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TROPICAL ROOTS AS APPROXIMATIONS TO
EIGENVALUES OF MATRIX POLYNOMIALS∗

VANNI NOFERINI† , MEISAM SHARIFY‡ , AND FRANÇOISE TISSEUR‡

Abstract. The tropical roots of t×p(x) = max0≤j≤` ‖Aj‖xj are points at which the maximum
is attained at least twice. These roots, which can be computed in only O(`) operations, can be good

approximations to the moduli of the eigenvalues of the matrix polynomial P (λ) =
∑`

j=0 λ
jAj , in

particular when the norms of the matrices Aj vary widely. Our aim is to investigate this observation
and its applications. We start by providing annuli defined in terms of the tropical roots of t×p(x)
that contain the eigenvalues of P (λ). Our localization results yield conditions under which tropical
roots offer order of magnitude approximations to the moduli of the eigenvalues of P (λ). Our tropical
localization of eigenvalues are less tight than eigenvalue localization results derived from a generalized
matrix version of Pellet’s theorem but they are easier to interpret. Tropical roots are already used
to determine the starting points for matrix polynomial eigensolvers based on scalar polynomial root
solvers such as the Ehrlich-Aberth method and our results further justify this choice. Our results
provide the basis for analyzing the effect of Gaubert and Sharify’s tropical scalings for P (λ) on
(a) the conditioning of linearizations of tropically scaled P (λ) and (b) the backward stability of
eigensolvers based on linearizations of tropically scaled P (λ). We anticipate that the tropical roots
of t×p(x), on which the tropical scalings are based, will help designing polynomial eigensolvers with
better numerical properties than standard algorithms for polynomial eigenvalue problems such as
that implemented in the MATLAB function polyeig.

Key words. Polynomial eigenvalue problem, matrix polynomial, tropical algebra, localization
of eigenvalues, Rouché’s theorem, Pellet’s theorem, Newton’s polygon, tropical scaling.
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1. Introduction. Being able to cheaply locate the eigenvalues of a real or com-
plex n× n matrix polynomial

P (λ) =
∑̀
i=0

λiAi, A` 6= 0, (1.1)

is useful in a number of situations, such as, for example, when selecting the starting
points in the Ehrlich-Aberth method for the numerical solution of polynomial eigen-
value problems [6], [7], or in choosing the contour in contour integral methods for
polynomial eigenvalue problems of large dimensions [3]. Betcke’s diagonal scaling [4,
Sec. 5], whose aim is to improve the conditioning of P ’s eigenvalues near a target
eigenvalue ω, requires a priori knowledge of the magnitude of ω.

The tropical roots of the tropical (or max-times) polynomial f(x) = max0≤i≤` aix
i

with ai, x ≥ 0 are points (i.e., nonnegative real numbers) at which the maximum is
attained at least twice. They are easy and cheap to compute (see Section 2.1). Our
aim is to investigate the order of magnitude approximation of the eigenvalues of P (λ)
in terms of the tropical roots of t×p(x) = max0≤i≤`

(
‖Ai‖xi

)
for some matrix norm

‖ · ‖ subordinate to a vector norm.
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Gaubert and Sharify [8, Thm. 2] were the first to notice the tropical splitting of
the eigenvalues of matrix polynomials. Indeed, for n× n heavily damped quadratics,
i.e., quadratic matrix polynomials Q(λ) = λ2A2 +λA1 +A0 with ‖A1‖2 ≥ ‖A0‖‖A2‖,
they showed that

gap
(
Λ(Q),Λ(L)

)
≤ g(κ(A2))αmax

( αmin

αmax

)1/(2n)
, (1.2)

αmaxκ(A1)−1 ≤ |λ| ≤ αmaxκ(A2) ∀λ ∈ Λ(L), (1.3)

where Λ(P ) denotes the spectrum of P (λ), gap
(
Λ(Q),Λ(L)

)
is a measure of the

distance between the n largest eigenvalues of Q(λ) in modulus and the n eigenvalues
of L(λ) = A2λ + A1, g(κ(A2)) is more or less a constant times the matrix condition
number κ(A2) = ‖A2‖‖A−12 ‖, and αmax and αmin are the largest and smallest tropical
roots of t×q(x) := max

(
‖A0‖, ‖A1‖x, ‖A2‖x2

)
. The bounds (1.2)–(1.3) show that

when the ratio αmin/αmax is small enough and A2, A1 are well conditioned then there
are precisely n eigenvalues of Q(λ) with moduli of the order of αmax. Similarly, when
A1 and A0 are both well conditioned, the moduli of the n smallest eigenvalues of Q(λ)
are close to the smallest tropical root αmin of t×q(x).

For the particular case of matrix polynomials P (λ) with coefficients matrices
of the form Ai = σiQi with σi ≥ 0 and Q∗iQi = I, and the 2-norm ‖ · ‖2, Bini,
Noferini and Sharify [7, Thm. 2.7] have identified annuli of small width defined in
terms of the tropical roots of t×p(x) that contain the eigenvalues of P (λ). We extend
their results to arbitrary matrix polynomials and any subordinate matrix norm in
Section 2.2. We obtain conditions under which tropical roots offer order of magnitude
approximations to the moduli of the eigenvalues of P (λ). As shown in Section 3
our tropical localization results are less tight than those from two generalized matrix
version of Pellet’s theorem [7, Thm. 2.1] and [16, Thm. 3.3] but they are easier to
interpret. We illustrate our localization results with numerical examples in Section 4
and show experimentally how tropical roots can help in the design of a numerically
stable polynomial eigensolver.

We note that a different approach, also involving tropical roots, is pursued in [2],
where Akian, Gaubert and Sharify derive bounds for products of eigenvalues of n×n
matrix polynomials P (λ) of degree `. Their results generalize to matrix polynomials
bounds by Ostrowski and Pólya [17, 18] for products of roots of scalar polynomials.

2. Tropical bounds. The max-plus semiring Rmax is the set R∪{−∞} equipped
with the max operation denoted by ⊕ as addition and the usual addition denoted by
⊗ as multiplication. The zero and unit elements of this semiring are −∞ and 0,
respectively.

A variant of Rmax is the max-times semiring Rmax,×, which is the set of nonneg-
ative real numbers R+ equipped with the max operation as addition and the usual
multiplication as multiplication. This semiring is isomorphic to Rmax by the map
x 7→ log x. So, every notion defined over Rmax has an Rmax,× analogue. By the word
“tropical”, we refer to any of these algebraic structures.

2.1. Tropical polynomial and Newton polygon. A max-plus tropical poly-
nomial tp is a function of a variable x ∈ Rmax of the form

tp(x) :=
⊕̀
i=0

ai ⊗ x⊗i = max
0≤i≤`

(ai + ix), (2.1)
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Fig. 2.1: Newton polygon (in blue) corresponding to a max-plus tropical polynomial

tp(x) =
⊕`

j=0 aj ⊗ x⊗j . Points (j, aj) are denoted by red dots.

where ` is a nonnegative integer and a0, . . . , a` ∈ Rmax. The tropical polynomial
tp is of degree ` if a` 6= −∞. If we assume that at least one of the coefficients
a0, . . . , a` is finite then tp is a real valued convex function, piecewise affine, with
integer slopes. The finite tropical roots of tp(x) are the points at which the maximum
in the expression (2.1) is attained at least twice. If a0 = −∞ then −∞ is a tropical
root. A tropical polynomial of degree ` has ` tropical roots counting multiplicities.
The multiplicity of a finite root α coincides with the variation of the derivative of the
map tp at α, limε→0

d tp
dx |x+ε−

d tp
dx |x−ε. The multiplicity of −∞ as a root of tp is given

by limε→0
d tp
dx |x+ε or equivalently by inf{j | aj 6= −∞}.

