cn×n be Hermitian positive definite and
x0, b ∈ Cn. Further, let x ∗ denote the solution of the linear system Ax = b and let
xm be the mth CG iterate with initial guess x0. Let κ = λmax

λmin
denote the condition

number of A and define

c =

√
κ− 1√
κ+ 1

and αm =
1

cosh(m ln c)
. (3.4)

Then the energy norm of the error in the CG method satisfies

‖x ∗ − xm‖A ≤ αm‖x ∗ − x0‖A.

4. Convergence of restarted Arnoldi for Stieltjes matrix functions. Us-
ing the tools from section 2 and section 3, we will now derive our main results for
positive definite A. Our starting point is the following lemma, which provides a first
generalization of Theorem 3.1 to the matrix function case.

Lemma 4.1. Let A ∈ Cn×n be Hermitian positive definite, b ∈ Cn, and let f be

a function of the form (1.6) and f
(k)
m the approximation to f(A)b from k cycles of

Arnoldi’s method with restart length m. Let λmin and λmax denote the smallest and
largest eigenvalue of A, respectively, and define the functions

κ(t) =
λmax + t

λmin + t
, c(t) =

√
κ(t)− 1√
κ(t) + 1

, and αm(t) =
1

cosh(m ln c(t))
. (4.1)

The energy norm of the error of f
(k)
m is then bounded by

‖f(A)b − f (k)
m ‖A ≤ ‖b‖2

√
λmax

∫ ∞
0

αm(t)k√
λmin + t ·

√
λmax + t

dµ(t). (4.2)

Proof. By using (3.3), we can write

f(A)b − f (k)
m =

∫ ∞
0

e(k)
m (t) dµ(t),

where e
(k)
m (t) denotes the error of the approximation x

(k)
m (t) from k cycles of restarted

CG with restart length m for the shifted linear system (A+ tI)x = b. This yields

‖f(A)b − f (k)
m ‖A ≤

∫ ∞
0

‖e(k)
m (t)‖A dµ(t)

≤
∫ ∞

0

√
λmax√

λmax + t
‖e(k)
m (t)‖A+tI dµ(t),
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where we used that ‖v‖A ≤
√
λmax/(λmax + t) · ‖v‖A+tI holds for all t ∈ [0,∞) since

vH(A+ tI)v = vHAv + tvHv and vHAv ≤ λmaxv
Hv . We now apply Theorem 3.1

for the shifted matrices A + tI which are positive definite for t ∈ [0,∞). Using the
fact that the kth cycle of restarted CG can be interpreted as performing m iterations

of CG with initial guess x
(k−1)
m (t), the result of the previous cycle, and denoting the

solution of (A+ tI)x = b by x ∗(t), we obtain

‖f(A)b − f (k)
m ‖A ≤

√
λmax

∫ ∞
0

αm(t)√
λmax + t

‖x ∗(t)− x (k−1)
m (t)‖A+tI dµ(t),

with αm(t) from (4.1). Repeatedly applying the CG estimate for all t throughout
all restart cycles and using the fact that the initial guess of the first restart cycle is
x0(t) = 0 for all t, we conclude that

‖f(A)b − f (k)
m ‖A ≤

√
λmax

∫ ∞
0

αm(t)k√
λmax + t

‖x ∗(t)‖A+tI dµ(t). (4.3)

As x ∗(t) = (A+ tI)−1b, a straightforward calculation shows that

‖x ∗(t)‖A+tI ≤
‖b‖2√
λmin + t

. (4.4)

Inserting (4.4) into (4.3) completes the proof.
Lemma 4.1 gives a bound for the energy norm of the error when approximating

a Stieltjes matrix function by the restarted Arnoldi method with arbitrary restart
length m. It is, however, not immediately clear whether the right-hand side of (4.2)
tends to zero as k →∞, or even whether it is finite at all. We now further investigate
the integral on the right-hand side of (4.2) and prove that it is always finite and tends
to zero, thus proving convergence for all Stieltjes functions. To do so we need the
following auxiliary result on the monotonicity of the function αm(t) from (4.1).

Proposition 4.2. The function αm(t) from (4.1) is monotonically decreasing
on [0,∞).

Proof. As a function of t ∈ [0,∞), κ decreases monotonically from κ(0) to 1, c
increases monotonically from c(κ(0)) to 1 as a function of κ ∈ [κ(0),∞), and αm in-
creases monotonically as a function of c ∈ [c(κ(0)), 1). Altogether, thus, αm decreases
monotonically as a function of t.

