
Testing matrix function algorithms using
identities

Deadman, Edvin and Higham, Nicholas J.

2014

MIMS EPrint: 2014.13

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


A

Testing Matrix Function Algorithms Using Identities

EDVIN DEADMAN, The University of Manchester
NICHOLAS J. HIGHAM, The University of Manchester

Algorithms for computing matrix functions are typically tested by comparing the forward error with the
product of the condition number and the unit roundoff. The forward error is computed with the aid of a
reference solution, typically computed at high precision. An alternative approach is to use functional iden-
tities such as the “round trip tests” elogA = A and (A1/p)p = A, as are currently employed in a SciPy test
module. We show how a linearized perturbation analysis for a functional identity allows the determination
of a maximum residual consistent with backward stability of the constituent matrix function evaluations.
Comparison of this maximum residual with a computed residual provides a necessary test for backward
stability. We also show how the actual linearized backward error for these relations can be computed. Our
approach makes use of Fréchet derivatives and estimates of their norms. Numerical experiments show that
the proposed approaches are able both to detect instability and to confirm stability.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analysis; G.1.3
[Numerical linear algebra]

General Terms: Algorithms, Performance

Additional Key Words and Phrases: matrix function, normwise relative error, functional identity, testing,
forward error, backward error, SciPy, Python, MATLAB, NAG Library

1. INTRODUCTION
In recent years much effort has been devoted to developing new and improved algo-
rithms for computing functions of matrices X = f(A), A ∈ Cn×n, where f is an under-
lying scalar function and f(A) ∈ Cn×n is defined (for example) via the Jordan canonical
form [Higham 2008, Sec. 1.2]. Important functions include the exponential, the loga-
rithm, and fractional matrix powers. Most testing of such algorithms has been based
on approximations to the forward error ‖X − X̂‖/‖X‖ of the computed X̂. Here, X is
computed by a trusted reference algorithm at the working precision or any algorithm
using higher precision arithmetic, or might be known exactly by the construction of
the problem. The forward error is compared with the product of the condition number
of the problem and the unit roundoff in order to see whether the algorithm is behaving
in a forward stable way.

The forward error approach has drawbacks. A reference algorithm superior in accu-
racy to the algorithm being tested may not be available, and the exact solution is not
always known. While the use of higher precision arithmetic is valuable for algorithm
development in a single programming environment, it is not appropriate in a software
engineering setting in which implementations of an algorithm in a language such as C
or Fortran are tested on multiple systems with different compilers. Furthermore, high
precision arithmetic is expensive and its cost limits the size of the test matrices that
can be used.

In this work we develop an approach originally employed by Cody [1993] for testing
algorithms for evaluating elementary functions of scalars. Suppose Q(f1, . . . , fk) = 0
is an identity in the functions f1, . . . , fk and is such that Q(f1(A), . . . , fk(A)) = 0 for
A ∈ Cn×n. Examples of such identities are elogA = A and sin(2A)−2 sinA cosA = 0, and

This work was supported by European Research Council Advanced Grant MATFUN (267526). The
second author was also supported by Engineering and Physical Sciences Research Council grant
EP/I006702/1. Author’s addresses: Edvin Deadman and Nicholas J. Higham, School of Mathematics,
The University of Manchester, Manchester, M13 9PL, UK; email: edvin.deadman@manchester.ac.uk,
nick.higham@manchester.ac.uk.



A:2

general results saying when scalar identities translate to the matrix case are available
[Higham 2008, Thms. 1.16, 1.17]. If each of the function evaluations Fj = fj(A) were
to be done in a backward stable way then we would have computed matrices F̂j =
fj(A+∆Aj), ‖∆Aj‖ ≤ u‖A‖, where u is the unit roundoff. Suppose we can solve

max ‖Q(f1(A+∆A1), . . . , fk(A+∆Ak)‖ subject to ‖∆Aj‖ ≤ u‖A‖, j = 1: k. (1.1)

Then by comparing the norm of the computed Q̂ with this maximum we can tell
whether the computations are consistent with backward stable function evaluations.
The nonlinear optimization problem (1.1) is too difficult to solve in the form stated,
so we will carry out a linearized analysis, using the Fréchet derivatives of the fi, and
estimate the maximum for the linearized problem.