The tropical roots can be obtained via Newton polygons. Define the Newton
polygon of tp to be the upper boundary of the convex hull of the set of points (j, aj),
j = 0, . . . , ` (see Fig. 2.1). This boundary consists of a number of linear segments.
The opposites of the slopes of these segments are precisely the tropical roots and the
multiplicity of a root coincides with the width of the corresponding segment measured
by the difference of the abscissae of its endpoints (see [1, Prop. 2.10] or [15, Lem. 2.3]).
Hence, if we denote by k0 = 0 < · · · < kq = ` the abscissae of the vertices of the
Newton polygon then tp(x) has q distinct roots given by

αj = −
akj − akj−1

kj − kj−1
, j = 1, . . . , q (2.2)

with multiplicities mj = kj − kj−1, j = 1, . . . , q, respectively. Since the points (j, aj)
are already sorted by abscissae, the Graham scan algorithm [11] computes the convex
hull of these points in O(`) operations. As a result the tropical roots, counted with
multiplicities, can be computed in O(`) operations [8, Prop. 1].

In the “max-times” semiring Rmax,×, a tropical polynomial has the form t×p(x) =
max0≤i≤` aix

i, where a0, . . . , a` are nonnegative numbers, and x takes nonnegative
values. The tropical roots of t×p(x) are, by definition, the exponentials of the tropical
roots of the max-plus polynomial tp(x) = max0≤i≤`(log ai + ix). So on using (2.2),
the q distinct tropical roots of t×p(x) and their multiplicities are given by

(akj−1/akj )1/(kj−kj−1), mj = kj − kj−1, j = 1, . . . , q,
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respectively.

2.2. Eigenvalue location: tropical approach. Throughout the rest of this
paper, any matrix polynomial denoted by P (λ) is regular, i.e., detP (λ) is not iden-
tically zero. Then the finite eigenvalues of an n × n P (λ) of degree ` are the roots
of detP (λ) = 0, and if detP (λ) = 0 has degree d ≤ `n, then P (λ) has `n − d eigen-

values at infinity. To P (λ) =
∑`
i=0Aiλ

i we associate the max-times tropical scalar
polynomial

t×p(x) = max
0≤i≤`

‖Ai‖xi, (2.3)

where ‖ · ‖ is any matrix norm subordinate to a vector norm. Our aim is to show
that, under specific conditions, the tropical roots of t×p(x) are good approximations
to the moduli of the eigenvalues of P (λ). The key tool for this is a generalization of
Rouché’s theorem for matrix valued functions [9], [16].

Theorem 2.1 (Generalized Rouché theorem for matrix valued functions). Let
P,Q : Ω → Cn×n be analytic matrix-valued functions, where Ω is an open connected
subset of C and assume that P (λ) is nonsingular for all λ on the simple closed curve
Γ ⊆ Ω. Let ‖ · ‖ be any matrix norm on Cn×n induced by a vector norm on Cn. If
‖P (λ)−1Q(λ)‖ < 1 for all λ ∈ Γ, then det(P +Q) and det(P ) have the same number
of zeros inside Γ, counting multiplicities.

Before deriving our new results, we set up the notation used throughout the
reminder of this paper.

2.2.1. Notation. The variable i will usually be an index varying between 0 and
the degree ` of t×p(x) in (2.3), whereas j will be an index with value between 1 and
q, where q is the number of distinct tropical roots of t×p(x). These tropical roots will
be denoted by αj , j = 1, . . . , q with

αj := (‖Akj−1
‖/‖Akj‖)1/(kj−kj−1) (2.4)

of multiplicity mj = kj − kj−1, where

k0 = 0 < . . . < kq = `

denote the abscissae of the Newton polygon associated with the max-plus polynomial
tp(x) = max0≤i≤`(log ‖Ai‖+ ix) (see Fig. 2.1). We write

K := {k0, . . . , kq}. (2.5)

Note that the tropical roots (2.4) have the property that α1 < · · · < αq.

As in [7] and [8], the tropical roots (2.4) will be used to define an eigenvalue

parameter scaling, λ = αjµ, and a scaled matrix polynomial P̃ (µ) via

(
t×p(αj)

)−1
P (λ) =

(
‖Akj−1

‖αkj−1

j

)−1
P (αjµ) =

∑̀
i=0

Ãiµ
i =: P̃ (µ), (2.6)

where

Ãi =
(
‖Akj−1‖α

kj−1

j

)−1
Aiα

i
j . (2.7)
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Clearly, µ is an eigenvalue of P̃ (µ) if and only if αjµ is an eigenvalue of P (λ). Note
that this scaling does not affect the condition number with respect to inversion,

κ(Ai) := ‖Ai‖‖A−1i ‖ = κ(Ãi),

of any coefficient matrix Ai. By convention, κ(A) =∞ when A is singular.
We will use disks and annuli to localize the eigenvalues of P (λ). The closed (open)

disk in the complex plane centered at 0 with radius r is denoted by D(r)
( ◦
D(r)

)
and

A(a, b) := {λ ∈ C, a ≤ |λ| ≤ b} denotes a closed annulus centered at 0 with a, b such

that 0 < a < b. We write
◦
A(a, b) for the interior of A(a, b). Finally, we denote by

δj =
αj
αj+1

< 1, 1 ≤ j < q, (2.8)

the ratio between two consecutive roots.

2.2.2. Preliminary results. We now present preliminary lemmas, which will
be needed in Section 2.2.3 to prove our localization results. We refer to Section 2.2.1
for the notation.

The norms of the coefficient matrices of the scaled matrix polynomial P̃ (µ) in
(2.6) are at most 1 as shown by this first lemma.

Lemma 2.2. The norm of Ãi in (2.7) satisfies

‖Ãi‖ ≤


δj−1

kj−1−i if 0 ≤ i < kj−1,

1 if kj−1 < i < kj ,

δj
i−kj if kj < i ≤ `,

‖Ãkj−1
‖ = ‖Ãkj‖ = 1.

Proof. This is a corollary of [19, Lem. 3.3.2]. See also [7, Lem. 3.4].

The next lemma provides upper and lower bounds on the moduli of all the eigen-
values of P (λ) in terms of the smallest and largest tropical roots α1 and αq of t×p(x),
and the conditioning of A0 and A`.

Lemma 2.3. Every eigenvalue λ of a matrix polynomial P (λ) satisfies(
1 + κ(A0)

)−1
α1 ≤ |λ| ≤

(
1 + κ(A`)

)
αq.