With these prerequisites, we are prepared to give our first main result.
Theorem 4.3. Let A ∈ Cn×n be Hermitian positive definite, b ∈ Cn, f a

function of the form (1.6), and f
(k)
m the approximation from k cycles of Arnoldi’s

method with restart length m. Further, let αm(t) be defined as in (4.1) and let t0 ≥ 0

be the left endpoint of the support of µ. The energy norm of the error of f
(k)
m can then

be bounded as

‖f(A)b − f (k)
m ‖A ≤ Cαm(t0)k, (4.5)

where

C = ‖b‖2
√
λmax · f

(√
λminλmax

)
(4.6)

is a constant independent of m and k, and 0 ≤ αm(t0) < 1. In particular, the restarted
Arnoldi method converges for all restart lengths m ≥ 1.
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Proof. We begin by using Lemma 4.1 and Proposition 4.2 to estimate

‖f(A)b − f (k)
m ‖A ≤ ‖b‖2

√
λmax

∫ ∞
0

αm(t)k√
λmin + t ·

√
λmax + t

dµ(t)

≤ ‖b‖2αm(t0)k
√
λmax

∫ ∞
0

1√
λmin + t ·

√
λmax + t

dµ(t) . (4.7)

The geometric mean
√
λminλmax of λmin and λmax satisfies

1√
λmin + t ·

√
λmax + t

≤ 1√
λminλmax + t

.

Using this in (4.7) we obtain

‖f(A)b − f (k)
m ‖A ≤ ‖b‖2αm(t0)k

√
λmax

∫ ∞
0

1√
λminλmax + t

dµ(t).

The integral on the right-hand side is f(
√
λminλmax), which completes the proof.

Using ‖v‖2 ≤ 1√
λmin
‖v‖A for all v ∈ Cn, Theorem 4.3 implies the bound

‖f(A)b − f (k)
m ‖2 ≤ C̃αm(t0)k, where C̃ = ‖b‖2

√
κ(0)f(

√
λminλmax) (4.8)

for the Euclidean norm of the error.
We proceed by discussing two “extremal” cases of the error bounds given in (4.5)

and (4.8). The first one is restart length m = 1, the situation considered in [1]. Then

α1(t0) =
λmax − λmin

λmax + λmin + 2t0
=

λmax − λmin

| − t0 − λmax|+ | − t0 − λmin|
,

so that we recover exactly the asymptotic convergence factor from Theorem 2.4 since
for a Stieltjes function f and A Hermitian positive definite, the singularity of f nearest
to [λmin, λmax] is always ζ = −t0.

The second extremal case is k = 1, i.e., the unrestarted Arnoldi method.
Corollary 4.4. Let the assumptions of Theorem 4.3 hold and let fm be the

approximation to f(A)b after m iterations of the unrestarted Arnoldi method. The
energy norm of the error of fm can then be bounded as

‖f(A)b − fm‖A ≤ Cαm(t0), (4.9)

where C is the constant from (4.6).
The bound from (4.9) is, up to the factor C, the same bound as the standard

bound for CG convergence for the linear system (A+t0I)x = b obtained by bounding
the CG polynomials with the Chebyshev polynomials. This bound does not incorpo-
rate superlinear convergence effects due to spectral adaptation. We will give a result
in this direction (Theorem 6.6) at the end of section 6.

It is possible to generalize the result of Theorem 4.3 to another class of functions
closely related to Stieltjes functions, namely functions of the form f(z) = zf̃(z),

where f̃ is a Stieltjes function. Notable examples are the positive fractional powers
zα = zzα−1 for α ∈ (0, 1), including the square root, and the logarithm log(1 + z) =

z log(1+z)
z . The error representation for these functions is closely related to the one

for Stieltjes functions. The result was given in [16] for functions with a Cauchy-type
integral representation. As before, we rephrase it in terms of Stieltjes functions.
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Proposition 4.5 (Corollary 3.4 in [16]). Let the assumptions of Theorem 2.1

hold for the function f̃ and let f(z) = zf̃(z). Denote by fm the mth Arnoldi approxi-
mation (1.2) to f(A)b. Then

f(A)b − fm = Aem(A)vm+1 − hm+1,m

(
êTmf(Hm)ê1

)
vm+1, (4.10)

where em is the error function for f̃ from Theorem 2.1.
We assume that the restart procedure is implemented as suggested in [16], which

means that the second term in (4.10) is evaluated exactly before each restart (all
necessary quantities are known) and then added to the Arnoldi iterate, giving the
approximation f̂m. Then the error is given by

f(A)b − f̂m = (−1)m+1‖b‖2γmA
∫ ∞

0

1

wm(t)
(A+ tI)−1vm+1 dµ(t). (4.11)

We can now formulate the following convergence result for this restarted Arnoldi
method. It follows by using exactly the same techniques as in the proofs of Lemma 4.1
and Theorem 4.3, now applied to the error representation (4.11), and it makes use of
the fact that ‖A‖A = λmax.

