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Sylvester’s Influence on Applied Mathematics∗

Nicholas J. Higham†

Abstract

James Joseph Sylvester coined the term
“matrix” and contributed much to the early
development of matrix theory. To mark the
200th anniversary of his birth I show how
Sylvester’s work on matrices continues to
influence applied mathematics today.

1 Introduction

This year is the 200th anniversary of the birth
of James Joseph Sylvester (September 3, 1814–
March 15, 1897), FRS. Sylvester was a pro-
lific mathematician, the four volumes of his col-
lected works totalling almost 3000 pages. He
also led an eventful life, holding positions at five
academic institutions, two of them in the USA.
For several years he was an actuary by day and
did his mathematical research at night, and in-
deed he was one of the founders of the Insti-
tute of Actuaries. During his second stay in the
USA he founded the American Journal of Math-
ematics and formed the first research school in
the country. He was a controversial figure, being
prone to rows and to disputes over the priority
of research.

Since the centenary of his death, Sylvester’s
life and work has been the subject of re-
newed interest. In this article I describe some
of Sylvester’s mathematical contributions and
show that they are still very much in use in ap-
plied mathematics today, especially in the areas
of linear algebra and numerical analysis.

For details of Sylvester’s life I recommend
the masterly biography by Parshall [25] (which I
reviewed in [15]) or, for a shorter summary, the
article by James [22].

2 Sylvester the Neologist

One of Sylvester’s greatest influences on math-
ematics is relatively little known: he introduced
many mathematical terms that are still used to-
day. In 1850 he coined the term “matrix”, writ-
ing [29]

We must commence, not with a
square, but with an oblong arrange-
ment of terms consisting, suppose,
of m lines and n columns. This
will not in itself represent a determi-
nant, but is, as it were, a Matrix out
of which we may form various sys-
tems of determinants by fixing upon
a number p, and selecting at will p
lines and p columns, the squares cor-
responding to which may be termed
determinants of the pth order.

As the quote indicates, determinants were in
common use at that time and preceded the no-
tion of matrix.

It was Cayley who took the first steps to de-
velop matrix algebra, in his 1858 memoir [5].
Sylvester did not return to matrices for another
thirty years, and when he did he reinvented
the subject under the name “universal algebra”,
claiming to have been unaware of Cayley’s paper
[34].

In Table 1 we list some other terms that the
Oxford English Dictionary credits to Sylvester.
Sylvester himself annotated1 a 27 term “index
to definitions” in his copy of Salmon’s textbook
on algebra [27] with the statement “With the ex-
ception of the words ‘Eliminant’ and ‘Quantic’ all
the above terms are of Mr Sylvester’s creation.”
However, it is as well to be a little skeptical
about this claim, since Sylvester was notorious
for what his biographer Parshall calls “an impa-
tience with bibliographic research” [25, p. 59].

In a long 1853 article [32] Sylvester included
a six page glossary of “new or unusual Terms,
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206, August 2014 and contains additional historical references.
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Figure 1: James Joseph Sylvester, “sometime after his arrival in Oxford in 1884” [25, plate following
p. 224]. Source: http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Sylvester.
html.

or of Terms used in a new or unusual sense in
the preceding Memoir.” The glossary contains
more than just technical description: the entry
for “Hessian” is “named after Dr. Otto Hesse,
of Konigsberg (the worthy pupil of his illustri-
ous master, Jacobi, but who, to the scandal of
the mathematical world, remains still without a
Chair in the University which he adorns with his
presence and his name).” The Oxford English
Dictionary credits “Hessian” to Cayley in 1856,
but Sylvester used the term as early as 1851 [7,
p. 473], [25, p. 100], [30].

One term that has fallen out of use is “latent
root”, introduced by Sylvester in 1883 [33] with
two charming similes:

“It will be convenient to introduce
here a notion (which plays a conspic-
uous part in my new theory of multi-
ple algebra), namely that of the latent
roots of a matrix—latent in a some-
what similar sense as vapour may be
said to be latent in water or smoke in
a tobacco-leaf.”