Furthermore, if both A0 and A` are invertible, both inequalities are strict.
Proof. For the upper bound, we consider the scaled matrix polynomial P̃ (µ)

in (2.6) with j = q. Observe first that if A` is singular then the right hand side is ∞,
so there is nothing to prove and, if P (λ) is regular, then the bound is attained in the
sense that necessarily P (λ) has an eigenvalue at infinity. Hence, we may assume that

A` is invertible. Let θ = max
0≤i≤`−1

‖Ãi‖1/(`−i). We now recall an argument from the

proof of [14, Lem. 4.1]. For any eigenpair (µ, x) such that |µ| > θ and ‖x‖ = 1,

0 = ‖P̃ (µ)x‖ ≥ |µ`|
(
‖Ã−1` ‖

−1 −
`−1∑
i=0

‖Ãi‖
|µ`−i|

)

≥ |µ`|
(
‖Ã−1` ‖

−1 −
∑̀
i=1

θi

|µi|

)

≥ |µ`|
(
‖Ã−1` ‖

−1 −
∞∑
i=1

θi

|µi|

)
= |µ`|

(
‖Ã−1` ‖

−1 − θ

|µ| − θ

)
.
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Hence, any eigenvalue must satisfy |µ| ≤ β := (1 + ‖Ã−1` ‖)θ (observe that θ < β,
so the initial assumption is no loss of generality). If we additionally assume that A0

is also invertible, then θ > 0. Thus, the argument above can be tightened as the

inequality
∑`
i=1

θi

|λi| >
∑∞
i=1

θi

|λi| is in this case strict, yielding |µ| < β.

To conclude the proof, we observe that from Lemma 2.2, θ = 1 and ‖Ã`‖ = 1

so that ‖Ã−1` ‖ = κ(Ã`) = κ(A`). It follows that |µ| ≤ 1 + κ(A`), that is, |λ| ≤
(1+κ(A`))αq since λ = αqµ. Moreover, if θ > 0, then the last inequality is also strict.

The lower bound is proved similarly, using P̃ (µ) in (2.6) with j = 1 and applying

the above argument to revP̃ (µ). We invite the reader to fill in the details.

With the aim of invoking Theorem 2.1, we decompose P̃ (µ) =
(
t×p(αj)

)−1
P (λ)

as the sum of two matrix polynomials,

S(µ) =

kj∑
i=kj−1

Ãiµ
i, Q(µ) =

kj−1−1∑
i=0

Ãiµ
i +

∑̀
i=kj+1

Ãiµ
i. (2.9)

We will need the following localization result for the nonzero eigenvalues of S(µ).
Lemma 2.4. If Akj−1

and Akj are nonsingular then the nmj nonzero eigenvalues

of S(µ) in (2.9) are located in the open annulus
◦
A
((

1 + κ(Akj−1
)
)−1

, 1 + κ(Akj )
)
.

Proof. Note that S(µ) is regular, of degree kj , with nkj−1 zero eigenvalues. Hence
S(µ) has nkj−nkj−1 = nmj nonzero eigenvalues, which are eigenvalues of µ−kj−1S(µ).
The tropical polynomial associated with µ−kj−1S(µ) has only one root, which is equal
to 1. The lemma is then a direct consequence of Lemma 2.3.

Bounds on the norms of Q(µ) and S(µ)−1 will also be needed.
Lemma 2.5. The following hold for Q(µ) and the inverse of S(µ) in (2.9),

‖Q(µ)‖ ≤ δj−1|µ|kj−1

|µ| − δj−1
+
δj |µ|kj+1

1− δj |µ|
if δj−1 < |µ| <

1

δj
,

‖S(µ)−1‖ ≤



κ(Akj−1)|µ|−kj−1(1− |µ|)
1− |µ|

(
1 + κ(Akj−1)(1− |µ|mj )

) if 0 < |µ| ≤
(
1 + κ(Akj−1)

)−1
,

κ(Akj )|µ|−kj (|µ| − 1)

|µ| − 1− κ(Akj )(1− |µ|−mj )
if |µ| ≥ 1 + κ(Akj ).

Proof. Assume that δj−1 < |µ| <
1

δj
. Using (2.9) and Lemma 2.2 we have that

‖Q(µ)‖ ≤
kj−1−1∑
i=0

δj−1
kj−1−i|µ|i +

∑̀
i=kj+1

δj
i−kj |µ|i

=
δj−1(|µ|kj−1 − δj−1kj−1)

|µ| − δj−1
+
δj |µ|kj+1(1− (δj |µ|)`−kj )

1− δj |µ|

and the bound in the lemma follows since δj−1 < |µ| <
1

δj
.

Assume that S := {µ ∈ C : 0 < |µ| ≤
(
1 + κ(Akj−1)

)−1} is non empty, that
is, that Akj−1

is nonsingular. By Lemma 2.4, the matrix S(µ) is nonsingular for all
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µ ∈ S. We rewrite S(µ) as

S(µ) = A(µ)
(
I − (−A(µ)−1B(µ))

)
, (2.10)

where A(µ) = Ãkj−1
µkj−1 is nonsingular and B(µ) =

kj∑
i=kj−1+1

Ãiµ
i. Note that if we

can show that ‖A(µ)−1B(µ)‖ < 1, then the matrix I− (−A(µ)−1B(µ)) is nonsingular
and

‖S(µ)−1‖ ≤ ‖A(µ)−1‖
1− ‖A(µ)−1B(µ)‖

(2.11)

(see for example [10, Lem. 2.3.3]). Using Lemma 2.2 we have that

‖A(µ)−1B(µ)‖ ≤ κ(Akj−1)|µ|−kj−1

( kj∑
i=kj−1+1

|µ|i
)

= κ(Akj−1)
|µ|(1− |µ|mj )

1− |µ|
. (2.12)

Now µ ∈ S implies |µ| < 1 so that 1− |µ|mj < 1. Also, since |µ| ≤ (1 + κ(Akj−1))−1,

we have that |µ|
1−|µ| ≤ κ(Akj−1)−1 so that, using the upper bound in (2.12), we find

that ‖A(µ)−1B(µ)‖ < 1. The upper bound for ‖S(µ)−1‖ when µ ∈ S follows by
combining (2.11) and (2.12), and by noting that ‖A(µ)−1‖ = |µ|−kj−1κ(Akj−1

).
We now consider µ ∈ C such that |µ| ≥ 1 + κ(Akj ). Note that such a µ exists

only if Akj is nonsingular. Lemma 2.4 implies that for such a µ, the matrix S(µ) is

invertible. We rewrite S(µ) as in (2.10) with A(µ) = Ãkjµ
kj , B(µ) =

kj−1∑
i=kj−1

Ãiµ
i.

The rest of the proof is then analogous to the case where µ ∈ S so we omit it.

Finally, this last technical lemma will be needed in the proof of our tropical
localization results in Section 2.2.3, and in Section 3 when comparing the Pellet bounds
to the tropical bounds.

Lemma 2.6. For given c, δ > 0 such that δ ≤ (1+2c)−2, the quadratic polynomial

p(r) = r2 −
(

2 +
1− δ
δ(1 + c)

)
r +

1

δ

has two real roots

f := f(δ, c) =
(1 + 2c)δ + 1−

√
(1− δ)(1− (1 + 2c)2δ)

2δ(1 + c)
, g = (δf)−1,

with the properties that
(i) 1 < 1 + c ≤ f ≤ g,

(ii)
1

f − 1
+

1

g − 1
=

1

c
.