Theorem 4.6. Let A ∈ Cn×n be Hermitian positive definite, b ∈ Cn, f(z) =

zf̃(z) where f̃ is a Stieltjes function as in (1.6). Let f̂
(k)
m be the approximation from

k cycles of Arnoldi’s method with restart length m for f(A), let αm(t) be defined as
in (4.1), and let t0 ≥ 0 be the left endpoint of the support of µ. Then, if the restart
method is implemented as described above,

‖f(A)b − f̂ (k)‖A ≤ λmaxCαm(t0)k

and

‖f(A)b − f̂ (k)‖2 ≤ λmaxC̃αm(t0)k,

where C and C̃ are the constants from Theorem 4.3 and from (4.8), respectively. In

particular, the restarted Arnoldi method for f(z) = zf̃(z) converges for all restart
lengths m ≥ 1.

5. Thick restarts. Thick restarts were introduced in [28] and then [11] as a
means to accelerate the convergence of the Arnoldi method similar in spirit to deflated
restarts in Krylov subspace methods for solving linear systems; see, e.g., [26, 27].
Without going too far into the technical details, we now sketch how the previous
convergence results carry over to thick restarts.

The idea of thick restarts is to use information on the spectrum of A gained in
cycle k to effectively deflate eigenvalues close to a singularity of f . For A Hermitian
and positive definite and f a Stieltjes function, this means that we target at deflating
the smallest eigenvalues. Technically, instead of the standard Arnoldi decomposition
(1.1), we now compute for each cycle k > 1 an Arnoldi-like relation of the form

AW
(k)
`+m = W

(k)
`+mG

(k)
`+m + v (k)êT`+m, W

(k)
`+m ∈ Cn×(`+m), G

(k)
`+m ∈ C(`+m)×(`+m),

where W
(k)
`+m has orthonormal columns which span the sum of a deflation subspace of

dimension ` and the Krylov subspace Km(A, v (k−1)). For a Stieltjes function f this
implies that we get a relation analogous to (3.3)

e
(k)
`+m = e

(k)
`+m(A)v (k) =

∫ ∞
0

(A+ tI)−1r
(k)
`+m(t) dµ(t) =

∫ ∞
0

e
(k)
`+m(t) dµ(t),
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where all residuals r
(k)
`+m(t) are collinear with v (k) and e

(k)
`+m(t) = (A+ tI)−1r

(k)
`+m(t)

is the error of the restarted deflated FOM iterate x
(k)
`+m(t) for (A + tI)x = b after

cycle k, i.e.,

x
(k)
`+m(t) = x

(k−1)
`+m +W

(k−1)
`+m

(
G

(k−1)
`+m + tI

)−1(
W

(k−1)
`+m

)H
r

(k−1)
`+m (t).

Noting that x
(k−1)
`+m + W

(k−1)
`+m

(
G

(k−1)
`+m + tI

)−1(
W

(k−1)
`+m

)H
r

(k−1)
`+m (t) minimizes the en-

ergy norm ‖x − (A + tI)−1r
(k−1)
`+m (t)‖A+tI over x

(k−1)
`+m + colspan(W

(k)
`+m) and that

colspan(W
(k)
`+m) contains Km(A, v (k−1)), we obtain

‖e(k)
`+m(t)‖A+tI ≤ αkm(t) ‖(A+ tI)−1b‖A+tI

with αm(t) from (4.1). We thus arrive at the following generalization of Theorem 4.3.
Theorem 5.1. Under the same assumptions as in Theorem 4.3, the approxima-

tions f
(k)
`+m for f(A)b obtained with the thick restarting approach satisfy

‖f(A)b − f
(k)
`+m‖A ≤ Cαm(t0)k, C = ‖b‖2

√
λmax · f(

√
λminλmax). (5.1)

The interest of this theorem is that it shows that the thick restarting method
converges. Its drawback is that (5.1) does not at all reflect the acceleration of conver-
gence which thick restarts are aiming at. A more precise analysis would have to take

into account how well colspan(W
(k)
`+m) approximates the smallest eigenvectors of A,

and elaborating on this is beyond the scope of this paper. In fact, a rigorous analysis
of these effects would need to take into account not only the extremal eigenvalues of
A, but the distribution of all eigenvalues and the components of b in the eigenvector
basis of A. Practically, one usually observes that after some number of, say, k0 cycles,
the eigenvectors corresponding to the ` smallest eigenvalues are very well approxi-

mated by a subspace of colspan(W
(k)
`+m), so that from then on one can replace αm(t0)

in (5.1) by its effective counterpart

αeff
m (t0) =

1

cosh(m ln ceff)
, ceff =

√
κeff − 1√
κeff − 1

, κeff =
λmax + t0
λeff

min + t0
,

where λeff
min is the (m + 1)st smallest eigenvalue of A. The bound (5.1) is then to be

replaced by the estimate

‖f(A)b − f
(k)
`+m‖A . C

(
αm(t0)

)k0(
αeff
m (t0)

)k−k0
.

