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Preface
This volume is CICADA Collection which contains contributions developed by researches working on
CICADA Project, The University of Manchester. CICADA Project creates a warm and fruitful atmosphere
for research collaboration in many aries of Mathematics, Computer Science, Engineering including hybrid
and dynamical systems, verification of safety critical systems, human robotics, model reduction and high
dimensional systems, max-pus algebra, stochastic hybrid systems, analysis of adaptive systems and control.
This volume presents examples and software which have been developed and used by CICADA community.

Manchester, 2012

Younes Chahlaoui & Margarita Korovina
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This book is dedicated to David Broomhead, an outstanding person and researcher.
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Introduction

1 Hybrid automaton
Hybrid automata were proposed as a formal model for Hybrid Systems in [1]. A Hybrid system is a
dynamical system with both discrete and continuous components.

A hybrid automaton HA= (Q,C, Init,D,E,G,R) consists of

• A finite discrete state space: Q;

• A continuous state space: C ⊆ Rn;

• The hybrid automaton state space: X = Q×C;

• The set of initial states: X0 ⊆ X ;

• Continuous flow: ẋ= F(l,x) for each discrete state l;

• Invariants: Inv(l) ⊆ Rn for each discrete state l;

• Discontinuous changes R⊆ X×X

We define discrete transitions, guards, resets as follows:

E = {(l, ĺ)|∃x ∈ Inv(l)∃x́ ((l,x),(ĺ, x́)) ∈ R};
Init(l) = {x ∈ Inv(x)|(l,x) ∈ X0};
Guard(e) = {x ∈ Inv(l)|∃x́ ∈ Inv(ĺ)((l,x),(ĺ, x́) ∈ R};
Reset(e,x) = {x́ ∈ Inv(ĺ)|((l,x),(ĺ, x́)) ∈ R}.

Properties of hybrid automata.

• A hybrid automaton it is non-blocking if from any initial condition there exists at least one state
trajectory (solution));

• An invariant of the hybrid automaton is a property that is always true.

• A hybrid automaton is Zeno if takes an infinite number of discrete transitions in finite time.

• A hybrid automaton is non-deterministic if for a given initial condition there are a whole family of
state trajectories (solutions).
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References
[1] T. A. Henzinger, The Theory of Hybrid Automata, in Verification of Digital and Hybrid Systems, edited

by M. K. Inan, and R. P. Kurshan, NATO ASI Series F: Computer and Systems Sciences, Springer-
Verlag, v.170, pp.265-292, 2000.

2 Stochastic Hybrid System
A stochastic hybrid system (SHS) is a collection

H := ((Q,d,X ),b,σ, Init,λ,R)

where
• Q is a countable/finite set of discrete states (modes);
• d : Q→ N is a map giving the dimensions of the continuous state invariants;
• X : Q→ Rd(.) maps each q ∈ Q into an open subset Xq of Rd(q);
• b : X(Q,d,X )→ Rd(.) is a vector field;
• σ : X(Q,d,X ) → Rd(·)×m is a X (·)-valued matrix, m ∈ N (more generally, m may also depend on the
discrete mode),
• Init : B(X)→ [0,1] is an initial probability measure on (X ,B(X));
• λ : X(Q,d,X )→ R+ is a transition rate function;
• R : X×B(X)→ [0,1] is a stochastic kernel.

Let us denote by X the whole space, i.e.

X = ∪{(q,Xq)|q ∈ Q}.

Define the boundary set ∂Xq := Xq\Xq of Xq and the whole space boundary

∂X = ∪{(q,∂Xq)|q ∈ Q}.

The executions of an SHS form a stochastic process, called stochastic hybrid process, which is built as
a Markov string. This is obtained by the concatenation of a sequence of diffusion processes (zit), i ∈ Q.

A stochastic hybrid (SH) process is a stochastic process

xt = (q(t),z(t))

such that there exists a sequence of stopping times

T0 = 0 < T1 < T2 < .. .

such that for each k ∈ N,
• x0 = (q0,z

q0
0 ) is a Q×X-valued random variable extracted according to the probability measure Init;

• For t ∈ [Tk,Tk+1), qt = qTk is constant and z(t) is a solution of the stochastic differential equation (SDE):

dz(t) = b(qTk ,z(t))dt+σ(qTk ,z(t))dWt (1.1)

whereWt is the m-dimensional standard Wiener process (m might depend on qTk );
• Tk+1 = Tk+Sik where Sik is a stopping time
• The probability distribution of x(Tk+1) is governed by the law R

�
(qTk ,z(T

−
k+1)), ·

�
.
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3 Model reduction
We consider three types of dynamical models:

(i)
�

δx(·) = G(x(·),u(·))
y(·) = H(x(·),u(·)) where x ∈RN ,u ∈Rm,y ∈Rp

⇓ linearize

(ii)
�

Eσδx(·) = Aσx(·)+Bσu(·)
y(·) = Cσx(·)

E,A ∈RN×N ,B ∈RN×m,
C ∈Rp×N

(iii)

�
M
�
δ2q(·)

�
+D [δq(·)]+K q(·) = F u(·)

y(·) = G q(·)
q ∈RN ,M,D,K ∈RN×N ,
F ∈RN×m,G ∈Rp×N

(1.2)

where δ is either the derivative operator δx(t) = ẋ(t), t ∈ R, or the shift δx(k) = x(k+1), k ∈Z, de-
pending on whether the system is continuous- or discrete-time1 The logical law σ is the switching law.

Here, (i) is a class of dynamical systems that are finite-dimensional and described by a set of explicit
first-order differential equations; the description is completed with a set of observation variables. Very
often, this explicit nonlinear system is linearized around some equilibrium trajectory, the resulting system
(ii) being linear, time-varying or time-invariant or switched. Finally, (iii) describes second-order systems.
Often the physical origin of these systems implies that the matricesM,D andK are symmetric and moreover
M is positive (semi-)definite and invertible. For mechanical systems the matrices M, D and K represent,
respectively, the inertia, damping and stiffness matrices, u corresponds to the vector of external forces, F
is the input distribution matrix, y is the output measurement vector, G is the output measurement matrix,
and q(·) to the vector of internal generalized coordinates. Discrete systems can be treated equally well as
the continuous case.

For linear time-invariant systems (1.2)(ii) and second-order systems (1.2)(iii), we can define the transfer
function relating directly the outputs to the inputs

Tf (s) =C(sE−A)−1B+D or Tf (s) = G(s2M+SD+K)−1F. (1.3)

The goal of model reduction is to construct much simpler system that will have similar outputs to those
of the original system for the same inputs. Different methods have been developed but there is no general
technique for model reduction that can be considered as optimal in an overall sense since the reliability,
performance and adequacy of the reduced system strongly depends on the system characteristics. Model
reduction methods usually differ in the error measure they attempt to minimize.

The main idea is that a high-dimensional state vector is actually belongs to a low-dimensional subspace.
Provided that the low-dimensional subspace is known, the ordinary differential equations can be projected
on it. The projection gives us a required low-dimensional approximation.

Available methods for linear ODEs are listed in the table below (according to [1]).

1Notice here that the dot · is replaced in the continuous case by t and in discrete case by k.
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Method Advantages Disadvantages

SVD-based (Truncated Bal-
anced Approximation, Singular
Perturbation Approximation,
Hankel-Norm Approximation)

Have a global error estimate,
can be used in a fully automatic
manner

Computational complexity of
conventional implementations
is O(N3), can be used for
systems with order less than a
few thousand unknowns only

Low-rank Gramian approxi-
mants and matrix sign function
method

Have a global error estimate and
the computational complexity is
acceptable

Currently under development

Pade approximants (moment
matching) via Krylov subspaces
by means of either the Arnoldi
or Lanczos process

Very advantageous computa-
tionally, can be applied to
very high-dimensional linear
systems

Does not have a global error es-
timate. It is necessary to select
the order of the reduced sys-
tem manually or with some en-
gineering tricks

Systems of the form (1.2)(iii), in principle, can be always transformed to the first order and then model
reduction methods for the first order system can be applied. However, the reduced system in this case is
obtained as the first order ODEs and this is not always desirable.

In the special case of proportional damping (D= αM+βK), it is possible to ignore the damping matrix
when the projection subspace is constructed but then to restore the reduced damping matrix from the
reduced mass and stiffness matrices. The most interesting is that moment matching happens automatically
for any values of α and β, that is, in a way, we have parametric model reduction in respect to α and β for
free, without any extra efforts. When damping is not proportional, one can derive second order Krylov
subspaces in order to perform model reduction directly for the second order system. This happens to have
many advantages as compared with the transformation to the first order system [1, 2, 3, 4].

Nonlinear model reduction in the general case is a challenge. The most popular method is Proper Or-
thogonal Decomposition. It can be generalized by means of empirical Gramians. There is a generalization
of balancing for a nonlinear model. An interesting new approach is trajectory piecewise model reduction.

References
[1] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, 2005.

[2] P. Benner and V. Mehrmann and D. C. Sorensen,Dimension Reduction of Large-Scale Systems, Lecture
Notes in Computational Science and Engineering, Vol.45, Springer, 2005.

[3] W. H. A. Schilders and H. A. van der Vorst and J. Rommes, Model Order Reduction: Theory, Research
Aspects and Applications, Mathematics in Industry, Vol.13, Springer, 2008.

[4] P. Benner and M. Hinze and E. J ter Maten, Model Reduction for Circuit Simulation, Lecture Notes in
Electrical Engineering, Vol.74, Springer, 2011.

7



2

Collection of Problems

This section contains a brief description of all the problems in the collection. We give below a list of these
problems
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BOUNCING BALL

Properties
By Y.Chahlaoui &
M.KorovinaZeno behavior, physical system with impact.

Description
The bouncing ball is an especially interesting hybrid system, as it exhibits Zeno behavior. It is the most

canonical example of a hybrid system. It is a physical system with impact. Here, the ball (thought of as a
point-mass) is dropped from an initial height and bounces off the ground, dissipating its energy with each
bounce. The ball exhibits continuous dynamics between each bounce; however, as the ball impacts the
ground, its velocity undergoes a discrete change modeled after an inelastic collision.

Formalization
A model for a bouncing ball can be represented as a simple hybrid system (Figure) with single discrete

state and a continuous state of dimension two

x=
�
x1
x2

�
,

where x1 denotes the vertical position of the ball and x2 its vertical velocity.
The continuous motion of the ball is governed by Newton’s laws of motion. This is indicated by the

differential equation that appears in the vertex (box), where g denotes the gravitational acceleration. This
differential equation is only valid as long as x1 ≥ 0, i.e., as long as the ball is above the ground. This is
indicated by the logical expression x1 ≥ 0 that appears in the vertex below the differential equation.

The ball bounces when x1 = 0 and x2 ≤ 0. This is indicated by the logical expression that appears near
the beginning of the edge (arrow). At each bounce, the ball loses a fraction of its energy. This is indicated
by the equation x2 := −cx2 (with c ∈ [0,1]) that appears near the end of the edge. This is an assignment
statement, which means that after the bounce the speed of the ball will be c times the speed of the ball
before the bounce, and in the opposite direction.

Starting at an initial state with x1 ≥ 0 (as indicated by the logical condition next to the arrow pointing to
the vertex), the continuous state flows according to the differential equation as long as the condition x1 ≥ 0
is fulfilled. When x1 = 0 and x2 ≤ 0, a discrete transition takes place and the continuous state is reset to
x2 := −cx2 (x1 remains constant). Subsequently, the state resumes flowing according to the vector field,
and so on.

Fly
ẋ1 = x2
ẋ2 =−g
x1 ≥ 0

(x1 ≤ 0)∧ (x2 ≤ 0)

x2
.
=−cx2

x1 ≥ 0

Softwares and references
[1] V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems, Lecture Notes in

Applied and Computational Mechanics 35, 2008.
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THERMOSTAT

Properties
By M. Korovina

The hybrid automaton Th is non-blocking, non-deterministic, not Zeno.