Proof. (i) The discriminant of p(r) is not negative since δ ≤ (1 + 2c)−2 so p has
two real roots, f, g such that f ≤ g. That f ≥ 1 + c is easy to check.

(ii) Clearly, (
1

f − 1
+

1

g − 1

)−1
=

1− f − g + fg

f + g − 2
.
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Since f and g are the roots of p, f +g = 2+
1− δ
δ(1 + c)

. Hence, recalling that fg = δ−1,

we get

(
1

f − 1
+

1

g − 1

)−1
=
c− δc
1− δ

= c.

2.2.3. Main results. When ‖Ai‖ ≤ ‖A0‖(`−i)/`‖A`‖i/` for all 0 ≤ i ≤ ` then

P (λ) has only one tropical root given by α = (‖A0‖/‖A`‖)1/` and we know from
Lemma 2.3 that all the eigenvalues of P (λ) lie in the annulus

A
(
(1 + κ(A0))−1α, (1 + κ(A`))α

)
.

So in this case, if A0 and A` are well-conditioned then P (λ) has n` eigenvalues of
modulus close to α. We now extend this type of result to the case where t×p(x) has
more than one tropical root.

Theorem 2.7. Let P (λ) =
∑`
i=0Aiλ

i ∈ C[λ]n×n be regular. For 1 ≤ j ≤ q − 1,
let fj = f(δj , κ(Akj )), where f(δ, c) is defined as in Lemma 2.6, and gj = (δjfj)

−1.
Then, in the notation of Section 2.2.1, the following statements hold.

(i) If δj ≤ (1 + 2κ(Akj ))−2 with 1 ≤ j ≤ q − 1 then P (λ) has exactly nkj
eigenvalues inside the disk D(fjαj) and it does not have any eigenvalue in

the open annulus
◦
A(fjαj , gjαj).

(ii) If δj ≤ (1 + 2κ(Akj ))−2 and δs ≤ (1 + 2κ(Aks))−2 with 1 < j < s < q then
P (λ) has exactly n(ks − kj) eigenvalues inside the annulus A(gjαj , fsαs).

(iii) If δ1 ≤ (1 + 2κ(Ak1))−2 then P (λ) has exactly nk1 eigenvalues inside the
annulus A

(
(1 + κ(A0))−1α1, f1α1

)
.

(iv) If δq−1 ≤ (1 + 2κ(Akq−1))−2 then P (λ) has exactly nmq eigenvalues inside
the annulus A

(
gq−1αq−1, (1 + κ(A`))αq

)
.

Proof. (i) We assume that δj ≤ (1 + 2κ(Akj ))−2 and we partition P̃ (µ) as in
(2.9). Let r be such that

1 + κ(Akj ) < r < 1/δj . (2.13)

Note that such r exists since δj ≤ (1 + 2κ(Akj ))−2 < (1 +κ(Akj ))−1. By Lemma 2.4,
S(µ) is nonsingular on the circle Γr = {µ ∈ C : |µ| = r}. To apply Theorem 2.1 with

P̃ (µ) = S(µ) + Q(µ) and Γr, we must check that ‖S(µ)−1Q(µ)‖ < 1 for all µ ∈ Γr.
Since |µ| = r with r such that

δj−1 < 1 < 1 + κ(Akj ) < r < 1/δj , (2.14)

we can apply the bounds in Lemma 2.5. These yield

‖S(µ)−1Q(µ)‖ ≤ ‖S(µ)−1‖‖Q(µ)‖

≤
r−kj (r − 1)κ(Akj )(

r − 1− κ(Akj )(1− r−mj )
) (δj−1rkj−1

r − δj−1
+
δjr

kj+1

1− δjr

)
.

The latter bound is less than 1 if

δj−1r
−mj

r − δj−1
+

δjr

1− δjr
<
r − 1− κ(Akj )(1− r−mj )

(r − 1)κ(Akj )
,

or equivalently, if

δjr

1− δjr
<
r − 1− κ(Akj )

(r − 1)κ(Akj )
+ r−mj

(
1

r − 1
− δj−1
r − δj−1

)
.
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Since 1
r−1 >

δj−1

r−δj−1
, the last inequality holds when

δjr
1−δjr <

r−1−κ(Akj
)

(r−1)κ(Akj
) , or equiva-

lently when p(r) < 0, where p is as in Lemma 2.6 with δ = δj and c = κ(Akj ). It
follows from Lemma 2.6 that p(r) is negative for the values of r such that

fj < r < gj (2.15)

recalling that by Lemma 2.6 fj and gj are the two roots of p. Note that, by the same
lemma, fj ≥ 1 + κ(Akj ) and gj ≤ (δj)

−1 so (2.15) is sharper than (2.14). So, for
any r satisfying (2.15), ‖S(µ)−1Q(µ)‖ < 1 for all µ ∈ Γr. By Theorem 2.1, S(µ) and

P̃ (µ) have the same number of eigenvalues inside the disks D(r) for all r satisfying

(2.15). Since S(µ) has nkj eigenvalues inside any of these disks, P̃ (µ) does not have

any eigenvalue in
◦
A
(
fj , gj

)
and has exactly nkj eigenvalues inside the disk D(fj).

This completes the proof of (i) since λ = µαj .

(ii) If δs ≤
(
1 + 2κ(Aks)

)−2
then by (i), P (λ) has nks eigenvalues inside the disk

D(fsαs) and no eigenvalues inside the annulus
◦
A(fsαs, gsαs). An analogous statement

holds if we assume that δj < (1 + 2κ(Akj ))−2. This implies that P (λ) has exactly
n(ks − kj) eigenvalues which lie in the annulus A(gjαj , fsαs).

(iii) If δ1 ≤ (1 + 2κ(Ak1))−2 then by (i) P (λ) has nk1 eigenvalues inside the
disk D(f1α1). Also by Lemma 2.3 P (λ) does not have any eigenvalue inside the disk
◦
D((1 + κ(A0))−1α1).

(iv) If δq−1 ≤ (1 + 2κ(Aq−1))−2 then by (i) P (λ) has nkq−1 eigenvalues inside
the disk D

(
gq−1αq−1

)
. Also by Lemma 2.3 all the eigenvalues of P (λ) lie inside the

annulus A
(
(1 + κ(A0))−1α1, (1 + κ(A`))αq

)
, which completes the proof.

Note that for a fixed value of c ≥ 1 and δ ≤ (1 + 2c)−2, f(δ, c) in Lemma 2.6 is
an increasing function of δ and its maximum value, which is 1 + 2c, is achieved at δ =
(1+2c)−2. This implies that f

(
δj , κ(Akj )

)
≤ 1+2κ(Akj ) for any δj ≤ (1+2κ(Akj ))−2

and we have the following corollary.
Corollary 2.8. In the notation of Section 2.2.1 and under the assumptions of

Theorem 2.7, the following statements hold.
(i) If δj ≤ (1 + 2κ(Akj ))−2 for some j such that 1 ≤ j ≤ q − 1, then P (λ) has

exactly nkj eigenvalues inside the disk D((1+2κ(Akj ))αj) and no eigenvalue

in the open annulus
◦
A
(
(1 + 2κ(Akj ))αj , (1 + 2κ(Akj ))−1αj+1

)
.