This term was in use up until the 1970s [10]
but has now been supplanted by “eigenvalue”,
though some authors complain about the latter
term’s incomplete translation from the German
eigenwert. McIntyre [23] credits Sylvester with
being the first to use the symbol λ to denote an
eigenvalue of a matrix, in 1852 [31].

Sylvester introduced the adjective “deroga-
tory” for a matrix whose minimal polynomial
has degree less than the characteristic polyno-
mial [38]. He also called such a matrix “privi-

leged”, suggesting that this property has both
good and bad features. The property arose in
the context of finding all matrices that commute
with a given matrix, a goal that was completely
attained not by him but by his German contem-
poraries using a more sophisticated line of at-
tack exploiting canonical forms.

3 Sylvester’s Equation

The Sylvester equation is the linear matrix equa-
tion

AX +XB = C, (1)

where A is m ×m, B is n × n, and X is an un-
knownm×nmatrix. In 1884 Sylvester [37] con-
sidered the homogeneous version of the equa-
tion and thereby showed that the condition for
(1) to have a unique solution is that A and −B
have no eigenvalues in common.

Since the equation is linear in X it must
be possible to write it in the more usual form
“Ax = b.” Indeed if we denote by vec(X) the
vector comprising the columns of X stacked one
on top of the other from first to last then (1) can
be written

(In ⊗A+ BT ⊗ Im)︸ ︷︷ ︸
nm×nm

vec(X) = vec(C), (2)

where for F ∈ Rp×q and G ∈ Rr×s , F ⊗
G := (fijG) ∈ Rpr×qs is the Kronecker prod-
uct. Interestingly, the Kronecker product pre-
dates the Sylvester equation: in 1858 Zehfuss
gave the result det(A ⊗ B) = det(A)n det(B)m
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Table 1: Terms coined by Sylvester, as credited in the Oxford English Dictionary [24].
Term Year

matrix 1850
minor 1850

syzygy 1850
canonical form 1851

discriminant 1851

Term Year
invariant 1851
Jacobian 1852

covariant 1853
latent root 1883

nullity 1884

[14]. Sylvester called the matrix in (2) the nivel-
lateur (French for “leveller”) [36].

The coefficient matrix of (2) is highly struc-
tured but it is not easy to take advantage of the
structure. Therefore a great deal of research has
been directed at analyzing and solving (1) di-
rectly. Of the various formulas that have been
obtained for a solution we mention just one: if
the integral

∫∞
0 eAtCeBt dt exists then minus this

integral is a solution of the Sylvester equation.
One way in which the Sylvester equation

arises is in block diagonalization. Suppose we
wish to find a similarity transformation that in-
troduces zeros into the (1,2) block of the block
upper triangular matrix

A =
[
A11 A12

0 A22

]
.

This is a useful step if we wish to compute eigen-
values of A or matrix functions f(A). It is easy
to verify that[

I −X
0 I

]−1 [A11 A12

0 A22

][
I −X
0 I

]
=
[
A11 0
0 A22

]
if and only if X satisfies

A11X −XA22 = A12. (3)

Hence block-diagonalizing A reduces to solving
the Sylvester equation (3), which we know is pos-
sible if and only if the eigenvalues of A11 are dis-
tinct from those of A22. This is an unsurprising
restriction, as if it were not present we could di-
agonalize a 2 × 2 Jordan block, which of course
is impossible.

For another way in which Sylvester equa-
tions arise consider the expansion (X + E)2 =
X2 + XE + EX + E2 for square matrices X and
E, from which it follows that XE + EX is the
Fr«echet derivative of the function x2 at X in
the direction E, written Lx2(X, E). We can
find the Fr«echet derivative of x1/2 by apply-
ing the chain rule to

(
x1/2)2 = x, which gives

Lx2

(
X1/2, Lx1/2(X, E)

)
= E. Therefore Z =

Lx1/2(X, E) is the solution to the Sylvester equa-
tion X1/2Z + ZX1/2 = E. The need to compute

Lx1/2 arises in the computation of the Fr«echet
derivatives of the matrix logarithm and of ma-
trix powers [1], [16], [20].