6. Restarted harmonic Arnoldi for Stieltjes matrix functions. Any ma-
trix function f(A) is identical to a polynomial matrix function qf,A(A), where qA,f is
the polynomial of degree ≤ n − 1 which interpolates f at spec(A); see, e.g., [19, 22].
Interpolation is to be understood in the Hermite sense; more precisely, at each eigen-
value λ all derivatives of f and qA,f have to coincide up to order ind(λ) − 1, where
ind(λ) is the size of the largest Jordan block for λ. By results from [12, 30], we have
q(A)b = Vmq(Hm)V Hm b for any polynomial q of degree ≤ m − 1, hence the Arnoldi
approximation fm from (1.2) can also be characterized as fm = qHm,f (A)b, where
qHm,f interpolates f at the eigenvalues of Hm which are the (standard) Ritz values
of A with respect to the Krylov subspace Km(A, b).
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The purpose of this section is to show that an alternative Krylov subspace ap-
proximation, based on polynomial interpolation at the harmonic Ritz values instead
of the standard Ritz values, allows us to enlarge the class of matrices for which we can
prove convergence of a restarting method. This class will be the positive real matrices,
i.e., matrices A for which Re(vHAv) > 0 for all v ∈ Cn, v 6= 0. The matrix A from
Example 1.1 is positive real, and we showed that even for the simple Stieltjes function
f(z) = z−1 there is no convergence with the standard restarted Arnoldi method, i.e.,
when we interpolate at the standard Ritz values.

Definition 6.1. The harmonic Ritz values of A ∈ Cn×n with respect to a sub-
space U ⊆ Cn are those numbers ϑ ∈ C for which there exists x ∈ U , x 6= 0 such
that

Ax − ϑx ⊥ AU .

We note that the standard Ritz values θ are those for which Ax ′ − θx ′ ⊥ U for
some x ′ 6= 0 and that for non-singular A the value ϑ is a harmonic Ritz value with
respect to U if and only if ϑ−1 is a standard Ritz value for A−1 with respect to AU .
From now on we will consider Krylov subspaces U = Km(A, b) and no longer explicitly
mention the dependence of the (harmonic) Ritz values on the subspace. The following
known results on harmonic Ritz values are key to formulating a restarted harmonic
Arnoldi method for matrix functions and its analysis for Stieltjes functions. We also
refer to [20] where interpolation at harmonic Ritz values has been discussed in the
context of the unrestarted Arnoldi method.

Lemma 6.2. Consider the Arnoldi decomposition (1.1).

(i) The harmonic Ritz values of A with respect to Km(A, b) are the eigenvalues
of the matrix

H̃m = Hm +
(
hm+1,mH

−1
m êm

)
êTm.

(ii) Let u ∈ Cn be any vector and Ĥm = Hm + uêHm . Then for any polynomial q
of degree ≤ m− 1 we have

Vmq(Ĥm)V Hm b = q(A)b.

(iii) With qH̃m+tI,f the polynomial which interpolates f at the spectrum of H̃m+tI,

f(H̃m + tI) = qH̃m+tI,f (H̃m + tI), we have for all t ∈ C

VmqH̃m+tI,f (H̃m + tI)V Hm b = qH̃m+tI,f (A+ tI)b.

(iv) For f(z) = z−1, let qH̃m,()−1 be the polynomial interpolating f at spec(H̃m),

and let pm(z) = 1− zqH̃m,()−1(z). Put x̃m(t) = Vm(H̃m + tI)−1V Hm b. Then

r̃m(t) := b − (A+ tI)x̃m(t) = ηm(t)r̃m(0),

where

ηm(t) =
1

pm(−t)
, r̃m(0) = pm(A)b. (6.1)
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Proof. Part (i) can be found in, e.g., [29]. For u = 0 part (ii) was shown in [30];

for the matrix H̃m (i.e., u = hm+1,mH
−1
m êm) the result was given in [36]. The proof

for the general case follows in the same manner, i.e., by inductively establishing that
VmĤ

j
mV

H
m b = Ajb for j = 0, 1, . . . ,m − 1. For part (iii) we use the shift invariance

of the Arnoldi relation (1.1),

AVm = VmHm + hm+1,mvm+1ê
T
m ⇒ (A+ tI)Vm = Vm(Hm + tI) + hm+1,mvm+1ê

T
m

for all t ∈ C, and apply (ii) to the matrixA+tI and the rank-1 modification (Hm+tI)+
(hm+1,mH

−1
m êm)êTm of Hm + tI. We note in passing that for t 6= 0 the harmonic Ritz

values of A + tI are not the eigenvalues of H̃m + tI. To show (iv) let qH̃m+tI,()−1(z)

interpolate 1/z at spec(H̃m + tI) = spec(H̃m) + t. Then r̃m(t) = pm,t(A + tI)b
with pm,t(z) = 1− zqH̃m+t,()−1(z). For each t the polynomial pm,t of exact degree m

interpolates the zero function at spec(H̃m+tI) and is normalized to satisfy pm,t(0) = 1.
In particular, with ϑi (i = 1, . . . ,m) denoting the (possibly multiple) eigenvalues of

H̃m, we have

pm,0(z) =
∏m

i=1

(
1− z

ϑi

)
(6.2)

and

pm,t(z) =
∏m

i=1

(
1− z

ϑi + t

)
=

1

pm,0(−t)
pm,0(z − t), (6.3)

the last equality holding because the polynomial on the right-hand side has the same
zeros as pm,t and attains the value 1 at z = 0.