We also develop an extension of this approach that computes a linearized backward
error for the identities, by using the Fréchet derivative expansions to obtain an under-
determined linear system whose minimal norm solution provides the backward error
matrices.

The intended use of our identity-based tests is both to compare competing algorithms
and to test that implementations of algorithms are working as expected. Since higher
precision arithmetic is not required, our tests are portable and are not limited to ma-
trices of small dimensions. The use of identities also allows us to detect programming
errors that might not otherwise be apparent, as for example if the code being tested is
run in higher precision arithmetic to obtain the reference solution.

This work does not represent the first use of identities to test matrix function al-
gorithms. For example Smith [2003], Guo and Higham [2006], Greco and Iannazzo
[2010], and Iannazzo and Manasse [2013] have all used the identity Xp − A = 0 to as-
sess algorithms for computing matrix pth roots. The identity elogA = A has been used
by Davies and Higham [2003] and Dieci et al. [1996] to test algorithms for the matrix
logarithm. Denman and Beavers, Jr. [1976] used the trace of the identity sign(A)2 = I
to test the convergence of iterations for computing the matrix sign function. Our con-
tribution treats general identities and incorporates the effects of errors in each of the
functions therein.

Identities are currently used to test matrix function codes in several numerical
software libraries. The Python package SciPy [Jones et al. 01 ] uses the identities
(A1/p)p = A and elogA = A, which it refers to as “round trip” tests in the source code on
Github at scipy/linalg/tests/test_matfuncs.py. The NAG Library [NAG Library ]
makes similar use of identities to provide additional tests for matrix function routines.
The Matrix Function Toolbox [Higham ] uses the identities sin2A + cos2A = I and
(A1/p)p = A in the test code mft_test.m distributed with the toolbox. In all these cases
heuristic tolerances are used in the tests. Our work provides the information needed
to make more rigorous choices of tolerance.

In the next section we introduce some necessary background on Fréchet derivatives
and the condition number of a matrix function. In section 3 we develop the use of iden-
tities for compositions of functions, while section 4 treats the product of functions. In
section 5 we show how to compute linearized backward errors from residuals of the
identities using both direct and iterative methods. Numerical experiments in section 6
demonstrate the ability of the tests to discriminate between stable and unstable be-
havior.



A:3

2. LINEAR OPERATORS, FRÉCHET DERIVATIVES, AND THE CONDITION NUMBER OF A
MATRIX FUNCTION

Consider a linear operator L : Cm×n → Cp×q. The norm of L is

‖L‖ = max
‖E‖=1

‖L(E)‖. (2.2)

Since L is linear we can write

vec(L(E)) = K vec(E), (2.3)

where the vec operator stacks the columns of a matrix on top of each other. The matrix
K ∈ Cmn×pq is called the Kronecker matrix and depends on L but not E. The following
result shows that we can estimate the 1-norm of the linear operator L by the 1-norm
of the matrix K at the cost of a factor max(n, q) uncertainty.

LEMMA 2.1. The linear operator L : Cm×n → Cp×q and its Kronecker matrix K
satisfy

‖L‖1
n
≤ ‖K‖1 ≤ q‖L‖1.

PROOF. The proof is essentially the same as that of [Higham 2008, Lem. 3.18],
which is a special case of this result. For E ∈ Cm×n we have ‖E‖1 ≤ ‖ vec(E)‖1 ≤ n‖E‖1
(with equality on the left for E = eeT1 and on the right for E = eeT , where e is the vector
of ones and e1 is the first unit vector). Hence, using (2.3),

1

n

‖L(E)‖1
‖E‖1

≤ ‖K vec(E)‖1
‖ vec(E)‖1

≤ q ‖L(E)‖1
‖E‖1

.

Maximizing over all E gives the result.