Description
Consider a room being heated by a radiator controlled by a thermostat. Assume that the thermostat is

trying to keep the temperature at around 20 degrees. The hybrid automaton of Figure 1 models a thermostat.
The variable x represents the temperature. In control mode OFF , the heater is off, and the temperature falls
according to the flow condition ẋ = −ax. In control mode ON, the heater is on, and the temperature
rises according to the ow condition ẋ = −a(x− 30). Initially, the heater is ON and the temperature is 20
degrees. According to the jump condition x < 19, the heater may go on as soon as the temperature falls
below 19 degrees. According to the invariant condition x> 18, at the latest the heater will go on when the
temperature falls to 18 degrees.

OFF

ẋ= −ax

x≥ 18

start

ON

ẋ= −a(x−30)

x≤ 22

x≤ 19

x≥ 21

Formalization
The hybrid automaton of the thermostat is [1] Th= (Q,X , Init,D,E,G,R)
Discrete state space: Q= {OFF,ON};
Continuous state space: X = R, where x is the room temperature;
Discrete transitions: E = {(OFF,ON),(ON,OFF)};
Continuous flow: f (OFF,x) =−ax, f (ON,x) = −a(x−30);
Invariants: D(OFF) = {x ∈ R|x≥ 18}, D(ON) = {x ∈ R|x≤ 22};
Guards: G(OFF,ON) = {x ∈ R|x≤ 19}, G(ON,OFF) = {x ∈ R|x≥ 21};
Resets: R(OFF,ON,x) = R(ON,OFF,x) = {x}.

Software and references
[1] T. A. Henzinger, The Theory of Hybrid Automata, 11th Annual Symposium on Logic in Computer

Science (LICS), IEEE Computer Society Press, pp. 278–292, 1996.
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DIGITALLY CONTROLLED THERMOSTAT MODEL

Properties
By P. Kowalczyk

Depending on the system parameters we might encounter a family of periodic orbits, quasi-periodic os-
cillations or a banding structure of quasi-periodicity. When the system evolution is governed by generic
non-linear functions a fixed point attractor and chaotic dynamics are present in this more general case.
Further details of the dynamics of the presented example can be found in [3]. Some other relevant papers
are [1],[2].

Description
Simple models of thermostat control are frequently used as illustrations of hybrid systems, as it was

shown in the previous example. The control system is described as hybrid because it couples a continuous
state variable for the temperature with a discrete variable (on/off) for the state of the control system. Here
we consider another example of a thermostat model with

dh
dt

=

�
r1 if c= on
−r2 if c= off,

(2.1)

where ri, i= 1,2 are positive constants representing the rate of heating or cooling of the room. The state of c
changes from on to off if h rises above a threshold h 2 and from off to on if h falls below h 1, with h1 < h2.
However, unlike in the previous example, assume that the control monitors the ambient temperature at
regular but discrete times, nτ, and immediately switches the control if either of the threshold inequalities
h < h1 or h > h2 are satisfied at that time. Although this is not of immediate relevance to thermostats,
one can imagine situations where continuous monitoring of a variable cannot be done either for technical
reasons, or for reasons of economy, and the thermostat model provides a simple and well understood
example of the ways in which the control operation can be changed under these circumstances.
Formalization

In the current case, for the analytical purposes, it is convenient to represent the system using return
maps.

If the temperature evolves according to (2.1) the control variable in the new model described above
switches from on to off at nτ if c(nτ) = on and h(nτ) > h 2, in which case c(nτ+) = off (where c(s+) =
limt↓s(t)) and similarly it switches from off to on at nτ if c= off and h(nτ)< h 1, in which case c(nτ+) =
on. We have used strict inequalities for mathematical convenience. Once operational the temperature is
restricted to the interval [h1 −r2τ,h2+r1τ] so we can choose the origin of time so that h(0)∈ [h1 −r2τ,h1),
c(0) = off and c(0+) = on. The heater will remain on until t = N1τ where

h(N1τ) = h(0)+N1r1τ > h2, h(0)+(N1 −1)r1τ ≤ h2. (2.2)

It will then switch off and the room will cool until t = N2τ where

h((N1 +N2)τ) = h(N1τ)−N2r2τ < h1, h(N1τ)− (N2 −1)r2τ ≥ h1. (2.3)

Rearranging the two inequalities of (2.2) gives

N1 −1 ≤ h2 −h(0)
r1τ

, N1 >
h2 −h(0)

r1τ
, (2.4)

or

N1 = �h2 −h(0)
r1τ

�+1 = �h2 + r1τ−h(0)
r1τ

�, (2.5)
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where �x� is the floor function, the largest integer less than or equal to x (this is where there is some
convenience in the choice of strict inequality referred to in the opening paragraph of this section). Similarly

N2 = �h(N1τ)−h1

r2τ
�+1 = �h(N1τ)+ r2τ−h1

r2τ
�. (2.6)

Putting these together with (2.2) and (2.3) gives the simplified equations

h(N1τ) = h(0)+ r1τ�h2 + r1τ−h(0)
r1τ

�,

h((N1 +N2)τ) = h(N1τ)− r2τ�h(N1τ)+ r2τ−h1

r2τ
�.

(2.7)

Since h((N1 +N2)τ) ∈ [h1 − r2τ,h1) as was h(0) we can now iterate this process to obtain the sequence
h0 = h(0),h1 = h(N1τ), . . . of values of the temperature at switching points:

h2n+1 = h2n+ r1τ�h2 + r1τ−h2n
r1τ �,

h2n+2 = h2n+1 − r2τ�h2n+1 + r2τ−h1

r2τ
�,

(2.8)

with h2n ∈ [h1 − r2τ,h1) and h2n+1 ∈ (h2,h2 + r1τ]. Composing these we get a single equation for even
switching levels as a function of the previous even switching temperature. These equations are now con-
ventional difference equations, albeit involving the floor function, as opposed to the hybrid system we
began with, and to understand the dynamics of the original flow we have to analyse the dynamics of the
discrete map (2.8).

Softwares and references
[1] G. Haller and G. Stépán, Micro-chaos in digital control, Journal of Nonlinear Science, 6:415–448,

1996.

[2] E. Enikov and G. Stépán, Micro-chaotic motion of digitally controlled machines, Journal of Vibration
and control, 4:427–443, 1998.

[3] P. Glendinning and P. Kowalczyk, Dynamics of a hybrid thermostat model with discrete sampling time
control, Dynamical Systems, 24(3):343–360, 2009.
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COMPASS GAIT ROBOT WALKING

Properties
By H. Dallali &
M. BrownThe problem of developing flexible, robust and energy efficient control strategies for humanoid robotic

walking is currently receiving a lot of attention. A key part of this recent work is this idea of passive
dynamics, where the basic robot is designed to walk as smoothly as possible, without requiring control
actuation. Probably the simplest model such is the compass gait robot [1].

Description
The basic compass gait robot is a 2 link model, where each link represents a leg 2.1. There is no upper

body. The stance “foot" remains stationary and the stance leg pivots about that point. Power is provided
by gravity and the swing foot/leg rotates until a ground impact is detected. The double support phase
is assumed to happen instantaneously and the swing and support legs are swapped and a reduction in the
angular velocity occurs due to the impact. Stable limit cycle walking occurs when the energy gained during
the swing phase is equal to the energy lost at the impact.

Figure 2.1: Compass Gait.

where m and M are the leg and waist masses, respectively l(= a+ b) is the leg length where a and b
are the distances of the leg mass from the leg tip and hip, respectively, φ is the slope angle and θs and θns
are the stance and swing leg angles, respectively.

For this basic model, the swing dynamics are described by:

Mn(θ)θ̈+Nn(θ, θ̇)θ̇+gn(θ)/a= 0

where the angular position θ = [θsθns] and angular velocity and the matrices/vector Mn,Nn,gn are given by:

Mn(θ) =
�

β2 −(1+β)βcos(2α)
−(1+β)βcos(2α) (µ+1)(1+β)2 +1

�

Nn(θ, θ̇) =
�

0 (1+β)βθ̇s sin(θs−θns)
−(1+β)βθ̇ns sin(θs−θns) 0

�

gn(θ) =
�

gβsin(θns)
−((µ+1)(1+β)+1)gsin(θs)

�
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This can be represented in state space form:

ẋ=
d
dt

�
θ
θ̇

�
=

�
θ̇

−M−1
n (θ)[Nn(theta, θ̇)θ̇+gn(θ)/a]

�

where the state vector x= [θsθnsθ̇sθ̇ns]T is composed of the angular position and velocity of the stance and
swing legs, respectively.
The reset map at impact time is given by:

x+(t) =
�
J 0
0 H(α)

�
x−

where x− and x+ are the states immediately before and after the impact, respectively and the reset matrices
are given by:

J =
�

0 1
1 0

�

Nn(α) = Q+−1
n (α)Q−

n (α)

Q−
n (α) = ma2

�
−β −β+(µ(1+β)2 +2(1+β))cos(2α)
0 −β

�

Q+
n (α) = ma2

�
β(β− (1+β)cos(2α)) (1+β)((1+β−βcos(2α))+1+µ(1+β)2

β2 −β(1+β)+ cos(2α)

�

where α = (θns − θs)/2 is half the interleg angle. The J matrix simply swaps the swing and stance leg
angles and the H matrix again swaps the angular velocities and also reduces them due to the energy loss at
impact.
The impact event is detected when:

cos(θs+φ) = cos(θns+φ)

The basin of attraction for stable limit cycles is relatively small and it is necessary to provide initial con-
ditions close to the stable limit cycle. One set of values is given here. This basic compass gait robot has
been extended in many ways to provide simple active control so that the robot can walk on flat or inclined
surfaces (or so that the robot can walk at a different speed down the incline). Such actuation can occur at
the waist, stance ankle or as an impulsive toe push off.

Softwares and references
[1] A. Goswami, B. Thuilot and B. Espiau, A study of the passive gait of a compass-like biped robot:

symmetry and chaos, International Journal of Robotics Research, v.17, n.12, 1998.

[2] http://www.ambarish.com
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STOCHASTIC HYBRID SYSTEM

Properties
By Manuela
BujorianuThis example presents a class of stochastic hybrid systems that occur in the modelling of the switching

behaviour of electrical devices (electric space heaters, air conditioners), associated with some form of
energy storage. Understanding their switching dynamics is important from different practical reasons.This
model has been developed by R.P. Malahamé and C.Y. Chong in [1].

Description
Electrical devices connected to a power system are subjected to two sets of inputs:

• voltge and frequency on the power system side, and

• service demand and other relevant processes, such as atmospheric conditions in the case of weather
sensitive devices (e.g. electric space heaters, air conditioners, etc) on the user side.

The effect of the first set of inputs is directly a function of the physical construction of the device as
an energy converter. The effect of the second set of inputs is a function of the mechanism that controls
the operating state of the device. This natural division of inputs and effects makes possible to view every
electrical device associated with two distinct interconnected models:

• a device response model reacting to voltage and frequency for a given operating state; and

• a device functional model reacting to service demand and other processes.

Formalization
The output of the functional model is a discrete q(t) scalar or vector representing the operating state of

the device at time t.
It is assumed that the operating of an individual electric space heater is controlled by a thermostat,

the state of which depends on the temperature of the dwelling. The complete state vector comprises a
continuous part characterizing the evolution of the temperature and a discrete boolean part characterizing
the operating state of the device. the model is as follows.

Continuous state

The continuous temperature state x(t) evolves according to the following first order Itô stochastic dif-
ferential equation based on a linearised energy balance analysis.

Cdx(t) = −a�(x(t)−Xa(t))dt+R�q(t)b(t)dt+σ�dv(t)

where:

• C - thermal capacity of the dwelling in joules/o C

• a� - is the average thermal resistance of the floors, walls, ceiling of the dwelling in watts/o C

• Xa(t) - ambient in o C

• R� - power rating of the heating device in watts

• q(t) - the operating state of the device (1 for on and 0 for off)
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• b(t) - the state of the boolean control signal sent by the utility (1 for no control and 0 for a centrally
controlled interruption of the load)

• σ�v - a Wiener process of intensity σ�, simulating all unaccounted for processes of heat gain or
heat loss (fluctuating number of people in the residence, doors, windows being opened and closed,
refrigerators, cooking, etc).

The choice of the Wiener process as a noise model is justified by the fact that such processes can be
viewed as collection of random independent thermal shocks, the duration of each is very small compared
to the thermodynamic time constants of the dwelling.

Discrete state

The evolution of the discrete state q(t) is governed by a thermostat with temperature setting x− and a
deadband (x+−x−). q(t) switches from 1 to 0 when x(t) reaches x_ and from 0 to 1 when x(t) reaches x+.
No switching occurs otherwise.