Let us reserve the term harmonic Arnoldi approximation for the approximation
f̃m := qH̃m,f

(A)b for f(A)b, where the polynomial qH̃m,f
interpolates f at the har-

monic Ritz values of A. By Lemma 6.2 we have

f̃m = Vmf(H̃m)V Hm b,

and with f a Stieltjes function, f(z) =
∫∞

0
1
t+z dµ(t), we obtain the representation

f̃m = Vm

∫ ∞
0

(H̃m + tI)−1 dµ(t)V Hm b.

Similarly to (3.2), the error of the harmonic Arnoldi approximation is

ẽm =

∫ ∞
0

(A+ tI)−1r̃m(t) dµ(t) =

∫ ∞
0

ηm(t)(A+ tI)−1 dµ(t) · r̃m(0)

with ηm(t) from (6.1). We thus have ẽm = ẽm(A)r̃m(0) with the error function

ẽm(z) =

∫ ∞
0

ηm(t)

z + t
dµ(t). (6.4)

Alternative representations for ẽm(z) are possible, for example as a divided differ-
ence with respect to the harmonic Ritz values (see, e.g., [10] where a divided difference
representation was derived for arbitrary interpolating polynomials). However, the in-
tegral representation (6.4) for Stieltjes functions has the same two crucial advantages
as has (2.1) and (2.2) for the standard Arnoldi approximation: it allows for a stable
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numerical implementation of restarts based on numerical quadrature, and it is the
starting point of our convergence analysis for the case that A is positive real. Note
that we have

ẽm =

∫ ∞
0

ẽm(t) dµ(t) with ẽm(t) = (A+ tI)−1b − x̃m(t),

where ẽm(t) is the error of the Krylov subspace approximation x̃m(t) = Vm(H̃m +
tI)−1V Hm b to the solution of the system (A + tI)x = b. For t = 0, the vector x̃m(0)
is thus just the mth GMRES iterate for the system Ax = b. For t > 0 the vectors
x̃m(t) are not the GMRES iterates for (A+tI)x = b; instead they are Krylov subspace
approximations characterized by a residual collinear to that of the GMRES iterates for
t = 0. The collinear residual approach was introduced in [15] for developing variants
of restarted GMRES for families of shifted linear systems. We refer to this work for an
efficient computational method based on a single QR-factorization (of Hm) to obtain
all the vectors x̃m(t) for several values of t simultaneously. The paper [15] also showed
that the restarted shifted GMRES approach produces convergent iterates x̃m(t) for
all t ≥ 0 if A is positive real, and Lemma 6.3 below is a quantitative refinement of
results presented therein.

The four quantities

ρ := min
{

Re
(vHA−1v

vHv

)
: v ∈ Cn, v 6= 0

}
,

δ := min
{∣∣vHAv

vHv

∣∣ : v ∈ Cn, v 6= 0
}
,

δ′ := min
{∣∣vHA−1v

vHv

∣∣ : v ∈ Cn, v 6= 0
}
,

νmax := max
{ (Av)H(Av)

vHv
: v ∈ Cn, v 6= 0

}
will be useful in the analysis to follow. Since with A the matrix A−1 is also positive
real, the numbers ρ, δ, δ′ and νmax are all positive if A is positive real. Clearly, ρ ≤ δ′
with equality holding if the field of values of A is symmetric with respect to the real
axis, for example, when A ∈ Rn×n.

Lemma 6.3. Let A be positive real. Then

‖r̃m(0)‖2 ≤
(
1− δδ′

)m/2‖b‖2, (6.5)

and the collinearity factors ηm(t) from (6.1) satisfy

|ηm(t)| ≤
(

1

1 + tρ

)m
≤ 1. (6.6)

Proof. The bound (6.5) on the GMRES residuals for A positive real was derived
in [9, Cor. 6.2]. It improves over the classical textbook bound; see, e.g., [17,31]. From
the definition of ηm(t) in Lemma 6.2 we have