To estimate ‖L‖1 we will use the following algorithm, which is essentially [Higham
2008, Alg. 3.22] modified to use a block 1-norm estimator. We need the adjoint of L,
L? : Cp×q → Cm×n, which is defined by the condition

〈L(G), H〉 = 〈G,L?(H)〉 (2.4)

for all G ∈ Cm×n, H ∈ Cp×q. Here the scalar product 〈X,Y 〉 = trace(Y ∗X) = y∗x, where
y = vec(Y ) and x = vec(X). Note that 〈Kx, y〉 = 〈L(X), Y 〉 and hence

〈x,K∗y〉 = 〈Kx, y〉 = 〈L(X), Y 〉 = 〈X,L?(Y )〉 = 〈x, vec(L?(Y )〉.
Since this is true for all X, we have

K∗y = vec(L?(Y )). (2.5)

ALGORITHM 2.2 (1-NORM ESTIMATOR FOR LINEAR OPERATOR). Given a linear
operator L : Cm×n → Cp×q and the ability to compute L(E) and L?(E) for any
E this algorithm produces an estimate γ of ‖L‖1. More precisely, γ ≤ ‖K‖1, where
‖K‖1 ∈

[
n−1‖L‖1, q‖L‖1

]
.

1 Apply the block 1-norm estimator of Higham and Tisseur [2000],
with parameter t (the number of columns in the iteration matrix) set to 2,
to the matrix K, noting that Kx ≡ vec(L(X)) and K∗x ≡ vec(L?(X)),
where vec(X) = x.

Note that K is a rectangular matrix. Although it is stated for square matrices, the
1-norm estimation algorithm of Higham and Tisseur [2000] extends naturally to rect-
angular matrices without needing to pad them with zeros to make them square. The



A:4

latter algorithm requires about 4t matrix–vector products in total and produces esti-
mates almost always within a factor 3 of the true norm.

A function f is Fréchet differentiable at A ∈ Cn×n if there exists a linear operator
Lf (A, ·) : Cn×n → Cn×n, called the Fréchet derivative, such that

f(A+ E) = f(A) + Lf (A,E) + o(‖E‖). (2.6)

The relative condition number cond(f,A) of a matrix function f : Cn×n → Cn×n is

cond(f,A) = lim
ε→0

sup
‖∆A‖≤ε‖A‖

‖f(A+∆A)− f(A)‖
ε‖f(A)‖

and it can be expressed in terms of the Fréchet derivative as [Higham 2008, Thm. 3.1]

cond(f,A) = ‖Lf (A)‖
‖A‖
‖f(A)‖

. (2.7)

In order to apply Algorithm 2.2 we need the adjoint of Lf . In most cases of interest
for matrix functions f , including for any analytic function having a Taylor series with
real coefficients, L?f (A,X) = Lf (A,X

∗)∗; see Higham and Lin [2013, sec. 6] for details.
Let X̂ denote the computed approximation to a matrix functionX = f(A). The norm-

wise relative forward error is ‖X − X̂‖/‖X‖. The normwise relative backward error is

η(X̂) = min

{
‖∆A‖
‖A‖

: X̂ = f(A+∆A)

}
. (2.8)

Of course, η(X̂) could be undefined, for example if X̂ is singular and f is the exponen-
tial. A useful rule of thumb following from these definitions is that the forward error
is approximately bounded by the product of the condition number and the backward
error.

3. COMPOSITION OF MATRIX FUNCTIONS
Consider Fréchet differentiable matrix functions f and g satisfying the identity A =
f(g(A)). Such identities include elogA = A, (A1/2)2 = A, and sin(sin−1A) = A. We
assume that a computed approximation X̂ to f(g(A)) can be written

X̂ = f(g(A+ E1) + E2), (3.9)
‖E1‖ ≤ ε‖A‖, ‖E2‖ ≤ ε‖g(A)‖. (3.10)

This assumption can be interpreted as saying that the f and g evaluations are both
backward stable in floating point arithmetic if ε is a small multiple of the unit roundoff.
An alternative interpretation is that E2 is a forward error for the evaluation of g, in
which case the assumption is that the evaluation of f is exact and that of g mixed
forward–backward stable [Higham 2002, p. 7]. The question of interest is how large
the normwise relative residual of the identity,

res =
‖X̂ −A‖
‖A‖

,

can be. Note first that by the chain rule for Fréchet derivatives [Higham 2008,
Thm. 3.4]

Lf
(
g(A), Lg(A,E1)

)
= E1.