(ii) If δj ≤ (1 + 2κ(Akj ))−2 and δs ≤ (1 + 2κ(Aks))−2 for some j and s such
that 1 < j < s < q then P (λ) has exactly n(ks − kj) eigenvalues inside the
annulus A

(
(1 + 2κ(Akj ))−1αj+1, (1 + 2κ(Aks))αs

)
.

(iii) If δ1 ≤ (1 + 2κ(Ak1))−2 then P (λ) has exactly nk1 eigenvalues inside the
annulus A

(
(1 + κ(A0))−1α1, (1 + 2κ(Ak1))α1

)
.

(iv) If δq−1 < (1 + 2κ(Akq−1
))−2 then P (λ) has exactly nmq eigenvalues inside

the annulus A
(
(1 + 2κ(Akq−1

))−1αq, (1 + κ(A`))αq
)
.

It follows from Corollary 2.8 that if Akj−1
and Akj are well conditioned and the

ratios δj−1 = αj−1/αj , δj = αj/αj+1 are small enough then P (λ) has nmj eigenvalues
of modulus close to αj . In particular, if κ(Akj−1

) = κ(Akj ) = 1 and δj−1, δj <
1
9

then P (λ) has exactly nmj eigenvalues in the annulus A(1/3αj , 3αj). This is an
improvement over [7, Thm. 2.7]. When n = 1, the bounds in Corollary 2.8 are the
same as the ones that appeared in [19, Thm. 3.3.3] for scalar polynomials.

Define

J := {j0, j1, . . . , jm} ⊆ {0, . . . , q} (2.16)
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to be such that
(a) 0 = j0 < j1 < · · · < jm = q,

(b) for 1 ≤ i ≤ m− 1, δji ≤
(
1 + 2κ(Akji )

)−2
if and only if ji ∈ J .

(Here m is implicitly defined by |J | = m + 1.) In other words, the ji are all the
indices such that δji satisfies the condition in Theorem 2.7 or Corollary 2.8. We also
define

K̃ = {kji ∈ K : ji ∈ J }. (2.17)

If we let, in the notation of Theorem 2.7,

bj0 =
(
1 + κ(A0)

)−1
α1, ajm =

(
1 + κ(A`)

)
αq,

aji = fjiαji , bji = gjiαji , 1 ≤ i < m,

and

b̃j0 = bj0 , ãjm = ajm ,

ãji = (1 + 2κ(Akji )
)
αji , b̃ji =

(
1 + 2κ(Akji−1

))
)−1

αji−1+1, 1 ≤ i < m,

then it follows from Lemma 2.3, Theorem 2.7 and Corollary 2.8 that

Λ(P ) ⊂
m−1⋃
i=0

A(bji , aji+1) ⊆
m−1⋃
i=0

A(̃bji , ãji+1), (2.18)

where Λ(P ) denotes the spectrum of P (λ).

3. Comparisons with Pellet’s bounds. The generalized matrix versions of
Pellet’s theorem by Bini et al. [7, Thm. 2.1] and Melman [16, Thm. 3.3] also provide
annuli containing the eigenvalues of P (λ). Although [7, Thm. 2.1] is stated for the
2-norm, as mentioned in [16] the result can be extended to any subordinate norm
by using Theorem 2.1. Throughout this section, roots of polynomials are counted
with multiplicity: in particular, a double positive root is thought of as two coincident
positive roots.

Theorem 3.1 (Generalized Pellet theorem). Let P (λ) =
∑`
i=0Aiλ

i with ` > 1
and A0 6= 0, and let ‖ · ‖ denotes any subordinate matrix norm. For Ak nonsingular
define

qk(x) :=
∑̀

i=0, i 6=k

‖A−1k Ai‖xi − xk. (3.1)

The following statements hold.
(i) If Ak is nonsingular for some k such that 1 ≤ k ≤ `− 1 then qk(x) has either

no real positive root or two real positive roots sk ≤ tk. In the latter case,
P (λ) has kn eigenvalues in the disk D(0, sk) and no eigenvalue in the open

annulus
◦
A(sk, tk).

(ii) If A0 is nonsingular then q0(x) has only one real positive root t0 and P (λ)

has no eigenvalue in the open disk
◦
D(0, t0).

(iii) If A` is nonsingular then q`(x) has only one real positive root s` and all the
eigenvalues of P (λ) are located in the disk D(0, s`).
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Melman’s version of Pellet’s theorem [16, Thm. 3.3] is analogous to Theorem 3.1
but with qk(x) replaced by

q̃k(x) :=
∑̀

i=0,i6=k

‖Ai‖xi − ‖A−1k ‖
−1xk. (3.2)

Although the coefficients of q̃k(x) are less expensive to compute than those of qk(x),
Theorem 3.1 provides tighter localization results than those in [16, Thm. 3.3]. This
fact has appeared, in the form of a remark, in [7, p. 1713], [16, p. 1555]. The next
proposition provides a detailed statement.

Proposition 3.2. Let P (λ) =
∑`
i=0Aiλ

i with ` > 1 and A0 6= 0.
(i) If Ak is nonsingular for some k such that 1 ≤ k ≤ ` − 1, and q̃k(x) has two

real positive roots s̃k, t̃k with s̃k ≤ t̃k then qk(x) has also two real positive
roots, sk, tk such that sk ≤ s̃k ≤ t̃k ≤ tk.

(ii) If A0 is nonsingular and q̃0(x) has a real positive root t̃0 then q0(x) has also
a real positive root t0 such that t̃0 ≤ t0.

(iii) If A` is nonsingular and q̃`(x) has a real positive root s̃n then qk(x) has also
a positive root sn such that sn ≤ s̃n.

Proof. (i) Since for any subordinate matrix norm ‖AB‖ ≤ ‖A‖‖B‖, and q̃k(s̃k) =
q̃k(t̃k) = 0, we have

s̃kk =
∑̀

i=0,i6=k

‖A−1k ‖‖Ai‖s̃
i
k ≥

∑̀
i=0,i6=k

‖A−1k Ai‖s̃ik ,

which implies that qk(s̃k) ≤ 0. Similarly we can show qk(t̃k) ≤ 0. Since qk(0) > 0 and
the leading coefficient of qk(x) is positive, this implies that qk(x)x has two positive
roots sk ≤ tk. But qk(s̃k), qk(t̃k) ≤ 0, so we must have sk ≤ s̃k ≤ t̃k ≤ tk. The
statements (ii) and (iii) are proved in a similar way.

The next result, when combined with Proposition 3.2, shows that the eigenvalue
localization results from either version of the generalized Pellet theorem are always
better than those presented in Theorem 2.7.

