
Fast solvers for discretized Navier-Stokes
problems using vector extrapolation

Duminil, Sebastien and Sadok, Hassane and Silvester,
David

2014

MIMS EPrint: 2014.19

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Numer Algor (2014) 66:89–104
DOI 10.1007/s11075-013-9726-7

ORIGINAL PAPER

Fast solvers for discretized Navier-Stokes problems
using vector extrapolation

Sebastien Duminil ·Hassane Sadok ·David Silvester

Received: 31 January 2013 / Accepted: 26 May 2013 / Published online: 30 June 2013
© Springer Science+Business Media New York 2013

Abstract We discuss the design and implementation of a vector extrapolation
method for computing numerical solutions of the steady-state Navier-Stokes equation
system. We describe a “proof of concept” implementation of vector extrapolation,
and we illustrate its effectiveness when integrated into the Incompressible Flow
Iterative Solution Software (IFISS) package (http://www.manchester.ac.uk/ifiss).

Keywords Navier-Stokes problem · Vector extrapolation · Nonlinear system ·
Reduced Rank extrapolation · Picard method · Newton method

1 Introduction

An important problem that arises in many different areas of science and engineer-
ing is that of computing the limits of sequences of vectors (sk), where sk ∈ R

n

with n large. Such sequences arise, for example, when solving systems of linear or
nonlinear equations by fixed-point iterative methods, in which case limk→∞ sk is
simply the desired solution. In many cases of interest, however, vector sequences
converge to a limit too slowly. One practical way to accelerate the convergence
is to use vector extrapolation. This transforms the original sequence into another
sequence that converges to the same limit faster then the original one without having

S. Dumili · H. Sadok (�)
Laboratoire de Mathématiques Pures et Appliquées, Université du Littoral, Calais, France
e-mail: sadok@lmpa.univ-littoral.fr

S. Dumili
e-mail: duminil@lmpa.univ-littoral.fr

D. Silvester
School of Mathematics, University of Manchester, Manchester, UK
e-mail: d.silvester@manchester.ac.uk

http://www.manchester.ac.uk/ifiss
mailto:sadok@lmpa.univ-littoral.fr
mailto:duminil@lmpa.univ-littoral.fr
mailto:d.silvester@manchester.ac.uk

90 Numer Algor (2014) 66:89–104

explicit knowledge of the sequence generator. In this paper we explore the potential
of vector extrapolation in the context of computing steady state solutions of incom-
pressible flow problems modelled by the Navier-Stokes equations. The fact that
the Navier-Stokes system is nonlinear is what makes fluid dynamics so interesting.
Indeed, boundary value problems associated with the Navier-Stokes equations can
have more than one stable solution. Spatial discretization using mixed approximation
of the velocity and pressure variables naturally lead us to consider high-dimensional
nonlinear algebraic systems—so effective iteration methods are crucial for efficient
computation. Existing vector extrapolation methods can be broadly classified into
two categories: polynomial methods and ε-algorithms. The first family includes
three approaches: minimal polynomial extrapolation (MPE); reduced rank extrap-
olation (RRE) and the modified minimal polynomial extrapolation (MMPE). The
second family includes the topological ε-algorithm (TEA) and the scalar and vector
ε-algorithms (SEA and VEA). We will restrict our attention to the RRE methodology
in this work.

The paper is organised as follows. We review the Navier-Stokes problem and
discuss conventional (Picard and Newton) nonlinear solution methods in Section 2.
Then, in Section 3, we outline the idea of RRE extrapolation methods and we present
a specific implementation which is efficient in terms of work and memory overhead.
Finally, in Section 4, we give a performance comparison for two benchmark flow
problems solved using the IFISS MATLAB toolbox [6].

2 The Navier-Stokes equations

Our notation is identical to that in Elman, Silvester & Wathen [7, ch. 7]. Our objective
is to solve the following system of PDEs:

−ν∇2 �u+ �u · ∇ �u+ ∇p = �f ,
∇ · �u = 0,

(1)

where ν > 0 is a given constant associated with the kinematic viscosity. The variable
�u represents the velocity of the fluid and p represents the pressure. The system is
nonlinear: the quadratic term �u · ∇ �u is the vector obtained by taking the convective
derivative of each velocity component in turn.