A:5

The residual of the identity, R = X̂ −A, satisfies

R = f
(
g(A+ E1) + E2

)
−A

= f
(
g(A) + Lg(A,E1) + o(‖E1‖) + E2

)
−A

= Lf
(
g(A), Lg(A,E1)

)
+ Lf (g(A), E2) + o(‖E1‖) + o(‖E2‖) + o(‖Lg(A,E1)‖)

= E1 + Lf (g(A), E2) + o(‖E1‖) + o(‖E2‖) + o(‖Lg(A,E1)‖), (3.11)

where Lf and Lg are the Fréchet derivatives of f and g, respectively.
We would like to know more about the o(‖ · ‖) terms in (2.6) and hence in (3.11). Al-

Mohy and Higham [2010, Thm. 1] show that if f : C→ C has a power series expansion
then, for α ∈ C and E ∈ Cn×n such that A+αE lies in the radius of convergence of the
power series,

f(A+ αE) =

∞∑
k=0

αk

k!
G

(k)
f (A,E), (3.12)

where the kth Gâteaux derivative in the direction E, G(k)
f (A,E), is given by

G
(k)
f (A,E) =

dk

dtk
f(A+ tE)

∣∣∣∣
t=0

.

Note that for k = 1, G(k)
f (A,E) is equal to the Fréchet derivative Lf (A,E) under our

assumption on f [Higham 2008, Sec, 3.2]. This expansion shows that the o(‖ · ‖) term
in (2.6), and hence every such term in (3.11), is in fact O(‖ · ‖2) = O(ε2). We can there-
fore drop these terms and obtain a first order bound with error O(ε2). We note that the
constants in the dropped terms depend on second and higher order Gâteaux deriva-
tives. Dropping these terms may not be valid if the higher order Gâteaux derivatives
are significantly larger in norm than the first Gâteaux derivative.

The relative residual can therefore be approximated by

res :=
‖R‖
‖A‖

≈ ‖E1 + Lf (g(A), E2)‖
‖A‖

. (3.13)

The maximum possible value that the relative residual can take under the assump-
tions (3.10) is

resmax = max
‖E1‖≤ε‖A‖
‖E2‖≤ε‖g(A)‖

‖E1 + Lf (g(A), E2)‖
‖A‖

. (3.14)

Since E1 and E2 are independent and arbitrary we have

resmax = ε+
ε‖g(A)‖
‖A‖

max
‖E2‖≤1

‖Lf (g(A), E2)‖

= ε(1 + cond(f, g(A))), (3.15)

using (2.2) and (2.7).
Our test compares the relative residual res with resmax in the 1-norm. To do so we

need to estimate cond(f, g(A)), which can be done by using Algorithm 2.2 to estimate
‖Lf (g(A))‖1.

As mentioned in section 1, the residual of the identity (A1/p)p = A is often used to
test algorithms for principal matrix pth roots A1/p, were p is a positive integer. Guo
and Higham [2006] give what is essentially a specialized version of the analysis of this



A:6

section with E1 = 0, in order to derive an appropriate residual test for algorithms for
computing pth roots.

We note that for the identity f(g(A)) = I there is no E1 term in (3.11) and so (3.15)
becomes resmax = ε cond(f, g(A)).

4. PRODUCT OF MATRIX FUNCTIONS AND COSINE–SINE IDENTITY
We suppose now that the product of two matrix functions f(A)g(A) is known a priori,
for example eAe−A = I or A2/3A1/3 = A. Assume that the computed product X̂ of
f(A)g(A) is backward stable in the sense that

X̂ = f(A+ E1)g(A+ E2), (4.16)
‖E1‖ ≤ ε‖A‖, ‖E2‖ ≤ ε‖A‖. (4.17)

The residual is then given by

R = X̂ − f(A)g(A)
= f(A+ E1)g(A+ E2)− f(A)g(A)
= Lf (A,E1)g(A) + f(A)Lg(A,E2) + Lf (A,E1)Lg(A,E2) + o(‖E1‖) + o(‖E2‖). (4.18)

The term Lf (A,E1)Lg(A,E2) is of second order, as are the o(·) terms in view of (3.12).
The maximum possible value that the relative residual res = ‖R‖/‖f(A)g(A)‖ can take
subject to (4.17) is, to first order,

resmax = u
‖A‖

‖f(A)g(A)‖
max
‖E1‖≤1
‖E2‖≤1

‖Lf (A,E1)g(A) + f(A)Lg(A,E2)‖. (4.19)

We now define the linear operator Lpd(A, ·) : Cn×2n → Cn×n, where

Lpd(A,E) = Lf (A,E1)g(A) + f(A)Lg(A,E2), (4.20)

with E = [E1, E2] ∈ Cn×2n. The 1-norm of Lpd(A) is

‖Lpd(A)‖1 = max
‖E‖1≤1

‖Lpd(A,E)‖1 = max
‖E1‖1≤1
‖E2‖1≤1

‖Lf (A,E1)g(A) + f(A)Lg(A,E2)‖1.

