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Abstract. In this paper, we investigate the tail properties of the generalized Maxwell
distribution and gain an asymptotic behavior of Mills-type ratio. Meanwhile, We show
two applications. The first application thinks about the asymptotic property of the
ratio of density functions and the ratio of the tails of the generalized Maxwell and
classical Maxwell distributions. Another application obtains the asymptotic distribution
of the partial maximum of an independent and identically distributed sequence from
the distribution.

Keywords. Extreme value distribution; Generalized Maxwell distribution; Maximum;
Mills-type ratio.

Mathematics Subject Classification(2010) Primary 62E20, 60E05; Secondary
60F15, 60G15.

1 Introduction

Generalized Maxwell distribution was introduced by Vodǎ (2009). The distribution has a variety
of areas that range from statistics to physics, particularly in statistical mechanics. Some recent
examples of this are: constructing fractional rheological constitutive equations (Schiessel et al.,
1995); be friction model suitable for quick simulation and control (Farid et al., 2005); forecasting
the temporal change of opening angle in multiple time scales and electroscalar wave (Zhang et
al., 2008; Arbab and Satti, 2009); project of the time related to behavior of viscoelastic materials
(Monsia, 2011). The properties of it also have been studied in some literature, see Liu and Fu
(2013) and Liu and Liu (2013). The probability density function (pdf) of the generalized Maxwell
distribution (denote by GMD) is given by:

gk(x) =
k

2k/2a2+1/kΓ(1 + k/2)
x2k exp

(
−x2k

2a2

)
(1.1)

for a, k > 0 and x > 0, where Γ(·) denotes the Gamma function. When k = 1, the distribution of
density function (1.1) can derive the classical Maxwell (or called ordinary Maxwell) pdf, that is,

g1(x) =

√
2
π

x2

a3
exp

(
− x2

2a2

)
.
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Throughout the paper, notation G1(x) represents the cumulative distribution function (cdf) of the
classical Maxwell distribution (for short MD).

Mills (1926) gave a well-known inequality and Mill’s ratio for the standard normal cdf Φ(x)
with pdf φ(x) as follows:

x−1(1 + x−2)−1φ(x) < Φ(−x) < x−1φ(x), for x > 0, (1.2)

and

Φ(−x)
φ(x)

∼ 1
x

, as x →∞. (1.3)

Peng et al. (2009) extended the above results to the case of the general error distribution. Lin
and Peng (2010) derived the similar results of short-tailed symmetric distribution. Lin and Jiang
(2012) considered a generalization of the short-tailed symmetric distribution and the asymptotic
behavior of Mills-type ratio about the distribution family.

The inequalities like (1.2) and (1.3) are really important in considering some tail behavior of
economic and financial data. However, to our knowledge, there is no study concerning GMD.
In this paper, we derive the above-mentioned inequality, Mills-type ratio and the tail distribution
representation of GMD. Two applications are provided. One application investigates the asymptotic
behaviors of the ratio of the pdfs and the ratio of the tails of the GMD and the classic Maxwell
distribution. Another important application obtains the limiting distribution of the maximum of
independent and identical GMD random variables.

The rest of the paper is organized as follows: In Section 2, we present an inequality and Mills-
type ratio similar to (1.2) and (1.3) for the GMD. In Section 3 and 4, we show applications of the
results. In Section 3, we investigate asymptotic properties of the ratio of the pdfs and the ratio of
the tails of the GMD and the MD. In Section 4, we consider the limiting distribution of the partial
maximum of an independent and identically sequence from the GMD. Here, our work is to choose
the suitable normalizing constants such that the distribution of the maxima belongs to the domain
of attraction of D(Λ), where Λ(x) = exp(− exp(−x)).

2 Mills Ratio of GMD

The following inequality is crucial to our result.

Lemma 2.1. Set k > 1
2 . For all x > 0, we have

∫ ∞

x
exp

(
− t2k

2a2

)
dt <

(
kx2k−1

a2
− 1

x

)−1

exp
(
−x2k

2a2

)
.

Proof. For x > 0,

x2k

∫ ∞

x
exp

(
− t2k

2a2

)
dt <

∫ ∞

x
t2k exp

(
− t2k

2a2

)
dt

=
a2x

k
exp

(
−x2k

2a2

)
+

a2

k

∫ ∞

x
exp

(
− t2k

2a2

)
dt.
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Hence,

∫ ∞

x
exp

(
− t2k

2a2

)
dt <

(
kx2k−1

a2
− 1

x

)−1

exp
(
−x2k

2a2

)
.

The following results consist of an inequality and Mills-type ratio which are similar to (1.2) and
(1.3), respectively.

Lemma 2.2. Set k > 1
2 . For all x > 0, we have

a2

k
x1−2k <

Gk(−x)
gk(x)

<
a2

k
x1−2k

(
1 + (

a2

k
x2k − 1)−1

)
,

where a is positive.