The generic boundary value problem is the system (1) posed on a two- or a three-
dimensional domain �, together with boundary conditions on ∂� = ∂�D ∪ ∂�N

given by

�u = �w on ∂�D, ν
∂ �u
∂n

− �np = �0 on ∂�N, (2)

where �n denotes the outward-pointing normal to the boundary. If the velocity is spec-
ified everywhere on the boundary, that is, if ∂�D ≡ ∂�, then the pressure solution
to the Navier-Stokes problem (1)–(2) is only unique up to a hydrostatic constant.

Numer Algor (2014) 66:89–104 91

2.1 Weak formulation and linearization

Our numerical experiments are restricted to model flow problems defined in two
dimensions, see later. The extension of our methodology to three dimensions is com-
pletely natural, however. We thus denote by (·, ·) the Euclidean inner product in R

2

and by ‖·‖ the corresponding norm. We denote by L2(�) the space functions that are
square-integrable in the sense of Lebesgue:

L2(�) :=
{
u : � → R

∣∣ ∫
�

u2 < ∞
}

and by H1(�) the Sobolev space given by

H1(�) :=
{
u : � → R

∣∣u, ∂u
∂x

,
∂u

∂y
∈ L2(�)

}
.

We also define the standard solution and test spaces

H 1
E :=

{
�u ∈ H1(�)2 |�u = �w on ∂�D

}
,

H 1
E0

:=
{
�v ∈ H1(�)2 |�v = �0 on ∂�D

}
.

A weak formulation of (1)–(2) can then be stated as: Find �u ∈ H 1
E and p ∈ L2(�)

such that

ν

∫
�

∇�u : ∇�v +
∫
�

(�u · ∇ �u) · �v −
∫
�

p (∇ · �v) =
∫
�

�f · �v ∀�v ∈ H 1
E0

(3)

∫
�

q (∇ · �u) = 0 ∀q ∈ L2(�). (4)

Solving (3)–(4) requires nonlinear iteration with a linearized problem being solve at
every step. Thus, given an ”initial guess” (�u0, p0) ∈ H 1

E × L2(�) a sequence of
iterates (�u0, p0), (�u1, p1), (�u2, p2),. . . ∈ H 1

E×L2(�) is computed, which converges
to the solution of the weak formulation (3)–(4). In the next section, we recall the two
classical linearization procedures: fixed point iteration and Newton’s method.

Newton’s iteration turns out to be a very natural approach. Given the iterate
(�uk, pk), we start by computing the nonlinear residual associated with the weak
formulation. This is the pair Rk(�v), rk(q) satisfying

Rk (�v) =
∫
�

�f · �v − c (�uk; �uk, �v)− ν
∫
� ∇ �uk : ∇�v + ∫

� pk (∇ · �v) ,
rk(q) = − ∫

�
q (∇ · �uk)

for any �v ∈ H 1
E0

and q ∈ L2(�). The term c is the convection term. This can be

identified with a trilinear form c : H 1
E0

×H 1
E0

×H 1
E0

→ R defined as follows:

c (�z; �u, �v) :=
∫
�

(�z · ∇ �u) · �v.

92 Numer Algor (2014) 66:89–104

With �u = �uk + δ �uk and p = pk + δpk , it is easy to see that the corrections δ �uk ∈
H 1

E0
, δpk ∈ L2(�) satisfy

D(�uk, δ �uk, �v)+ ν

∫
�

∇δ �uk : ∇�v −
∫
�

δpk(∇ · �v) = Rk(�v)
∫
�

q(∇ · δ �uk) = rk(q)

(5)

for all �v ∈ H 1
E0
, q ∈ L2(�), where D(�uk, δ �uk, �v) is the difference in the nonlinear

terms:

D(�uk, δ �uk, �v) = c(δ �uk; δ �uk, �v)+ c(δ �uk; �uk, �v)+ c(�uk; δ �uk, �v).

Expanding D(�uk, δ �uk, �v) and dropping the quadratic term c(δ �uk; δ �uk, �v) leads to the
linear problem: for all �v ∈ H 1

E0
and q ∈ L2(�), find δ �uk ∈ H 1

E0
and δpk ∈ L2(�)

satisfying

c(�uk; δ �uk, �v)+ c(δ �uk; �uk, �v)+ ν

∫
�

∇δ �uk : ∇�v −
∫
�

δpk(∇ · �v) = Rk(�v)
∫
�

q(∇ · δ �uk) = rk(q).