Thus, the model is composed of two interconnected subsystems; a linear part characterised by a stochas-
tic continuous state x(t), the evolution which depends on q(t), and a nonlinear part q(t) with jumps depend-
ing on x(t) deterministically.

The vector
�
x(t)
q(t)

�
is a hybrid state Markov process.

Softwares and references
[1] Malhame, R.P., Chong, C.Y.: Stochastic Hybrid State Systems for Electric Load Modelling. Proc. of

IEEE Conference on Decision and Control (1983).
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STATE CONSTRAINED STOCHASTIC REACHABILITY ANALYSIS

Description
Marius C.
BujorianuFor the definition of stochastic hybrid system (SHS) and stochastic hybrid process (SH) we refer to In-

troduction Under standard assumptions (about the diffusion coefficients, non-Zeno executions, transition
measure, etc), any SH process is a strong Markov process. State-constrained reachability analysis denotes

a reachability problem with additional conditions (constraints) on the system trajectories. Let us consider
A,B two Borel measurable sets of the state space X with disjoint closures, i.e.

A,B ∈ B(X) and A∩B= /0.

We consider two fundamental situations. Suppose that the system paths start from a given initial state x and
we are interested in a target state set, let say B. These trajectories can hit the state set A or not. Therefore,
we may define two new concepts:

• Obstacle avoidance reachability. In this interpretation B is a safe set, whilst A is not. The goal is to
compute the probability, denoted by

pB¬A(x),

of all trajectories that start from a given initial state x and hit the set B without hitting the state set A
(as illustrated in Fig.1).

• Waypoint reachability. In this interpretation we are interested to compute the probability, denoted by

pBA(x),

of all trajectories that hit B only after hitting A (as illustrated in Fig.2).

The connection between the two types of stochastic reachability is given by the formula

pB¬A(x)+ pBA(x) = ϕB(x)

where ϕB is the reachability function for the target set B. Therefore, the computations of the probabili-
ties corresponding to the two types of reachability are equivalent. To have an easy notation, it is more
convenient to work with the waypoint reachability, which will be called from now on just simply state-
constrained reachability.

Figure 2.2: Obstacle avoidance reachability

Now we consider the executions (paths) of the stochastic hybrid process that start in x = (q,z) ∈ X .
When we investigate the state-constrained reachability, we ask the probability that these trajectories visit A
before visiting eventually B. Mathematically, this is the probability of

{ω|xt(ω) /∈ B,∀t ≤ TA}.

Moreover, using the first hitting time TB of B, we are interested to compute

pBA(x) = Px[TA < TB]. (2.9)
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Figure 2.3: Waypoint reachability

An autonomous system has to determine the safest path for a vehicle to move through the area of
operation to accomplish a given mission.

Let us suppose the dynamics of an autonomous system (an agent), in different operational modes, can
be described by a hybrid system. For example, an UAV dynamics can be described by a hybrid system
that makes discrete transitions whenever it reaches an waypoint. Considering different randomness factors
(environment, noisy measurements, communication failures, etc), we may use a randomized version of the
given hybrid system. Of course, the agent dynamics can be thought of as a particularization of the SHS
general model. For example, one can easily imagine that the agent has no proper jumps, but only switch-
ings from one continuous path to another. This randomized model of hybrid system will play a reference
role. It will describe the desired dynamics. The description of this hybrid system should come with a fairly
good representation of its state space. That means we need to have the locations of threats, obstacles, and
restricted fly areas.

Formally, suppose that the agent dynamics can be described by a stochastic hybrid process M with the
state space X . The obstacle is represented by a measurable set A, and the goal is given by a measurable set
B. Therefore, we can use as uncertainty representation of X the following family of probability distributions

{pBA(x)|x ∈ X} (2.10)

where pBA(x) is the solution of the Dirichlet boundary value problem. The aim of the trajectory design
problem for this agent would be to find “trajectories” in the space (2.10) with low collision probability.
Then, on this space, we can define an harmonic potential field (HPF) method that aims to identify the paths
with the lowest obstacle collision probabilities. In this setting, the potential field equations will be





∇{(1− pBA(x))∇V (x)}= 0 x ∈ X\(A∪B)
V (x) = 1 x ∈ A
V (x) = 0 x ∈ B.

(2.11)

A provably-correct path may be generated using the gradient dynamical system:

.
x= −∇V (x).

The modified differential operator in (2.11) will expand in

(1− pBA(x))∇
2V (x)+∇(1− pBA(x))∇V (x) = 0

which leads to
∇2V (x) = − 1

(1− pBA(x))
[−∇(1− pBA(x))][−∇V (x)]

Notice that −∇V (x) is the direction at which motion is to be driven and −∇(1 − pBA(x)) = ∇pBA(x) is a
vector pointing in the direction of increasing risk.

The trajectories are generated using sampling. At a given state, the direction of moving is chosen by
picking a state in the neighborhood with the smallest associated probability. In practice, the probabilities
will not be computed for each state in the neighborhood, but only for a finite set of states chosen according
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to a sampling policy. For example, a sampling policy in the plane would be to construct a circle in a suitable
metric and pick a point on this circle. The remaining states are obtained by picking new points for each
45 degrees. Computationally, eight probabilities will be computed at each step. This sampling method
could be made adaptive by considering the values of the probabilities on samples. If these values are small,
fewer samples will be necessary in the next step. Contrary, for high values of the probabilities, more sam-
ples will help to find quicker the way down the ridge. The path generated by (2.11) will avoid the states
from where the agent with a.s. probability 1 will collide with obstacle, i.e. the state for which the pBA(x) = 1.

In Figure 3. uncertainty representation of the state space corresponds to the graph of the harmonic
function Re u(x,y) where

u(x,y) =
e−(x+yI)2

(x+ yI)2 +(x+ yI)4

and x,y vary within the interval [−2,2].

Figure 2.4: Trajectory in the uncertainty representation

The system trajectory is depicted as a thick curve. It can be observed that the trajectory follows a prin-
ciple of getting quicker down the ridges onto the ”valleys”.

The uncertainty representation has an extra-dimension when compared to the state space. The generated
trajectory will have also an extra-dimension. The trajectory will carry, in addition to the state parameters,
information on the uncertainty measure (in our case, the state constrained reach probability). One pos-
sibility to construct a trajectory in the original state space is to construct an intermediate model, called
colored SHS. In practice, only a finite number of values of state constrained reachability probability can be
computed. Therefore, the uncertainty representation of the state space will be a map colored with a finite
number of colors.

Definition 1 A colored stochastic hybrid system is a collection

(H,C ,�)
where

• H := ((Q,d,X ),b,σ, Init,λ,R) is a general stochastic hybrid system

• C is a finite set, whose elements are called colors

• � : X → C is a function that we call coloring
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Figure 2.5: Trajectory in the colored state space

A colored stochastic hybrid system can be attached to its uncertainty representation by defining a color
to the a value set of the state constrained reachability probability. In this way, coloring can be used as an
effective tool for model reduction.

An example of colored SHS is illustrated in Figure 4. In this example five colors are used for the
uncertainty representation: the target state set is represented in light blue, the obstacle state set (which,
in this example, is not connected) is represented in black. The probability represented in the figure is
the complementary ϕB(x)− pB¬A = pBA of the obstacle avoidance probability pB¬A (of reaching B, starting
from x, by avoiding A). This probability has the value 1 on the black colored areas (corresponding to the
obstacles) and null value on the light blue colored area (corresponding to the target). The areas colored in
white, grey, dark grey and dark blue correspond to intermediate, increasing values of the complementary
of the constrained reachability probability. For example, the white colour corresponds to the states with
the constrained reachability probability values ranging from 0.001 to 0.250. The grey colour corresponds
to the states with the constrained reachability probability values ranging from 0.251 to 0.700. Similarly,
the dark grey colored states correspond to probability values ranging 0.701 and 0.850, and the blue colored
states correspond to probability values ranging 0.851 and 0.999. The trajectory is depicted in red. Remark
that the trajectory ”tries” to get quickly out of the dark colored state areas.

An immediate example at hand for colored state spaces is the case of flight within a geographical area
contaminated with ash clouds. It is reasonable to consider the probability directly proportional to ash
concentration. The North Atlantic Operations Bulletin 2010-009 imposes, from 16 May 2010: ”Areas of
Low Contamination” - areas where it is forecast that the concentration of volcanic ash will be below 2x10-3
g/m3; ”Areas of High Contamination” - the forecasted concentration of ash is between 2-4 mg/m3 and ”No
Fly Areas”. These areas are modeled by colored sets in our model. The light blue state sets will be the
surrounding area of the destination airport. The model states corresponding to the ”No Fly Areas” will be
considered colored in black. The area of high contamination will form the blue colored state regions. The
white state areas correspond to the physical areas of no contamination. The grey colored state regions will
correspond to the areas of low contamination.

It is important to underline that, in the previous example, the colors are dynamic (they change over
time corresponding to the volcanic ash concentration determined by the ash clouds dynamics). The colored
SHS model can be extended to cope with this situation by considered a time indexed family of coloring
functions

{�s : X → C}s∈S⊂[0,∞)
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OPTIMAL DECENTRALIZED CONTROL

Properties
By H. Dallali &
M. BrownFeedback control dynamical system, non-convex optimisation.

Description
Feedback is perhaps one of the most fundamental concept in control engineering, dynamical systems,

and many other areas including biology and economic. In control engineering, the synthesis of feedback for
a variety of complex systems has been studied for many years. The idea behind designing feedback control
systems is to control the dynamics of a given system to achieve certain stability and performance criteria in
the face of uncertainties, unmodelled dynamics, noise and disturbances. The feedback itself can be static
or dynamic depending on the type of the system and the level of performance, required. The structure of
the feedback can also be centralized or decentralized. The centralized feedback refers to the case where
the measurements and control calculations are performed at a single location. However, in some physical
systems due to constraints on the rate of information transfer among sensors and actuators centralized
control is not feasible and it is desired to process the information locally at each subsystem which is
called decentralized control. Although information is processed locally, the interactions and overall global
dynamics of the large system must be considered when the decentralized feedback is designed. In addition,
it is often desired to minimize the cost of the closed loop norm of the system while designing the feedback.
Hence the optimal decentralized control can be cast as a non-convex optimisation problem.

Formalization
The general decentralized control problem can be formulated as the following optimisation problem

minimize � f (P,K)� (2.12)
s.t. K stabilizes P

K ∈ S.

where � f (P,K)� is the norm of a closed loop map, K is the feedback that stabilizes the plant P and the
subspace S defines the structure of K. The general solution to problem (2.12) is currently being studied in
control systems community since this is a non-convex optimisation problem.

Plant   (P)

Feedback (K)

States

Control

input

Figure 2.6: A closed loop feedback diagram.

In our case, the problem is simplified by limiting the solution of (2.12) to linear, block diagonal structure
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gains as shown in (2.13)

K =




K1 0 0 · · · 0
0 K2 0 · · · 0

0 0
. . . · · · 0

...
... · · · Kn−1 0

0 0 · · · 0 Kn




(2.13)

where n is the number of joints and Ki blocks are row vectors of dimension 1 by 3 for rigid models and 1 by
5 for compliant models. Each block Ki contains three PID gains for rigid robots or five PD-PID gains for
compliant robots that provide feedback from the ith joint position, velocity, motor position, motor velocity
and integrator states.
Consider the discrete time system

x(k+1) = Ax(k)+Bu(k)+η (2.14)

Assuming that the state x is available for measurement and the pair (A,B) are controllable, the feedback
can be expressed as u(k) = −Kx(k) and the closed loop system is

x(k+1) = (A−BK)x(k)+η (2.15)

where (A−BK) is asymptotically stable. The steady-state state covariance matrix P=E[xxT ] is the solution
to Lyapunov equation

P− (A−BK)P(A−BK)T − Q̂= 0 (2.16)

where the noise covariance matrix is E[ηηT ] = Q̂ . If every entry in the noise vector has the same variance
β and the entries are all statistically independent or uncorrelated then the noise covariance is E[ηηT ] = βI.
The LQR based decentralized feedback optimisation problem is

min
u=−diag{Ki}x

J (2.17)

subject to x(k+1) = Ax(k)+Bu(k)

and the proposed discrete time, LQR-LMI formulation is

min(P,Y,X) tr[QP]+ tr[X ] subject to: (2.18)
�

(P−βI) (AP−BY )
(AP−BY )T P

�
> 0

�
X R

1
2Y

YTR
1
2 P

�
> 0

where Q and R are the LQR penalties and P is the solution of the Lyapunov equation. In addition, Y = KP
is an auxiliary variable introduced to cater for the nonlinearity introduced by the product of K and P in the
Lyapunov equation P−βI− (A−BK)P(A−BK)T > 0.
The static state feedback is obtained by

K = YP−1 (2.19)

Ideally, the decentralized structure must be directly imposed on the feedback gain K as in (2.13). However,
due to the product between K and P that causes nonlinearity, the decentralized structure is indirectly im-
posed on the LMI variables P and Y . It can be easily shown that if these variables have a block diagonal
structure the resulting feedback gain in (2.19) will have the decentralized structure. Hence in this paper, P
and Y are defined to have similar structure as in (2.13). The only difference is that diagonal blocks of P are
square matrices and diagonal blocks of Y have the same dimension as blocks of K. Moreover, symmetric
decentralized gains are desirable in bipedal walking to avoid switching the gains while the robot changes

22



the supporting leg. These gains are derived by providing a mirror reflection of the blocks with respect to
the central block.

