
An algorithm for quadratic eigenproblems with
low rank damping

Taslaman, Leo

2014

MIMS EPrint: 2014.21

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


AN ALGORITHM FOR QUADRATIC EIGENPROBLEMS WITH

LOW RANK DAMPING ∗

LEO TASLAMAN †

Abstract. We consider quadratic eigenproblems
(

Mλ2 +Dλ+K
)

x = 0, where all coefficient
matrices are real and positive semidefinite, (M,K) is regular and D is of low rank. Matrix polynomials
of this form appear in the analysis of vibrating structures with discrete dampers. We develop an
algorithm for such problems, which first solves the undamped problem

(

Mλ2 +K
)

x = 0 and then
accommodates for the low rank term Dλ. For the first part, we modify an algorithm proposed by
Wang and Zhao [SIAM J. Matrix Anal. Appl. 12-4 (1991), pp. 654–660]. The modified algorithm
is then used to solve the undamped problem such that all eigenvalues are computed in a backward
stable manner. We then use the solution to the undamped problem to compute all eigenvalues of
the original problem, and the associated eigenvectors if requested. To this end, we use an Ehrlich-
Aberth iteration that works exclusively with vectors and tall skinny matrices and contributes only
with lower order terms to the flop count. Numerical experiments show that the proposed algorithm is
both fast and accurate. Finally we discuss the application to the large scale case and the possibility
of generalizations.

Key words. quadratic eigenvalue problem, eigenvalue algorithm, matrix polynomial, discrete
damper, vibrating system

AMS subject classifications. 15A18, 15A22, 65F15, 70J10, 70J30, 70J50

1. Introduction. Some eigenproblems would be a lot easier to solve if it were
not for an aggravating low rank term. We consider one family of such problems: the
quadratic eigenproblems (QEPs)

(
Mλ2 +Dλ+K

)
x = 0, (1.1)

where M , D and K are real, n × n and positive semidefinite matrices, (M,K) is
regular (that is, det(Mλ+K) 6≡ 0) and r := rank(D) ≪ n. The QEP (1.1) has a lot
of nice properties that gets “ruined” by the low rank term Dλ. Without it, a simple
substitution, ω = −λ2, turns (1.1) into a definite generalized eigenproblem (GEP):

Kx = ωMx. (1.2)

Hence, when D is absent, solving (1.1) is not harder than solving a definite GEP. Our
goal is to design an algorithm that can handle the presence of the low rank matrix D
without increasing the complexity significantly.

1.1. Motivation. QEPs on the form (1.1) appears naturally in modal analysis
of physical structures. We now discuss this application briefly. The discussion serves
not only as a motivation, but also allows us to use our intuition of mechanical systems
to understand the choice of starting points used in our algorithm later on.

The study of free vibrations (that is, vibrations caused by initial displacements)
plays an important role in structural engineering. To find out how a structure moves
when it vibrates freely a finite element discretization is typically made. After this
simplification, the displacements of the nodes in the model are given by the solutions

∗Version of May 13, 2014. This work was supported by Engineering and Physical Sciences Research
Council grant EP/I005293

†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
(leo.taslaman@manchester.co.uk)

1



2 LEO TASLAMAN

Fig. 1.1. A model of a viscous damper. The larger cylinder is filled with a fluid. When the
piston rod moves horizontally the fluid is forced through the holes of the piston head which causes
friction.

to system of ordinary differential equations:

(
M

d2

dt2
+D

d

dt
+K

)
u(t) = 0. (1.3)

Here M , D and K are real positive semidefinite matrices corresponding to mass,
damping and stiffness respectively.

In theory, M should be strictly positive definite, but singular M is common
in practice due to further simplifications by the engineers. The stiffness matrix K
is positive definite when boundary conditions that prevent rigid body motions are
present; this is the case for buildings and bridges but not airplanes, say. The damping
matrix depends on what kind of damping is modeled. We consider the case of discrete
(linear) damping, which refers to the physical objects called viscous dampers (see
Figure 1.1). A viscous damper can be embedded into a structure to prevent movement
in a certain direction. When a viscous damper is modeled with finite elements, it
appears as a positive semidefinite rank one term of the damping matrix. Hence, if the
structure only has a few viscous dampers, their contribution to the damping matrix
is of low rank. This is indeed the case in several applications. It is not uncommon
that less than ten dampers are used, and in some cases as few as one or two [1].

If only a few viscous dampers are used, and M and K does not have a common
nontrivial nullspace, then we get the solution to (1.3) by solving the corresponding
quadratic eigenproblem given by (1.1). In particular, if (λ, x) is an eigenpair of (1.1),
then u(t) = eλtx is a solution to (1.3). Now, since the coefficient matrices are real and
positive semidefinite, the spectrum is symmetric with respect ot the real axis and lies
in the left half plane. Thus, if (−d+ iω, x) is an eigenpair of (1.1) and ω > 0, then so
is its complex conjugate. It follows that the real function

u(t) = e−d(cos(tω)Re(x) + sin(tω)Im(x)).

is a solution to (1.3). Notice how the real and imaginary parts of the eigenvalue
correspond to damping and frequency respectively.

1.2. Existing algorithms and our objective. The conventional way of solv-
ing (1.1) is through linearization, which means that the problem is rewritten as GEP of
twice the size. This approach does not respect the special structure of problem (1.1).
There do exist symmetric linearizations, but no stable algorithm that can preserve
this symmetry is currently available.

Recently, Hammarling, Munro and Tisseur proposed a linearization based algo-
rithms for finding all eigenpairs of general regular quadratic eigenproblems [8]. Their
algorithm, called quadeig, is backward stable in the unstructured sense described in
section 2.3, as long as the damping is not too strong. The bulk of the computation



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 3

lies in solving the linearized problem, for which the QZ algorithm is used. The QZ
algorithm is estimated to use 50m3 flops (30m3 flops if we only want the eigenvalues),
where m is the size of the matrices [7, p. 413]. Since quadeig works on a linearization
we have m = 2n, where n is size of the coefficient matrices M , D and K. We get an
estimated complexity of 400n3 flops (240m3 flops for eigenvalues only).

We shall develop an algorithm that exploits the structure of problem (1.1) and
whose main complexity lies in finding all eigenpairs of the definite GEP (1.2). There
are several fast methods for solving (1.2). We use a modified version of the algorithm
proposed by Wang and Zhao [21], which is estimated to need about 26n3 flops if M
and K are nonsingular, and up to 43n3 flops otherwise.

1.3. Outline. In section 2 necessary background material is discussed. This
includes how to detect defective eigenvalues, definitions of backward errors for QEPs,
and the Ehrlich-Aberth method. In section 3 we review Wang and Zhao’s algorithm
for definite GEPs and propose an improvement and a generalization. In section 4 our
algorithm for solving (1.1) is described and in section 5 we present the results from
numerical experiments. In section 6 we discuss the application to the large scale case
and the possibility of generalizations.