(6)

The solution of this system is the so-called Newton correction.
An even simpler linearization approach is Picard’s method. Here the term

c(δ �uk; δ �uk, �v) is dropped from (5) along with the linear term c(δ �uk; �uk, �v). Thus,
instead of (6), we have the following linear problem: for all �v ∈ H 1

E0
and q ∈ L2(�),

find δ �uk ∈ H 1
E0

and δpk ∈ L2(�) satisfying

c(�uk; δ �uk, �v)+ ν

∫
�

∇δ �uk : ∇�v −
∫
�

δpk(∇ · �v) = Rk(�v)
∫
�

q(∇ · δ�uk) = rk(q).

(7)

The solution of this system is the Picard (or Oseen) correction. In both cases above,
updating the previous iterate via �uk+1 = �uk + δ�uk , pk+1 = pk + δpk defines the next
iterate in the sequence.

If we substitute δ�uk = �uk+1 − �uk and δpk = pk+1 − pk into (7), we obtain
an explicit definition for the new iterate: for all �v ∈ H 1

E0
and q ∈ L2(�), find

�uk+1 ∈ H 1
E and pk+1 ∈ L2(�) such that

c(�uk; �uk+1, �v)+ ν

∫
�

∇�uk+1 : ∇�v −
∫
�

pk+1(∇ · �v) =
∫
�

�f · �v (8)

∫
�

q(∇ · �uk+1) = 0. (9)

Numer Algor (2014) 66:89–104 93

Comparing (8)–(9) with the weak formulation, we see that Picard’s iteration corre-
sponds to a simple fixed point iteration strategy for solving (3)–(4).

The main drawback of Newton’s method is that the radius of the ball of conver-
gence is typically proportional to the viscosity parameter ν. Thus, as the viscosity
parameter is decreased (or equivalently, as the Reynolds number is increased) better
and better initial guesses are needed in order for the Newton iteration to converge.
The advantage of Picard’s iteration is that, relative to the Newton iteration, it has a
huge ball of convergence.

2.2 Mixed finite element approximation

A discrete weak formulation is defined using finite dimensional spaces Xh
0 ⊂ H 1

E0

and Mh ⊂ L2(�). Specifically, given a velocity solution space Xh
E , the discrete

version of (3)–(4) is: find �uh,k+1 ∈ Xh
E and ph,k+1 ∈ Mh such that

ν

∫
�

∇�uh,k+1 : ∇�vh+
∫
�

(�uh,k ·∇ �uh,k+1).�vh−
∫
�

ph,k+1(∇ · �vh) =
∫
�

�f · �vh ∀�vh ∈ Xh
0 ,

∫
�

qh(∇ · �uh,k+1) = 0 ∀qh ∈ Mh.

Implementation entails defining appropriate bases for the finite element spaces,
leading to a nonlinear system of algebraic equations. Linearization of this system
using Newton’s method gives the finite-dimensional analogue of (6): find corrections
δ�uh,k ∈ Xh

0 and δph,k ∈ Mh satisfying

c(�uh,k; δ�uh,k, �vh)+c(δ�uh,k; �uh,k, �vh)+ν

∫
�

∇δ�uh,k : ∇�vh−
∫
�

δph,k(∇ · �vh) = Rk(�vh),∫
�

qh(∇ · δ�uh,k) = rk(qh),

(10)

for all �vh ∈ Xh
0 and qh ∈ Mh. Dropping the term c(δ�uh,k; �uh,k, �vh) from (10) gives

the discrete analogue of Picard’s method (7).
To define the associated linear algebra problem, we introduce a set of vector-

valued basis functions { �φj }, and write

�uh,k =
nu∑
j=1

uj,k �φj +
nu+nδ∑
j=nu+1

uj,k �φj , δ�uh,k =
nu∑
j=1

�uj,k �φj . (11)

We also fix the coefficients uj,k : j = nu + 1, . . . , nu + nδ , so that the second term
interpolates the boundary data on δ�D . We then introduce a set of pressure basis
functions {ψk} and set

ph,k =
np∑
l=1

pl,kψl, δph,k =
np∑
l=1

�pl,kψl. (12)

94 Numer Algor (2014) 66:89–104

Substituting the expressions (11)–(12) into (10) gives a system of linear equations,