Hence, in the 1-norm,

resmax =
ε‖A‖1

‖f(A)g(A)‖1
‖Lpd(A)‖1.

We can estimate ‖Lpd(A)‖1 to within a factor 2n (in view of Lemma 2.1) by applying
Algorithm 2.2, using the fact, proved in the appendix, that the adjoint of Lpd is given
by

L?pd(A, Y ) = [L?f (A, Y g(A)
∗), L?g (A, f(A)

∗Y )].

We indicate how the analysis can be carried out for the identity sin2A + cos2A = I,
which is useful for testing algorithms for the matrix sine and cosine. We assume that
we have a backward stable computed X̂ such that

X̂ = sin2(A+ E1) + cos2(A+ E2),

‖E1‖ ≤ ε‖A‖, ‖E2‖ ≤ ε‖g(A)‖.



A:7

Then the residual of the identity is, neglecting higher order terms in E1 and E2,

R = sin2(A+ E1) + cos2(A+ E2)− I
≈ (sinA)Ls(A,E1) + Ls(A,E1) sinA+ (cosA)Lc(A,E2) + Lc(A,E2) cosA

≡ Lsc(A,E), (4.21)

where Ls and Lc are the Fréchet derivatives of the matrix sine and cosine, respectively,.
For the linear operator Lsc(A) : Cn×2n → Cn×n defined by (4.21) the maximum value
of ‖R‖1 is

resmax = ε‖A‖1‖Lsc(A)‖1.
To apply Algorithm 2.2 we need the fact, proved in the appendix, that

L?sc(A, Y ) =
[
L?s
(
A, Y sinA∗ + (sinA∗)Y

)
, L?c

(
A, Y cosA∗ + (cosA∗)Y

)]
. (4.22)

5. OBTAINING BACKWARD ERRORS FROM THE RESIDUALS
The tests developed in sections 3 and 4 are able to show only that a computation is be-
having in a way consistent with backward stability, because a suitably small relative
residual (to first order) is a necessary condition but not a sufficient condition for back-
ward stability. It is desirable to be able to obtain (or at least estimate) the backward
errors in the matrix function computations directly from the residuals in the identities.

For the composition of functions the backward error of a computed X̂ ≈ f(g(A)) is

ηcp(X̂) = min

{
max

(
‖E1‖
‖A‖

,
‖E2‖
‖g(A)‖

)
: X̂ = f

(
g(A+ E1) + E2

)}
.

Assuming that f(g(A)) = A, by (3.11) the constraints can be rewritten in terms of the
residual Rcp = X̂ −A as

Rcp = f(g(A+ E1) + E2)−A ≈ E1 + Lf (g(A), E2) =: Lcp(A,E),

where E = [E1, E2] ∈ Cn×2n and the approximation is correct to first order. Applying
the vec operator yields

vec(Rcp) = vec(Lcp(A,E)) = Kcp(A) vec(E).

This equation can be rewritten

K̃cpẼ ≡ Kcp(A)D ·D−1 vec(E) = vec(Rcp), D = diag(‖A‖I, ‖g(A)‖I), (5.23)

and the minimum norm solution to this underdetermined system, which we will refer
to as the linearized normwise relative backward error, approximates ηcp(X̂).

Analogous formulas to (5.23) hold for the product of functions and the sine and cosine
identity, though the scaling matrix D is not needed in these cases since the backward
error matrices E1 and E2 both perturb A. In each case the n2 × 2n2 Kronecker ma-
trix can be computed explicitly using the following algorithm, which is very similar to
[Higham 2008, Alg. 3.17].

ALGORITHM 5.1. Given A ∈ Cn×n and functions f and g together with their Fréchet
derivatives, this algorithm computes Kcp(A), Kpd(A), or Ksc(A).

1 for j = 1: 2n
2 for i = 1:n
3 Z = eie

T
j ∈ Rn×2n (zero apart from 1 in the (i, j) position).