Proof. Observe the symmetry of the GMD. For x > 0, we have

Gk(−x) =
∫ ∞

x
gk(t) dt =

k

2k/2a2+1/kΓ(1 + k/2)

∫ ∞

x
t2k exp

(
− t2k

2a2

)
dt

=
x

2k/2a1/kΓ(1 + k/2)
exp

(
−x2k

2a2

)
+

1
2k/2a1/kΓ(1 + k/2)

∫ ∞

x
exp

(
− t2k

2a2

)
dt (2.1)

<
1

2k/2a1/kΓ(1 + k/2)
exp

(
−x2k

2a2

)(
x + (

a2

k
x2k−1 − 1

x
)−1

)

= gk(x)
a2

k
x1−2k

(
1 + (

a2

k
x2k − 1)−1

)
.

The inequality above is derived by utilizing Lemma 2.1. Thus,

Gk(−x)
gk(x)

<
a2

k
x1−2k

(
1 + (

a2

k
x2k − 1)−1

)
.

By using (2.1), we have

Gk(−x)
gk(x)

>
a2

k
x1−2k.

The result follows.

Theorem 2.1. For fixed k > 0, we have

Gk(−x)
gk(x)

∼ a2

k
x1−2k, as x →∞. (2.2)

Proof. For 0 < k < 1
2 , gk(x)x1−2k → 0, as x →∞, so we apply L’Hospital’s rule to show that

lim
x→∞

Gk(−x)
x1−2kgk(x)

= lim
x→∞

−gk(x)
(1− 2k)x−2kgk(x) + gk(x)(2kx−2k − ka−2)

=
a2

k
.

For k = 1
2 , easily check that (1 − G1/2(x))/g1/2(x) → 2a2, as x → ∞. For k > 1

2 , applying the
inequality of Lemma 2.2, we can derive the desired result. The proof is complete.
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Remark 2.1. For k > 1
2 , the result of Theorem 2.1 can be applied to show that Gk ∈ D(Λ),

i.e., there exist normalizing constants an > 0 and bn ∈ R such that Gk(anx + bn) → Λ(x) =
exp(− exp(−x)), as n →∞.

Since
(d/dx)gk(x)

gk(x)
=

2k

x
− kx2k−1

a2
,

we have by Theorem 2.1 that
Gk(−x)
gk(x)

(d/dx)gk(x)
gk(x)

→ −1

as x →∞, thus, by Proposition 1.18 in Resnick (1987) that Gk ∈ D(Λ). We will discuss the choice
of the constants an and bn by Theorem 4.1.

Remark 2.2. If k = 1, the above Theorem 2.1 yields the Mills-type ratio of MD, i.e.,

G1(−x)
g1(x)

∼ a2

x
, as x →∞. (2.3)

3 Tail property of GMD

Finner et al. (2008) considered the asymptotic behavior of the ratio of the Student’s t and
normal distributions when u = u(x) satisfies

lim
x→∞

x4

u
= β ∈ [0,∞), (3.1)

where u is the degrees of freedom of the Student’s t distribution. The main motivation is to
consider the false discovery rate in multiple testing problems with large numbers of hypotheses and
extremely small critical values of the smallest ordered p values, in detail, see Finner et al. (2007).

In this Section, we extend Finner et al. (2008)’s results to the GMD, that is, characterize
asymptotic behavior of the pdfs and the ratio of the tails of the GMD and the MD.

Next we will consider the asymptotic behavior as k → 1 in Theorem 3.1 while will consider the
asymptotic behavior as x →∞ in Theorem 3.2.

Theorem 3.1. Let x = x(k) be such that k − 1 ∼ γ/{2x2 log |x|} as k → 1 for γ ∈ R. We have

lim
k→1

g1(x)
gk(x)

= exp
( γ

2a2

)
(3.2)

and
lim
k→1

G1(−x)
Gk(−x)

= exp
( γ

2a2

)
. (3.3)

Proof. Note that {2k/2a2+1/kΓ(1+k/2)}/{k
√

π/2a3} → 1, k → 1, so, easily check (3.2). x2k−1 → x
as k → 1 can be deduced by the condition of the theorem. Therefore, (3.3) follows by writing

G1(−x)/Gk(−x) = {G1(−x)/g1(x)}{g1(x)/gk(x)}{gk(x)/Gk(−x)}

and applying (3.2) and Theorem 2.1.
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Theorem 3.2. For fixed k, we have

g1(x)
gk(x1/k)

=
2(1+k)/2a1/k−1Γ(1 + k/2)√

πk
(3.4)

and

lim
x→∞

G1(−x)
x1−1/kGk(−x1/k)

=
2(1+k)/2a1/k−1Γ(1 + k/2)√

π
. (3.5)

Proof. It is easy to check (3.4) by elementary calculation. Combining with (2.3) and Theorem 2.1,
we have

lim
x→∞

G1(−x)
x1−1/kGk(−x1/k)

= lim
x→∞

kg1(x)
gk(x1/k)

=
2(1+k)/2a1/k−1Γ(1 + k/2)√

π
,

so the result follows.