[
νA+Nk +Wk BT

B O

][
�uk
�pk

]
=

[
Rk

rk

]
(13)

where A is the vector-Laplacian matrix,

A = [
aij

]
, aij =

∫
�

∇ �φi : ∇ �φj
B is the divergence matrix,

B = [
blj

]
, blj = −

∫
�

ψl · ∇ �φj
Nk is the vector-convection matrix,

Nk =
[
nij

]
, nij =

∫
�

(
�uh,k · ∇ �φj

)
· �φi

and Wk is the Newton derivative matrix,

Wk =
[
wij

]
, wij =

∫
�

(�φj · ∇ �uh,k
)
· �φi

where i = 1, . . . , nu, j = 1, . . . , nu and l = 1, . . . , np. The right-hand side vec-
tors in (13) are the nonlinear residuals associated with the current discrete solution
estimates �uh,k and ph,k , expanded via (11) and (12):

Rk = [Ri] , Ri =
∫
�

�f · �φi−
∫
�

(�uh,k · ∇ �uh,k
) · �φi−ν

∫
�

∇�uh,k : ∇ �φi+
∫
�

ph,k

(
∇ · �φi

)
,

rk = [rl] , rl =
∫
�

ψl

(∇ · �uh,k
)
.

The system (13) is referred to as the discrete Newton problem. For Picard iteration,
we omit the Newton derivative matrix to give the discrete Oseen problem:

[
νA+Nk BT

B O

][
�uk
�pk

]
=

[
Rk

rk

]
. (14)

Using stabilized mixed approximation, the zero block matrix in (13) and (14) is
replaced by −C a negative semi-definite matrix operator. Full details can be found in
[7, Section 5.3].

An algorithm for solving a discretized Navier-Stokes problem using Picard’s iter-
ation is presented in Table 1. We will use this algorithm to compute numerical results
in Section 4.

3 Vector extrapolation methods

Extrapolation methods are of interest whenever an iteration process converges slowly.
For a survey of these methods see for example the review papers [14, 23] and the

Numer Algor (2014) 66:89–104 95

Table 1 Picard iteration Algorithm

Step 1. Input : the vector x0 = (�u0, p0)
T , compute the vector (R0, r0)

T and set k = 0.

Step 2. Retrieve A, B, and C (if needed). Compute Nk .

Solve the system (14) to find the vector �xk = (��uk,�pk)
T .

Set xk+1 = xk +�xk .

Compute the vector (Rk+1, rk+1)
T .

Step 3. If
∥∥(Rk+1, rk+1)

T
∥∥ < tol , stop. Otherwise set k = k + 1 and go to Step 2.

book [2]. The most popular vector extrapolation methods are the minimal polyno-
mial extrapolation (MPE) of Cabay & Jackson [3], the reduced rank extrapolation
(RRE) of Eddy [5] and Mesina [15], and the modified minimal polynomial extrap-
olation (MMPE) of Sidi, Ford & Smith [22], Brezinski [1] and Pugachev [16].
Convergence analysis of these methods can be found in [22] and also in the work of
Jbilou & Sadok [12].

Some different recursive algorithms for implementing these methods have also
been proposed in the literature, see [1, 2, 13, 20]. We note that, when applied to
linearly generated vector sequences, the MPE, the RRE and the TEA methods are
related to Krylov subspace methods. For example, Sidi’s work [19] shows that the
MPE and the RRE approaches are mathematically equivalent to Arnoldi’s method
[17] and to the generalized minimal residual method (GMRES) [18], respectively.
Vector extrapolation methods are considered to be most effective when applied to
nonlinear systems of equations, see [4, 10, 11, 14]. To keep things simple, we will
focus on a representative approach—the Reduced Rank Extrapolation method—in
the sequel.

To define the RRE method, we will consider the (linear or nonlinear) system of
equations:

F(x) = 0; F : RN → R
N (15)

whose solution is denote by s. Then, starting with a suitable vector s0, an initial
approximation to s, the sequence (sn) can be generated by fixed-point iteration, so
that

sn+1 = G(sn), n = 0, 1, . . . G : RN → R
N (16)

where x − G(x) = 0 represents a preconditioned form of (15), so that in case of
convergence, limn→∞ sn = s.

Let (sn) be a sequence of vectors of RN formed by (16), and let

un = �sn = sn+1 − sn, n = 0, 1, · · ·

wn = �2sn = �sn+1 −�sn, n = 0, 1, · · ·
represent the first and the second forward differences of sn, respectively. The
RRE method, when applied to the sequence (sn), can be shown to generate an

96 Numer Algor (2014) 66:89–104

approximation tRREn,k of the limit or the antilimit of (sn). This approximation is
defined by

tRREn,k =
k∑

j=0

γ
(k)
j sn+j , (17)

where
k∑

j=0

γ
(k)
j = 1 and

k∑
j=0

ηij γ
(k)
j = 0, i = 0, · · · , k − 1, (18)

with the scalars ηij defined by the �2 inner product:

ηij =
(
�2sn+i , �sn+j

)
.