2. Preliminaries.

2.1. Defective eigenvalues. Let P (λ) be a regular matrix polynomial. The
definition of a left eigenvector of P (λ) varies in the literature; sometimes the complex
conjugate transpose is used [18], and sometimes the transpose [13]. We use the latter
definition, so a left eigenvector of P (λ) is a vector y, such that yTP (λ0) = 0 for some
λ0. Left and right eigenvectors can be used to determine whether or not an eigenvalue
is defective. For constant matrices, this follows from the Jordan canonical form: if x
and y are right and left eigenvectors, respectively, corresponding to the same Jordan
block, then yTx = 0 if and only if that Jordan block is nontrivial. Furthermore, if x
and y are right and left eigenvectors corresponding to different Jordan blocks, then
yTx = 0. Hence, an eigenvalue is defective if and only if there exists an associated
right eigenvector x such that yTx = 0 for all left eigenvectors y. This result can be
generalized to matrix polynomials with invertible leading coefficient.

Theorem 2.1 (Lancaster [13, p. 63]). Let P (λ) be a matrix polynomial with

invertible leading coefficient. If λ0 is an eigenvalue of P (λ) then λ0 is defective if and

only if there exists an associated right eigenvector x such that yTP ′(λ0)x = 0 for all

left eigenvectors y.
Remark 2.2. From the proof of Theorem 2.1, it follows that x comes from an

arbitrary Jordan decomposition of an associated real linearization. For real eigenval-

ues of real matrix polynomials, we can use the real Jordan form and hence assume

that x is real.

The assumption that the leading coefficient is invertible may be too strong. A
way to get around this is to employ a Möbius transformation. Let λ0 denote an
arbitrary (possibly infinite) eigenvalue of P (λ) and let (α1, α2, . . . , αk) be its partial
multiplicity sequence (that is, the sizes of the associated Jordan blocks). If

m(λ) =
aλ+ b

cλ+ d

is an invertible Möbius transformation, then Q(λ) := (cλ + d)degPP (m(λ)) has the
same eigenvectors as P (λ) and m−1(λ0) is an eigenvalue of Q(λ) with partial mul-
tiplicity sequence (α1, α2, . . . , αk) [14, 23]. Suppose now that σ is not an eigenvalue



4 LEO TASLAMAN

of P (λ). Then the choice m(λ) = 1/λ + σ implies that Q(λ) has invertible leading
coefficient. Since m−1(λ) = 1/(λ− σ) we arrive at the following corollary.

Corollary 2.3. Assume that detP (σ) 6= 0 and define Q(λ) = λdegPP (1/λ+σ).
If λ0 is an eigenvalue of P (λ) then λ0 is defective if and only if there exists an

associated eigenvector x such that yTQ′(1/(λ0 − σ))x = 0 for all left eigenvectors y.
From Remark 2.2, it follows that x in Corollary 2.3 may be chosen to be real if

P (λ), λ0 and σ are real.

2.2. Backward errors for polynomial eigenproblems. Let (x̃, λ̃) denote a
computed eigenpair of a matrix polynomial

P (λ) =

ℓ∑

k=0

Akλ
k and let ∆P (λ) =

ℓ∑

k=0

∆Akλ
k

denote a perturbation of P (λ). If λ̃ is finite, we follow [18] and define the relative
backward error of the computed eigenpair (x̃, λ̃) as

ηP (x̃, λ̃) = min{ǫ : (P +∆P )(λ̃)x̃ = 0, ‖∆Ai‖ ≤ ǫ‖Ai‖, i = 0: ℓ},

and the relative backward error of the computed eigenvalue λ̃ as

ηP (λ̃) = min
x 6=0

ηP (x, λ̃). (2.1)

In general ‖ · ‖ can be any matrix norm; in this paper, however, we will only use the
spectral norm, so ‖ · ‖ = ‖ · ‖2. For the spectral norm, it was proved in [18] that

ηP (x̃, λ̃) = ‖P (λ̃)x̃‖
(
‖x̃‖

ℓ∑

k=0

‖Ak‖|λ̃|k
)−1

and

ηP (λ̃) =

(
‖P (λ̃)−1‖

ℓ∑

k=0

‖Ak‖|λ̃|k
)−1

. (2.2)

Notice that ηP (x̃, λ̃) = ηrevP (x̃, 1/λ̃) and ηP (λ̃) = ηrevP (1/λ̃) for λ̃ 6= 0, where

revP (λ) :=

ℓ∑

k=0

Aℓ−kλ
k.

Since infinite eigenvalues of P (λ) are defined as the zero eigenvalues of revP (λ), it is
natural to define ηP (x̃,∞) = ηrevP (x̃, 0) and ηP (∞) = ηrevP (0). We also note that if
Q(λ) is related to P (λ) via an eigenvalue parameter scaling, so

Q(λ) =
ℓ∑

k=0

(skAk)λ
k,

then

ηP (x̃, sλ̃) = ηQ(x̃, λ̃) and ηP (sλ̃) = ηQ(λ̃). (2.3)



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 5

2.3. Ehrlich-Aberth iteration. The Ehrlich-Aberth method [6, 2] is an algo-
rithm for simultaneously finding all roots of a scalar polynomial. If

p(λ) = 0

is the scalar polynomial equation we want to solve, then the algorithm takes starting

points λ
(0)
1 , . . . , λ

(0)
ℓ , where ℓ = deg(p), and then update these points via

λ
(i+1)
k = λ

(i)
k − N(λ

(i)
k )

1−N(λ
(i)
k )

∑
j 6=k

1

λ
(i)
k − λ

(i)
j

, (2.4)

where N(λ) := p(λ)/p′(λ). Clearly these updates can be done in parallel, which is
nice, but if we insist to update in sequential order we might as well use the latest
approximations available. This leads to the slightly faster Gauss-Seidel version:

λ
(i+1)
k = λ

(i)
k − N(λ

(i)
k )

1−N(λ
(i)
k )

(
∑
j<k

1

λ
(i)
k − λ

(i+1)
j

− ∑
j>k

1

λ
(i)
k − λ

(i)
j

) . (2.5)

In practice, the Ehrlich-Aberth method exhibits rapid convergence to isolated simple
eigenvalues if good starting points are provided. The algorithm also converges for
multiple and tightly clustered eigenvalues, but more iterations are generally required
in these cases.

Recently Bini and Noferini [5] used the Ehrlich-Aberth method for finding the
eigenvalues of regular matrix polynomials. If P (λ) is such matrix polynomial, their
algorithm applies the Ehrlich-Aberth iteration to the equation detP (λ) = 0, and for
the selection of starting points, it make use of Newton polygons. For the evaluation
of p(λ)/p′(λ), which is the most expensive part of the updating process, they used
Jacobi’s formula

d

dλ
detP (λ) = trace

(
P (λ)−1P ′(λ)

)
detP (λ)

to obtain

p′(λ)/p(λ) = trace
(
P (λ)−1P ′(λ)

)
. (2.6)

By using (2.6), each update costs O(n3) flops.
Since the method is iterative, some stopping criterion is needed. Bini and Noferini

gave two suggestions: either stop updating λi when the condition number of P (λi)
is large enough, or when the associated backward error (2.2) is small enough. Both
criteria require O(n3) flops to check.