ηm(t) =
1∏m

i=1(1 + t/ϑi)
,

with ϑi being the harmonic Ritz values of A. Since the harmonic Ritz values of A
are the inverses of the Ritz values of A−1, we have ϑ−1

i = vHi A
−1vi/v

H
i vi for some
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vector vi ∈ Cn and thus Re(ϑ−1
i ) ≥ ρ. Therefore, for any t ≥ 0 we have

|1 + tϑ−1
i | ≥ 1 + tRe(ϑ−1

i ) ≥ 1 + tρ for i = 1, . . . ,m,

which gives (6.6).
We need a further auxiliary result relating the energy norms with respect to AHA

and (A+ tI)H(A+ tI).
Lemma 6.4. Let A be positive real.
(i) For all v ∈ Cn and t ≥ 0 we have

‖v‖2AHA ≤
1

ν−1
maxt2 + 2ρt+ 1

‖v‖2(A+tI)H(A+tI) .

(ii) For t ≥ 0 we have

1

ν−1
maxt2 + 2ρt+ 1

≤ νmax

(t+ ρνmax)2
.

Proof. For part (i) we expand

‖v‖2(A+tI)H(A+tI) = ‖v‖2AHA + 2tRe(vHAv) + t2‖v‖22 .

The inequality now follows from ‖v‖22 ≥ 1
νmax
‖v‖2AHA and

Re(vHAv)/(vHAHAv) = Re(wHA−1w)/(wHw) ≥ ρ, where Aw = v .

The inequality in part (ii) is equivalent to (t+ ρνmax)2 ≤ t2 + 2ρνmaxt+ νmax, i.e., to
ρ2νmax ≤ 1, which can be established as follows: let v be the normalized eigenvector of
(AAH)−1 corresponding to the smallest eigenvalue which is 1/νmax, since the spectra
of AHA and AAH are identical. Then

ρ ≤ δ′ ≤ |vA−1v | ≤ ‖v‖2‖A−1v‖2 =
1

ν
1/2
max

.

We are now in a position to state the following result on the convergence of the
restarted harmonic Arnoldi method as an analogon to Lemma 4.1 and Theorem 4.3
for the standard Arnoldi approximations.

Theorem 6.5. Let A ∈ Cn×n be positive real, b ∈ Cn, f a function of the

form (1.6), and f̃
(k)
m the approximation from k cycles of the harmonic Arnoldi ap-

proximation method with restart length m. Define

α̃m(t) :=

(√
1− δδ′
1 + tρ

)m
, t ≥ 0.

Let t0 ≥ 0 be the left endpoint of the support of µ. Then the AHA-energy norm of the

error of f̃
(k)
m satisfies

‖f(A)b − f̃ (k)
m ‖AHA ≤ ‖r (k)

m (0)‖2
∫ ∞

0

(1 + tρ)−mk√
ν−1

maxt2 + 2ρt+ 1
dµ(t) (6.7)

≤ ‖b‖2
∫ ∞

0

α̃m(t)k√
ν−1

maxt2 + 2ρt+ 1
dµ(t) (6.8)

≤ Cα̃m(t0)k, (6.9)
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where 0 ≤ α̃m(t0) < 1 and

C = ‖b‖2 ·
√
νmax · f(ρνmax). (6.10)

In particular, the restarted harmonic Arnoldi method converges for all restart lengths
m ≥ 1.

Proof. As the proof is very similar to that of Lemma 4.1 and Theorem 4.3 we only
give a sketch. Using an upper index, as before, to distinguish the quantities belonging
to the different cycles we have

f(A)b − f̃ (k)
m =

∫ ∞
0

ẽ(k)
m (t) dµ(t) =

∫ ∞
0

(A+ tI)−1r̃ (k)
m (t) dµ(t).

Using Lemma 6.4(i) together with the equality ‖ẽ(k)
m (t)‖(A+tI)H(A+tI) = ‖r̃ (k)

m (t)‖2
and the collinearity of these residuals as stated in Lemma 6.2(iv) one obtains

‖f(A)b − f̃ (k)
m ‖AHA ≤

∫ ∞
0

|η(1)
m (t) · · · η(k)

m (t)|√
ν−1

maxt2 + 2ρt+ 1
‖r̃ (k)
m (0)‖2 dµ(t).

Inequality (6.7) now follows by bounding each factor |η(j)
m (t)| via Lemma 6.3(ii). The

second relation (6.8) is obtained by using the bound for ‖r̃ (k)
m (0)‖2 from Lemma 6.3(i).

To get (6.9) and (6.10) one then uses the fact that α̃m(t) is monotonically decreasing
as a function of t and Lemma 6.4(ii).

Using (1 + tρ) ≤ 1 for all t ≥ 0, (6.7) yields

‖f(A)b − f̃ (k)
m ‖AHA ≤ ‖r (k)

m (0)‖2
∫ ∞

0

(1)√
ν−1

maxt2 + 2ρt+ 1
dµ(t) ≤ C1‖r (k)

m (0)‖2,

(6.11)
where C1 =

√
νmaxf(ρνmax), the last inequality holding because of Lemma 6.4(ii).