Alternatively, using (17) and (18), tRREn,k can be expressed as a ratio of two
determinants

tRREn,k =

∣∣∣∣∣∣∣∣∣

sn sn+1 · · · sn+k

η0,0 η0,1 · · · η0,k
...

...
...

...

ηk−1,0 ηk−1,1 · · · ηk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
η0,0 η0,1 · · · η0,k
...

...
...

...

ηk−1,0 ηk−1,1 · · · ηk−1,k

∣∣∣∣∣∣∣∣∣

. (19)

We now let �iSn,k−1 (i = 1, 2) denote the matrices whose columns are
�isn, . . . , �

isn+k−1. Using Schur’s formula, tRREn,k can be written in matrix form as

tRREn,k = sn −�Sn,k−1�
2S+

n,k−1�sn, (20)

where �2S+
n,k−1 is the Moore-Penrose generalized inverse of �2Sn,k−1 defined by

�2S+
n,k−1 =

(
�2ST

n,k−1�
2Sn,k−1

)−1
�2ST

n,k−1.

tRREn,k exists and is unique if and only if det
(
�2ST

n,k−1�
2Sn,k−1

)
�= 0. For different

values of n and k, tRREn,k may be efficiently computed using the algorithms proposed

in [20]. Herein, we define a new approximation t̃RREn,k as follows

t̃RREn,k =
k∑

j=0

γ
(k)
j sn+j+1.

Numer Algor (2014) 66:89–104 97

Then, following [14], we define the generalized residual of tRREn,k so that r̃
(
tRREn,k

)
=

t̃RREn,k − tRREn,k . This immediately leads to the characterization

r̃
(
tRREn,k

)
= �sn −�2Sn,k−1�

2S+
n,k−1�sn,

and we find that r̃
(
tRREn,k

)
may be computed by projecting �sn orthogonally onto

the subspace generated by the vectors �2sn, . . . , �
2sn+k−1.

From an implementation perspective, the case of primary interest is when n is kept
fixed. Accordingly, we set n = 0 and we denote the matrices �iS0,k−1, (i = 1, 2)
by �iSk−1 and the vector tRRE0,k by tRREk . If we replace, in the numerator and in the
denominator of (19), each column j , j = 1, · · · , k by its difference with the column
j + 1, and then use Schur’s formula, we get the new expression:

tRREk = sk −�Sk−1�
2S+

k−1�sk.

Let P represent the k × k lower triangular matrix with all elements equal to 1. The
inverse P−1 is then a lower triangular matrix with diagonal entries equal to 1 and all
entries below the diagonal equal to −1. Moreover,

tRREk = sk −�Sk−1PP−1�2S+
k−1�sk. (21)

Next, by construction,

sk = s0 +�Sk−1

⎛
⎜⎝

1
...

1

⎞
⎟⎠ .

Thus, setting γ (k) = P−1�2S+
k−1�sk, in (21), we obtain the simple update formula

tRREk = s0 +�Sk−1α
(k), k = 0, 1, . . . with α(k) =

⎛
⎜⎝

1
...

1

⎞
⎟⎠ − Pγ (k).

Two numerically stable and efficient algorithms for computing tRREn,k with n ≥ 0
can be found in the literature, see [9, 20]. A key feature of both of these algo-
rithms is the solution of a least–squares problem using QR factorization. A generic
construction is given below. We follow the description given by Sidi in [21].

First, it is convenient notationally to set

Uj = [
un | un+1 | · · · | un+j

]
, j = 0, 1, · · ·

where uk = �sk . Let us assume that Uj has full rank, namely rank(Uj) = j + 1.
Then, it has a QR factorization Uj = QjRj , where Qj ∈ R

N×(j+1) is unitary and
Rj ∈ R

(j+1)×(j+1) is upper triangular with positive diagonal entries,

Qj = [
q0 | q1 | · · · | qj

] ∈ R
N×(j+1), QT

j Qj = I(j+1)×(j+1)

98 Numer Algor (2014) 66:89–104

Table 2 RRE Algorithm

Step 0. Input: the vectors sn, sn+1, · · · , sn+k+1

Step 1. Compute ui = �si = si+1 − si, i = n, n+ 1, · · · , n+ k.

