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Abstract. In this paper we study the performance of two classical dense
linear algebra algorithms, the LU and the QR factorizations, on multi-
level hierarchical platforms. We note that we focus on multilevel QR
factorization, and give a brief description of the multilevel LU factoriza-
tion. We first introduce a performance model called Hierarchical Cluster
Platform (Hcp), encapsulating the characteristics of such platforms. The
focus is set on reducing the communication requirements of studied al-
gorithms at each level of the hierarchy. Lower bounds on communication
are therefore extended with respect to the Hcp model. We then present
a multilevel QR factorization algorithm tailored for those platforms, and
provide a detailed performance analysis. We also provide a set of perfor-
mance predictions showing the need for such hierarchical algorithms on
large platforms.
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1 Introduction

Numerical algorithms and solvers play a crucial role in scientific computing. They
lie at the heart of many applications and are often key to performance and scal-
ability. Due to the ubiquity of multicore processors, solvers should be adapted
to better exploit the hierarchical structure of modern architectures, where the
tendency is towards multiple levels of parallelism. Thus with the increasing com-
plexity of nodes, it is important to exploit these multiple levels of parallelism
even within a single compute node. For this reason, classical algorithms need to
be revisited so as to fit modern architectures that expose parallelism at different
levels in the hierarchy. We believe that such an approach is mandatory in order
to exploit upcoming hierarchical exascale computers at their full potential.

Studying the communication complexity of linear algebra operations and de-
signing algorithms that are able to minimize communication is a topic that has
received an important attention in the recent years. The most advanced approach
in this context assumes one level of parallelism and takes into account the com-
putation, the volume of communication, and the number of messages exchanged



along the critical path of a parallel program. In this framework, the main previ-
ous theoretical result on communication complexity is a result derived by Hong
and Kung in the 80’s providing lower bounds on the volume of communication
of dense matrix multiplication for sequential machines [1]. This result has been
extended to parallel machines [2], to dense LU and QR factorizations (under cer-
tain assumptions) [3], and then to basically all direct methods in linear algebra
[4]. Given an algorithm that performs a certain number of floating point oper-
ations, and considering the memory size, the lower bounds on communication
are obtained by using the Loomis-Whitney inequality, as for example in [2, 4].
While theoretically important, these lower bounds are derived with respect to
a performance model that supposes a memory hierarchy in the sequential case,
and P processors without memory hierarchy in the parallel case. Such a model
is not sufficient to encapsulate the features of modern hierarchical architectures.

On the practical side, several algorithms have been introduced recently [5,
6, 7, 8]. Most of them propose to use different reduction trees depending on the
hierarchy. However, the focus is set on reducing the running time without ex-
plicitly taking communication into consideration. In [8], Dongarra et al. propose
a generic algorithm implementing several optimizations regarding pipelining of
computation, and allowing to select different elimination trees on platforms with
two levels of parallelism. They provide insights on choosing the appropriate tree,
a binary tree being for instance more suitable for a cluster with many cores, while
a flat tree allows more locality and CPU efficiency. However, neither theoreti-
cal bounds nor cost analysis are provided in these studies. Moreover, even if
cache-oblivious algorithms are natural good candidates for reducing communi-
cation requirements at every level, they are not good candidates for large parallel
implementations. We thus focus on cache- and parallelism- aware algorithms.

In the first part of this paper we introduce a performance model that we refer
to as the Hierarchical Cluster Platform (Hcp) model. Provided that two super-
computers might have different communication topologies and different compute
nodes with different memory hierarchies, a detailed performance model tailored
for one particular supercomputer is likely to not reflect the architecture of an-
other supercomputer. Hence the goal of our performance model is to capture
the main characteristics that influence the communication cost of peta- and
exa- scale supercomputers which are based on multiple levels of parallelism and
memory hierarchy. We use the proposed Hcp model to extend the existing lower
bounds on communication for direct linear algebra, to account for the hierar-
chical nature of present-day computers. We determine the minimum amount of
communication that is necessary at every level in the hierarchy, in terms of both
number of messages and volume of communication. Moreover, to the best of our
knowledge, there is currently no algorithm targeting hierarchical platforms with
more than two levels, nor any lower bound on communication for such platforms.