In recent years research has focused particu-
larly on solving Sylvester equations in which A
and B are large and sparse and C has low rank,
which arise in applications in control theory and
model reduction, for example. In this case it is
usually possible to find good low rank approx-
imations to X and iterative methods based on
Krylov subspaces have been very successful.

The Sylvester equation has many variations
and special cases, including the Lyapunov equa-
tion AX + XA∗ = C (where “∗” denotes conju-
gate transpose), the discrete Sylvester equation
X+AXB = C , and versions of all these for oper-
ators [2]. It has also been generalized to multi-
ple terms and with coefficient matrices on both
sides of X, yielding

k∑
i=1

AiXBi = C. (4)

For k ≤ 2 andm = n this equation can be solved
in O(n3) operations. For k > 2, no O(n3) algo-
rithm is known and deriving efficient numerical
methods remains an open problem. The system
(4) arises in stochastic finite element discretiza-
tions of partial differential equations with ran-
dom inputs. The matrices Ai and Bi are large
and sparse and, depending on the statistical
properties of the random inputs, k can be ar-
bitrarily large. In recent research efficient iter-
ative solvers and preconditioners for such sys-
tems have been developed [26].

It is notable, and I think purely coinciden-
tal, that in this anniversary year MATLAB release
2014a provides a new function sylvester for
solving the Sylvester equation, finally removing
the need for MATLAB users to write their own
solver.
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4 The Quadratic Matrix Equa-
tion

Sylvester also considered nonlinear matrix equa-
tions, specifically the quadratic equation in n×n
matrices

AX2 + BX + C = 0. (5)

A solution X is called a solvent. Note that be-
cause of the noncommutativity of matrices this
is not the only possible quadratic equation: oth-
ers include X2A+XB+C = 0, for which an anal-
ogous treatment is possible, and the algebraic
Riccati equation XAX+BX+XC +D = 0, which
is important in control theory.

It is natural to wonder how properties of (5)
generalize from the scalar case. For example,
when A = I can we write

X = −1
2
B + 1

2
(B2 − 4C)1/2 ?

The answer is yes if B commutes with C and the
square root exists. However, (5) may have no
solution at all, as is clear from that fact that
a special case is the matrix square root equa-
tion −X2 + C = 0, which has no solution for
C =

[
0 1
0 0

]
, for example.

We will just touch on just one aspect of the
theory of (5). Consider the associated quadratic
eigenvalue problem

(λ2
iA+ λiB + C)vi = 0, (6)

where λi is an eigenvalue and the nonzero vec-
tor vi a corresponding eigenvector. Suppose
we can find n eigenpairs (λi, vi) and that V =
[v1, . . . , vn] forms a nonsingular matrix. Then,
with Λ = diag(λi), we have

AVΛ2 + BVΛ+ CV = 0,

and postmultiplying by V−1 we find that X =
VΛV−1 is a solution of (5). Since the quadratic
eigenvalue problem has 2n finite eigenvalues
when A is nonsingular [40], this argument yields

up to
(

2n
n

)
choices of X. This number of solvents

was identified by Sylvester [35], [39] for the case
A = I. However, the existence and classification
of solvents is more complicated than this dis-
cussion might indicate. One reason is that eigen-
vectors of (6) corresponding to distinct eigen-
values need not be linearly independent, in con-
strast to the situation for the eigensystem of a
single matrix.

Today the quadratic matrix equation (5) is of
interest because of its appearance in quasi birth-
death processes, a form of Markov chain used in

stochastic models in telecommunications, com-
puter performance, and modeling of ecological
systems. For more on the theory, applications,
and numerical solution of the quadratic matrix
equation see [19].