Set Uj = [
un |un+1 | · · · |un+j

]
, j = 0, 1, · · ·

Compute the QR factorization of Uk , namely Uk = QkRk .

(Uk−1 = Qk−1Rk−1 is contained in Uk = QkRk).

Step 2. Solve the linear system

RT
k Rkd = e; d = [d0, d1, · · · , dk]T , e = [1, 1, · · · , 1]T .

(This amounts to solving two triangular systems.)

Set λ = ∑k
i=0 di .

Set γi = (1/λ) di for i = 0, · · · , k.

Step 3. Compute α = [
α0, α1, · · · , αk−1

]T
via

α0 = 1 − γ0; αj = αj−1 − γj , j = 1, · · · , k − 1.

Compute tRREn,k via

tRREn,k = sn +Qk−1(Rk−1α).

Rj =

⎡
⎢⎢⎢⎢⎢⎣

r00 r01 r02 · · · r0j
r11 r12 · · · r1j

r22 · · · r2j
. . .

...

rjj

⎤
⎥⎥⎥⎥⎥⎦
, rii > 0.

Also, Qj is obtained from Qj−1 by appending one column (the vector qj) to the end
of the latter. Similarly, Rj is obtained from Rj−1 by appending one row of zeros and
one column

([
r0j , r1j , · · · , rjj

])
to the end of the latter. The details of the resulting

algorithm are summarized in Table 2. Note that, in this algorithm, we need to store
only the vector sn and the matrix Qk . The rest can be overwritten. (Actually, qk does
not need to be computed as it is not needed for determining tRREn,k .) The QR fac-
torization can be carried out inexpensively by applying the modified Gram–Schmidt
process to the vectors sn, sn+1, · · · , sn+j (see [20]).

The basic RRE algorithm in Table 2 becomes increasingly expensive as k is
increased. A much more cost-effective strategy in practice is to periodically restart
the RRE process. When applying the RRE method in their complete form to solve
linear and nonlinear systems of equations, the work and storage requirements grow
linearly with the number of iteration steps. A good way to control this is to use this
method in the cycling mode. This means that we have to restart the algorithm after a
fixed number of iterations. This leads to the algorithm that is presented in Table 3.

In practice, it is useful to apply the RRE method to an equivalent preconditionned
system. The new system will be chosen such that the new basic iteration is conver-
gent. In this case, the application of the extrapolation scheme after a number of basic
iterations is recommended.

Numer Algor (2014) 66:89–104 99

Table 3 RRE with restarts every m steps

Step 0. Input: set k = 0, choose an integer m and the vectors s0.

Step 1. Generate sj+1 = G(sj), j = 0, · · · ,m (see (16)).

Step 2. Compute the approximation tRREm using the RRE Algorithm in Table 2.

Step 3. If tRREm satisfies accuracy test, stop.

Otherwise, set s0 = sRREm , k = k + 1 and go to Step 1.

4 Numerical experiments

All the computational experiments presented here were performed using MATLAB
7.1 with the most recent version of the IFISS toolbox [24]. For all tests, the iteration is
stopped as soon as the nonlinear residual computed in Algorithm 1 is less than 10−8.
The standard nonlinear strategy that is built in to IFISS is to run a fixed number of
Picard iterations followed by (a small number) of Newton iterations. This strategy is
referred to here as Picard–Newton. Our aim here is to explore the potential for accel-
erating the fixed-point (Picard) iteration using the restarted RRE method discussed
in Section 3. Results are presented for two different flow problem configurations and
have been computed using two different approximation strategies. Further details of
the mixed approximation issues can be found in [7, ch. 5]. In the sequel, we will give
only the results obtained by RRE method, since we conducted tests with three poly-
nomial vector extrapolation methods (RRE, MPE and MMPE) and RRE method is
the one that gave the best results.

4.1 Flow over a backward facing step

This example represents flow in a rectangular duct with a sudden expansion. A
Poiseuille flow profile is imposed on the inflow boundary (x = −1; 0 ≤ y ≤ 1), and
no-flow (zero velocity) condition is imposed on the walls. The Neumann condition
is applied at the outflow boundary (x = 40; −1 ≤ y ≤ 1) and automatically sets the
mean outflow pressure to zero. Figure 1 shows streamlines and a three-dimensional
rendering of the pressure solution when the kinematic viscosity ν is set to 1/600.
(Both plots are stretched in the vertical direction for added clarity.) Note that for this
specific value of ν the flow is close to the stability limit which marks the transition
from steady to unsteady flow.1 A full discussion of this flow problem can be found
in Gresho et al. [8]. The spatial resolution is such that the solution does not change
in the “eyeball” norm when using a finer grid.