The Ehrlich-Aberth method can only be used to find the eigenvalues. If also the
eigenvectors are sought, these can be found afterwards using inverse iteration or the
SVD—both techniques requires O(n3) flops per eigenvector.

The algorithm in [5] demonstrated superb accuracy in numerical tests, but is
unfortunately an expensive alternative for solving QEPs. Applied to an n × n QEP
the complexity is O(n4)—assuming the starting points are good enough.



6 LEO TASLAMAN

Algorithm 1: Wang and Zhao’s algorithm.

Description: Solves (A− λB)x = 0 where A,B ∈ R
n×n are positive definite.

1 Compute Cholesky decompositions A = LAL
T
A and B = LBL

T
B.

2 Compute the QR factorization

[
LT
A

LT
B

]
= QR.

3 Define Q1 = [In 0n×n]Q and Q2 = [0n×n In]Q.
4 Compute the singular values σ1(Q1) ≥ σ2(Q1) ≥ · · · ≥ σn(Q1) of Q1.
5 Compute the singular values σ1(Q2) ≥ σ2(Q2) ≥ · · · ≥ σn(Q2) of Q2 and a

corresponding matrix V of right singular vectors.
6 Compute eigenvalues: λi = σi(Q1)/σn−i+1(Q2) for i = 1: n.
7 Compute eigenvectors: xi = R−1(V ei) for i = 1: n.

3. Wang and Zhao’s algorithm. Wang and Zhao [21] proposed a algorithm
for solving

Ax = λBx, (3.1)

where A,B ∈ R
n×n are positive definite. Their method is outlined in Algorithm 1.

To see why Algorithm 1 works, we note that the matrix Q, has a CS decomposition

Q =

[
U1

U2

] [
C
S

]
V T ,

where Q1 = U1CV T and Q2 = U2SV
T are SVDs. Since each column of Q has unit

norm, so must be the case for each column of [CT ST ]T . In other words, it must hold
that c2ii + s2ii = 1 for i = 1: n. If we define X = R−1V , then we have

XTAX = V TR−TLAL
T
AR

−1V = V TQT
1 Q1V = C2 (3.2)

and similarly

XTBX = S2. (3.3)

Now consider the case when A or B (possibly both) are singular but still positive
semidefinite, and the pencil A− λB is regular. For such problems, Algorithm 1 still
works after a small modification: instead of computing Cholesky factorizations on line
1, we compute any other factorizations such that A = LAL

T
A and B = LBL

T
B, where

LA and LB need not be triangular. If A, say, is singular we can, for example, use the
factorization given by LA = UΛ1/2 where A = UΛUT is a spectral decomposition.
Regarding the eigenvectors, we have Rx = 0 only if (A− λB)x = 0 independent of λ.
Hence, the assumption that A− λB is regular implies that R is invertible.

Wang and Zhao showed that Algorithm 1 finds the the exact eigenvalues of a
perturbed problem

(A+∆A)x = λ(B +∆B)x,

where ∆A and ∆B are symmetric and ‖∆A‖/(‖A‖+ ‖B‖) and ‖∆B‖/(‖A‖+ ‖B‖)
are both small. Here (and below) “small” refers to a modest multiple of machine
precision that depends on n. The backward error analysis in [21] is oblivious to which
factorizations are being done on line 1 of Algorithm 1 as long as

LAL
T
A = A+∆Ã and LBL

T
B = B +∆B̃,



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 7

where ‖∆Ã‖/‖A‖ and ‖∆B̃‖/‖B‖ are both small. Since the factorizations based on
the spectral decomposition mentioned above, can be computed stably using e.g., the
QR algorithm [17], [7, p. 464], the backward error analysis in [21] can be applied also
to this case.

The above backward error result does not say anything about ‖∆A‖/‖A‖ and
‖∆B‖/‖B‖, and is therefore not satisfactory with respect to the backward error defi-
nition (2.1). Fortunately, this can be fixed by an eigenvalue parameter scaling. If we
use Algorithm 1 (possibly with our modification to handle singular matrices) to solve

Ax = λ(sB)x where s = ‖A‖/‖B‖,

rather than (3.1), then we get computed eigenvalues λ1, λ2, . . . , λn such that the back-
ward errors ηA−(sB)λ(λi), i = 1: n, are small. From (2.3), we see that sλ1, sλ2, . . . , sλn

have small backward errors as eigenvalue approximations to (3.1).
We have suggested two improvements to Algorithm 1. The first one allows for

positive semidefinite A and B as long as (A,B) is regular. The second one guarantees
small backward errors for the eigenvalues, as defined in (2.1). Taken together, our
modifications leads to a new algorithm which is summarized in Algorithm 2; the
corresponding flop count is shown in Table 17.1 We remark that the two if-then-else
statements in Algorithm 2 can be executed in parallel. Similarly, the computation of
the SVD quantities of Q1 and Q2 (line 14 and 15) can be done in parallel.

Algorithm 2: The Modified Wang-Zhao algorithm.

Description: Solves (A− λB)x = 0 where A,B ∈ R
n×n are positive

semidefinite and A− λB is regular.

1 if A is nonsingular then

2 Compute Cholesky factorizations A = LAL
T
A.

3 else

4 Compute a spectral decomposition A = UAΛAU
T
A and set LA = UAΛ

1/2
A .

5 end

6 if B is nonsingular then

7 Compute Cholesky factorizations B = LBL
T
B.

8 else

9 Compute a spectral decomposition B = UBΛBU
T
B and set LB = UBΛ

1/2
B .

10 end

11 Let s = ‖A‖/‖B‖ (If ‖A‖ or ‖B‖ are unknown, estimations suffice).

12 Compute the QR factorization

[
LT
A

LT
B

]
= QR.

13 Define Q1 = [In 0n×n]Q and Q2 = [0n×n In]Q.
14 Compute the singular values σ1(Q1) ≥ σ2(Q1) ≥ · · · ≥ σn(Q1) of Q1.
15 Compute the singular values of σ1(Q2) ≥ σ2(Q2) ≥ · · · ≥ σn(Q2) of Q2 and a

corresponding matrix V of right singular vectors.
16 Compute eigenvalues λi = sσi(Q1)/σn−i+1(Q2) for i = 1: n.
17 Compute eigenvectors xi = R−1(V ei) for i = 1: n.

1Wang and Zhao pointed out the cost of the QR factorization can be reduced if we can take
advantage of the triangular structure of L

A
and L

B
(assuming A and B are nonsingular). For

simplicity, this will not be exploited in this paper.