5 Law of Inertia

Undergraduate students may first come across
Sylvester’s name in connection with his law of
inertia. Recall that the inertia of a Hermitian
matrix is the triple of integers (ν, ζ,π), where
ν is the number of negative eigenvalues, ζ is
the number of zero eigenvalues, and π is the
number of positive eigenvalues. Sylvester’s law
of inertia (1852) [31] says that for any Hermitian
A and nonsingular matrix X the inertia of A is
the same as that of X∗AX. (In fact, Sylvester
stated and proved the result in the language
of quadratic forms rather than matrix theory.)
A transformation of the form X∗AX is called
a congruence, so Sylvester’s law says that the
number of negative, zero, and positive eigenval-
ues does not change under congruence transfor-
mations.

Sylvester’s law of inertia has many applica-
tions, of which we mention just the computa-
tion of the eigenvalues of Hermitian tridiagonal
matrices T . Suppose we want to compute the
kth smallest eigenvalue of T . Let N(x) be the
number of eigenvalues of T that are less than x.
We need to find the point where N(x) jumps
from k − 1 to k. It is feasible to do this by
the bisection method if we can cheaply compute
N(x). Suppose we factorize T − xI = LDL∗,
where D is diagonal and L is unit lower bidiago-
nal. This factorization can be computed in just
O(n) operations and Sylvester’s law of inertia
tells us that T −xI and D have the same inertia,
so the number of negative diagonal elements of
D equals the number of eigenvalues of T − xI
less than 0, which is the number of eigenvalues
of T less than x, that is, N(x). As there is no
pivoting in the factorization it might be thought
that this approach would be numerically unsta-
ble (and it would be unstable if our aim was to
solve a linear system with the factorization), but
as a means of determining the diagonal of D it
can be shown to be perfectly stable [9, Lem. 5.3].

Sylvester’s law says nothing about the mag-
nitudes of the eigenvalues after a congruence
transformation. Ostrowski showed that [21,
Thm. 4.5.9]

λk(X∗AX) = θkλk(A),

where λn(X∗X) ≤ θk ≤ λ1(X∗X), where the
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eigenvalues are ordered λn ≤ λn−1 ≤ · · · ≤ λ1.
This quantitative result is useful for developing
minimal perturbations of a matrix that change
its inertia in a specified way [18].

6 Functions of Matrices

In his 1858 memoir [5] Cayley treated square
roots of 2×2 and 3×3 matrices, and he later re-
visited these cases in 1872 [6]. The first formula
for a general function of a matrix was given by
Sylvester in 1883 [33], for an n×nmatrix A with
distinct eigenvalues λi:

f(A) =
n∑
i=1

f(λi)
∏
j 6=i

A− λjI
λi − λj

. (7)

Today we call this the interpolating polynomial
definition of f(A), as the formula says that
f(A) = p(A) where p is the unique polynomial
of degree at most n− 1 that interpolates to f at
the eigenvalues of A. The particular expression
in (7) for p is called the Lagrange interpolating
polynomial, or sometimes the Sylvester inter-
polating polynomial, although Lagrange’s 1795
publication of the formula predates Sylvester’s.

Buchheim2 gave a derivation of (7) [3] and
then generalized it to multiple eigenvalues us-
ing Hermite interpolation [4], thereby giving the
first completely general definition of a matrix
function.

Sylvester’s interpolating polynomial defini-
tion of f(A) is useful theoretically, but it is
rarely used for computation. However, the
best method for computing a general function
of an n × n matrix, the Schur–Parlett method
[8] (implemented in MATLAB as funm), has a
strong Sylvester connection. The method be-
gins by computing the Schur decomposition A =
QTQ∗, where Q is unitary and T upper trian-
gular. Then it carries out some further unitary
similarity transformations to produce a new tri-
angular matrix U with a partitioning U = (Uij)
in which the different diagonal blocks Uii have
no eigenvalues in common. The matrix G =
f(U) will be triangular, like U , and the diag-
onal blocks are Gii = f(Uii), which are com-
puted by a truncated Taylor series (or any avail-
able method specific to f ). The off-diagonal
blocks Gij are computed by solving a sequence

of Sylvester equations

UiiGij −GijUjj = GiiUij −UijGjj

+
j−1∑
k=i+1

(GikUkj −UikGkj), i < j,

which are derived from the relation GU = UG.
Finally, F = f(A) is obtained by undoing the
unitary transformations. Given its reliance on
Sylvester equations this method should perhaps
be more accurately called the “Schur–Parlett–
Sylvester” method.