4 Compute Y = Lx(A,Z) % The subscript x denotes cp, pd, or sc.
5 Kx(: , (j − 1)n+ i) = vec(Y )
6 end



A:8

7 end

Cost: O(n5) flops assuming evaluation of f , g and their Fréchet derivatives costs
O(n3) flops.

The overall cost of computing the backward error estimate is O(n6) flops if we ex-
plicitly form the Kronecker matrices and then find the minimum 2-norm solution by
QR factorization. This clearly limits n. The Kronecker matrices are highly structured
[Higham and Relton 2013a], [Higham and Relton 2013b], but it is not clear how to take
advantage of this structure in using a direct method to solve the problem.

Instead, we can find the minimum 2-norm solution to (5.23) using any method that
requires only matrix–vector products with K̃cp. Indeed if vec(Z) = Dx then

K̃cpx = Kcp(A)Dx = vec(Lcp(A,Z)),

and Lcp(A,Z) can be evaluated in O(n3) flops. Similarly, matrix–vector products
K̃∗cpx = DKcp(A)

∗x can be evaluated using (2.5). Therefore Krylov subspace meth-
ods such as LSQR [Paige and Saunders 1982] or the more recent LSMR [Fong and
Saunders 2011] can be used, at a cost of O(n3) flops per iteration and O(n2) storage.

6. NUMERICAL EXPERIMENTS
The numerical tests described in this section use both random matrices and specific
matrices selected from the literature that are known to cause difficulties for certain
matrix function algorithms. In each experiment we compare the relative residual in the
matrix function identity, res, with the estimated resmax and also evaluate the linearized
backward error of section 5, denoted η, which should be of order the unit roundoff u if
the algorithms are performing stably. The purpose of the experiments is to see whether
our tests can reliably detect whether methods are behaving stably or unstably. All the
computations were carried out in MATLAB R2013a.

Unless otherwise stated, the matrix functions and Fréchet derivatives were com-
puted using the following algorithms:

— matrix exponential: scaling and squaring algorithms from [Al-Mohy and Higham
2009a], [Al-Mohy and Higham 2009b],

— matrix logarithm: inverse scaling and squaring algorithms from [Al-Mohy and
Higham 2012], [Al-Mohy et al. 2013],

— real matrix powers: Schur–Padé algorithm [Higham and Lin 2013],
— general matrix functions: Schur–Parlett algorithm [Davies and Higham 2003].

The latter algorithm is implemented in the MATLAB function funm and explicit links
to codes for the other algorithms are given in [Higham and Deadman 2014]. The first
two algorithms are abbreviated in the tables as “(Inv) scale & square”.

Fréchet derivatives of trigonometric matrix functions were evaluated using either
finite differences or the complex step approximation [Al-Mohy and Higham 2010].

Experiment 1: Random Matrices. We generated 100 10 × 10 random matrices with
elements from the uniform distribution on [0, 1). Matrix function algorithms would be
expected to perform stably with such relatively well-behaved matrices. Various iden-
tities were tested involving the composition and product of matrix functions. For the
fractional powers the random matrices were squared if necessary to remove negative
eigenvalues.

For each matrix and identity we computed res, the relative residual of the computed
matrix, resmax, the largest relative residual consistent with a backward stable compu-
tation and the backward error η (using Algorithm 5.1 and QR factorization [Golub and
Van Loan 2013, Alg. 5.6.2]). An estimate ηest of η was also computed using LSMR with



A:9

Table I: Results for 10× 10 random matrices with elements from uniform distribution
on [0, 1). The maximum values over 100 test matrices are displayed. A convergence
parameter of 1e-4 was used for the LSMR algorithm.