In the second part of the paper we introduce a multilevel algorithm for com-
puting the QR factorization (ML-CAQR) that is able to minimize the commu-
nication at each level of the hierarchy, while performing a reasonable amount of
extra computations. We note that we have also developed two multilevel algo-



rithms for the LU factorization (1D-ML-CALU and 2D-ML-CALU ). However
we restrict our study to the QR factorization here. We refer interested readers
to the technical report [9] for more details about the multilevel LU algorithms.
These recursive algorithms rely on their corresponding 1-level algorithms (resp.
CAQR and CALU ) as their base case. Indeed, CAQR and CALU are known to
attain the communication lower bounds in terms of both bandwidth and latency
with respect to the simpler one level performance model.

2 Background: the QR factorization

The QR factorization of an m-by-n matrix is a widely used algorithm, be it for
orthogonalizing a set of vectors or for solving least squares problems with m
equations and n unknowns, where m ≥ n. It is known to be an expensive mn2 +
1/3n3 + O(n2), but very stable factorization. It is thus crucial to optimize its
performance. The algorithm decomposes an m-by-n matrix A into two matrices
Q and R such that A = QR, where Q is an m-by-m orthogonal matrix, while
the m-by-n matrix R is upper triangular.

The QR factorization is obtained by applying a sequence of m-by-m unitary
orthogonal transformations on the input matrix A. An unitary transformation
Ui introduces some zeros below the diagonal in the current updated matrix. The
two basic transformations are Givens rotations and Householder reflections. A
Givens rotation introduces a single zero while a Householder reflection zeroes out
every element below the diagonal. Using Givens rotations, disjoint pairs of rows
can be processed concurrently. Householder reflections, though not displaying
the same parallelism, are less computationally expensive.

Tree-based algorithms intent to benefit from both methods. Householder
transformations are applied on local domains, or tiles, before getting eliminated
two-by-two in a Givens-like approach. Communication Avoiding QR (CAQR) [3]
belongs to this category, and organizes the computations so as to match the lower
bounds on communication introduced in [4]. After min(m,n) transformations,
the resulting R factor is stored in place in the upper triangular part of matrix
A while the matrix Q is assumed to be implicitly stored in the lower triangu-
lar part using the compact WY representation for Householder reflections [10].
If needed, Q can be retrieved at the cost of extra computations by computing
Q = I − Y TY T .

3 Toward a realistic Hierarchical Cluster Platform model
(Hcp)

The focus of this study is set on hierarchical platforms running HPC applications
and displaying increasingly deeper hierarchies. Such platforms are composed of
two kinds of hierarchies: (1) a network hierarchy composed of interconnected net-
work nodes, stacked on top of a (2) compute nodes hierarchy [11]. This compute
hierarchy can be composed for instance of shared memory NUMA multicore



nodes. Moreover, on most modern supercomputers, compute nodes are often
grouped into drawers displaying higher local communication speeds. Such draw-
ers typically belong to the network hierarchy, which is clearly not only a router
hierarchy.

Level i Cni Cni

φi+1

Cni+1Level i+ 1

φi φi

βi+1

βi βi
βi

βi+1 βi+1

Fig. 1. Components of a level i in the Hcp model.

The Hcp model considers such platforms with l levels of parallelism, and
uses the following assumptions. Level 1 is the deepest level in the hierarchy,
where actual processing elements are located (for example cores). Each of these
processing elements has its own local memory of size M1 and a computing speed
γ. A compute node of level i + 1, denoted as Cni+1 on Figure 1, is formed by
Pi compute nodes of level i (two nodes in our example). The total number of

processing elements of the entire platform is P =
∏l
i=1 Pi, while the total number

of compute nodes of level i is P ∗
i =

∏l
j=i Pj . We let Mi = M1 ·

∏i−1
j=1 Pj be the

aggregated memory size of a node of level i > 1.
The network latency αi and the inverse bandwidth βi apply throughout an

entire level i. Moreover, we assume that generally, the higher in the hierarchy,
the more expensive communication costs.

We also consider a message aggregation capacity φi at each level of the hier-
archy, which determines the actual number of messages required to send a given
amount of data. We refer to the number of messages sent at level i as Si, and
to the exchanged volume of data as Wi. S̄i = Si · αi is the associated latency
cost, while W̄i = Wi · βi is the bandwidth cost. These notations will be used
throughout the rest of the paper.