There are effective LMI solvers that use Semidefinite programming (SDP) to solve (2.18). Further
information about this method is provided in [1].

Softwares and references
[1] H. Dallali, G.A. Medrano-Cerda and M. Brown,Decentralized PID Joint Servo Design for a Compliant

Humanoid Robot via LQR-LMI Approach, Available online at http://eprints.ma.man.ac.uk/1651/, 2011.
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DIGITAL CONTROL AND ITERATED FUNCTION SYSTEMS

Properties
• If the maps gi are all expanding, then the largest controllable region is the only nonempty compact By P. Shmerkin

set K satisfying K =
�m
i=1 g

−1
i (K).

• For the case of two expanding maps in R2 and three expanding maps in R3, there are easy ways to
verify if the controllable region has nonempty interior.

Description
We consider the problem of keeping a dynamical system near a certain point in the phase space. This

point needs not be a stable equilibrium; it could even be an unstable equilibrium. This can be achieved by
applying periodic forces from different directions (at least 2) for fixed periods of time. This is known in
the control literature as bang-bang control, although we prefer the term digital control as we are looking at
a wider class of situations.

This setting can be modeled by iterated function systems (IFS). Indeed, let τ be the time period over
which each force is applied, and let gi be the time-τ map of the original system perturbed by the force Fi
(i = 1, . . . ,m, where m is the number of different forces available). Then, starting from a point x in phase
space, we can move the system to any of the points gi(x).

In the classical IFS theory the maps gi are required to be contractions, but in our case this will never
happen, in fact the maps gi will have strong expanding properties in certain directions. We define a region
K in phase space to be controllable if, for any x ∈ K, there is i such that gi(x) ∈ K or, in other words,
K ⊂ �m

i=1 g
−1
i (K). This generalizes the classical notion of attractor of an IFS.

Even though the maps gi are not contracting, the classical theory turns out to be useful in helping find
appropriate controllable regions. This can be seen in simple models such as an inverted pendulum in either
2 or 3 dimensions.
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FEWNOMIALS

Description
Suppose that p(x) = adxd+ · · ·+a0 is a polynomial with real coefficients. Descartes’s rule of signs says that By G. Jones

the number of positive real zeros of p is at most the number of sign changes in the non-zero coefficients of
p. This implies that if p has exactly k non-zero monomials then p has at most k−1 positive real roots, and
this is independent of the degree of p!. Is there a version of this result for polynomials in many variables?

Khovanskii’s theorem
Consider a system of equations

p1(x) = 0
...

pn(x) = 0

where p1, . . . , pn are polynomials in n variables with real coefficients and x ∈ Rn. If there are at most k
distinct monomials occurring in p1, . . . , pn then the system has at most

2
k(k−1)

2 (n+1)k

non-degenerate solutions (i.e. solutions x at which the Jacobian determinant is non-zero) in the positive
quadrant of Rn.

These systems are called fewnomial systems.
Rather than proving this directly, Khovanskii proves the following result, which involves certain tran-

scendental equations. Suppose that q1, . . . ,qn are real polynomials in n+ k variables, and let c1, . . . ,ck ∈
Rn,ci = (ci,1, . . . ,ci,n). Then the systems of equations

q1(x,exp(c1,1x1 + · · ·+ c1,nxn), . . . ,exp(ck,1x1 + · · ·+ ck,nxn) = 0
...

qn(x,exp(c1,1x1 + · · ·+ c1,nxn), . . . ,exp(ck,1x1 + · · ·+ ck,nxn) = 0

has at most
2
k(k−1)

2 ∏βi(1+∑βi)
k

non-degenerate solutions in Rn, where βi is the degree of qi.
The result on fewnomials follows immediately, by taking xi = exp(yi). To prove the result on exponen-

tial equations, Khovanskii proceeds by induction on k (note that for k = 0 the result follows from Bezout’s
theorem) and replaces the last exponential with a new variable. The proof is too long to give here, but in
the end it, like Descartes’s rule, comes down to a clever application of Rolle’s theorem.

References
[1] Khovanskiı̆, A. G., Fewnomials, Translations of Mathematical Monographs, American Mathematical

Society, v.88, 1991.
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THE MOVING AVERAGE TRANSFORMATION

Properties
The Moving Average Transformation is a novel systematic procedure for smoothing non-smooth dynamical By J. Hook

systems. It transforms discontinuous systems into equivalent continuous systems and continuous but non-
differentiable systems into equivalent differentiable systems and so on. This smoothing enables us to apply
standard techniques which rely on differentiability or higher order smoothness. In this part we introduce
the transformation, the notion of dynamical equivalence and present a numerical example of the smoothing
procedure.
In principal this technique could be applied to any non-smooth dynamical system. The smoothed systems
exhibit a rich topology which can give us insight into the original systems dynamics and the differentiability
of the vector field enables us to apply standard techniques such as the calculation of Lyapunov exponents
from data.
It is my hope to develops further applications of the technique for real life engineering systems.

Description
Discontinuities in non-smooth models of physical systems are approximations of highly non-linear

smooth processes that take place on very short time scales. The Newtonian impact of a ball bouncing on
the ground is discontinuous in velocity but in reality the ball and ground are compliant, elastic bodies and
discontinuities in velocity are physically impossible! Introducing compliance gives us a continuous but
non-smooth system. The dynamics are non-smooth because there is only a force between the ball and
ground when they are in contact, but this too is a false assumption. The electric fields of the atoms in the
ball and ground are continually interacting in a smooth way it is just that the forces produced by these
interactions are only significant during the short impacting phase of the dynamics.

Of course we approximate these fast processes by non-smooth discontinuities to obtain simpler, more
manageable models of physical processes. Ironically the piecewise smooth nature of the resulting models
can make them more difficult to study. For example non-differentiability makes it impossible to apply
many standard numerical techniques to these systems [1, 2, 3, 4, 5]. For a discontinuous system like the
bouncing ball the topology of the state space and any attractors it contains is broken up by jumps in the
evolution so that an attractor will typically appear to be comprised of several disconnected parts, if we
patch these together by connecting jump take offs and landings we arrive at a new topological space which
can tell us much more about the systems dynamics than the topology of the original disconnected object.

There is therefore some motivation for transforming non-smooth systems (which as outlined are ap-
proximations of smooth systems) back into smooth systems. Several authors have tried a fairly direct
approach, adding a small region where fast, smooth dynamics replace the non-smooth discontinuity in a
process called regularization [5]. Whilst this doesn’t necessarily mean introducing more layers of physi-
cally realistic modeling, since the extra components can be chosen to be as simple as possible, it still feels
like a step in the wrong direction. The non-smooth discontinuities are a simplification and we should be
able to exploit this trade off in realism by studying more mathematically appealing tractable systems.

In addition to these approximated physical processes there is a huge catalogue of non-smooth systems
in control theory where digital switching between different modes really should be thought of as being
intrinsically non-smooth [6]. Abstract non-smooth systems are also of great interest mathematically as
they can generically exhibit bifurcation structures which would be impossible or of high codimension in
the space of smooth systems [7]. Although it is not natural to think of one of these systems as the limit of
some smooth system it can still be advantageous to smooth them in some way as all the problems associated
with the analysis of non-smooth physical systems are also present here.

In [9] we introduce the Moving Average Transformation which can be thought of as a change of vari-
ables which transforms discontinuous systems into continuous systems and continuous but non-differentiable
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systems into differentiable systems. For a non-smooth system with evolution φt : X → X the transformation
is defined by

Φ(x) =
� 0

−1
φτ(x)dτ (2.20)

Since the evolution of the system is automatically incorporated into the transformation it is possible to
systematically obtain smoothed systems using this technique.

The transformation provides an explicit link between a non-smooth system and its smoothed Dynami-
cally Equivalent counterpart. This enables us to better understand topological aspects of the dynamics and
apply standard numerical techniques that rely on differentiability.

Crucially the technique is totally systematic, introduces no extraneous dynamics and provides a clear
equivalence between the original and transformed (smoothed) system.
Relationship between original and smoothed system
The theory surrounding the moving average transformation is quite subtle and investigated fully in [9].
Rather than proving that the transformation smooths non-smooth systems here we shall instead, by way
of motivation, present a very simple example. Although the method here is quite ad hoc it illustrates the
desired relationship between the original and smooth systems as well as the necessary properties of the
transformation between them.

Consider a unit mass attached to a spring with unit stiffness along with a wall where the mass undergoes
Newtonian impacts positioned at x= 0 where the spring is at its natural length . We assume that the spring
is light and linear and that there is no friction so that away from the wall the dynamics are governed by the
linear differential equation

d
dt

�
x
ẋ

�
=

�
0 1

−1 0

��
x
ẋ

�
(2.21)

When the mass hits the wall there is an impact with restitution c so that whenever we reach the set In =
{(x, ẋ) ∈ R2 : x = 0, ẋ < 0} we instantaneously apply the map R(x, ẋ) = (x,−cẋ) which maps In to Out =
{(x, ẋ) ∈ R2 : x = 0, ẋ > 0}. Since we are mapped instantaneously from In to Out the state space of the
system is given by M = {(x, ẋ) ∈ R2 : x≥ 0}/{(x, ẋ) ∈ R2 : x= 0, ẋ< 0}.

The system then evolves by flowing according to (2) until hitting In then mapping to Out and flowing
according to (2) again... Define φt : M �→M to be the time t evolution map that takes a point in the state
space foreword in time t seconds.

We seek a smoothing transformation T which can be thought of as a change of variables with the
property that the transformed system ϕt = T ◦φt ◦T−1 is smooth.

Claim The transformation T : M �→ {(y1,y2) ∈ R2} defined in polar coordinates by

T (θ,r) = (2θ,rc
θ
π ) (2.22)

provides an equivalence between our discontinuous system and the linear system evolved by the
ODE

d
dt

�
y1
y2

�
=

� 1
π logc 2
−2 1

π logc

��
y1
y2

�
(2.23)

defined on R2 equipped with the Euclidian metric.

Figure 2.7: An orbit to the original system (Left) and its image under T (right).
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Proof This rests quite heavily on our definition of equivalent! Clearly the two systems are not topologically
equivalent since continuity is a topological invariant.

Definition If φ is the evolution of a non-smooth system which includes some jumps that are applied in-
stantaneously on reaching a set Σ then we say that the transformation T provides a Dynamical Equiv-
alence between φ and ϕ via ϕt = T ◦φt ◦T−1 if

• T is continuous

• T−1 exists and is continuous everywhere except T (Σ)
• δT

δx exists and is non-zero everywhere

This is a relaxation of the usual definition for topological equivalence where T−1 is required to be
continuous everywhere. Clearly our claim holds for this notion of equivalence.

Definition We define a Cheat Metric d on a discontinuous system to be a continuous metric which identi-
fies jump take offs and landings so that d(s,R(s)) = 0 for all s ∈ Σ. To define d everywhere else we
could just measure the length of the shortest path between two points but allow the path to jump over
the discontinues in the same way as φ.