7 The Sylvester Resultant Ma-
trix

An important problem arising in computational
geometry is to find the intersection of algebraic
and parametric (e.g., B-spline and Bézier) curves,
and this reduces to determining whether two
polynomials have a common root. Suppose the
polynomials are

p(x) = anxn + · · · + a1x + a0 = an
n∏
i=1

(x −αi),

q(x) = bmxm + · · · + b1x + b0 = bm
m∏
i=1

(x − βi),

with an 6= 0 and bm 6= 0. A resultant is a scalar
function of the coefficients ai and bi that is zero
if and only if p and q have a common root. A re-
sultant matrix is a matrix whose determinant is
a resultant.

The Sylvester resultant matrix [28] is the ma-
trix of dimension m+n,

S(p, q) =

an an−1 . . . a1 a0

an an−1 . . . a1 a0

. . .
. . .

. . .
. . .

. . .
an an−1 . . . a1a0

bmbm−1 . . . b1 b0

bm bm−1 . . . b1 b0

. . .
. . .

. . .
. . .

. . .
bmbm−1 . . . b1 b0



m rows

n rows

.

It can be shown that

det(S(p, q)) = amn bnm
n∏
i=1

m∏
j=1

(αi − βj), (8)
2Buchheim (1859–1888), who had studied with Henry Smith at Oxford and Felix Klein at Leipzig, was a teacher at

Manchester Grammar School [17].
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which confirms that the Sylvester matrix is in-
deed a resultant matrix. Moreover, it turns out
that the dimension of the null space of S is equal
to the number of common zeros of p and q and
the greatest common divisor of p and q can be
read off from the echelon form of S.

Sylvester’s is not the only resultant matrix.
Another is that of Bézout, called the Bezoutian
matrix or simply the Bezoutian (the accent on
the “e” is usually omitted), and was so-named
by Sylvester [32].

Functions to generate the Sylvester matrix
can be found in software such as MATLAB
(linalg::sylvester in MuPAD in the Symbolic
Math Toolbox) and Maple (SylvesterMatrix).

8 Coda

Sylvester has left a large legacy in linear alge-
bra and numerical analysis. Much of his termi-
nology is still used. His inertia result is funda-
mental to undergraduate linear algebra courses,
his expression for a matrix function is one of
the standard definitions, the Sylvester matrix is
widely used in computer algebra, and his linear
and quadratic matrix equations and their vari-
ants arise in many applications and are the sub-
ject of ongoing research.

Sylvester’s friend Cayley initiated the study
of matrix theory and discovered the famous
Cayley–Hamilton theorem. But he published lit-
tle on the subject after that and Sylvester’s name
is much more commonly encountered today in
matrix analysis and linear algebra.

Sylvester’s style of mathematics was less rig-
orous than that of the Berlin school of Frobe-
nius, Kronecker, and Weierstrass, and this has
led some to downplay his role in the develop-
ment of matrix theory (see, for example [11],
[12], and the recent book [13]). However, as this
article shows, Sylvester had a remarkable knack
for identifying and naming key concepts and for
making discoveries that would turn out to have
lasting mathematical importance and practical
relevance.

A theme running through a 1991 article by
McIntyre on the programming language APL
[23] is that APL provides a tool that enables
us to think and work with matrices instead of
scalars, just “as J. J. Sylvester so eloquently
urged us to do a century ago.” Over the last
thirty years there has been a trend towards
matrix-based computation, with languages and
problem solving environments such as Fortran
90, Julia, MATLAB, Maple, Mathematica, Python
(with SciPy and SymPy), and R all exploiting the

power of matrices. Sylvester’s influence there-
fore lives on not only in mathematics but also in
the tools we use for computation.

Finally, I note that the four volumes
of Sylvester’s collected works are avail-
able in PDF form at https://archive.org,
specifically https://archive.org/details/
SylvesterCollected2 and related URLs, and
these are invaluable for anyone who wishes to
consult his original papers.
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