Figures 2, 3 and 4 show the evolution of the nonlinear residual norm, using a
logarithmic scale, for the simple Picard method, the Picard–Newton method and
non-restarted RRE method. Results are presented for two types of finite element dis-
cretization: a high order Q2 −P−1 solution and a low order Q1 − P0 solution—both
computed on the same (uniform–) grid. The sizes of system are N = 14946 and

1The case ν = 1/600 gives a Reynolds number of 800 with the non-dimensionalisation in [8].

100 Numer Algor (2014) 66:89–104

0 5 10 15 20 25 30 35 40
−1

0
1

−0.08
−0.06
−0.04
−0.02

0

Pressure field

Streamlines: uniform

Fig. 1 Solution for ν = 1/600 using Q2 − P−1 approximation

N = 16242 respectively. The three figures show results for three different values of
ν which correspond to flow Reynolds numbers of Re = 320 (Fig. 2), Re = 400
(Fig. 3) and Re = 800 (Fig. 4), respectively.

The first observation is that the RRE method can be seen to accelerate the Picard
iteration in every case. The bad news is that there is a Reynolds number dependent
transition point before which RRE does not speed up convergence. For example, for
ν = 3/800, RRE is only helpful after ∼ 20 iterations, whereas for ν = 1/600
the transition point is ∼ 40 iterations. A key issue in practice is that of guessing
the time to switch to Newton iteration (for this problem, if the switch is made too
early then Newton diverges!). The graphs suggest that the RRE method can help with
this decision. If the switch is made after the transition point then Newton seems to
converge. More experiments are needed to determine if this is a generic feature or
not.

0 5 10 15 20 25 30 35 40
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
Picard-Newton

0 5 10 15 20 25 30 35 40
10−10

10−8

10−6

10−4

10−2

100

102

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
Picard-Newton

Fig. 2 Nonlinear convergence for ν = 3/800 with Q2 − P−1 (up) and stabilized Q1 − P0 (down)

Numer Algor (2014) 66:89–104 101

0 5 10 15 20 25 30 35 40
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
Picard-Newton

0 5 10 15 20 25 30 35 40
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
Picard-Newton

Fig. 3 Nonlinear convergence for ν = 1/300 with Q2 − P−1 (up) and stabilized Q1 − P0 (down)

4.2 Flow over an obstacle

This example represents flow in a rectangular duct with a square obstacle. A
Poiseuille flow profile is imposed on the inflow boundary (x = 0; −1 ≤ y ≤ 1), and
no-flow (zero velocity) condition is imposed on the walls. The Neumann condition
is again applied at the outflow boundary (x = 8; −1 ≤ y ≤ 1) and automatically
sets the mean outflow pressure to zero. Figure 5 shows an equi-spaced streamline
solution (top) and a pressure surface plot (bottom) in the case ν = 1/600 computed
using using stabilized Q1−P0 approximation. Using Q2−P−1 approximation on the
same grid gives a visually identical picture. For this problem, the size of the system
is N = 3200.

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
Picard-Newton

0 10 20 30 40 50 60
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
Picard-Newton

Fig. 4 Nonlinear convergence for ν = 1/600 with Q2 − P−1 (up) and stabilized Q1 − P0 (down)

102 Numer Algor (2014) 66:89–104

0 1 2 3 4 5 6 7 8
−1

0

1

−0.2
−0.1

0
0.1
0.2
0.3

Pressure field

Streamlines: uniform

Fig. 5 Solution for ν = 1/600 using stabilized Q1 − P0

Figures 6 and 7 show the evolution of the nonlinear residual norm, for the simple
Picard method, the Picard–Newton method, the non-restarted RRE method and the
restarted RRE–m method. The three figures show results for two different values of
ν: namely of ν = 1/600 (Fig. 6), and ν = 1/800 (Fig. 7).