Viewed with the cheat metric all systems have continuous orbits, hence the cheat. This means that
the original system with Euclidian metric is not topologically equivalent to the original system with
cheat metric which in tern is topologically equivalent to the smoothed system with Euclidian metric.

The second condition for dynamical equivalence that T−1 exists and is continuous everywhere except
T (Σ) is equivalent to the condition that T−1 is continuous w.r.t a cheat metric. Therefore dynamically
equivalent systems are topologically equivalent when viewed with a cheat metric.

The relationship between our original discontinuous system and the dynamically equivalent smooth system
is quite subtle. If we equip M with the Euclidian metric then T−1 is discontinuous so the two systems are
not topologically equivalent. However the evolutions are still interchangeable via ϕτ = T ◦φτ ◦T−1 so we
can use the new system to describe the original. Since our new system is linear it is easy to solve and we
can therefore obtain a neat expression for the evolution

φt = T−1 ◦ t
π

logc
�

sin2t cos2t
−cos2t sin2t

�
◦T (2.24)

Complications caused by the discontinuity have all been captured in the transformation T . Since the new
system is differentiable we can also calculate the stability of the fixed point at the origin which is determined
by by the real part of (4)’s eigenvalue pair λ± = 1

π logc± 2i. This agrees with the standard non-smooth
analysis using the saltation matrix formulation [2].

In [9] we show that the Moving Average Transformation automatically has the same properties as T .
We are also able to investigate the action of the transformation in the vicinity of all typical non-smooth
discontinuities, providing us with an atlas of possible behaviors for the transformed systems.

Numerical example
The Moving Average Filter can easily be applied to time series data from a computer simulation of a non-
smooth system. Since this data is equivalent to unsmoothed output from the smoothed system we can use
it to study the systems obtained by applying the Moving Average Transformation to non-smooth systems.
The theory developed in [9] enables us to understand the complex relationship between the non-smooth
system and its smoothed counterparts.
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Friction oscillator
Systems with static and dynamic friction can exhibit sliding behavior. In our model we consider a mass on
a linear spring subjected to a periodic force resting on a rough moving belt with a piecewise linear friction
force

Fric(y) =
�

ay+b y> 0
−ay−b y< 0 (2.25)

where y is the velocity of the mass relative to the surface of the belt. The force acting on the block is given
by

F(x, ẋ, t) = kx−dẋ+ l sin(ωt)+Fric(ẋ−u) (2.26)

The state space of this dynamical system is three dimensional (position,velocity,forcing-phase). We will
embed the phase variable as an interval [0,2π] rather than on the circle as it enables us to embed the the
whole state space in R3 and the jump from 2π to 0 gives us some discontinuities in the flow which we can
resolve with the transformation.

Procedure

For a given set of parameter values we simulate the oscillator on a computer and record a time series in
the three dimensional state variable. The recording is just a long sequence (xi, ẋi,τi)Ni=1 where we use a
time-step of 0.05s. The smoothing filter is just a summed average applied to the now discrete time data.

Φ(x, ẋ,τ)i =
1

40

i

∑
j=i−39

(x j, ẋ j,τ j) (2.27)

So that we are averaging over a period of 2s. The accuracy of our routine is actually slightly better than
this as we can approximate the average between time steps during the integration routine which improves
the resolution of the sum.

To obtain a differentiable time series we simply apply the same filter a second time to the data.

Data

We use the following parameters k = 1.2, d = 0.0, w = 1.02, l = 1.9, u = 3.4, a = 0.04 and b = 0.1
whose dynamics exhibit a grazing orbit that gives rise to chaotic dynamics on what appears to be a fully
2 dimensional attractor. We plot the time series for the three systems, discontinuous, continuous/non-
differentiable and differentiable, see fig 2,a.

Results

Both applications of the filter give us useful insight into the original systems dynamics. When we transform
the system from a discontinuous system to a continuous system we change the topology of the attractor.
As outlined in the introduction we claim that the topology of the continuous system gives a better charac-
terization of the dynamics and that is the case here. Homologically the discontinuous system is equivalent
to two points whereas the continuous system is a figure of eight, the two possible loops in the attractor
provide the topological mechanism for chaos, see fig 2,b.

On the second application of the filter we arrive at a differentiable system which can be thought of as
an ODE with continuous RHS. We can therefore locally approximate this ODE from our data and use this
to compute lyupanov exponents along the flow. The clear positive exponent shows that we have a chaotic
system, see Fig 2,c.
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Figure 2.8: a) Time series recorded from i) Original discontinuous system, ii) Once transformed continuous
system, iii) Twice transformed differentiable system, b) Convergence of Lyupanov exponent calculation,
c) Topology of invariant set for discontinuous and transformed continuous system.
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DIMENSIONALITY REDUCTION VIA OPTIMIZATION ON THE GRASS-
MANNIAN

Abstract
By C. Wolshman

We present a summary of a method for performing dimensionality reduction on a set of data points in a
high-dimensional Euclidean space, by optimizing a cost function over the Grassmannian. We include a
compatible line search and a procedure for obtaining a sensible initial condition.

The Problem
Given a set of data points in Rn,

X = {x1, · · · ,xN} ⊂ Rn,

we want to find a projection P : Rn → Rd onto a d-dimensional subspace, such that P|X is injective -
i.e. we want to be able to describe the data in a lower-dimensional space.

An orthogonal projection from Rn to Rd is represented by an orthonormal n×d matrix W , (orthonor-
mal: WTW = Id), whereby each column ofW is a basis vector for Rd expressed in the basis of Rn. Collec-
tively they form an orthonormal d-frame in Rn. The projection is then given by x �→WTx.

Cost Function
We can obtain an optimal projectionW by minimizing a suitable cost function. Let S be the set of unit

secants,

S=
�

x− y
�x− y� : x �= y ∀x,y ∈ X

�

The cost function F :Vd(Rn)→ R is given by [2]

F (W ) =
1
|S| ∑

k∈S

��WTk
��−1

,

where Vd(Rn) is the Stiefel manifold (the set of orthonormal d-frames in Rn). As this cost function
has the orthogonal symmetry, F (WQ) = F (W ) (where Q ∈ O(d)), its value only depends on the subspace
spanned by the frame, and thus on the Grassmannian, Grd(Rn) (the set of d-dimensional linear subspaces
of Rn). As the Grassmannian is a submanifold within the space of n×d real matrices, we will require some
differential geometry to perform the optimization.

Determining a Sensible Initial Condition
Let σi ∈ R be the spread on the ith co-ordinate axis with corresponding basis vector ei.

σi :=
����max

j
(x j)i−min

j
(x j)i

���� .

Let a : {1, · · · ,n} → {1, · · · ,n} be a bijection such that

σa(1) ≥ ·· · ≥ σa(n)

i.e. a(1) is the axis with the largest spread and a(n) is the axis with the smallest spread. Choose the d
basis vectors with the largest spreads,
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ea(1), · · · ,ea(d).
The initial condition is then the projection onto this frame,

W =
�
ea(1) · · · ea(d)

�

Optimization on the Grassmannian
When minimizing the cost function, each step must remain on the Grassmannian. Optimization will

therefore involve stepping along the geodesic - the direction and step amount are to be found.

For a simple gradient descent, the step direction, Λ, is given by

Λ = −G
where G is the (tangential) gradient [1]

G := (In−WWT)
∂F
∂W

Geodesic

The geodesic along the Grassmannian from initial point W in the direction Λ = UΣVT (singular value
decomposition) is given by [1]

W (α) :=
�
WV U

�� cosΣα
sinΣα

�
VT. (2.28)

Parallel Translation

The parallel translation of an arbitrary vector Δ at W along the geodesic in the direction of Λ =UΣVT is
given by [1]

Δ(α) :=
��

WV U
�� −sinΣα

cosΣα

�
UT +(In−UUT)

�
Δ. (2.29)

Line Search

After computing the search direction, Λ, we require a scalar, α such that

ψ(α) := F (W (α)) (2.30)

is approximately minimized. In order to use the line searching techniques, we require the derivative of ψ.
The derivative with respect to α (i.e. along the geodesic) is

ψ�(α) = �G(α),Λ(α)� , (2.31)

where G(α) is the gradient of F at α,

G(α) := (In−W (α)WT(α))
∂F
∂W

����
W (α)

, (2.32)

and Λ(α) is the parallel transport of Λ along the geodesic toW (α). The inner product is the usual

�A,B� = Tr(ATB).

Let α∗ > 0 be a local minimum of ψ. First we establish an upper and lower bound, αmin < α∗ < αmax
such that ψ�(αmin) < 0 and ψ�(αmax) > 0. As this is part of a minimization problem, α = 0 is almost
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certainly a point with negative gradient (the step direction is chosen so that this is the case), we can use
αmin = 0.

In order to find an upper bound, we use the value of α from the previous optimization step, denoted
αold. If ψ�(αold)> 0 we can use αmax = αold. If not, αold is repeatedly multiplied by a factor of γ > 1 until
ψ�(γnαold)> 0, we then use αmax = γnαold. We use γ = 2.

Once the bounds have been established, an iterative procedure is used to find a solution for α∗, as
follows.

1. Use the linear interpolation of the two bounds to estimate the zero crossing,

c := αmin − αmax −αmin

ψ�(αmax)−ψ�(αmin)
ψ�(αmin) (2.33)

2. Test the Wolfe conditions on c: return c if satisfied.

3. Compute ψ�(c).

4. If ψ�(c) > 0 it becomes the new upper bound αmax = c. If ψ�(c) < 0, it becomes the new lower
bound, αmin = c.

5. Repeat for a limited number of iterations, or until a tolerance is reached. A handfull of iterations is
usually plenty.

Summary of the Method
1. Compute the set of unit secants S for the data set.

2. Determine a suitable initial condition using the method described above.

3. Perform the optimization using the following iterative algorithm.

Optimization Algorithm

1. Compute tangent vector for the step direction using the gradient descent,

Λ = (WWT − In)
∂F
∂W

.

2. Compute SVD of tangent vector,
UΣVT = Λ.

3. Step by an amount Δt along the geodesic in the given direction,

W (Δt) =
�
WV U

�� cosΣΔt
sinΣΔt

�
VT.

(a) A suitable step amount, Δt, can be determined by a line search of the function

ψ(Δt) := F (W (Δt)).

(b) Perform the step: computeW (Δt).
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35



TWO BALL NEWTON CRADLES

Description
By P. Glendinning

Newton’s cradle is an executive toy in which a number of hard spheres are suspended from two horizontal
bars so that when they hang in equilibrium the spheres are precisely aligned along the axis of the bars, with
adjacent spheres just touching each other. Now, if an end ball is pulled back and then released so that it
swings back to strike the remaining line of balls, the impulse of the impact is transmitted down the line
and the ball at the other end swings up and the process repeats. The intermediate balls remain stationary
throughout the process, serving only to transmit the impulse down the line. As such the cradle is a perfect
illustration of the transmission of a Newtonian impulse.

That, anyway, is the story usually given to describe the motion of the cradle. In fact, the first collisions
set up small movements in the other balls, with some moving backwards and some forwards, and this
explains why most commercial cradles contain only five balls. This effect quickly becomes very visible if
more balls are used.

To model the cradle more precisely, the forces at work when two hard spheres collide need to be
understood. The detail is complicated – how are the balls deformed whilst they are in contact? – but a
simple idealization, the Hertzian potential, is often used. This introduces a nonlinear interaction with a
force proportional to the deformation of the balls to some power, often taken to be taken to be 3

2 . This
means that even if the swinging of the pendulums is modelled by simple harmonic motion (one of the
mainstays of physics, this means that the dynamics can be described by sines and cosines) the interaction
cannot be solved explicitly.

Figure 2.9: Newton’s Cradle

It turns out that by using the formalism of hybrid systems the simplest situation, the two ball Newton
cradle, can be modelled explicitly without needing to solve the nonlinear problem; only two constants
arising from that part of the interaction enter the final calculation, and these can act as parameters that
describe how changing the contact interactions affects the dynamics of the cradle.