For the sake of simplicity in both algorithm description and cost analysis, we
assume the Pi compute nodes of level i to be virtually organized along a 2D grid
topology, that is Pi = Pri × Pci (note that any topology could be mapped onto
a 2D grid).

We note that the model makes abstraction of the detailed architecture of a
compute node or the interconnection topology at a given level of the hierarchy.
Hence such an approach has its own limitations, since the predicted performance
might not be accurate. However, while keeping the model tractable, this model
better reflects the actual nature of supercomputers than the one level model
assumed so far, and helps to understand the communication bottlenecks of com-
mon linear algebra operations. We also note that our model does not apply



to platforms with heterogeneity in the processing elements such as GPU and
multi-GPU clusters.

Communicating under the Hcp model We now describe how communica-
tion happens in the Hcp model, and how messages flow through the hierarchy.
We assume that if a compute node of level i communicates, all of its lower level
nodes participate. Hence if some date has to be sent over the network, it first
has to be collected from all the cores available on one node. We denote as coun-
terparts of a compute node of level i all the nodes of level i lying in remote
compute nodes of level i+1 and having the same local coordinates. We therefore
have the relation Wi = Wi+1/Pi.

As an example, let us detail a communication of a volume of data Wi taking
place between two nodes of level i. A total of P/P ∗

i processing elements of
level 1 are involved. Each has to send a chunk of data W1 = WiP

∗
i /P. Since this

amount of data has to fit in memory, we obviously have ∀i,M1 ≥W1 = WiP
∗
i /P.

These blocks are transmitted to the level above in the hierarchy, i.e. to level 2.
A compute node of level 2 has to send a volume of data W2 = P1W1. Since
the aggregation capacity at level 2 is φ2, this requires (W2/φ2) messages. The
same holds for any level k such that 1 < k ≤ i, where data is forwarded by
sending(Wk/φk) messages. We therefore have the following costs:

W̄k =
WiP

∗
k

P∗
i
· βk, S̄k = Wk

φk
· αk =

WiP
∗
k

φkP∗
i
· αk.

This “regular” communication pattern is often encountered in HPC applica-
tions, the main target of the Hcp model, and is simpler than a purely heteroge-
neous pattern (which could be encountered in grid environments for instance).
Moreover, this organization allows to aggregate data at the algorithm level rather
than relying on the actual network topology.

It is interesting to note that the Hcp model allows to model several types of
networks, depending on their aggregation capacity. We defined the three follow-
ing network types to demonstrate Hcp versatility:

– Fully-pipelined networks, aggregating all incoming messages into a single
message. This case is ensured whenever φi ≥ Pi−1Wi−1. Since Mi is the
size of the largest message sent at level i, we assume φi = Mi . We also
assume that all levels below are themselves fully-pipelined. Therefore, the
aggregation capacity becomes φi = Mi = Pi−1φi−1.

– Aggregating networks, aggregating data up to volume of φi < Mi before
sending a message.

– Forward networks, where messages coming from lower levels are simply for-
warded. For a given level i, it is required that φi = φi−1: when each sub-node
from level i − 1 sends Si−1 messages, the number of forwarded messages is
S̄i = Pi−1S̄i−1.

Based on the two extreme cases, we assume the aggregation capacity φi to
satisfy φi−1 ≤ φi ≤ Pi−1φi−1.



An example of hierarchical platform modeled by Hcp Consider a dis-
tributed memory platform composed of D drawers having N compute nodes
apiece. Let each node be a NUMA shared memory machine, with P processors.
Within a node, each socket is connected to a local memory bank of size M , thus
leading to a total shared memory of size M × P per node.

Within a drawer, nodes are interconnected with high speed interconnect such
as fiber optics, whereas drawers are connected with more classical copper links.
Let inter-drawer communication bandwidth and latency respectively be Winter

and Sinter. Let intra-drawer communications have a bandwidth Wd and a latency
Sd. For intra-node communications, we let Wmem (resp. Smem) be the bandwidth
(resp. latency) to exchange data with memory.