Utilizing Theorem 3.2 is to obtain the explicit representation of Gk(−x) given by Corollary 3.1.

Corollary 3.1. Under the condition of Theorem 3.2, we have

Gk(−x) = c(x) exp
(
−

∫ x

1

g(t)
f(t)

dt
)

for x sufficiently large, where

c(x) =
exp(−1/(2a2))

2k/2a1/kΓ(1 + k/2)
(1 + θ3(x))

f(t) =
a2

k
t1−2k

and

g(t) = 1− a2

k
t−2k.

Proof. By Theorem 3.2, for large enough x, we have

Gk(−x1/k) =
√

π

2(1+k)/2a1/k−1Γ(1 + k/2)
x1/k−1G1(−x)(1 + θ1(x)) (3.6)

where θ1(x) → 0 as x →∞. Setting z = x1/k and using (2.3) from the result of Lemma 3.3, we can
rewrite (3.6) as

Gk(−z) =
√

π

2(1+k)/2a1/k−1Γ(1 + k/2)
z1−kG1(−zk)(1 + θ2(z))

=
1

2k/2a1/kΓ(1 + k/2)
z exp

(
− z2k

2a2

)
(1 + θ3(z))

=
1

2k/2a1/kΓ(1 + k/2)
exp

(
log z − z2k

2a2

)
(1 + θ3(z))

=
exp

(− 1
2a2

)

2k/2a1/kΓ(1 + k/2)
(1 + θ3(z)) exp

(
−

∫ z

1

1− a2t−2k/k

a2t1−2k/k
dt

)

where θ2(z) → 0 and θ3(z) = (1 + o(1))(1 + θ2(z)) − 1 → 0, as z → ∞. We derive the desired
result.

Remark 3.1. As limt→∞ g(t) = 1, f(t) > 0 on [1,+∞) and limt→∞ f ′(t) = 0 in Corollary 3.1,
using Corollary 1.7 in Resnick (1987) and the result of Corollary 3.1, we have Gk ∈ D(Λ).
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4 Limiting Distribution of the Maxima

The following work is to find the suitable norming constants which make sure the distribution
of the maxima tends to exp(− exp(−x)).

Theorem 4.1. Let {Xn, n = 1, 2, · · · } be independent and identically distributed random variables
with common GMD Gk(x), k > 0. Let Mn = max(Xi, 1 ≤ i ≤ n) denote the partial maximum.
We have

lim
n→∞P (Mn ≤ anx + bn) = exp(− exp(−x)),

where

an =
a1/k

k(2 log n)1−1/(2k)
,

bn = a1/k(2 log n)1/(2k) +
a1/k[log log n + (1− k2) log 2− 2k log Γ(1 + k/2)]

2k2(log n)1−1/(2k)
.

Proof. Because of the monotonicity and continuity of Gk(x) on (0,∞), there must exist un = un(x)
which induces n(1−Gk(un)) = exp(−x). Hence, combining with (2.2), we have

n

2k/2a1/kΓ(1 + k/2)
un exp

(
−u2k

n

2a2
+ x

)
→ 1, as n →∞.

Thus we have

log n− k

2
log 2− 1

k
log a− log Γ(1 +

k

2
) + log un

−u2k
n

2a2
+ x → 0, as n →∞. (4.1)

(4.1) implies
u2k

n

2a2 log n
→ 1.

Taking logarithms, we have

log un =
1
2k

(log log n + log 2 + 2 log a) + o(1). (4.2)

Putting (4.2) in (4.1) by some simple calculation, we have

un = 2
1
2k a

1
k

(
log n +

1
2k

log log n +
1
2
(
1
k
− k)− log Γ(1 +

k

2
) + x + o(1)

) 1
2k

= a
1
k (2 log n)

1
2k +

a
1
k

2k2(2 log n)1−
1
2k

(
log log n + (1− k2) log 2− 2k log Γ(1 +

k

2
)
)

+
a

1
k

k(2 log n)1−
1
2k

x + o
(
(log n)

1
2k
−1

)

= bn + anx + o
(
(log n)

1
2k
−1

)

By Theorem 1.2.3 in Leadbetter et al. (1983), the proof is completed.
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Remark 4.1. As aforementioned, we get the classical Maxwell pdf when k = 1 in (1.1). Theorem
4.1 shows that the limiting distribution of the maximum from the classical Maxwell is Gumbel
extreme value distribution with the normalizing constants

an =
a

(2 log n)1/2

and
bn = a(2 log n)1/2 +

a log(2 log n) + a log(2/π)
2(2 log n)1/2

.
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