8 LEO TASLAMAN

Table 3.1

Flop count estimation for Algorithm 2.

Cholesky factorization (1/3)n3 [7, p. 164]
Symmetric QR Algorithm 9n3 [7, p. 463]
Householder QR factorization (2n× n) (12 + 2/3)n3 [7, p. 249]
Singular values (2 + 2/3)n3 [7, p. 493]
Singular values + right singular vectors 12n3 [7, p. 493]
Triangular linear system n2 [7, p. 107]
Alg. 2: A and B nonsingular 29n3

Alg. 2: A xor B singular (37 + 2/3)n3

Alg. 2: A and B singular (46 + 1/3)n3

The backward error analysis in [21] only concerns the eigenvalues, not the eigen-
vectors. Since the eigenvectors are given by R−1V the quality of the computed eigen-
vectors depends on the triangular matrix R. As mentioned above, this matrix is
always invertible, but it may be ill-conditioned. In exact arithmetic we have,

RTR = A+ sB, s = ‖A‖/‖B‖,

so R is ill-conditioned exactly when there exists a vector v such that both vTAv/‖A‖
and vTBv/‖B‖ are small.

4. An algorithm for QEPs with low rank damping. The proposed algo-
rithm for solving (1.1) is outlined briefly in Algorithm 3.

Algorithm 3: The main algorithm

Description: Computes all eigenvalues/eigenpairs of (1.1).

1 Compute an S ∈ R
n×r such that D = SST .

2 Compute the undamped eigenvalues (that is, the eigenvalues of Mλ2 +K) and
a nonsingular X ∈ R

n×n such that

XT (Mλ2 + SSTλ+K)X = Mdλ
2 + ŜŜTλ+Kd =: P (λ), (4.1)

where Md and Kd are diagonal.
3 Lock undamped eigenvalues that are also eigenvalues of (1.1).
4 Compute the eigenvalues of (4.1) by the Ehrlich-Aberth iteration. Return the

computed eigenvalues if the eigenvectors are not requested.
5 Compute the eigenvectors of (4.1) by inverse iteration.
6 Return (λi, Xvi), i = 1: 2n, where (λi, vi) is a computed eigenpair of (4.1).

For the first step of Algorithm 3, we can find S by, for instance, computing the
spectral decomposition of D.

The second step of Algorithm 3 essentially reduces to solving a definite GEP.
It is easy to see that X must be an eigenvector matrix corresponding to K − Mω.
Furthermore, if ωk, k = 1: n, are the eigenvalues of K − Mω, then the undamped
eigenvalues are given by ±i

√
ωk if ωk is finite, and ∞ otherwise. We use Algorithm

2 to find all eigenpairs of K −Mω. Note that there is no need to form the matrices
XTMX and XTKX explicitly: from (3.2) and (3.3) we see that Md and Md are given
by the singular values computed in Algorithm 2.



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 9

The description of step 3, 4 and 5 are more involved, so we discuss these in
separate subsections.

4.1. Step 3: Initial locking. It may happen that some undamped eigenvalues
are also eigenvalues to (1.1). Since there is no need to do any further work on such
eigenvalues, we declare them “locked.” When deciding which eigenvalues to lock, we
treat zero and infinite eigenvalues separately from nonzero finite eigenvalues. The
reason for this is that a zero and infinite eigenvalue of (1.1) may be defective, while
all eigenvalues of the form ±i

√
ωk can be shown to be semisimple. Matrix polynomials

(and constant matrices for that matter) with defective eigenvalues are often regarded
as degenerate cases. Indeed, if we randomly generate the coefficient matrices of a
matrix polynomial, it will almost surely have no defective eigenvalues. We will see
that this is not necessarily the case if we impose rank constraints on the coefficient
matrices and force them to be positive semidefinite.

Suppose (λk, xk), where λk 6= 0,∞, is an eigenpair of Mλ2 +K and let η(λk, xk)
denote the corresponding backward error with respect to Mλ2+Dλ+K. We declare
λk “locked” if η(λk, xk) is small enough. In our code, “small enough” is defined as less
than nǫ where ǫ is machine precision.

The next proposition provides a method to determine how many of the zero and
infinite eigenvalues to lock.

Proposition 4.1. Let Q(λ) = Mλ2+Dλ+K be the matrix polynomial in (1.1),
so (M,K) is regular. The number of zero eigenvalues is given by

dim null(K) + dim(null(D) ∩ null(K)),

and the number of infinite eigenvalues is given by

dim null(M) + dim(null(D) ∩ null(M)).

Proof. For readability, we introduce the following variables

k := dim null(K) and ℓ := dim(null(D) ∩ null(K)).

Pick a real invertible X1 such that XT
1 MX1 and XT

1 KX1 are diagonal and the first
k diagonal elements of XT

1 KX1 are zero. This can be done since (M,K) is a definite
pencil. Further, pick an invertible X2 ∈ R

k×k such that the first ℓ ≤ k columns
X2 ⊕ In−k is a basis for null(XT

1 DX1) ∩ null(XT
1 KX1) and the first k columns is a

basis for null(XT
1 KX1). Let X = X1(X2⊕In−k) and note that XTQ(λ)X decomposes

into a direct sum

XTQ(λ)X = M1λ
2 ⊕ (M2λ

2 +D2λ+K2),

where M1 is ℓ× ℓ and null(D2)∩null(K2) = {0}. Note that M1λ
2 has exactly 2ℓ zero

eigenvalues and Q2(λ) := M2λ
2 +D2λ +K2 has at least k − ℓ zero eigenvalues. We

need to show that Q2(λ) has exactly k − ℓ zero eigenvalues, or equivalently, that all
its zero eigenvalues are semisimple. To this end, we observe that Q2(λ) is real and
symmetric, so all right eigenvectors associated with zero are also left eigenvectors.
Next, we pick σ > 0 such that detQ2(σ) 6= 0 and define

Q̂(λ) = λ2Q2(1/λ+ σ).



10 LEO TASLAMAN

From Corollary 2.3 it follows that zero is a defective eigenvalue of Q2(λ) only if there
exists a real right eigenvector x such that

xT Q̂′(−1/σ)x = xT (D2 +K2/σ)x = 0.

Since D2 and K2 are both positive semidefinite, such x must lie in null(D2)∩null(K2)
and hence cannot exist.

The number of infinite eigenvalues equals the number of zero eigenvalues of
revQ(λ) := Kλ2 + Dλ + M . Thus, the other half of the theorem can be shown
analogously if we consider revQ(λ) instead of Q(λ).

Remark 4.2. The number of “missing eigenvectors” corresponding to the zero and

infinite eigenvalues are given by dim(null(D)∩ null(K)) and dim(null(D)∩ null(M)),
respectively. Hence, defective eigenvalues are always present if, for example, rank(D) =
1 and dim null(K) = 2.