We model this platform in Hcp using three levels, with the following char-
acteristics:

# Comp. nodes Bandwidth Latency Memory Agg. capacity
P1 = P W1 = Wmem S1 = Smem M1 = M φ1 = M
P2 = N W2 = Wd S2 = Sd M2 = P1M1 φ2 = M · P1

P3 = D W3 = Winter S3 = Sinter M3 = P2M2 φ3 ≤M · P2

The aggregation capacities are chosen as follows: (1) On such hierarchical
platform, a processor is able to transfer, in one message, its entire local bank of
memory to another processor within the same compute node. This is ensured by
setting φ1 to M . (2) A compute node can transfer its entire shared memory to a
remote node in the same drawer in a single message. The aggregation capacity is
therefore chosen as φ2 = MP1. (3) Finally, at the topmost level, the interconnect
generally does not allow for sending the global volume of data coming from
all drawers using a single message. The aggregation capacity is thus chosen as
φ3 ≤MP2.

Hcp allows to model typical HPC platforms, giving communication details
at each level of the hierarchy. The switch from a shared memory to a distributed
memory environment is handled through the choice of the aggregation capacities.

Lower bounds on communication We now introduce lower bounds on
communication at every level of the hierarchy. Lower bounds on communication
have been generalized in [4] for direct methods of linear algebra algorithms which
can be expressed as three nested loops. We refine these lower bounds under our
hierarchical model. For matrix product-like problems, at least one copy of the
input matrix has to be stored in memory: a compute node of level i thus needs a
memory of Mi = Ω(n2/P ∗

i ). Furthermore, the lower bound on latency depends
on the aggregation capacity φi of the considered level i, where a volume W̄i needs
to be sent in messages of size φi. Hence the lower bounds on communication at
level i:

Wi ≥ Ω
(

#flops√
memory

)
= Ω

(
n2√
P ∗
i

)
(1)

Si ≥ Ω
(
Wi

φi

)
= Ω

(
n2

φi
√
P ∗
i

)
(2)



Note that, for simplicity, we expressed the bound on latency with respect to
φi for each level i. Since we consider φ1 = M1, the lower bound on latency for
level 1 can also be expressed as S̄1 = Ω

(√
P
)
.

4 Multilevel QR factorization

In this section we introduce ML-CAQR, a multilevel algorithm for computing
the QR factorization of a dense matrix A. This multilevel algorithm heavily rely
on its 1-level communication optimal algorithm CAQR, and can be seen as a
recursive version of this algorithm. ML-CAQR recursive layout naturally allows
for local elimination trees adapted to fit hierarchical platforms, thus reducing
the communication needs at each level of the hierarchy. ML-CAQR is targeting
large scale hierarchical platforms. The focus is set on keeping the communication
requirements as low as possible at every level of the hierarchy, like CAQR on
platforms with one level of parallelism.
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Y
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Fig. 2. Structure of the Householder reflectors

ML-CAQR, given in Algorithm 1, uses a recursive tree-based elimination
scheme based on Householder reflections. As a tree-based algorithm, ML-CAQR
stores the Householder reflectors in the lower triangular part of matrix A using a
tree structure as in [3]. A small example is depicted on Figure 2, where a panel of
matrix A is first split into four domains which are independently factored, then
eliminated two by two. The resulting Householder reflectors should be applied
following the same order to reflect the update of this panel.

At the topmost level of the hierarchy, ML-CAQR factors the entire input
matrix A panel by panel. A panel is processed in multiple elimination steps
following a tree-based approach. At the leaves of the tree, rectangular blocks are
factored. The obtained R factors are then grouped two-by-two and eliminated
in a sequence of elimination of size 2bl-by-bl, where bl is the panel size. Each
factorization or elimination corresponds to a recursive call to ML-CAQR on the
next lower level. After panel factorization, Householder reflectors are sent to
remote compute nodes so as to update the trailing matrix using two recursive
routines: ML-Fact and ML-Elim.

When called on two aggregated R factors, ML-CAQR and ML-Elim take this
specific shape into account and do not perform any unnecessary computations.