Formalization
Suppose the positions of the centres of mass of the two balls are at x1 and 2r+ x2 respectively, where r is
the radius of the balls and so if x1 and x2 are both zero the centres of the mass balls are a distance 2r from
each other.
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Whilst x1 − x2 < 0 the balls are not in contact and each behaves as a pendulum, and

ẍ1 =−ω2x1, ẍ2 =−ω2x2 (2.34)

and ω2 = g/�, where g is the acceleration due to gravity, and � the vertical length of the pendulum wires.
If x1 − x2 > 0 then the balls are in contact and the Hertzian force comes into play in addition to the

gravitational force and

ẍ1 =−ω2x−V �(x1 − x2), ẍ2 =−ω2x2 +V �(x1 − x2) (2.35)

where the Hetzian potential V models the visco-elastic forces (per unit mass), so for the Hertzian case

V (s) =
K

1+α
s1+α. (2.36)

It is natural to work in centre of mass (times two) and relative position coordinates

Q= x1 + x2, q= x1 − x2 (2.37)

and in terms of these variables we can see the system as a classic hybrid system: the evolution equation
changes as q passes through zero.

It turns out that the only information that is needed to be able to solve explicitly for the values of Q and
q just after a collision given their values just after the previous collision is the time of contact, τ, the fact
that after contact the relative velocity is reversed (due to symmetry). Thus in the absence of dissipation the
hybrid approach makes it possible to write down a difference equation for Q, Q̇, q and q̇ from one collision
to the next. See [1] for the details.

Outcome
From the difference equation it is simple to predict the motion of a two-ball Newton cradle, and it is not
the regular oscillation with stationary contact positions expected from the traditional Newtonian impulse
account. The equations predict a slow oscillation of the collision point from side to side as the dynamics
evolves with time. This effect can be verified by observation using a commercial cradle. It is possible that
the insights provided by this analysis will provide new ways of investigating the Hertzian potential itself by
fitting the observations to the parameters that determine the oscillations of the contact points. But whether
this happens or not it is a nice mechanical example of the insights given by the hybrid (or non-smooth)
dynamical approach.

Softwares and references
[1] P. Glendinning (2011) Two ball Newton’s cradle, Physical Review E, 84 067201.
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MODELLING NETWORKS IN EPILEPSY

Description
M. Goodfellow

Epilepsy is a prevalent neurological disorder of complex networks in the brain. These networks exist at
different scales of organisation from the sub-cellular level to large regions of nervous tissue. The latter
is important as it supports large scale abnormal activity, thus leading to clinical symptoms, and is also
interrogated in non-invasive recordings. At this level, the electroencephalogram (EEG) is still an accepted
clinical tool with which to image the pathological nature of the epileptic brain.

Figure 2.10: An example intermittent “burst” of high amplitude activity on the mean field of the model
described in [1]. The model is composed of 25 globally coupled compartments with heterogeneous param-
eters. The mean field is displayed at the bottom of the figure. Time courses are also shown for 3 constituent
compartments. The heterogeneity in parameters places each of these compartments into a different oscil-
lating regime in the equivalent uncoupled model, which is indicated as a time course above the bursting
dynamics. The model predicts that during the high amplitude mean field burst some of the interacting
components display different dynamics.

A defining feature of epilepsy is the ability of the brain to produce state transitions in the dynamics
of the EEG during epileptic seizures. In addition, the epileptic brain is known to posses an abnormal
“excitability”, producing complex transient responses to electrical or sensory perturbation. Crucially these
features are not only dependent upon the condition of epilepsy, but are also location-dependent within the
epileptic brain (see e.g. [4, 2]). The multi-scale complexity of “epileptogenic” brain networks necessitates
the use of mathematical modelling in order to conceptualise important processes and ways in which they
may be affected. Thus epilepsy constitutes an interesting problem which can be addressed using networks
of dynamical systems.

Formalisation
Recent modelling studies have investigated the role of tissue heterogeneity in the production of abnormal
dynamics at an abstract level [1, 2]. It was found that both spontaneous rhythmic transitions as well as
prolonged transient responses to perturbation can be underpinned by networks of connected, heterogeneous
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elements. An example of interesting model dynamics due to network connectivity and heterogeneity in
one of these models is given in Figure 2.10. This model [1] displays intermittent transitions in state on the
mean field, as observed in EEG recorded from epilepsy patients. These studies frame in model terms the
potential relationship between the nature of an “epileptogenic zone” and the kinds of dynamics which can
be observed due to its presence. It is hoped that future work in this direction will aid the localisation of the
epileptogenic zone, which is crucial to treatment in the severest of epilepsies.

Softwares and references
[1] Goodfellow, M., Schindler, K., Baier, G., 2011. Intermittent spike-wave dynamics in a heterogeneous,
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[3] Lopes da Silva, F., Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P., Velis, D. N., 2003. Epilepsies
as dynamical diseases of brain systems: basic models of the transition between normal and epileptic
activity. Epilepsia 44 Suppl 12, 72–83.

[4] Valentin, A., Anderson, M., Alarcon, G., Seoane, J. J. G., Selway, R., Binnie, C. D., Polkey, C. E.,
2002. Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in
vivo. Brain 125, 1709–1718.
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UPDATING BASIS FOR POD - IMAGE ANALYSIS: TABLE

Properties
By Y. Chahlaoui

This example shows that a 10% basis set is often sufficient to reconstruct images with an acceptable visual
quality. The small table tennis ball is not quite distinguishable in the approximations we have just a ghost
trace. This phenomenon is due to the fact that we collect the dominant behaviour of the sequence and so
we have a certain history of the sequence which influences the reconstruction.

Description
This set (we show some extracted images from the sequence in Figure 2.11) is used to compare different

algorithms to compute and update the dominant basis generated by Proper Orthogonal Decomposition
algorithm for model reduction of nonlinear systems (1.2)(i), without recomputing the basis set from scratch,
which also has applications in active vision [1]. The sequence shows two ping-pong players. This sequence
has an interesting characteristic which represents a certain difficulty for the approximation : the movement
is very fast. The sequence contain 300 images. Each image consists of 288× 352 pixels, and each pixel
has 256 gray levels. We cut up each image into 352 columns and then we form one vector of dimension
101376 for each image. The matrix MS has thus dimensions 101376×300. Figure 2.12 shows this in more
detail.

Figure 2.11: Some images extracted from the Table sequence.
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Handling directly the whole matrix MS is very costly in time and memory. The run time of its SVD
is about 1200 seconds while the construction of the matrix takes about 350 seconds. The total run time is
thus about 1550 seconds and uses at least 245 Megabytes. Furthermore, the batch algorithm is not suitable
for application in a dynamic environment because the inclusion of a single new image into the image set
can require a complete recomputation of the basis set.

Figure 2.12: Transforming the sequence of images into a matrix.
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Softwares and references
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3

Software

This section contains a brief description of software developed and used by CICADA researches.

Contents
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IGEN

Description
By D. Tang

When we wish to investigate the behaviour of a complex physical system, such as the Earth’s climate, it
is often the case that an accurate, high-resolution computer model of the system could easily be written
but that such a model would execute far too slowly to be of any practical use. In this case, we must create
a ‘parameterised’ model that closely approximates the high-resolution model while requiring much lower
computational resources.

iGen is a program that generates parameterised models from high-resolution models and supplies for-
mal bounds on the error between the models. To create a parameterised model, we begin with a model
whose resolution is high enough to resolve all the physical processes of interest. iGen takes the source
code of this high-resolution model as its input and, rather than execute it, iGen analyses the structure of the
code, applies appropriate approximations, derives the source code of a faster model and reports bounds on
the error between the parameterised model and the high-resolution model. Because the parameterisation
is formally derived from the high-resolution model, with bounded error, its output can be used to justify
conclusions about the behaviour of the high-resolution model, and so about the physical system of interest.

iGen can also be used as a tool for exploring the behaviour of physical systems. Traditionally, a nu-
merical experiment would consist of executing a model with one or more input values to get one or more
corresponding output values. iGen offers an alternative type of numerical experiment in which the model
is formally analysed to extract functional relationships between large-scale observables. If we are trying
to understand the emergent behaviour of a complex system, a formally derived functional relationship be-
tween observables is of much more immediate use to us than a set of input/output pairs. For example,
if we propose a theory that predicts some relationship between observables, then iGen’s analysis of the
high-resolution model could supply us with a formal derivation of this relationship from the underlying
equations of motion. Alternatively, we may not yet have a fully formed theory, but the discovery of a
simple functional relationship between observables would be a valuable piece of evidence that informs and
directs our theory building. Further details of iGen’s mechanism and application can be found in Tang and
Dobbie (2011a, 2011b).

Example: Automatic derivation of the Lorenz equations.

As an illustration, iGen was used to analyse a model of Rayleigh-Benard convection in a 2-dimensional,
laminar, incompressible fluid on an 80 × 28 grid. The model was wrapped so that its input consisted of
three variables (X ,Y,Z). These were converted to an initial state of the fluid according to

ψ(x,z) =
√

2(1+a2)

a
X sin(πax) sin(πz)

and

θ(x,z) =
√

2Y cos(πax) sin(πz)−Z sin(2πz)
πr

where ψ(x,z) is the stream-function, θ(x,z) is the temperature perturbation, a = 1√
2

is the aspect ratio of
the convective cells and r = 28 is the non-dimensionalised Rayleigh number. Similarly, the output of the
high-resolution model was converted back to the (X ,Y,Z) phase space by extracting the appropriate lowest
modes of ψ and θ according to

X =
1√

2(1+a2)

� �
ψ(x,y) sin(πax) sin(πz) dx dz

Y =
πR√
2a

� �
θ(x,y) cos(πax) sin(πz) dx dz
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Z = −πR
2a

� �
θ(x,y) sin(2πz) dx dz

The final output of the wrapped model was the average rate of change of X , Y and Z over a 0.00001s
simulation.

The variables, (X ,Y,Z), correspond to the variables of the Lorenz equations (Lorenz ’63), which de-
scribe a 3-variable parameterisation of Rayleigh-Benard convection. iGen analysed the wrapped model of
Rayleigh-Benard convection and produced the following simplified code:

input(x,y,z)
dx_dt = 9.95076*y + 9.94443*x
dy_dt = -0.991175*x*z - 0.999187*y + 27.9712*x
dz_dt = -2.65625*z + 0.997019*x*y

output(dx_dt, dy_dt, dz_dt)

which is a statement of the Lorenz equations with a slight difference in the constants. This represents an
increase in execution speed of 5 orders of magnitude over the original model. The slight difference between
iGen’s output and the Lorenz equations is attributed to the finite resolution of the grid, the finite time over
which the integration was performed and the accuracy of the algorithm used to solve the Poisson equation
in the Rayleigh-Bernard model.

Softwares and references
[1] Lorenz, E. N., 1963: Deterministic nonperiodic flow, J. Atmos. Sci., 20: 130–141.

[2] Tang, D. F. and Dobbie, S., 2011a: iGen 0.1: a program for the automated generation of models and
parameterisations, Geosci. Model Dev., 4: 785–795, doi:10.5194/gmd-4-785-2011.

[3] Tang, D. F. and Dobbie, S., 2011b: iGen 0.1: the automated generation of a parameterisation of en-
trainment in marine stratocumulus, Geosci. Model Dev., 4: 797–807, doi:10.5194/gmd-4-797-2011.
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COMPUTATIONAL STEERING

Description
J. Brooke

Computational steering (CS) is an approach to maximizing the usefulness of large scale computational
resources: it involves user intervention in a large computation, while it is still running, with the object of
enhancing the usefulness or interest of the output. In CS, the current state of the computation is periodically
assessed against certain user-supplied criteria, and on that basis changes are made before the computation is
allowed to proceed. Intervention could be done interactively by the user, or automatically by some separate
steering system. CS can be a tool in the exploratory, effectively experimental study of high-dimensional
systems and can help to answer questions as to how these can be described as modelling the dynamics of
infinite dimensional systems. This is of practical relevance to applied science and engineering as simulation
is increasing replacing experiment in design and investigation of systems.

Control of a computational system, and CS in particular, requires some way of deriving relevant infor-
mation about the current state of the computation, and of representing the information so that it is accessible
to the optimizer/steerer. The quantities of interest (in CS these are referred to as the monitoring space may
not correspond to the computational variables, (and may indeed change as the computation proceeds). In
examples such as drag minimization in CFD determining these quantities is automatic and can be incor-
porated into the system; for interactive steering, as mentioned above, some sort of visualization might be
appropriate, and we may or may not want to construct this visualization for each state through which the
system passes. At an abstract level the monitoring space is the range of a mapping from the computa-
tion state space, and since the computation typically involves a much larger number of variables than the
monitoring space we may loosely describe the latter as low dimensional.