Proposition 3.3. Using the notation of Theorem 2.7, assume that δj ≤ (1 +
2κ(Akj ))−2 for some 1 ≤ j ≤ q − 1. Then the kjth Pellet polynomial q̃kj (x) in (3.2)

has two positive roots s̃kj < t̃kj such that s̃kj < fjαj and t̃kj > gjαj.
Proof. Note that q̃kj (0) = ‖A0‖ ≥ 0 and limx→∞ q̃kj (x) ∼ x`‖A`‖ > 0. According

to Pellet’s theorem, q̃kj has either zero or two positive roots. Hence, if there exists
two positive numbers y1 < y2 such that q̃kj (y1) < 0 and q̃kj (y2) < 0, then q̃kj has

two positive roots s̃kj , t̃kj such that s̃kj < y1 < y2 < t̃kj . Define y1 := fjαj and
y2 := gjαj . Next we show that q̃kj (y1), q̃kj (y2) < 0. Note that

q̃kj (y1) =

kj−1∑
i=0

‖Ai‖αijf ij − ‖A−1kj ‖
−1f

kj
j α

kj
j +

∑̀
i=kj+1

‖Ai‖αijf ij

≤ ‖Akj‖α
kj
j

( kj−1∑
i=0

f ij −
f
kj
j

κ(Akj )
+

∞∑
i=kj+1

δ
i−kj
j f ij

)
,

since by Lemma 2.2 ‖Ai‖αij ≤ ‖Akj‖α
kj
j for i < kj and ‖Ai‖αij ≤ δ

i−kj
j ‖Akj‖α

kj
j for
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i > kj . Also δjfj < 1, by Lemma 2.6, which implies that

∞∑
i=kj+1

δ
i−kj
j f ij = f

kj
j

∞∑
i=1

(δjfj)
i = f

kj
j

δjfj
1− δjfj

=
f
kj
j

gj − 1
,

recalling that gj = (δjfj)
−1. This yields

q̃kj (y1) ≤ ‖Akj‖α
kj
j

(
f
kj
j − 1

fj − 1
−

f
kj
j

κ(Akj )
+

f
kj
j

gj − 1

)
< ‖Akj‖α

kj
j f

kj
j

(
1

fj − 1
− 1

κ(Akj )
+

1

gj − 1

)
.

By Lemma 2.6, 1
fj−1 + 1

gj−1 = 1
κ(Akj

) , which implies that q̃kj (y1) < 0. The proof for

y2 is similar to the one given above so we skip it.

Let

H = {h0, h1, . . . , hp} (3.3)

be the set of all indices in {0, 1, . . . , `} such that
(a) 0 = h0 < h1 < · · · < hp = `,
(b) Ahk

is nonsingular for 0 < k < p,
(c) qhk

(x), 0 < k < p has two positive real roots shk
≤ thk

.
We define

H̃ = {h̃0, h̃1, . . . , h̃r} ⊆ {0, 1, . . . , `} (3.4)

similarly to H but with q̃k(x) in place of qk(x).

Theorem 3.4. Let K, K̃, H and H̃ be the set of indices defined by (2.5), (2.17),
(3.3) and (3.4). Then,

K̃ ⊆ H̃ ⊆ H ⊆ K.

Proof. The first two inclusions follow directly from Propositions 3.3 and 3.2. For
the last inclusion, suppose that k 6∈ K. Then there are ka < k < kb such that ka and
kb are two consecutive indices in K. Modulo the appropriate scaling we may assume
‖Aka‖ = ‖Akb‖ = 1 and ‖Ak‖ < 1. Hence, if Ak is nonsingular then for all x ≥ 0,

qk(x) =
∑
i6=k

‖A−1k Ai‖xi − xk ≥
∑
i6=k

‖Ai‖
‖Ak‖

xi − xk ≥ xka + xkb

‖Ak‖
− xk,

where we used ‖AB‖ ≥ ‖B‖
‖A−1‖ , which holds for any invertible A and any subordinate

matrix norm. Therefore, if 0 < x < 1, qk(x)
xka

≥ 1
‖Ak‖ − x

k−ka > 1 − 1 = 0. If x = 1,

qk(1) > 1 + 1 − 1 > 0. If x > 1, qk(x)
xk ≥ xb−k

‖Ak‖ − 1 > 1 − 1 = 0. We conclude that

qk(x) > 0 for all x > 0. So qk(x) does not have a real positive root and hence k 6∈ H.

Theorem 3.4 shows that to compute the Pellet bounds we only need to construct
the polynomials qk(x) and q̃k(x) for k ∈ K.
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Let s0 = 0 and let t0 be the real positive root of q0(x) if A0 is nonsingular and
t0 = 0 otherwise. Also, let t` = +∞ and let s` to be the real positive root of q`(x)
if A` is nonsingular and set s` = +∞ otherwise. We define s̃0, t̃0, s̃` and t̃` similarly
with respect to q̃k(x), k = 0, `. It is shown in [7, Cor. 2.2] that thj ≤ shj+1 and it

follows from Theorem 3.2 that t̃hj ≤ s̃hj+1 . Then from Theorems 3.1–3.3 and (2.18)
it follows that

Λ(P ) ⊆
p−1⋃
j=0

A(thj , shj+1) ⊆
r−1⋃
j=0

A(t̃h̃j
, s̃h̃j+1

) ⊂
m−1⋃
i=0

A(bji , aji+1) ⊆
m−1⋃
i=0

A(̃bji , ãji+1).

(3.5)
with p ≥ r ≥ m. In other words, (3.5) means that Bini et al.’s generalized Pellet
theorem provides better eigenvalue localization results than Melman’s generalized
Pellet theorem, which in turn provides better localization results than our localization
theorem based on tropical roots (see Theorem 2.7 and Corollary 2.8). However, the
tropical roots and the results of Theorem 2.7 and its corollary remain interesting since
these results can be easily interpreted and can be used in the numerical computation
of the eigenvalues as we explain below. Importantly, the amount of information that
Theorem 2.7 provides does not depend on the condition numbers of all the coefficients,
but only on a selected number of them (Ak such that k ∈ K). This fact can be used
to give bounds on the sensitivity of the moduli of the eigenvalues when one coefficient
Ai, i 6∈ K, is perturbed. Even when the conditions of Theorem 2.7 are not satisfied,
it can still happen that the tropical roots provide good approximations to the moduli
of the eigenvalues. Indeed, they always lie inside the inclusion annuli defined by the
generalized Pellet theorem, as we now show.

Theorem 3.5. Let P (λ) =
∑`
i=0Aiλ

i be a regular matrix polynomial. Also, for
some 0 ≤ j ≤ p and some 0 ≤ i1 < i2 ≤ q, let hj = ki1 and hj+1 = ki2 be two
consecutive indices in H ⊆ K, defined as in (3.3) and (2.5). Then

{αi1+1, . . . , αi2} ⊂ [thj
, shj+1

],

where shj
≤ thj

are the two positive real roots of qhj
(x) in (3.1).

Proof. By (3.1) it holds qhj (thj ) = 0, implying that, for any index c 6= hj ,

(thj )hj =
∑
i6=hj

‖A−1hj
Ai‖(thj )i ≥ ‖Ac‖

‖Ahj‖
(thj )c. Therefore (thj )hj−c ≥ ‖Ac‖

‖Ahj
‖ . If in

particular c > hj , then thj
≤
(‖Ahj

‖
‖Ac‖

) 1
c−hj

. Since hj = ki1 ∈ K, taking c = ki1+1 and

recalling (2.4) we obtain thj
≤ αi1+1. A similar argument shows that shj+1

≥ αi2 ,
and hence, thj

≤ αi1+1 < · · · < αi2 ≤ shj+1
.

4. Numerical experiments and applications. We start with some experi-
ments that illustrate the bounds of Sections 2.2 and 3 and show how well the tropical
roots of t×(x) approximate the moduli of the eigenvalues of P (λ). Our experiments
were performed in MATLAB 7, for which the unit roundoff is u = 2−53 ≈ 1.1×10−16.