Algorithm 1: ML-CAQR(A,m, n, r, P)

Input: Matrix A, m is the number of rows of A, n is the number of columns, r is the
level of recursion, P is the current compute node

Output: Factored matrix with R in the upper triangular part and the Householder
reflectors Y in the lower triangular part

if r = 1 then
Call CAQR(A,m, n, b1, P)

else
for kk ← 1 to n, with step of br do

for Compute nodes p← 1 to Prr in parallel do
hp ← max(br, (m− kk + 1)/Prr )
if kk + (p− 1)hp ≤ n then

panel← A(kk + (p− 1)hp : kk + p · hp − 1, kk : kk + br − 1)
Call ML-CAQR(panel, hp, br, r − 1, p)

if There are multiple R factors then
for j ← 1 to logPrr do

Nodes (psource,ptarget) used to perform the elimination.
Send local br-by-br to the remote node ptarget
Stack two br-by-br upper triangular matrices in RR
Call ML-CAQR(RR, 2br, br, r − 1, psource)
Call ML-CAQR(RR, 2br, br, r − 1, ptarget)

for Compute nodes p← 1 to Prr in parallel do
Broadcast Householder vectors along processor row
for Compute node rp← 2 to Pcr on same row as p do

Call ML-Fact(r − 1, rp)

if There are multiple R factors then
for j ← 1 to logPrr do

Nodes (psource,ptarget) used to perform the elimination.
for Nodes rp← 2 to Pcr on same row as psource in parallel do

Remote node rptarget is on same row as ptarget and same column
than rp
rp sends its local A to rptarget
Call ML-Elim(r − 1, rp)
Call ML-Elim(r − 1, rptarget)

However, for the sake of simplicity, this special case is not taken into account in
Algorithm 1.

More formally, for each recursion level r, let br be the block size, and s be
the internal computation step (it is incremented by br).

For each panel of size br, ML-CAQR proceeds as follows:

1. The panel is factored by using a reduction operation, where ML-CAQR is
the reduction operator. With a binary tree, it processes as follows:
(a) First, the panel is divided into Prr subdomains of size (m− s+ 1)/Prr -

by-br, which are recursively factored with ML-CAQR at level r − 1. At
the deepest level, CAQR is called.

(b) The resulting br-by-br R factors are eliminated two-by-two by ML-
CAQR at level r − 1, requiring logPrr steps along the critical path.



The computation is redundantly performed on each pair of processors as
it simplifies the communication pattern.

2. The current trailing matrix is then updated:
(a) Householder reflectors in lower trapezoidal part of the panel have to be

broadcasted along processor rows.
(b) Updates corresponding to factorizations at the leaves of the tree are

applied using the ML-Fact routine.
ML-Fact broadcasts Prr blocks of Householder reflectors of size
(m− s+ 1)/Prr -by-br from the column of nodes holding the current
panel along rows of compute nodes. At the deepest level, the update
corresponding to a leaf is applied as in CAQR (see [3]).

(c) The updates due to the eliminations of the intermediate R factors are
then applied to the trailing matrix using the ML-Elim procedure. Blocks
of size br-by-(n− s− br + 1)/Pcr are exchanged within a pair of compute
nodes. At the lowest level, a partial update is locally computed before
being independently applied onto each processing elements (similarly to
CAQR).

5 Multilevel QR performance model

In this section, we provide cost analysis of ML-CAQR algorithm with respect
to the Hcp model. Two types of communication primitives are used, namely
point-to-point and broadcast operations. To simplify the analysis, we define two
recursive costs corresponding to these communication patterns.

In a point-to-point communication, a volume D is transferred between two
compute nodes of level r. All compute nodes from level 1 to level r − 1 below
those two nodes of level r are involved, sending their local data to their respective
counterparts in the remote node of level r. The associated communication costs
are therefore:

W̄P2P(1 . . . r,D) =
∑r
k=1

D·P∗
r

P∗
k
βk,

S̄P2P(1 . . . r,D) = α1 +
∑r
k=2

D·P∗
r

φkP∗
k
αk.

A broadcast operation between Pcr compute nodes of level r is very similar
to point to point communication. However at every level, a participating node
broadcasts its data to Pcr counterparts. A broadcast can thus be seen as logPcr
point-to-point communications.