By Proposition 4.1, the number of zero and infinite eigenvalues depends on
null(K) and null(M), respectively. These spaces are available from the correspond-
ing spectral decompositions, which are computed in Algorithm 2. If the columns
of N1 ∈ R

n×k1 and N2 ∈ R
n×k2 constitute bases for null(K) and null(M), respec-

tively, then there are 2k1 − rank(DN1) zero eigenvalues and 2k2 − rank(DN2) infinite
eigenvalues. These quantities can be computed numerically using the SVD.

4.2. Step 4: Computing eigenvalues. We now discuss how to use the Ehrlich-
Aberth method to exploit the structure of (4.1) in order to find all eigenvalues. We
focus on the following three questions.

1. How do we pick the starting points?
2. How do we compute (2.6) efficiently?
3. Which stopping criterion should we use?

For starting points we use the undamped eigenvalues with small (in a relative sense)
random perturbations added to the unlocked eigenvalues. These perturbations are
added to break symmetries, since it is well-known that the Ehrlich-Aberth method
may fail to converge due to certain symmetries [2]. Suppose, for example, that (1.1)
has two real simple eigenvalues and all undamped eigenvalues are finite and nonzero.
Assume further we want to use the update rule (2.4). If we do not add the pertur-
bations, then starting points can be paired into complex conjugates, and the update
rule (2.4) preserves this symmetry. Hence, convergence to real simple eigenvalues is
impossible.

The rationale behind using the undamped eigenvalues as starting points becomes
more clear if we think about the application discussed in section 1.1. In this case the
eigenvalues correspond to vibrational properties (frequency and damping) of a physical
structure, and the undamped eigenvalues correspond to vibrational properties of the
same structure, but with the strength of the dampers set to zero. If the damping
is small or moderate, our the choice of starting points seems reasonable. But what
if the damping is strong? In this case we note that a strong viscous damper (that
is, one with small holes in its piston head, see Figure 1.1) is in some sense similar
to a rigid component. We expect the spectrum to respect this similarity. The link
between strong dampers and the spectrum was studied to some extent in [16]. In
particular it was shown that all eigenvalues of Mλ2 + sDλ + K, where M and K
are positive definite and D positive semidefinite, converge to points on the imaginary
axis as s → ∞, with the exception of rank(D) eigenvalues which goes to −∞. This
means that rank(D) eigenvalues can be arbitrarily far from all the staring points.



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 11

Fortunately, as will be seen in section 5.3, Ehrlich-Aberth works quite well in practice
when only a few starting points are “way off.”

The computation of trace
(
P (λ)−1P ′(λ)

)
for fix values of λ is the core of our

Ehrlich-Aberth iteration. We compute this trace using the Sherman-Morrison-
Woodbury formula in combination with standard trace laws. The precise procedure
is outlined in Algorithm 4; we leave out the tedius algebra that justifies it. If Md and
Kd are stored as vectors and Algorithm 4 is implemented accordingly, then total flop
count is 4n + 2rn + 4r2n (counting only terms with a factor n). Since there are 2n
eigenvalues, and we expect each eigenvalue to converge in a few steps, the complexity
in n of our Ehrlich-Aberth iteration is quadratic.

Algorithm 4: Computation of trace
(
P (λ)−1P ′(λ)

)
.

Description: Computes t = trace
(
P (λ)−1P ′(λ)

)
where

P (λ) = Mdλ
2 + ŜŜTλ+Kd.

1 A := Mdλ
2 +Kd

2 B := A−1Ŝ

3 C := ŜTB
4 D := Ir + λC
5 E := MdB

6 F := (BTE)D−1

7 G := CD−1C
8 t := 2λtrace(MdA

−1) + trace(C)− 2λ2trace(F )− λtrace(G)

When an eigenvalue has converged, we mark it as “locked” and do not update it
in subsequent iterations. We are done when all eigenvalues are locked. The obvious
question is “When do we declare an eigenvalue ‘converged’?” One approach is to
estimate the backward error (2.2) with respect to (4.1), and lock an eigenvalue if
the backward error is smaller than some tolerance, say machine precision. If we use
the normest1 algorithm [10] in combination with the Sherman-Morrison-Woodbury
formula, such estimation requires only O(n) flops if we count r as a small constant.
We found, however, that we often get better results (both in terms of accuracy and

speed) with the following heuristic strategy: lock λ
(i)
k when

∣∣λ(i)
k − λ

(i+1)
k

∣∣ < tol ×
∣∣λ(i)

k

∣∣,
where tol is initially set to be machine precision, and is then relaxed by a factor 10
each 50th iteration. This is the stopping condition used in our numerical experiments.
Here the number 50 is somewhat arbitrary. From experience, convergence of most
eigenvalues is usually obtained within 10 iterations. Some eigenvalues requires more
iterations, but the idea is that if 50 is not enough then the problem is most likely
not the number of iterations, but rather that the tolerance is too stringent. We
stress that the argument is based purely on experience, so there may very well exist
pathological examples where this strategy fails. We remark, however, that some kind
of relaxation strategy for the tolerance is necessary also when the eigenvalue backward
error is used as a stopping condition—otherwise the iteration may go on forever. We
comment more on this at the end section 5.3.

4.3. Step 5: Computing eigenvectors. When all eigenvalues have been found
we compute the corresponding eigenvectors. Since the computation of eigenvectors



12 LEO TASLAMAN

corresponding to different eigenvalues are completely decoupled, this phase of the al-
gorithm is embarrassingly parallel. We now discuss how to determine an eigenvector vi
of P (λ) corresponding to a computed eigenvalue λi. If λi is an undamped eigenvalue,
then vi is just a column of the identity matrix; otherwise, more work is required. The
next proposition provides one method for computing vi.

Proposition 4.3. Let λi be an eigenvalue of P (λ) but not of Q(λ) := P (λ) −
SSTλ. Then all eigenvectors associated with λi lie in the range of Q(λi)

−1S.

Proof. Suppose (vi, λi) is an eigenpair and write vi = Q(λi)
−1Sx + y where

y ⊥ range(Q(λi)
−1S). We need to show that y = 0. We have

P (λi)vi = P (λi)(Q(λi)
−1Sx+ y)

= (Q(λi) + λiSS
T )(Q(λi)

−1Sx+ y)

= S(Ir + λiS
TQ(λi)

−1S)x+Q(λi)y + λiSS
T y

= 0,

which implies that Q(λi)y ∈ range(S), or equivalently, that y ∈ range(Q(λi)
−1S).