Experiment 1. Our first example is a 20× 20 quartic matrix polynomial P (λ) =∑4
i=0 λ

iAi generated with the MATLAB commands
randn(’state’,48); n = 20;
A0 = 1e-5*randn(n); A1 = 1e2*randn(n); A2 = 1e2*randn(n);
A3 = 1e8*randn(n); A4 = 1e7*randn(n);
so as to have large variation in the norms of its coefficient matrices, the latter being
fairly well conditioned (see Table 4.1). It follows from this table that the set of
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Table 4.1: Norm and condition number of the coefficient matrices of P (λ) in Experi-
ment 1.

i = 0 i = 1 i = 2 i = 3 i = 4

‖Ai‖2 7.5e-5 8.9e+2 8.6e+2 8.8e+8 7.7e+7

κ2(Ai) 3.4e+1 3.0e+2 9.1e+1 1.3e+2 1.0e+2

Table 4.2: Pellet and tropical localizations of the spectrum Λ(P ) of P (λ) in Experi-
ment 1.

Λ(P )
20 eigenvalues in A(3.1e-8, 1.4e-6) =: A1

40 eigenvalues in A(1.3e-4, 2.5e-3) =: A2

20 eigenvalues in A(6.3e-1, 5.7e+1) =: A3

Pellet 1
20 eigenvalues in A(4.3e-9, 1.6e-5) ⊃ A1

40 eigenvalues in A(6.2e-5, 8.4e-3) ⊃ A2

20 eigenvalues in A(2.1e-1, 6.1e+2) ⊃ A3

Pellet 2
60 eigenvalues in A(2.4e-9, 1.2e-2) ⊃ A1 ∪ A2

20 eigenvalues in A(8.8e-2, 1.2e+3) ⊃ A3

Tropical 80 eigenvalues in A(2.4e-9, 1.2e+3) ⊃ A1 ∪ A2 ∪ A3

abscissae of the Newton polygon associated with t×p(x) is K = {0, 1, 3, 4}. Thus
t×p(x) has three tropical roots,

α1 =
‖A0‖2
‖A1‖2

= 8.4e-8, α2 =

(
‖A1‖2
‖A3‖2

)1/2

= 1.0e-3, α3 =
‖A3‖2
‖A4‖2

= 1.1e+1

of multiplicity one, two and one, respectively. The eigenvalues of P (λ), which we
computed with the MATLAB function polyeig are located in three separate annuli
Ai, i = 1, 2, 3 given in the first rows of Table 4.2. These are to be compared to the
annuli from the Bini et al. generalized Pellet’s theorem (see Theorem 3.1), Melman’s
version of the generalized Pellet’s theorem (see [16, Thm. 3.3] or Theorem 3.1 with
q̃k(x) in place of qk(x)), and that of Theorem 2.7 referred to as Pellet 1, Pellet 2,
and Tropical, respectively, in Table 4.2. The generalized Pellet theorem identifies
more annuli with qk(x) in (3.1) than with q̃k(x) in (3.2), and the bounds provided
by the former are tighter as expected from Proposition 3.2. Theorem 2.7 provides
only a lower and upper bound for this particular example. It can be seen from
Table 4.2 that the sets H, H̃ and K̃, which are defined in (3.3),(3.4) and (2.17), are

H = {0, 1, 3, 4}, H̃ = {0, 3, 4} and K̃ = {0, 4} so that K̃ ⊂ H̃ ⊂ H ⊆ K coherently
with Theorem 3.4. Note that

0.4 ≤ |λ|
α1
≤ 17 ∀ λ ∈ A1, 0.1 ≤ |λ|

α2
≤ 2.5 ∀ λ ∈ A2, 0.06 ≤ |λ|

α3
≤ 5.0 ∀ λ ∈ A3

so for this example, the tropical roots offer an order of magnitude approximation to
the eigenvalues of P (λ).

Experiment 2. Our next example is a class of matrix polynomials generated via
A0 = randn(n); A1 = 1e-3*randn(n); A2 = 1e3*randn(n);
A3 = 1e7*randn(n); A4 = 1e-3*randn(n);
for a given size n > 3 (but not too large). For this class of matrix polynomials, t×p(x)
has only two tropical roots, a small root α1 of multiplicity three and a large root α2
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of multiplicity one (for n = 5, α1 = O(10−3) and α2 = O(1010)). Theorem 2.7 and
Theorem 3.1 detect two annuli, one associated with α1 containing 3n eigenvalues and
one associated with α2 and containing n eigenvalues. MATLAB’s function polyeig
does not find any eigenvalue in the largest annuli. Instead, it tends to return n
eigenvalues at infinity. The leading coefficient A4 is however generically nonsingular,
so that there should be no eigenvalue at infinity.

The function polyeig, which solves the polynomial eigenvalue problem via lin-
earization, is not numerically stable [12], [21]. The linearization process used in
eigensolvers such as polyeig can also affect the sensitivity of the eigenvalues: a well
conditioned eigenvalue for P (λ) may be badly conditioned for the linearization [13].
As a result, polyeig can return eigenvalues with no digits of accuracy. We note that
there is currently no eigensolver for dense matrix polynomials of degree ` > 2 with
guaranteed backward stability. With the aim of addressing this issue, Gaubert and
Sharify [8] propose to solve q tropically scaled polynomial eigenvalue problems with

the matrix polynomials P̃ (µ) in (2.6) scaled with αi, i = 1, . . . , q. We recall below a
version of [8, Alg. 1].

Algorithm 4.1. Given P (λ) =
∑`
i=0 λ

iAi ∈ C[λ]n×n, the tropical roots αj of
t×p(x) = max0≤j≤` ‖Aj‖xj and their multiplicities mj, j = 1, . . . , q, this algorithm
computes the eigenvalues (and eigenvectors) of P .

1 k = 1
2 for j = 1 : q

3 Scale P (λ) into P̃ (µ) as in (2.6).

4 Solve P̃ (µ)x = 0 with polyeig and scale back the eigenvalues, λi = αjµi.
5 Sort the eigenvalues in modulus from small to large.
6 Keep λk, . . . , λk+nmj−1 and the corresponding eigenvectors.
7 k = k + nmj .
8 end

Gaubert and Sharify show experimentally that their algorithm tends to compute
eigenpairs with smaller backward errors (see (4.1)) than those computed with the
classical approach (i.e. without tropical scaling). Sharify and Tisseur [20] show that
amongst the eigenpairs returned by Algorithm 4.1, those with eigenvalues of modulus
within order one of αi are computed with small backward errors and their condition
numbers is not affected by the linearization process.

We note that Algorithm 4.1 is q times more expensive that polyeig, where
q ≤ ` is the number of distinct tropical roots of t×q(x) but it has better numerical
stability properties than polyeig and that it delivers more accurate eigenpairs. It is
outside the scope of this paper to develop an efficient eigensolver and also to justify
the selection of the computed eigenpairs (see lines 5–6 of Algorithm 4.1).