We now review the global computation and communication costs of ML-
CAQR. At each recursion level r, the current panel is factored by doing Prr
parallel calls to ML-CAQR. Then, the resulting R factors are eliminated through
logPrr successive factorizations of 2br-by-br matrices formed by stacking up
two upper triangular R factors. Once a panel is factored, the trailing matrix is
updated. However, as the Householder reflectors are stored in a tree structure,
the updates must be done in the same order as during panel factorizations. These



operations are recursively performed using ML-Fact for the leaves and ML-Elim
for higher levels in the tree. The global recursive cost of ML-CAQR is composed
of several contributions. We let:

– TCAQR (m,n, b, P ) be the cost of factoring a matrix of size m-by-n with
CAQR using P processors and a block size b.

– TML-CAQR (m,n, b, P ) be the cost of ML-CAQR on an m-by-n matrix using
P processors and a block size b.

– TP2P(levels, volume) be the cost of sending an upper triangular R factor
within a panel of level r.

– TML-Fact (m,n, b, P ) be the cost of updating the trailing matrix to reflect
factorizations at the leaves of the elimination trees.

– Finally, TML-Elim (m,n, b, P ) be the cost of applying updates corresponding
to higher levels in the trees.

In terms of communication, ML-Fact consists in broadcasting Householder
reflectors along process rows, while ML-Elim corresponds to logPrr point to
point communications of trailing matrix blocks between pairs of nodes within
a process column. Using these notations, the cost TML-CAQR (m,n, br, Pr) of
ML-CAQR can be expressed as,

∑n/br
s=1

[
TML-CAQR

(
m−(s−1)br

Prr
, br, br−1, Pr−1

)
+ logPrr · TP2P(1 . . . r,

b2r
2 )

+ logPrr · TML-CAQR (2br, br, br−1, Pr−1)

+ TML-Fact

(
m−(s−1)br

Prr
, n−sbrPcr

, br−1, Pr−1

)
+ logPrr · TML-Elim

(
2br,

n−sbr
Pcr

, br−1, Pr−1

)]
if r > 1

TCAQR (m,n, b1, P1) if r = 1

(3)

ML-CAQR uses successive elimination trees at each recursion level r, each of
which are traversed in logPrr steps. Moreover, successive trees from level l down
to level r come from different recursive calls: they are inherently sequentialized.
Thus, the total number of calls at a given recursion level r can be upper-bounded
by Nr = 2l−r

∏l
j=r logPrj . An upper bound on the global cost of ML-CAQR

can be expressed in terms of number of calls at each level of recursion, broken
down between calls performed on leaves or higher levels in the trees.

In the following γ is the flop rate and F̄ML-CAQR (n, n) is the computational
cost of ML-CAQR applied to a square matrix of size n. We assume that for each
level k, we have Prk = Pck =

√
Pk, and that block sizes are chosen to make

the additional costs lower order terms, that is bk = O(n/(
√
P ∗
k ·
∏l
j=k log2 Pj)).

Then, by expanding all recursive costs from level l down to level 1, the cost of
ML-CAQR can be expressed as:

F̄ML-CAQR (n, n) ≤ 4n3

P
γ +O

(
l · n3

P
∏l
j=1 logPj

)
γ (4)



W̄ML-CAQR (n, n) ≤ n2√
P

l · logP1 + 4l ·
l∏

j=1

logPj + logPl

β1 (5)

+

l−1∑
k=2

(l − k) · n2√
(P ∗
k )

(
1 +

2
∏l
j=k logPj√
Pl

)
βk +

n2 · logPl√
P ∗
l

βl

+O

(
l · n2√
P logPl

· β1 +
l−1∑
k=2

(l − k) · n2√
P ∗
k logPl

· βk +
n2√

P ∗
l logPl

· βl
)

S̄ML-CAQR (n, n) ≤ l ·
√
P ·

l∏
j=1

log3 Pjα1 +
l−1∑
k=2

n2 · (l − k) logPk

φk
√
P ∗
k

αk (6)

+
n2 · logPl

φl
√
Pl

(
1 +

1∏l−1
2

√
Pj

)
αl

+O

√P · l∏
j=1

log2 Pjα1 +
l−1∑
k=2

(l − k) · n2
φk
√
P ∗
k logPl

αk +
n2

φl
√
Pl logPl

αl


Finally, it is important to note that the recursive nature of ML-CAQR can

lead to three times more computations than the optimal algorithm (we ignore
several lower order terms). This is similar to other recursive approaches [12].
Altogether, ML-CAQR allows to reach the lower bounds on communications
at all levels of the hierarchy up to polylogarithmic factors. Indeed, choosing
appropriate block sizes makes most of the extra computational costs lower order
terms while maintaining the optimality in terms of communication. We refer
the interested reader to the related research report [9] for more details on these
costs.