0 5 10 15 20 25 30 35 40 45 50
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
RRE6
RRE7
Picard-Newton

Fig. 6 Nonlinear convergence for ν = 1/600 with stabilized Q1 − P0

Numer Algor (2014) 66:89–104 103

0 10 20 30 40 50 60
10−8

10−6

10−4

10−2

100

102

104

106

iteration number

re
si

du
al

 r
ed

uc
tio

n

Picard
RRE
RRE3
RRE6
Picard-Newton

Fig. 7 Nonlinear convergence for ν = 1/800 with stabilized Q1 − P0

Looking first at Fig. 6 we see that the transition point where it pays to use
RRE is much earlier than in the first example, only ∼ 5 iterations. We note that
switching to Newton at the transition point again leads to a convergent iteration.
Whilst the restarted methods are slightly faster that the basic RRE method, the
need to choose m a priori is an additional headache. Turning to Fig. 7 we see
that the only methods that give convergence to a steady state when the Reynolds
number is increased (ν = 1/800) are the two restarted methods RRE–3 and
RRE–6. This suggests that these methods could be useful when trying to compute
steady flow solutions in cases which are close to (perhaps beyond) a bifurcation
point.

5 Conclusion

Vector extrapolation methods may have a useful role to play in computing steady-
state solutions to incompressible flow problems. Further research is needed to
determine if extrapolation can provide a automatic way of switching between fixed
point iteration and Newton iteration when solving flow problems that have steady
solutions, but which are close to a (Hopf) bifurcation point to a periodic unsteady
solution. In this paper we studied the steady-state Navier Stokes equation sys-
tem which is time independent. Moreover the computational cost of RRE used
in each iteration is negligible with respect to the cost needed for the solution of
the PDE.

104 Numer Algor (2014) 66:89–104

References

1. Brezinski, C.: Généralisation de la transformation de Shanks, de la table de Padé et de l’epsilon-
algorithm. Calcolo 12, 317–360 (1975)

2. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods Theory and Practice. North-Holland,
Amsterdam (1991)

3. Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for
vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)

4. Duminil, S., Sadok, H.: Reduced rank extrapolation applied to electronic structure computations.
Electron. Trans. Numer. Anal. 38, 347–362 (2011)

5. Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P.C.C. (ed.) Information
Linkage Between Applied Mathematics and Industry, pp. 387–396. Academic Press, New-York
(1979)

6. Elman, H., Ramage, A., Silvester, D.: Algorithm 866: IFISS, a Matlab toolbox for modelling
incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)

7. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: Eith Applications in
Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005). ISBN: 978-0-19-852868-5;
0-19-852868-X

8. Gresho, P.M., Gartling, D.K., Torczynski, J.R., Cliffe, K.A., Winters, K.H., Garratt, T.J., Spence, A.,
Goodrich, J.W.: Is the steady viscous incompressible 2D flow over a backward facing step at Re = 800
stable. Int. J. Numer. Methods Fluids 17, 501–541 (1993)

9. Jbilou, K.: A general projection algorithm for solving linear systems of equations. Numer. Algoritm.
4, 361–377 (1993)

10. Jbilou, K., Reichel, L., Sadok, H.: Vector extrapolation enhanced TSVD for linear discrete ill-posed
problems. Numer. Algoritm. 51, 195–208 (2009)

11. Jbilou, K., Sadok, H.: Some results about vector extrapolation methods and related fixed point
iterations. J. Comput. Appl. Math. 36, 385–398 (1991)

12. Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math.
70, 73–89 (1995)

13. Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method.
IMA J. Numer. Anal. 19, 549–561 (1999)

14. Jbilou, K., Sadok, H.: Vector extrapolation methods. Applications and numerical comparison. J.
Comp. Appl. Math. 122, 149–165 (2000)

15. Mes̀ina, M.: Convergence acceleration for the iterative solution of x = Ax + f. Comput. Methods
Appl. Mech. Eng. 10(2), 165–173 (1977)

16. Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving
systems of nonlinear equations. U.S.S.R. Comput. Math. Math. Phys. 17, 199–207 (1978)

17. Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37,
105–126 (1981)

18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

19. Sidi, A.: Extrapolation vs. projection methods for solving linear systems of equations. J. Comput.
Appl. Math. 22, 71–88 (1988)

20. Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J.
Comput. Appl. Math. 36, 305–337 (1991)

21. Sidi, A.: Vector extrapolation methods with applications to solution of large systems of equations and
to Page rank computations. Comput. Math. Appl. 56, 1–24 (2008)

22. Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer.
Anal. 23, 178–196 (1986)

23. Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–
233 (1987)

24. Silvester, D., Elman, H., Ramage, A.: Incompressible Flow and Iterative Solver Software (IFISS)
version 3.2. Available online at http://www.manchester.ac.uk/ifiss (2012)

http://www.manchester.ac.uk/ifiss