To illustrate the behaviour of Algorithm 4.1, we measure the backward error
ηp(λ, x) for a computed eigenpair (λ, x) of P (λ) with λ finite and nonzero, with the
scaled residual [21]

ηP (λ, x) =
‖P (λ)x‖2(∑`

i=0 |λ|i‖Ai‖2
)
‖x‖2

. (4.1)

We consider the backward error to be small if η(λ, x) ≤ (`n)u. To measure the

sensitivity of a simple, finite and nonzero eigenvalue λ of P (λ) =
∑`
i=0 λ

iAi ∈ C[λ]n×n

and of a linearization L(λ) = A+λB ∈ C[λ]n`×n` of P we use the condition numbers
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Fig. 4.1: Problem from Experiment 2. Backward errors of computed eigenpairs and
ratios between the eigenvalue condition numbers.

[21]

κP (λ) =

(∑`
i=0 |λ|i‖Ai‖2

)
‖x‖2‖y‖2

|λ||y∗P ′(λ)x|
, κL(λ) =

(
‖A‖2 + |λ|‖B‖2

)
‖z‖2‖w‖2

|λ||w∗Bz|
, (4.2)

where x, y are right and left eigenvectors of P with eigenvalue λ and z, w are right
and left eigenvectors of L with eigenvalue λ. Ideally, we would like the linearization
L of P to be such that κL(λ) ≈ κP (λ).

Experiment 3. The top plot in Figure 4.1 shows the backward errors for the com-
puted eigenpairs via polyeig and Algorithm 4.1 for P (λ) generated as in Exper-
iment 2 by setting n = 30 and randn(’state’,0). The bottom plot displays
the ratios between the condition number κL(λ) of λ as an eigenvalue of L and the
condition number κP (λ) of λ as an eigenvalue of P (λ). In our figure, the x-axis is
the eigenvalue index and the eigenvalues are sorted in increasing order of absolute
value. Since polyeig wrongly returns 30 eigenvalues at infinity and the backward
error in (4.1) and condition numbers in (4.2) are not defined at infinity, ηP (λ, x) and
κL(λ)/κP (λ) are not plotted for these eigenvalues. The top plot shows that none of the
eigenpairs returned by polyeig have a small backward error whereas Algorithm 4.1
returns all eigenpairs with a backward error close to the unit roundoff except for the
3n+ 1 = 91st eigenvalue |λ91| = 7.5× 108 for which ηP (λ91, x91) = 1.2× 10−13. The
matrix polynomial P (λ) has two tropical roots α1 = 4.5 × 10−3 with multiplicity 3
and α2 = 1010 with multiplicity 1. The largest tropical root α2 does not quite provide
an order of magnitude approximation to λ91 and tropical scaling with α2 yields a
slightly too large backward error for the eigenpair (λ91, x91).

The linearization used by polyeig is the reversal of the first companion lin-
earization of the reversal of P (λ) defined by revP (λ) = λ`(P (1/λ). The bottom plot
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Table 4.3: Size n, degree ` and norm of the coefficient matrices for the butterfly
and orr−sommerfeld problems.

Problem n i = 0 i = 1 i = 2 i = 3 i = 4

butterfly 9
‖Ai‖2 1.0e+0 5.8e+3 1.7e+6 2.4e+7 2.0e+12

κ2(Ai) 2.1e+0 ∞ 5.8e+0 ∞ 5.8e+0

orr−sommerfeld 64
‖Ai‖2 1.8e+2 2.8e-2 6.8e+2 2.8e+0 6.8e-3

κ2(Ai) 1.0e+0 4.3e+2 1.1e+3 ∞ 5.0e+8

shows that, for this example, when no scaling is applied to P (λ), the linearization
process increases the eigenvalue condition numbers by a factor 107 but when scaling
is used such as in Algorithm 4.1, then κL(λ) ≈ κP (λ).

Experiment 4. We consider two quartics from the NLEVP collection of nonlinear
eigenvalue problems [5] namely the butterfly problem and the orr−sommerfeld
problem. The coefficient matrices of the butterfly problem are generated as follows:
c = kron([1e2 1e-2 1e2 1 1e-3],[1 1]);
coeffs = nlevp(’butterfly’,9,c);
A0 = coeffs{1}; A1 = coeffs{2}; A2 = coeffs{3};
A3 = coeffs{3}; A4 = coeffs{4};
Both problems have variations in the norms of their coefficient matrices as shown in
Table 4.3. The moduli of the eigenvalues of these matrix polynomials, the tropical
roots of t×p(x) as well as the intervals from the generalized Pellet theorem (Theo-
rem 3.1) which contain the moduli of the eigenvalues of P are all plotted in Figure 4.2.
The backward errors for eigenpairs computed with polyeig and Algorithm 4.1 are
plotted in Figure 4.3, and the ratios between the condition number κL(λ) of λ as an
eigenvalue of the linearization L used by the eigensolvers and the condition number
κP (λ) of λ as an eigenvalue of P (λ) are shown in Figure 4.4.

For the butterfly problem, K = {0, 2, 3, 4} (see (2.5)) and since A3 is singular,
Theorem 2.7 and the generalized Pellet’s theorems identify two annuli, one containing

2n = 18 eigenvalues with magnitude around α1 =
(
‖A0‖2/‖A2‖2

)1/2 ≈ 5.1 × 10−1,
and the second and wider annulus containing the remaining 2n eigenvalues and the
two tropical roots α2 = ‖A2‖2/‖A3‖2 ≈ 2.4×102 and α3 = ‖A3‖2/‖A4‖2 ≈ 4.1×102.
The top plot in Figure 4.2 shows that the three tropical roots associated with the
butterfly problem are good approximations to the magnitude of the eigenvalues.
As a consequence of this and the analysis in [20], the eigenpairs computed by Algo-
rithm 4.1 have small backward errors (see top plot in Figure 4.3) and the linearization
process used by the eigensolver does not increase the eigenvalue condition numbers
(see top of Figure 4.4). We note that polyeig returns eigenpairs with backward er-
rors as large at 10−10 and the linearization process increases the eigenvalue condition
numbers by a factor 1010 for the 2n largest eigenvalues.

For the orr−sommerfeld problem, Theorem 2.7 and the generalized Pellet’s
theorems identify only one annulus. The tropical roots do not offer order of magnitude
approximations to all the eigenvalues, in particular for the largest ones (see bottom of
Figure 4.2). Nevertheless, Algorithm 4.1 returns eigenpairs with backward errors all
less than 10−13 ≈ 2(`n)u, whereas those returned by quadeig can be as large at 10−4

(see bottom plot in Figure 4.3). The linearization process used by the eigensolvers
increases the eigenvalue condition numbers by a factor at most 105 for Algorithm 4.1
and up to 1015 for polyeig (see bottom plot in Figure 4.4).
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5. Concluding remarks. We have identified sufficient conditions under which
the tropical roots of t×p(x) = max0≤i≤`

(
‖Ai‖xi

)
are good order of magnitude approx-

imations to the eigenvalues of P (λ) =
∑`
i=0 λ

iAi. These tropical roots are interesting
from the numerical point of view since they are cheap to compute and can be used to
define a family of eigenvalue parameter scalings for matrix polynomials that can both
improve the backward stability of polynomial eigensolvers based on linearizations and
help not to increase the eigenvalue condition numbers of the linearized problem ( see
Section 4). This is confirmed by the analysis in [20]. We anticipate that these tropical
roots will help designing a more numerically stable version of polyeig.
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