Though we have particular interest in the quantities constituting the monitoring space, they are not
under direct control; instead, intervention is restricted to some of the computational variables, typically a
subset of the parameters of the system, these comprise the control space. Efficient optimization or steering
may require us to know, or learn, something about the relationship between control and monitoring spaces.

Computational steering has many similarities to the analysis (including experimental analysis) and
control of nonlinear dynamical systems. The computation itself may clearly be viewed as a dynamical
system, and observation functions on the state space of a dynamical system play much the same role as the
monitoring variables.

Computational steering and modelling of large-scale systems

The behaviour of complex systems such as fluids, fields (e.g. electromagnetic or graviational, bio-
molecules, is increasingly being investigated via numerical simulation since, typically, we cannot express
solutions of the governing equations in closed analytic form, especially when the equations are nonlinear.
The mathematical description of such systems has an infinite-dimensional phase space (e.g. systems of
PDEs) and the numerical discretization required to solve the equations of such a system lead to phase
spaces with millions of degrees of freedom (for very large calcuations on supercomputers). In investigating
the behaviour of the solutions, we can often identify a set of key parameters that can bring about changes in
behaviour of solutions and these parameters form an auxillary space L which is of much lower dimension
than the solution space, e.g. Rk with k a small positive integer. If we denote the original system by S, its
discretization by S� we can represent the time evolution of the system as

dX/dt = f (X ,λ, t),X ∈ S�,λ ∈ L.

It is often the case that the set of parameters λ represent some uncertainty in our knowledge of the system
and we may wish to observe the behaviour of solutions as λ is varied. Recent developments in compu-
tational science have lead to the concept of controlled steering of numerical simulations by altering the
parameters in a running simulation This may be done in a collaborative manner with teams of investigators
performing numerical experiments and tracing multiple paths through parameter space (see Figure 3.1).
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In order to interpret the behaviour of the system during such experiments, it needs to be monitored. This
may be done by visualizing the behaviour of the numerical solution or by monitoring key measures such as
energy, vorticity, temperature, or by sampling the full solution in some reduced way. These methods lead
to a new space to express the monitoring and as the full system S evolves so we observe evolution in the
monitoring space which we call M.

Data Structures in Computational Steering
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M (monitoring space)

L (control parameter space)
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Figure 3.1: Development of a tree structure in a steered computation. The horizontal axis represents
time, the vertical axis represents the control space (which may be of higher dimension) and the third axis
represents the monitoring space (also may be of higher dimension). The red filled circles are the nodes
reached by the evolution of the computation in both time and in the changes in control parameter values.
The blue arrows represent particular computational paths, they will not necessarily be linear. See text for
fuller explanation

The observations of the system are conceptualized as mappings S� → M. Now the practical mechanics
of running very large calculations means that the state of the system needs to be saved at given points in
the time evolution. This can be because batch queues impose time limits or because of the possibility of
machine failure. These “checkpoints” of the state will involved a representation of the instantaneous state
in S� and some representation of the history of the parameter changes, i.e. the trajectory in the state space
S� ⊗ L. This is represented in Figure 3.1 where the checkpoints are shown as nodes and the piece-wise
trajectories between the checkpoints as arrows (they are not necessarily reversible). The structure is thus
a directed graph. We can have trajectories such as A → B → C → D that represent time evolution with
no changes in parameter values, while all the other trajectories illustrated involve evolution in L also due
to the effects of steering. The importance of history is shown by nodes D, I and F which represent the
same point in L but not in S� ⊗L. Such computational steering requires massive computational resources
and is a prime use of the distributed computing known as grid computing. The advantage of the structure
shown in Figure 3.1 is that it provides the basis for extended investigations, each node can be the starting
point for a new numerical experiment. Thus we move from the study of particular equations to the study of
systems of equations where the control space allows for techniques such as optimisation, comparison with
experimental data and experiments with the modelling of the
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Computational Steering Software

The Reality Grid Steering library, free computational steering library, is available at

http://code.google.com/p/computational-steering/

The library has interfaces for programmers (Application Programmer Interfaces, API) for the major
languages used in numerical programming, Fortran and C/C++. There are also APIs for Java, Python and
Perl via wrapper interfaces. The web pages also provide reference applications showing how to call the
steering library. It provides clients that can allow programs to be run remotely on very large computing
resources but with all the control and monitoring being done via a user’s laptop or mobile device. This
allows the library to be deployed in a very flexible manner. The whole simulation can be run and con-
trolled on a local device or can be run on remote resources and controlled locally. It is also possible for
teams of researchers to control simulations in a collaborative manner, for example via the Access Grid
(http://www.accessgrid.org). For further technical details see [2] original system S as well as S� e.g. via
remeshing or adaptive meshing.

A concrete example

Figure 3.2: Development of steering as a trajectory through a one-dimensional parameter space. The hor-
izontal axis shows the number of time steps and the vertical axis is the one-dimension lattice representing
the values of the control parameter. States are marked as nodes on the trajectories and their structure is
shown for each node (Figure courtesy of P.V. Coveney).

To illustrate the functionality of the software we describe its use in the computational modelling of a
“mesophase” appearing in an oil-water mixture to which a quantity of surfactant has been added [1]. The
surfactant creates boundaries between the oil and water phases that can self organise into surfaces with
different geometrical structure. A particularly interesting mesophase is the gyroid phase [3] where the
minimal surface is triply periodic, embedded (no self-intersections) and has no mean curvature although it
possesses curvature everywhere. In Figure 3.2 we show a concrete example of the trajectories of Figure 3.1
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from a simulation which uses Lattice-Boltzmann methods rather than discretization of partical differential
equations. The nodes represent different spatial structures that change at bifurcation values. images show-
ing the different structures that emerge at the bifurcations. Computational steering can be used to detect
bifurcations and can be used to reconstruct the response of the system to parameter change. For an example
of such exploration in a system governed by magnetohydrodynamic flow see[4]

Softwares and references
[1] Chin, J. and Harting, J. and Coveney, P.V. and Porter, A.R. and Pickles, S.M., Steering in computational

science: mesoscale modelling and simululation, J. Contemporary Physics, V. 44, 2003, pp. 417-434.

[2] Pickles, S. M. and Haines, R. and Pinning, R. L. and Porter, A. R., A Practical Toolkit for Computa-
tional Steering, J. Philosophical Transactions of the Royal Society A, V. 363, 2005, pp. 1843-1853.

[3] Giupponi, G.and Harting, J. and Coveney, P.V., A Emergence of rheological properties in lattice Boltz-
mann simulations of gyroid mesophases, Journal of Physics: Conference Series, V. 73, 2006, pp. 533-
539.

[4] A Salhi and J M Brooke, A Detecting bifurcations in numerical simulation of fluid flow,
http://stacks.iop.org/1742-6596/216/i=1/a=012003, V. 216, N. 1, 2010.
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IRRAM FOR REACHABILITY ANALYSIS

Description
By N.Muller &
M.KorovinaOne basic aspect of the hybrid systems is their evolution in time, i.e. the computation We have developed

an algorithm and implemented using the iRRAM package [2] for efficient and arbitrarily precise solutions
of the underlying IVPs up to the area where discontinuous jumps appear. There are two reasons for using
high precision solutions: firstly, low precision might lead to incorrect assumptions about the location of
these jumps points; and secondly – perhaps unexpectedly – high intermediate precision can sometimes
increase the efficiency.

To illustrate the second aspect, consider the well-known Runge-Kutta methods used for the solution of
IVPs. These methods are of fourth order, i.e., the error depends on a bound on higher derivatives of the
solution as well as on the fourth power of the step width. Although they are a reasonable choice if applied
to double precision numbers, they will not always be optimal for higher precision solutions. As the step
width has to be chosen according to the desired precision of the solution, methods with a fixed order lead to
the number of steps growing exponentially in the number of bits of the solution. If the order can be chosen
dynamically and arbitrarily high, significantly fewer steps associated with a much bigger step width are
possible, which can lead to a polynomial time complexity.

Prototypical implementation.

We used the iRRAM package to implement a prototype for the algorithm proposed in [1], whose
core structure uses dynamically constructed functions of types FUNCTION<int,vector<REAL> > (for se-
quences of real vectors) and FUNCTION<REAL,vector<REAL> > (for vector-valued functions on the real
numbers). The implementation of such function objects in an imperative language like C++ has been de-
scribed in [3], it is based on a lazy evaluation technique. Thus we avoid the necessity to implement explicit
(and computationally very expensive) representations for functions and sequences.

Using corresponding constructors

• a=ivp_solver_simple (w,F) yielding a vector power series a for flow conditions F and an initial
condition w implementing equation

aν,�+1 =
1

�+1 ∑
n1,n2,...,nd∈N
n1+...+nd=�

∑
i1,i2,...,id∈{0,1}
i1+...+id≤1

�
cν,0,i1,...,id ·a

(i1)
1,n1

· . . . ·a(id)d,nd

�
. (3.1)

,

• f=taylor_sum(a,R,M) yielding the (vector-valued) sum function f for a (vector-)power series a
and corresponding radius R and bound M, and

• w=f(bs) evaluating f at bswith bs<R as a limit using equation

|
∞

∑
k=n+1

ak · zk| ≤
∞

∑
k=n+1

|ak| · |zk| ≤
∞

∑
k=n+1

M ·R−k · |zk|

≤ M ·
� |z|
R

�n+1

·
∞

∑
k=0

� |z|
R

�k

=
M ·R
R−|z| ·

� |z|
R

�n+1

.

(3.2)

to control the truncation error,

the core of the implementation is essentially just the following loop of ‘big steps’ interspersed with ‘small
steps’ as mentioned in the previous section:

do { // big steps
a = ivp_solver_simple (w,F);
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... compute R,M ...
f = taylor_sum(a,R,M);
do { // small steps

... compute a step size from the distance to the guard ...

... accumulate the step size in a variable s ...

... evaluate f(s) ...

... try whether a sufficiently good approximation has been found ...

... if yes: stop ...
} until ( s is large enough for a big step )
w= f(s)

}

As the evaluation of f(s) is a core part here, it is important to get a reasonably efficient implementation
of the Taylor summation. The existing limit operators in the iRRAM package were not fitting, as they
were not yet applicable to FUNCTION objects (they were essentially only usable for predefined algorithms).
Additionally, the general heuristic of the iRRAM (that tries to compute limits with the maximal used
precision) lead to an enormous waste of time; a new limit operator based on (3.2) had to be added. All
other necessary operations were already present in the published version of the package.

Example:

ẏ1(t) = y2(t) ; ẏ2(t) =−y1(t)+0.02 · y2(t) with t0 = 0,w0 = (0,1) .

Without the term c1001 = 0.02, the solution y would simply be the pair (sin,cos); with the additional term
we still have an oscillation, but with a growing amplitude.

As guard set we chose G= {(t,x1,x2) ∈ R3 | x1 ≤ −2}. Here the question was simply to approximate
the first tG where y1(tG) = −2 (we found tG ≈ 73.5422061995...). The size s1 of the small steps was
chosen as s1 = min{Δ(t0)

U , R2 } where U = UF((t0, w̄0),δ,ε), R = min{δ, ε
U }; whenever the accumulated

small steps grew larger than min{ 4
√
s1 ·

√
R, R2 }, a big step was made. This bound of the big steps was

chosen heuristically as an attempt to match the much higher complexity of the IVP solution at big steps
with the more frequent Taylor summations at small steps.

The following graph shows an 3d-plot of the resulting trajectory constructed from the (linearly interpo-
lated) points (ti,wi).