Identity Algorithms resmax res/resmax η η/ηest

elogA = A (Inv) scale & square 6.9e-14 0.19 2.4e-15 1.0020
(A0.2)5 = A Schur-Padé 1.6e-14 0.68 4.6e-15 1.0000
eAe−A = I Scaling-squaring 3.4e-12 0.10 1.3e-14 1.0002
A2/3A1/3 = A Schur-Padé 4.8e-11 0.24 1.3e-14 1.0040
sin2 A+ cos2 A = I Schur-Parlett 2.9e-14 1.05 6.3e-14 1.0300

Table II: Results for 10× 10 Chebyshev matrix.
Identity Algorithms res resmax η ηest tol it

log(eA) = A
Schur-Parlett 4.1e-4 5.7e-5 2.0e-7 1.8e-7 1e-12 10621
(Inv) scale & square 2.6e-7 5.7e-5 1.8e-15 1.5e-15 1e-12 16226

eAe−A = I
Schur-Parlett 1.4e-3 1.9e-5 1.7e-4 test failed
Scaling-squaring 3.6e-7 1.9e-5 1.5e-12 test failed

sin2 A+ cos2 A = I Schur-Parlett 6.5e-3 1.3e-8 4.7e-5 test failed

Table III: Results for 10× 10 Forsythe matrix.
Identity Algorithms res resmax η ηest tol it

log(eA) = A
Schur-Parlett 1.1e-9 1.8e-14 3.4e-10 3.2e-10 1e-2 7
(Inv) scale & square 8.2e-15 1.8e-14 3.9e-15 3.8e-15 1e-2 8

eAe−A = I
Schur-Parlett 7.7e-11 7.1e-15 2.5e-11 2.0e-11 1e-1 3
Scaling-squaring 2.2e-15 7.1e-15 4.5e-16 4.4e-16 1e-3 11

sin2 A+ cos2 A = I Schur-Parlett 3.1e-10 8.0e-15 4.3e-6 3.6e-6 1e-8 825

a convergence tolerance of 1e-4, which ensured in this experiment that ηest was within
an order of magnitude of η (the choice of tolerance is investigated further in subse-
quent experiments). The results are summarized in Table I, which shows the largest
values encountered over the 100 test cases. Both testing methods indicated that the
algorithms are performing stably. LSMR typically required between 10 and 150 itera-
tions.

Experiment 2: The Chebyshev and Forsythe Matrices. The 10 × 10 Chebyshev spec-
tral differentiation matrix and the 10 × 10 Forsythe matrix (available in MATLAB
as gallery(‘chebspec’,10) and gallery(‘forsythe’,10)) are known to be difficult
test matrices for the Schur-Parlett algorithm because of their eigenvalue distribu-
tions [Davies and Higham 2003]. The (inverse) scaling and squaring algorithms are
not affected by the eigenvalue distribution. Note that the identity log(eA) = A is valid
provided the matrix unwinding function [Aprahamian and Higham 2014] vanishes,
which is the case here. The results are shown in Tables II and III. In the tables “it” is
the number of iterations for LSMR with a convergence parameter “tol” to produce ηest
agreeing with η to one significant figure.

In each of the tests, use of the Schur–Parlett algorithm led to a relative residual con-
siderably larger than resmax and backward errors η significantly larger than u. Con-
versely, for the other algorithms the relative residual did not exceed resmax and the
backward errors were considerably closer to u. As a check that our first order analysis
is correctly describing the behavior we computed backward errors of all the constituent
function evaluations using high precision arithmetic; the results were entirely consis-
tent with the residual and res and η values. For example, for the exponential of the
Forsythe matrix the Schur-Parlett algorithm gave a normwise relative backward error



A:10

of 3.0× 10−10 whereas the scaling and squaring algorithm gave a normwise relative
backward error of 1.7× 10−15.

For each test, we attempted to find the largest tolerance for LSMR such that ηest
agreed with η to one significant figure. When the identities eAe−A = I and sin2A +
cos2A = I were tested with the Chebyshev matrix, we were unable to find such a
tolerance, allowing up to 20,000 iterations. Note that the condition numbers of the
corresponding Kronecker matrices were of the order 1014.

We conclude that the relative residual check and the backward error computation
are able to detect that the Schur-Parlett algorithm did not perform in a backward
stable manner and to reveal a clear distinction with the (inverse) scaling and squaring
algorithms, which did perform in a backward stable manner. However, LSMR was not
always able to return reliable backward error estimates.

Experiment 3: Large Matrices and the Convergence of Iterative Methods. The rate
of convergence of Krylov subspace methods can potentially be improved by using a
preconditioner. Without any information about the Kronecker matrix finding a precon-
ditioner prior to the solution of the least-squares problem is, in general, not possible.
However Baglama et al. [2013] have devised an augmented LSQR method, ALSQR,
which uses approximations of singular vectors, computed in the initial iterations, to
augment the Krylov subspaces and improve convergence.