The result now follows from the definition of y.
Remark 4.4. A consequence of Proposition 4.3 is that the geometric multiplicity

of λi cannot exceed the rank(S).
Proposition 4.3 implies that it if λi is computed exactly, then it is enough to look

for eigenvectors in the r dimensional subspace range(Q(λi)
−1S). Furthermore, we

see from the proof that Q(λi)
−1Sx is an eigenvector of P (λ) for any x ∈ null(Ir +

λiS
TQ(λi)

−1S). Since x can be computed cheaply from the SVD of Ir+λiS
TQ(λi)S,

this yields a fast method for computing vi. In practice, however, the computed eigen-
values contain errors so Proposition 4.3 is strictly speaking not applicable, and the
discussed method may lead to inaccurate eigenvectors. The computed eigenvectors
are, however, often very good (frequently with perfect backward errors of order 10−16)
and serves as excellent starting vectors for inverse iteration.

There are several approaches to inverse iteration for polynomial eigenproblems,
see [15]. The approach we take is (to our knowledge) new. It is designed for real
symmetric matrix polynomials and is slightly cheaper than the alternatives—although
it may be argued that the savings are negligible in our context. The idea is to iterate
according to

v
(k+1)
i = P (λi)

−1v
(k)
i /‖v(k)i ‖. (4.2)

So, why does this work? To answer this, we note that P (λi) is complex symmetric and
hence enjoys an SVD on the form UΣU∗ [11, Corollary 4.4.4]. If U = [u1, u2, . . . , un],

Σ = diag(σ1, σ2, . . . , σn) and v
(k)
i = α1u1 + α2u2 + · · ·+ αnun, then

P (λi)
−1v

(k)
i = UΣ−1U∗v

(k)
i =

n∑

j=1

αj

σj
uj. (4.3)

Since σn is tiny when λi is close to an eigenvalue, we expect (4.3) to be huge in the
direction of un. This is delightful, since the vector un is the best possible eigenvector
approximation we can hope for in the sense that ηP (λi, un) = ηP (λi). As usual with
inverse iteration, the ill-conditioning of P (λi) is benign since the matrix magnifies
errors in the direction of the desired vector.

To compute (4.2) we use the Sherman-Morrison-Woodbury formula with the start-
ing vector described above. Since the starting vector already is a good approximation,



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 13

we only take one step of inverse iteration in our code. The complexity for computing
one eigenvector of (4.1) with this technique is linear in n.

Another way to solve the linear systems from (4.2) is to use QR factorization and
back substitution. This is an attractive option from a stability point of view, albeit
more expensive. If the technique used in [19] is employed, each QR factorization can
be computed with O(rn2) flops. The idea is to compute, in a bottom-up fashion, a
sequence of (real) Givens rotations U1U2 . . . Un−1 =: U such that US is trapezoidal
and UMd and UKd are r-Hessenberg. This implies that UP (λi) is r-Hessenberg for
any λi, so its QR factorization can be computed efficiently using Givens rotations.
We did not use this approach for our numerical experiments. It may, however, be the
method of choice when only some eigenvectors are sought, or when the eigenvectors
are computed in parallel.

We end this section with a negative remark: the approach to first find the eigen-
values, and then the eigenvectors via inverse iteration, is flawed when multiple eigen-
values are present. In this case we may approximate the same eigenvector several
times. An obvious “solution” is to compute an invariant subspace rather than indi-
vidual eigenvectors; inverse iteration and our choice of starting vector can indeed be
generalized to subspaces. The problem is that it is hard to a priori decide what the
dimension of the subspaces should be.

5. Numerical experiments. We implemented Algorithm 3 in MATLAB
2012b. Our code is written in serial, so it does not, for instance, exploit that the
workload in steps 4 and 5 of the algorithm is embarrassingly parallel. Individual
MATLAB functions that are being called, may, however, be multithreaded. For the
Ehrlich-Aberth iteration, we used the Gauss-Seidel updates shown in (2.5). The first
part of our algorithm (step 1–3) make use of MATLAB’s core routines svd and qr.
The second part of our algorithm (step 4–6) is written in “pure” MATLAB code (ex-
cept for the computation of small r× r SVDs) and is sometimes slower than the first
part even though the flop count is much lower. Since we expect this speed difference
to wane if the entire algorithm is implemented in a low-level language, we sometimes
state explicitly how much time is spend on the second part.

We compared our algorithm to quadeig, the MATLAB implementation of the
eigensolver in [8] for unstructured QEPs. In the core of this implementation we find
MATLAB’s eig routine, which performs the real QZ algorithm in this case.

The numerical experiments were carried out in MATLAB R2012b in IEEE double
precision arithmetic on a machine with the following specifications.

Memory 16GB (4X4GB) 1333 MHz DDR3 Non-ECC
Processor Intel® Core™ i7-2600 (8M Cache, 3.40 GHz)
Operating System Windows® 7 Professional (64Bit)

5.1. The damped beam. The damped beam problem can be found in the
collection of nonlinear eigenvalue problems called NLEVP [4]. This QEP arises when
studying the vertical displacements of a beam that is supported at its ends and has a
viscous damper attached to it in the middle, see Figure 5.1.



14 LEO TASLAMAN

Fig. 5.1. The damped beam.

The construction of the coefficient matrices is explained in [9], where it is also
shown that half of the eigenvalues are undamped eigenvalues. This makes it an ideal
problem for our algorithm. We modeled the problem such that the coefficient matrices
were of size 1000 × 1000. Algorithm 3 computed all eigenpairs in 2 seconds while
quadeig needed 112 seconds. The backward errors for the computed eigenpairs are
shown in Figure 5.2. We remark that there is no guarantee that two backward errors
plotted with the same x-coordinate correspond to the same eigenvalue. We see that
both algorithm performed well in terms of backward stability (all backward errors are
less than n times the machine precision). The spectrum, as it was computed by the
two algorithms, are shown in Figure 5.3.

Let us pause a for a while and discuss Figure 5.3. We know that all eigenvalues
must lie in the left half plane, and half of them on the imaginary axis. Hence the real
parts of some of the computed eigenvalues from quadeig must be inaccurate, even
though Figure 5.2 shows all backward errors are about 10−14. In terms of relative
errors, this is consistent with the “approximate bound”

forward error . backward error × condition number,

for the unstructured forward error, if we define the condition number conformably

Fig. 5.2. Backward errors of computed eigenpairs for the damped beam. The dashed line
indicates the machine precision.



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 15

Fig. 5.3. Computed spectra for the damped beam.

with the backward error introduced in section 2.2. This condition number is given by

κ(λ) =
‖M‖|λ|2 + ‖D‖|λ|+ ‖K‖

|λ||vT (2Mλ+D)v| ,

if λ is a simple nonzero eigenvalue of (1.1) and v is an associated normalized eigenvec-
tor [18]. If we, for example, evaluate the condition number of the upper-right-most
eigenvalue using the computed quantities from Algorithm 3, we find that the condition
number is of order 107. Assuming this answer is of the correct order of magnitude,
the relative forward error is at most of order 10−14 × 107 = 10−7. For the absolute

forward error, we note that the modulus of the eigenvalue in question is about 108,
so the absolute forward error is at most of order 10−14 × 107 × 108 = 10. This ex-
plains why we see some red circles in the right half plane. The unstructured forward
error bound does not, however, explain the nice pattern in the spectrum produced by
Algorithm 3. One explanation is the problem has a lot of structure that Algorithm 3
respects.