This estimate indicates that the restarted harmonic Arnoldi method converges at least
as fast as restarted GMRES for the system Ax = b. In particular, if (restarted or un-
restarted) GMRES shows superlinear convergence, so does (restarted or unrestarted)
harmonic Arnoldi for Stieltjes functions.

The estimate (6.11) admits a counterpart for the standard Arnoldi method (and
A Hermitian positive definite), to be derived in exactly the same manner: one makes
use of the fact that the shifted CG residuals are all collinear and that they can be
expressed via polynomials similar to (6.2) and (6.3), except that the harmonic Ritz
values need to be replaced by the standard Ritz values, all of which lie in [λmin, λmax].
We state this result as our last theorem.

Theorem 6.6. Let A ∈ Cn×n be Hermitian positive definite, b ∈ Cn, f a function

of the form (1.6), and f
(k)
m the approximation from k cycles of Arnoldi’s method with

restart length m. Further, let t0 ≥ 0 be the left endpoint of the support of µ. The

A2-energy norm of the error of f
(k)
m can then be bounded as

‖f(A)b − f (k)
m ‖A2 ≤ C‖r (k)

m (t0)‖2,

where ‖r (k)
m (t0)‖2 is the 2-norm of the residual of the (restarted) CG iterate for the

system (A+ t0I)x = b and

C = λmax · f
(√
λmax

)
.
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Fig. 7.1. Comparison of the norm of the error and the error bounds from Lemma 4.1, Theo-
rem 4.3 and Theorem 6.6 for diagonal A, f(z) = z−1/2, restart length m = 20 (left) and unrestarted
Arnoldi (right). Top row: the eigenvalues of A are the Chebyshev points in [10−2, 102]. Bottom
row: the eigenvalues of A are linearly spaced in [10−2, 102].

Consequently,

‖f(A)b − f (k)
m ‖A ≤

C√
λmin

‖r (k)
m (t0)‖2. (6.12)

We cannot expect (6.12) to be tight, however it indicates that the convergence
behavior of the (restarted) Arnoldi method is dominated by the convergence of CG
for Ax = b. For example, if (unrestarted) CG shows superlinear convergence, the
(unrestarted) Arnoldi approximations for f(A)b can be expected to converge super-
linearly, too.

To end this section, we remark that it is also possible to prove convergence of
the restarted harmonic Arnoldi approach for A positive real and f(z) = zf̂(z) with

f̂(z) a Stieltjes function, analogously to Theorem 4.6, and for an appropriate thick
restarting variant. Moreover, it is possible to define shifted harmonic Ritz values ϑi
with respect to a subspace U ⊆ Cn and a “target” t0 other than 0 (which we have
implicitly used here; cf. Definition 6.1): these shifted harmonic Ritz values satisfy

(A+ t0I)xi − (ϑi + t0)xi ⊥ (A+ t0I)U

with non-zero vectors xi ∈ Cn (see, e.g., [20]). The shifted harmonic Ritz values
would be more adequate if the left endpoint t0 of the support of µ is different from
zero and all results presented in this section can be modified to account for that.

7. Numerical experiments. The purpose of this paper was to advance the
convergence theory for restarted Arnoldi-type methods. We end with a few (academic)
numerical examples illustrating the theory.
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Fig. 7.2. Convergence curves of the restarted Arnoldi and the restarted harmonic Arnoldi for
the matrix from (7.1) for the functions f(z) = z−1 (left) and f(z) = z−1/2 (right), respectively.

We first consider a Hermitian positive definite (diagonal) matrix A ∈ R1000×1000

with its eigenvalues chosen as the Chebyshev points in [10−2, 102] and compute f(A)b
with f = z−1/2 and b the (normalized) vector of all ones. In the top row of Figure 7.1
we compare the energy norm of the error with the bound (4.2) (which has been
evaluated using adaptive Gauß–Kronrod quadrature) and the bound (4.5). On the
left-hand side of Figure 7.1 we give the results for restart length m = 20, while on
the right-hand side we report the results for the unrestarted Arnoldi method (i.e.,
k = 1 and m = 1000) and also show the error norm predicted by bound (6.12)
(which is of more interest in the unrestarted case as superlinear convergence effects
do typically not take place for small restart lengths). In both cases, the convergence
rate is predicted quite accurately, with (4.2) overestimating the true norm of the error
by about one order of magnitude and (4.5) by about two orders of magnitude. Of
course, the convergence to (approximately) machine precision in the last iteration of
the unrestarted Arnoldi method is not captured by the error bounds except by (6.12).