6 Multilevel LU factorizations

Here we briefly introduce two variants of a multilevel algorithm for computing the
LU factorization of a dense matrix, ML-CALU . Both algorithms are recursive.
The first variant, 1D-ML-CALU , follows a uni-dimensional approach where the
recursion is applied to the entire panel at each recursive call. The second variant,
2D-ML-CALU , processes a panel by multiple recursive calls on sub-blocks of the
panel followed by a “reduction” phase similar to that of ML-CAQR. The base
case of both recursive variants is CALU [13], which uses tournament pivoting
to select pivot rows. 1D-ML-CALU has the same stability as CALU . However,
while it minimizes bandwidth over multiple levels of parallelism, it allows to
minimize latency only over one level of parallelism. 2D-ML-CALU which uses
a two-dimensional recursive approach, is shown to be stable in practice, and re-
duces both bandwidth and latency over multiple levels of parallelism. A detailed
description, a performance analysis, and a stability study of both algorithms can
be found in [9].



We note that similar multilevel approaches can be applied in the context
of the communication avoiding rank revealing QR factorization [14], as well as
the communication avoiding LU factorization with panel rank revealing pivoting
[15].

7 Experimental results: performance predictions

Multilevel communication avoiding algorithms are tailored for large scale plat-
forms displaying a significant gap between processing power and communica-
tion speed. The upcoming Exascale platforms are a natural target for these
algorithms. We present performance predictions on a sample exascale platform.
Current petascale platforms already display a hierarchical nature which strongly
impacts the performance of parallel applications. Exascale will dramatically am-
plify this trend. We plan to provide here an insight on what could be observed
on such platforms.

Level Type # Bandwidth Latency

1 2x 6-cores Opterons 12 19.8 GB/s 1 × 10−9s
2 Hopper nodes 2 10.4 GB/s 1 × 10−6s
3 Gemini ASICS 9350 3.5 GB/s 1.5 × 10−6s

Table 1. Characteristics of NERSC Hopper.

As exascale platforms are not available yet, we base our sample exascale plat-
form on the characteristics of the NERSC Hopper [16, 17] petascale platform. It
is composed of Compute Nodes, each with two hexacore AMD Opteron Magny-
cours 2.1GHz processors offering a peak performance of 8.4 GFlop/s, with 32
GB of memory. Nodes are connected in pairs to Gemini ASICs, which are in-
terconnected through the Gemini network [18, 19]. Detailed parameters of the
Hopper platform are presented in Table 1.

Level Type # Bandwidth Latency (formula) Latency (adjusted)

1 Multi-cores 1024 300 GB/s 1 × 10−10s 1 × 10−9s
2 Nodes 32 150 GB/s 1 × 10−7s 1.2 × 10−7s
3 Interconnects 32768 50 GB/s 1.5 × 10−7s 1 × 10−6s

Table 2. Characteristics of a sample exascale platform.

Our target platform is obtained by increasing the number of nodes at all 3
levels, leading to a total of 1 million nodes. The amount of memory per processing
element is kept constant at 1.3 GB. Moreover, exascale platforms are likely to
be available around year 2018. Therefore, latencies and bandwidths are derived
using an average 15% decrease per year for the latency and a 26% increase for
the bandwidth [19, 18].

However, doing so might conduct to latencies so low that electrical signals
would have to travel faster than the speed of light in vacuum. This is of course



impossible. Therefore, to alleviate this problem, we assume that electrical signal
travels at 10% of the speed of light in copper, against 90% in fiber optics. We
consider the links within a multicore processor to be made out of copper (at level
1) and the die to be at most 3cm-by-3cm. The links between a group of nodes
(i.e. at level 2) are assumed to be based on fiber optics while the interconnect
at the last level are assumed to be copper links. Finally, we assume the global
supercomputer footprint to be 30m-by-30m. These parameters are detailed in
Table 2. We model the platform with respect to the Hcp model, and use it to
estimate the running times of our algorithms.