Finally, recall that each undamped eigenvalue is computed as ±iωk, for some
real eigenvalue ωk of K − Mω, and is then locked if it is also an eigenvalue of the
damped problem. This explains the straight line of blue crosses on the imaginary axis
in Figure 5.3. However, even if we bypass the initial locking phase and add relative
perturbations of order 10−8 to all eigenvalues, our Ehrlich-Aberth iteration returns
half the eigenvalues in a strip centered at the imaginary axis of width about 10−13.



16 LEO TASLAMAN

m1 m2 mn

k1

d1d1

k2

d2d2

kn+1

dn+1dn+1

Fig. 5.4. A simple mass-spring-damper system.

5.2. A mass-spring-damper system. Our next QEP comes from a simple
mass-spring-damper system; the particular setup is shown in Figure 5.4. To make the
problem more interesting, we introduced defective infinite eigenvalues by setting some
of the masses, as well as most damping coefficients, to zero. We defined n = 1000,

mi =

{
0 if i ∈ {1, n}
1 otherwise,

di =

{
1/100 if i ∈ J := {12, n/2 + 1, n− 10}
0 otherwise

and ki = 1 for i = 1: n. Notice that there only are three effective dampers, that is,
with nonzero damping coefficients di. The corresponding mass, damping and stiffness
matrices are given by

M = I − e1e
T
1 − ene

T
n , D =

1

100

∑

i∈J

(ei−1 − ei)(ei−1 − ei)
T

and

K =




2 −1
−1 2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2



,

respectively [20, p. 2]. Further, Proposition 4.1 implies that the associated QEP has
four defective infinite eigenvalues. We solved the eigenproblem using Algorithm 3 and
quadeig. The computation time for Algorithm 3 was 5 seconds, where more than half
the time was spend on the second part (step 4–6) of the algorithm; the computation
time for quadeig was 110 seconds. The backward errors for the computed eigenpairs
are shown in Figure 5.5. As in Figure 5.2, two backward errors plotted with the same
x-coordinate may correspond to different eigenvalues.

5.3. QEPs with random coefficient matrices. We created random coeffi-
cient matrices using the MATLAB commands

M = randn(n); M = M*M’;

D = randn(n,5); D = D*D’;

K = randn(n); K = K*K’;

and solved the corresponding problem for different values on n. Note that the rank
of the damping matrix is 5 for each test problem. The results are shown in Table 5.1.
As expected, Algorithm 3 scales much better with n than quadeig.

Our next experiment concerns strongly damped problems, or more precisely, prob-
lems for which ‖D‖ is much larger than ‖M‖ and ‖K‖. Such problems have badly



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 17

Fig. 5.5. Backward errors of computed eigenpairs for the mass-spring-damper system described
in section 5.2. The dashed line indicates the machine precision.

Table 5.1

Backward errors and execution times for the tested algorithms. The last columns shows how
many times, on average, each eigenvalue approximation was updated in the Ehrlich-Aberth iteration.

quadeig Algorithm 3
n max η(λ, v) time max η(λ, v) time (step 4–6) Av. #upd
200 6.3e−15 0.4 1.7e−15 0.6 (0.6) 8.2
600 1.6e−14 20.4 1.3e−15 3.9 (3.4) 7.9
1000 2.9e−14 110.3 1.3e−15 8.7 (7.2) 7.9
1400 3.7e−14 313.5 2.1e−15 15.8 (12.2) 7.9
1800 5.5e−14 702.2 1.7e−15 43.2 (34.4) 7.7
2200 6.3e−14 1296.6 1.7e−15 42.0 (26.1) 7.7
2600 7.0e−14 2143.2 1.8e−15 58.7 (34.5) 7.7
3000 7.8e−14 3299.6 1.9e−15 84.1 (44.3) 7.7

scaled linearizations, even if parameter scalings are employed [12]. This implies that
linearization based algorithms, such as quadeig, cannot compute all eigenpairs back-
ward stably, unless the same problem is solved twice using two different linearizations
[24]. The proposed algorithm is “linearization free” and does not share this drawback.
However, it is still worth investigating the performance on strongly damped problems.
There are three reasons for this:

1. There are rank(D) eigenvalues that are far away from all starting points.
2. Eigenvalues may cluster around the origin [16].
3. The proposed algorithm make use of the Sherman-Morrison-Woodbury for-

mula, which stability depends on the scale of the involved quantities [22].
We generated test problems using the following MATLAB code:

M = randn(250); M = M*M’;

D = randn(250,r); D = s*(D*D’);

K = randn(250); K = K*K’;



18 LEO TASLAMAN

Table 5.2

Backward errors and execution time for Algorithm 3. As in Table 5.1, Av. #upd denotes the
number of average Ehrlich-Aberth updates per eigenvalue.

r = 5 r = 25
s max η(λ, v) Av. #upd max η(λ, v) Av. #upd

1e+00 1.1e−15 7.9 1.5e−15 17.0
1e+02 3.0e−15 6.9 1.4e−14 12.8
1e+04 1.8e−14 7.3 8.4e−13 17.0
1e+06 4.6e−14 7.2 8.2e−13 20.9
1e+08 3.7e−14 7.0 6.2e−13 26.0
1e+10 4.3e−14 7.8 1.4e−12 29.8
1e+12 2.3e−14 8.3 9.0e−13 36.1
1e+14 1.3e−14 9.0 3.7e−13 42.2

The results for different values of s and r are shown in Table 5.2. We see that the
norm of D do affect the accuracy. However, the increase in the worst case backward
error is modest (a factor 10 or 100) and appears to stagnate as s grows. The results in
Table 5.2 can be explained as follows. When s is large, there are 2r real eigenvalues;
half of them cluster around the origin and the other half are large and negative. As s
grows, our algorithm fail satisfy the initial stopping condition for some eigenvalues, in
particular the real ones, and therefore relaxes the tolerance (after 50 iterations). This
is the reason for the growth in the worst case backward errors. It also explains the
increase in average number of Ehrlich-Aberth steps taken per eigenvalue. We remark
that taking more steps before relaxing the tolerance does not necessarily improve
the accuracy. The problem is not that the iterates are “lost” and far away from the
eigenvalues they should approximate, but rather that the Ehrlich-Aberth corrections,
which are computed using the Sherman-Morrison-Woodbury formula, are not accurate
enough. This is why some kind of tolerance relaxation is needed also if the eigenvalue
backward error is used as stopping condition.