When the eigenvalues are distributed differently, the bounds (4.2) and (4.5) may
capture the actual convergence behavior less well. To illustrate this we choose f and b
as before, but now the eigenvalues of A are linearly spaced in [10−2, 102]. The results
are given in the bottom row of Figure 7.1. For the small restart length m = 20, the
bounds again reflect the actual convergence well, although now the rate of the bounds
is slightly too pessimistic. There is a substantial difference for the unrestarted Arnoldi
method: while in an initial phase the slope of all curves is approximately the same,
after some iterations the superlinear convergence behavior of Arnoldi’s method (see,
e.g., [3]) appears and this is only captured by the error bound (6.12). This indicates
that the error bounds (4.2) and (4.5) are not well suited for monitoring the progress
if superlinear convergence due to spectral adaptation occurs, as it can happen for
the unrestarted Arnoldi method or the restarted Arnoldi method with a large restart
length m (relatively to the matrix size n). Identifying superlinear convergence effects
is, however, possible by keeping track of the residual norm of a CG iterate for the
system (A+t0I)x = b as indicated by the behavior of error bound (6.12) on the right-
hand side of Figure 7.1. While the superlinear convergence behavior is predicted quite
accurately, the bound itself substantially overestimates the magnitude of the error.

To illustrate the behavior of the harmonic Arnoldi approach we first extend the
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Fig. 7.3. Convergence curves of the restarted Arnoldi method and the restarted harmonic
Arnoldi method for a diagonal matrix A and f(z) = z−1/2. The eigenvalues of A are chosen
randomly in the disk of radius 1 centered at 1 + 10−1 (left) and 1 + 10−5 (right).

example from section 1 and consider the matrix

A =



α 0 · · · 0 1
1 α 0 · · · 0

0 1 α
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 α

 ∈ Rn×n, (7.1)

where α ∈ R is a parameter and n is odd. The matrix A is normal (so that its
field of values is the convex hull of the eigenvalues) and its eigenvalues are the nth
roots of unity shifted by α. For cos(2π/n) < α, all eigenvalues of A lie in the right
half plane, hence A is positive real. Figure 7.2 shows the convergence curves of the
restarted Arnoldi and restarted harmonic Arnoldi methods for n = 21, α = 0.995,
b = ê1, restart length m = 10, and the functions f(z) = z−1 (left) and f(z) = z−1/2

(right). For both Stieltjes functions the restarted harmonic Arnoldi method converges
as guaranteed by Theorem 6.5 while the standard restarted Arnoldi method diverges.
The decrease of the error norm in the first few cycles of the standard Arnoldi method
for approximating A−1/2 can be explained as follows: for larger values of t, the shifted
linear systems with A + tI do converge, so that the divergence only stems from the
behavior of the systems for t near 0. In the first few iterations, the error components
implicitly corresponding to the linear systems with larger shifts are reduced and the
divergence of the systems with small shifts is not yet visible.

Next we compute f(A)b for f(z) = z−1/2 and a diagonal matrix A of dimension
1000 with eigenvalues α + 1 + re2πiθ, where r and θ are two random variables which
are independently and uniformly distributed in [0, 1], and α > 1. As A is normal and
its eigenvalues lie in the right half plane it is again positive real. Figure 7.3 shows
the convergence of the restarted standard and harmonic Arnoldi methods with restart
length m = 20 for α = 10−1 (left) and α = 10−5 (right). In the first case the matrix is
quite well conditioned and both methods behave very similarly and converge quite fast.
For α = 10−5 the spectrum of A is much closer to the origin. Both restarted methods
still converge, but now the harmonic Arnoldi method performs significantly faster.
Note that the convergence of the restarted harmonic Arnoldi method is guaranteed
by the bound from Theorem 6.5. We do not report its value here because the bound
is very pessimistic, neither capturing the order of magnitude of the error nor the
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Fig. 7.4. Convergence curves of the restarted Arnoldi method and the restarted harmonic
Arnoldi method, where A is non-diagonalizable with 2 × 2 Jordan blocks, and f(z) = z−1/2. The
details on the spectrum of A for the left and right plots are given in the text.

convergence slope accurately (which is no surprise, as this phenomenon is also known
for the GMRES bound it is based upon).

As our last example we take a non-normal, non-diagonalizable matrix A. It is of
dimension 1000 and consists of 500 2× 2 Jordan blocks of the form(

λ 0
1 λ

)
.

Such a block is positive real if Re(λ) > 0.5. For our test we produced A randomly, the
imaginary part of λ being uniformly distributed in [−10, 10] and the real part being
uniformly distributed in [0.6, 0.8] (left part of Figure 7.4) and [0.5001, 0.5099] (right
part of Figure 7.4). We again took f(z) = z−1/2 and b = ê1 and used restart length
m = 20. We see that in both cases the restarted harmonic Arnoldi method converges
reasonably fast, while the standard Arnoldi method requires about twice as many
iterations as the harmonic Arnoldi approach for the less well conditioned system.
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