We note that in order to assess the performance of multilevel algorithms,
costs of state-of-the-art 1-level communication avoiding algorithms need to be
expressed with respect to the Hcp model. To this end, we assume (1) each
communication to go through the entire hierarchy: two communicating nodes
thus belong to two distant nodes of level l, hence a bandwidth βl. (2) Bandwidth
is shared among parallel communications.

We evaluate the performance of the ML-CAQR algorithm as well as CAQR
on a square matrix of size n×n, distributed over a square 2D grid of Pk processors
at each level k of the hierarchy, Pk =

√
Pk ×

√
Pk. In the following, we assume

all levels to be fully-pipelined. Similar results are obtained regarding forward
hierarchies, which is explained by the fact that realistic test cases are not latency
bound, but are mostly impacted by their bandwidth cost.
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Fig. 3. Prediction of communication to computation ratio on an exascale plat-
form for 1-level CAQR .

The larger the platform is, the more expensive the communication becomes.
This trend can be illustrated by observing the communication to computation
ratio, or CCR of an algorithm. In Figures 3 and 4, we plot the CCR of CAQR
and ML-CAQR on the exascale platform. The shaded areas correspond to unre-
alistic cases where there are more processing elements than matrix elements and
should not be considered. As the number of processing elements increases, the
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Fig. 4. Prediction of communication to computation ratio on an exascale plat-
form for 1-level ML-CAQR .

cost of CAQR (in Figure 3) gets dominated by communication. Our multilevel
approach alleviates this trend, and ML-CAQR (in Figure 4) allows to decrease
communication, especially when the number of levels involved is large. Note that
for l = 1, ML-CAQR and CAQR are equivalent.
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Fig. 5. Speedup of ML-CAQR vs. 1-level CAQR

However, as ML-CAQR performs more computations than CAQR, we com-
pare the expected running times of both algorithms. Here, we denote by running
time the sum of computational and communication costs. We thus assume no
overlap between computation and communication. The ratio of the ML-CAQR
running time over CAQR is depicted in Figure 5. ML-CAQR clearly outper-
forms CAQR when using the entire platform, despite its higher computational



costs. As a matter of fact in this regime, the running time is dominated by the
bandwidth cost, and ML-CAQR significantly reduces it at all levels.

1
1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 3
1 1 1 1 1 1 1 1 2 4
1 1 1 1 1 1 0.9 1 2 3 4 19

1 1 1 1 1 0.9 0.9 1 2 3 14 38
1 1 1 0.9 0.8 1 1 2 9 26 58 110

1 0.9 0.8 0.9 1 1 6 17 40 85 93
0.8 0.8 1 1 5 12 26 58 70 52 38

0.9 1 3 8 18 38 49 42 34 27
2 5 12 26 33 30 27 23 20 17

7 17 24 22 20 19 17 15 13
16 17 15 13 13 12 11 10 10

12 10 9 9 9 9 8 8 7
7 6 6 7 6 6 6

4 4 5 5 5
3 3 3

2

5 10 15 20 25 30

0

5

10

15

20

25

30

Log2(Number of nodes)

Lo
g 2

(N
)

(p
ro

bl
em

si
ze

)

0.5

1

2

4

8

16

32

64

128

256l = 3l = 2l = 1

Fig. 6. Speedup of ML-CALU vs. 1-level CALU

Regarding the running times ratio, depicted in Figure 6, we can also conclude
that ML-CALU is able to keep communication costs significantly lower than
CALU when the entire platform is used, leading to significant speedups.

8 Conclusion

In this paper we have studied ML-CAQR, an algorithm that minimizes commu-
nication over multiple levels of parallelism at the cost of performing redundant
computation. The complexity analysis is performed within Hcp, a model that
takes into account the communication cost at each level of a hierarchical plat-
form. The multilevel QR factorization algorithm has similar stability properties
to classic algorithms. Two variants of the multilevel LU factorization have been
introduced but not discussed in details. Our performance predictions on a model
exascale platform show that for strong scaling, the multilevel algorithms lead to
important speedups compared to algorithms minimizing communication over
only one level of parallelism.
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