6. Discussion.

6.1. The large scale case. Todays models of vibrating structures are often
so large that it becomes unfeasible to find all eigenpairs. Even in cases when it is
possible, all eigenpairs are rarely of interest. Instead subspace based methods are
used to target the most important eigenvalues. When a good subspace has been
found, a smaller “projected” eigenproblem needs to be formed. There are several ways
of forming this smaller problem. A good approach is to project directly onto the
coefficient matrices, in style of an orthogonal Rayleigh-Ritz procedure [3]. This leads
to a smaller system that shares the essential structure that all coefficient matrices are
positive semidefinite. More precisely, if the columns of U span a computed subspace
of dimension k, then we form

Q(λ) := UT
(
Mλ2 +Dλ+K

)
U,

which is a matrix polynomial of size k × k. The next step is to find all eigenpairs of
Q(λ). If k is significantly larger than the number of discrete dampers (recall that less
than 10 dampers is not uncommon in practice) then we have a problem on same form
as (1.1) to which the proposed algorithm can be applied.



QUADRATIC EIGENPROBLEMS WITH LOW RANK DAMPING 19

6.2. Generalizations. The main idea behind this work was that the structure
“diagonal plus low rank” can be exploited to quickly compute eigenvalues and eigen-
vectors. We considered a rather special QEP, but it is also possible to apply this
idea to other types of eigenvalue problems. A major obstacle, however, is the choice
of starting points for the Ehrlich-Aberth iteration. Consider, for example, a rank
one modification of a standard eigenvalue problems Ax = λx. If we already have a
spectral decomposition A = SΛS−1, then for any u and v, S−1(A + vuT )S is the
sum of a diagonal matrix and a rank one matrix, so we can apply the techniques
discussed in this paper to quickly compute all its eigenpairs—assuming good starting

points are available. The analog of the starting points used in our algorithm, would
be the eigenvalues of A. Unfortunately, we cannot, without further insight into the
problem, argue that this choice is any good. In fact, it can be arbitrarily bad: Acker-
mann’s formula (for pole placement) states that a rank one modification—albeit an
extreme one— is enough to change the spectrum of any given nonderogatory matrix
arbitrarily.

One situation where good starting points are available appears in homotopy meth-
ods. Consider, for example, the following problem: Given a vector u and spectral
decomposition A = SΛS−1 such that all eigenvalues of A have negative real part,
find the smallest t ≥ 0 such that A + tuu∗ has a purely imaginary eigenvalue. If we
define x = S−1u and y∗ = u∗S, then Λ+ txy∗ is similar to A+ tuu∗ and on the form
“diagonal plus rank one.” Hence one way to attack the problem is to solve a sequence
of eigenvalue problems

Λ + tixy
∗, i = 0, 1, 2, . . . , where 0 = t0 < t1 < t2 < · · · ,

by an Ehrlich-Aberth iteration that exploits the structure and uses the eigenvalues of
the previous step as starting points.

Acknowledgements. I thank Dario Bini, Vanni Noferini and Françoise Tis-
seur for helpful discussions. I also thank Vanni for sharing his MATLAB codes, and
Françoise for reading the paper and giving valuable comments.

REFERENCES

[1] Structural applications of fluid viscous dampers. October 2012. Retrieved from
http://taylordevices.com/dampers-seismic-protection.html Accessed: 2014-05-13.

[2] O. Aberth. Iteration methods for finding all zeros of a polynomial simultaneously. Mathematics
of Compution, 27(112):339–344, 1973.

[3] Z. Bai and Y. Su. Soar: A second-order arnoldi method for the solution of the quadratic
eigenvalue problem. SIAM J. Matrix Anal. Appl., 26(3):640–659, 2005.

[4] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection
of nonlinear eigenvalue problems. ACM Transactions on Mathematical Software (TOMS),
39(2):7:1–7:28, 2013.

[5] D. A. Bini and V. Noferini. Solving polynomial eigenvalue problems by means of the ehrlich-
aberth method. Linear Algebra and its Applications, 439(4):1130–1149, 2013.

[6] L. W. Ehrlich. A modified newton method for polynomials. Communications of ACM,
10(2):107–108, 1967.

[7] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, 4th edition, 2013.

[8] S. Hammarling, C. J. Munro, and F. Tisseur. An algorithm for the complete solution of
quadratic eigenvalue problems. ACM Transactions on Mathematical Software (TOMS),
38(3):18:1–18:19, 2013.

[9] N. J. Higham, D. S. Mackey, F. Tisseur, and S. D. Garvey. Scaling, sensitivity and stability
in the numerical solution of quadratic eigenvalue problems. Internat. J. Numer. Methods
Eng., 73(3):344–360, 2008.



20 LEO TASLAMAN

[10] N. J. Higham and F. Tisseur. A block algorithm for matrix 1-norm estimation, with an appli-
cation to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4):1185–1201, 2000.

[11] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, UK,
1985.

[12] W.-W. L. Hung-Yuan Fan and P. V. Dooren. Normwise scaling of second order polynomial
matrices. SIAM J. Matrix Anal. Appl., 26(1):252–256, 2004.

[13] P. Lancaster. Lambda-matrices and Vibrating Systems. Dover Publications, inc., New York,
USA, 2002.

[14] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Möbius transformations of matrix
polynomials. MIMS EPrint 2014.2, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, January 2014.

[15] G. Peters and J. H. Wilkinson. Inverse iteration, ill-conditioned equations and newton’s method.
SIAM Review, 21(3):339–360, 1979.

[16] L. Taslaman. Strongly damped quadratic matrix polynomials. MIMS EPrint 2014.10, Manch-
ester Institute for Mathematical Sciences, The University of Manchester, UK, March 2014.

[17] F. Tisseur. Backward stability of the QR algorithm. Technical report 239, Equipe d’Analyse
Numerique, Université Jean Monnet de Saint-Etienne, Cedex 02, France, October 1996.

[18] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra
and its Applications, 309:339–361, 2000.

[19] F. Tisseur. Newton’s method in floating point arithmetic and iterative refinement of generalized
eigenvalue problems. SIAM J. Matrix Anal. Appl., 22(4):1038–1057, 2001.

[20] K. Veselić. Damped Oscillations of Linear Systems. Springer-Verlag, Berlin Heidelberg, Ger-
many, 2011.

[21] S. Wang and S. Zhao. An algorithm for Ax = λBx with symmetric and positive-definite A and
B. SIAM J. Matrix Anal. Appl., 12(4):654–660, 1991.

[22] E. L. Yip. A note on the stability of solving a rank-p modification of a linear system by the
sherman-morrison-woodbury formula. SIAM J. Sci. Stat. Comput., 7(2):507–513, 1986.

[23] I. Zaballa and F. Tisseur. Finite and infinite elementary divisors of matrix polynomials: a
global approach. MIMS EPrint 2012.78, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, August 2012.

[24] L. Zeng and Y. Su. A backward stable algorithm for quadratic eigenvalue problems. SIAM
Journal on Matrix Analysis and Applications, 35(2):499–516, 2014.