 0  10  20  30  40  50  60  70  80 -2-1 0 1 2-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Small steps
Big steps

Guard

The following table shows a few results of computations with this IVP. Its interpretation is as follows: To
approximate tG with an error of at most 2−n, the software chose a working precision of 2−p, using b big
steps (re-evaluations of the IVP), s small steps (evaluations of the Taylor sum) with a maximal index of �max
(working with an order of �max) and took time t (on an AMD Athlon 64X2 Dual Core Processor 4600+).
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result bits n working bits p #big steps b #small steps s �max time t
20 242 9 223 108 0.271s
50 242 10 283 108 0.298s
100 242 10 384 108 0.297s

1000 1332 12 2200 430 5.42s
10000 11787 14 20361 3506 308s

To compare our results we used the IVP solvers from the popular high-level language octave, that is
primarily aiming at numerical computations (www.gnu.org/software/octave ), in order to solve the above
IVP. We applied them just to approximate the trajectory starting from t0 = 0 up to 73.543. Only between
73.542 and 73.543 we tried to find the point where it dropped below -2 (without even trying to verify that
this was the first solution). Within a few milliseconds, a naive application of the solver gave a result near
t �G = 73.54225. As only 6 decimals were in common with our result of tG = 73.5422061995..., we tried
less naive ways, which initially produced the same result t �G. Being convinced from the correctness of our
own implementation, we continued playing with the octave solver; with further variations of its parame-
ters applied in a quite elaborate way, we were able to get results different from both tG and t �G. The best
combination we found resulted in 73.542208, now with 7 correct decimals, but within 0.7s of computation
time. As the results from the octave solver quite erratically jumped around 73.5422 with further varia-
tions of the parameters, we believe that more than 6 decimals precision cannot reliably be expected. Our
conclusion from these experiments is that solving IVPs might be an area where exact real arithmetic can
actually compete with ordinary double precision arithmetic in terms of speed and precision.

To illustrate the effect of varying distances |tG − t0| on our algorithm, we removed the perturbating
coefficient 0.02. Additional we chose the guard set Gη = {(t,x1,x2) ∈ R3 | t ≥ η} for a given η and just
printed 9 leading decimals of y1(tGη). As tGη = η, this setting transformed our algorithm into a slow (but
still exact) method to compute sin(η). The results in the following table show that further reductions in the
error propagation in our software are necessary before it can really be applied for larger ranges of η. Again
we compared our results with the octave IVP solver, which was significantly faster for larger η but had
problems with its precision again.

η sin(η) our implementation octave
working bits p #big steps b time t time result

10 −0.544021110 136 2 0.02s 0.007s −0.5440211�86
100 −0.506365641 242 10 0.2s 0.06s −0.50636�2329

1000 0.826879540 1737 95 17.5s 0.55s 0.8268�84089
10000 −0.305614388 14807 681 3706s 5.3s −0.305�931729

Softwares and references
[1] Norbert Th. Muller, Margarita V. Korovina, Making big steps in trajectories, In proc. CCA 2010,

Electronic proceedings in theoretical Computer Science, v. 24, 2010, pp. 106-119.

[2] Norbert Th. Muller, The iRRAM: Exact Arithmetic in C++, Lecture notes in computer science, v. 2991,
2001, pp. 222–252.

[3] Norbert Th. Muller, Enhancing imperative exact real arithmetic with functions and logic, available at
http://www.uni-trier.de/ mueller.
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TOOLS FOR MODELING, SIMULATION AND VERIFICATION OF HY-
BRID SYSTEMS

Description
By Y. Chahlaoui

In general, there is no single tool covers all the needs of designers that use hybrid system as models to solve
their problems. Each tool or language that has been proposed over the years to handle hybrid systems is
based on somewhat different notions and on assumptions that make a fair comparison difficult. Moreover,
sharing information among tools is almost impossible until now, so that the community cannot leverage
maximally the substantial amount of work that has been directed to this important topic. Here, we give
a very short survey of available languages and tools that have been proposed in the past years for the
design and verification of hybrid systems. We give a short comparative summary of some of these tools
for simulation and verification. For a more complete review and comparison see[1]. Table 3.1 lists tools
and languages with information on the institution that supports the development of each project as well
as pointers to the corresponding web site. Table 3.2 summarizes the distinctive features of the various
modeling and design environments, programming languages, simulators and tools for hybrid systems.

Table 3.1: References for the various modeling approaches, toolsets.

Name Institution Web Page
CHARON Univ. of Pennsylvania www.cis.upenn.edu/mobies/charon

CHECKMATE Carnegie Mellon Univ. www.ece.cmu.edu/~webk/checkmate
d/dt Verimag www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html

DYMOLA Dynasim AB www.dynasim.se/
ELLIPSOIDAL TOOLBOX UC Berkeley www.eecs.berkeley.edu/~akurzhan/ellipsoids

HSOLVER Max-Planck-Institut www.mpi-inf.mpg.de/~ratschan/hsolver
HYSDEL ETH Zurich www.control.ee.ethz.ch/~hybrid/hysdel
HYTECH Cornell, UC Berkeley www-cad.eecs.berkeley.edu/~tah/HyTech

HYVISUAL UC Berkeley ptolemy.eecs.berkeley.edu/hyvisual
MASACCIO UC Berkeley www.eecs.berkeley.edu/~tah
MODELICA Modelica Association www.modelica.org
PHAVER VERIMAG www.cs.ru.nl/~goranf
SCICOS INRIA www.scicos.org
SHIFT UC Berkeley www.path.berkeley.edu/shift

SIMULINK The MathWorks www.mathworks.com/products/simulink
STATEFLOW The MathWorks www.mathworks.com/products/stateflow

SYNDEX INRIA www-rocq.inria.fr/syndex

Other softwares classified on basis of the primary focus of the package are given below.

Repositories
ESCHER http://www.escherinstitute.org is an independent, non-profit research institute dedi-
cated to the transition of government-sponsored information-technology out of the research environment
and into practical use by industrial and government end users.

Mathtools http://www.mathtools.net is a technical computing portal for all scientific and engineer-
ing needs. The portal is free and contains over 20,000 useful links to technical computing programmers,
covering MATLAB, JAVA, EXCEL, C/C++, FORTRAN and others.
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Modeling
DSM Forum http://www.dsmforum.org exists to spread the knowledge and know-how of Domain-
Specific Modeling (DSM). DSM raises the level of abstraction beyond programming by specifying the
solution directly using domain concepts. It is an independent body made up of the leading DSM tool and
solution providers, along with expert DSM users.

Simulation
ABACUSS http://yoric.mit.edu/abacuss2 (Advanced Batch And Continuous Unsteady-State Sim-
ulator), developed for chemical engineering systems, supports hybrid models, model inheritance, hierarchi-
cal model decomposition. It facilitates guaranteed state event location, batch process simulation, solution
of high-index differential algebraic equations, dynamic and steady-state optimization, and dynamic sensi-
tivity and uncertainty analyis.

DAEPACK http://yoric.mit.edu/DAEPACK is a software library for general numerical calculations.
It is divided into two major libraries: symbolic analysis and transformation and numerical calculation.
The symbolic analysis and transformation library consists of components for analyzing general Fortran-90
models and automatically generating the information required when using modern numerical algorithms,
e.g., (i) sparsity pattern generation, (ii) discontinuity locking, and (iii) automatic differentiation.

AnyLogic http://www.xjtek.com/products/anylogic is a professional virtual prototyping environ-
ment. It enables you to rapidly build a simulation model of the system under development and its environ-
ment, including physical objects and human users. The modeling technology is based on UML-RT, Java,
and algebraic-differential equations. AnyLogic offers a range of domain-specific libraries.

BaSiP is developed for simulation of recipe-driven production in complex multi-purpose batch plants.

DOORS aims at the creation of a prototype for a distributed, real-time simulator, the design process of
mechatronic systems to support hardware-in-the-loop test.

gPROMS http://www.psenterprise.com/gproms/index.html represents the state-of-the-art in pro-
cess modelling, simulation and optimisation technology.

HYBRSIM http://msdl.cs.mcgill.ca/people/mosterman/papers/icbgm99a/node2.htmlis an
implementation of a hybrid bond graph modeling and simulation tool. It embodies a set of physical princi-
ples that govern discontinuous changes in physical system models. MODEL VISION http://www.xjtek.
com is an object-oriented environment for the design of large dynamic systems that features: (i) Supporting
B-Charts (UML-compatible statecharts integrated with differential equations) to specify hybrid behavior,
(ii) Numerical methods from ODEPACK and Hairer-Norsett-Wanner collection, (iii) Supports matrix and
vector data types, (iv) Includes standard device class libraries and enables the user to create his own, (v)
Animation libraries and wizards for rapid creation of animated sketches, (vi) Generates complete portable
Win32 and Java executable models supporting automation.

OmSim is an environment for modelling and simulation based on Omola. Omola is an object-oriented
language for modelling of continuous time and discrete event dynamical systems.

SHIFT http://gateway.path.berkeley.edu/SHIFT is a programming language for describing dy-
namic networks of hybrid automata. Such systems consist of components which can be created, intercon-
nected and destroyed as the system evolves. Components exhibit hybrid behavior, consisting of continuous-
time phases separated by discrete-event transitions.
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Smile is a simulation tool for energy systems. A ZimOO (an object-oriented specification language
for hybrid systems in which continuous aspects are modeled by differential equations) specification of a
simulation model serves as the basis for implementing the model in the simulation language Smile.

20-SIM http://www.20sim.com ("Twente Sim") is a modeling and simulation program that runs under
Microsoft Windows and Sun-Unix. With 20-sim you can simulate the behavior of dynamic systems, such
as electrical, mechanical and hydraulic systems or any combination of these systems.

Verification
KRONOS http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos is a tool developed with the
aim to verify complex real-time systems. Components of real-time systems are modeled by timed automata
and the correctness requirements are expressed in the real-time temporal logic TCTL. KRONOS checks
whether a timed automaton satisfies a TCTL-formula.

MOBY http://theoretica.informatik.uni-oldenburg.de/~moby comprises a graphical editor
for (i) PLC-Automata, a formal description technique for real-time systems, (ii) SDL-Specifications, and
(iii) Object Z-Specifications. These specifications can be used for model checking (based on timed au-
tomata) and (graphical) simulation (based on high level Petri nets).

Spin http://spinroot.com/spin/whatispin.html is a widely distributed software package that sup-
ports the formal verification of distributed systems. The software was developed at Bell Labs in the formal
methods and verification group.

STeP http://www-step.stanford.edu the Stanford Temporal Prover, is being developed by the RE-
ACT research group to support the verification of reactive, real-time and hybrid systems based on their
temporal specification. STeP is not restricted to finite-state systems, but combines model checking with
deductive methods to allow the verification such systems as parameterized (N-component) circuit designs,
parameterized (N-process) programs, and programs with infinite data domains.

UPPAAL http://www.uppaal.com is a tool suite for validation and verification of real-time system
modelled as networks of timed automata extended with data variables. The tools have WYSIWYG inter-
faces and features: graphical editing, graphical symbolic simulation and symbolic verification.

Verdict is the name of a computer tool for formal verification of discrete controllers for continuous
processes, as they are, for example, in processing plants often encountered. The formal verification is a
process by which a mathematical proof can be provided on a given that control a specific industrial process
in every conceivable situation influenced so that a separate description given requirement is met to the
desired process behavior.

IAR visualSTATE http://www.iar.com/website1/1.0.1.0/371/1/ is a suite of tools, that supports
you all the way through the software development process in an iterative and interactive specification
process. You rapidly create a virtual prototype of an an outline of your product that can be evaluated and
validated against the specification. visualSTATE automatically generates code for your target system and
the Tester tools and techniques include interactive simulation, real-link for in-target testing and complete
dynamic formal verification.
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1 Contributing to the Collection
Contributions of suggested new problems for the collection are welcome. The following rules should be
followed when providing new problems.

Write a latex file called problemname.tex, where problemname is the proposed name of your example,
describing the problem. The tex file should consist of a problem environment, with first line stating the
relevant identifiers for the problem.
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\problem{\textsc{Problem Name}}

\descrip{Description}{A short description that anyone can understand,
like in textbooks (1st year)}

\descrip{Formalization}{we can consider different points of view
\begin{itemize}
\item Hybrid automata
\item Fillipov system
\item Others
\end{itemize}

}

\descrip{Properties}{Classical properties already known (figures)}

\renewcommand*{\bibname}{} % This will define heading of bibliography to be empty, so you can...
\descrip{Softwares and references}{ \vspace{-11mm} % ...place a normal section heading before the
\nocite{*}
\bibliographystyle{plain}

\begin{thebibliography}{9}
\bibitem{XXX} XXX

\end{thebibliography}}
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