To compare LSMR and ALSQR a 100 × 100 matrix with elements from the uniform
distribution on [0, 1) was used. The identity sin2A + cos2A = I was tested, and we
found res = 2.8× 10−12 and resmax = 2.9× 10−13, consistent with backward stable be-
haviour. On a 2.8 GHz Intel Core i7 MacBook Pro, computing resmax took 2.22 seconds.
For both LSMR and ALSQR we recorded ηest and the time taken to compute it for
various choices of tolerance. The speed of the methods is dependent on the machine
architecture, so a better measure of performance is the number of matrix-vector mul-
tiplications mul involving the Kronecker matrix.

We repeated the experiment using the identity eAe−A = I. We found res = 5.8× 107

and resmax = 1.4× 1010 (the large values are due to the Perron–Frobenius eigenvalue
of size approximately 50). Computing resmax took 1.84 seconds.

The results from the experiments are shown in Table IV. Perusal of the ηest values
suggests that using LSMR, a tolerance of 1e-3 is sufficient to obtain order-of-magnitude
estimates of η. To obtain estimates accurate to one significant figure tolerances smaller
than 1e-5 are required. For eAe−A = I, ALSQR converges more quickly than LMSR at
the most stringent tolerances. However, for the identity sin2A + cos2A = I, ALSQR
performs poorly: as the tolerance was decreased we were unable to obtain a value of
ηest in a reasonable time.

For small tol, both iterative methods are far more expensive than evaluating resmax.
For example, a single iteration of LSMR requires the computation of four Fréchet
derivatives, and hundreds of iterations may be required. In comparison, evaluating
resmax requires fewer than 20 Fréchet derivative evaluations.

Experiment 4: Matrices Prone to Overscaling. This first matrix in this experiment
provides an example where the use of identities fails to reveal instability. The matrix

B =

[
1 108

0 −1

]
was found in [Al-Mohy and Higham 2009b] to cause overscaling in the scaling and
squaring algorithm of Higham [2005], Higham [2009] (implemented in MATLAB
R2013a as expm), causing a loss of accuracy (particularly in the (1,2) element) compared



A:11

Table IV: Results from using LSMR and ALSQR to compute ηest for a random 100×100
matrix with different choices of tolerance tol. The number of matrix-vector products
is given by mul and tη/tres denotes the time taken to compute ηest divided by the time
taken to compute resmax.

LSMR ALSQR
tol ηest mul tη/tres ηest mul tη/tres

1e-1 6.6e-17 7 0.97 1.1e-15 79 11.4
1e-2 7.5e-16 45 6.57 2.9e-15 567 81.6
1e-3 1.5e-15 211 29.9 1.1e-14 6955 1004
1e-4 2.9e-15 911 129.7 2.3e-14 63829 9366
1e-5 5.9e-15 4007 549.2 - - -

(a) Results for the identity sin2 A+ cos2 A = I

LSMR ALSQR
tol ηest mul tη/tres ηest mul tη/tres

1e-1 1.2e-16 7 0.88 1.5e-16 9 1.22
1e-2 2.2e-16 19 2.35 1.0e-15 49 6.12
1e-3 1.1e-15 73 9.21 3.2e-15 97 11.9
1e-4 2.9e-15 207 25.8 5.2e-15 147 18.6
1e-5 4.8e-15 471 57.9 5.5e-15 173 21.2

(b) Results for the identity eAe−A = I

with the Schur-Parlett algorithm and the improved scaling and squaring algorithm of
Al-Mohy and Higham [2009b].

We tested the identity eBe−B = I. For both of the scaling and squaring algorithms,
the relative residual and the estimated relative backward errors were all several or-
ders of magnitude smaller than u. Following the discussion in [Al-Mohy and Higham
2009b] it can be seen that that the computed e−B contains the same error in the (1, 2)
element as the computed eB , and the (1,1) and (2,2) elements are interchanged. As a
result, even if there is a large error in computing eB , the computed value of e−B re-
mains very close to the inverse of eB . On computation of eBe−B these errors effectively
cancel out. Thus, for the matrix B the identity eBe−B is not a good test.

A similar phenomenon is possible with the identity elogA = A: an error of the form
2kπiI in the computed logA is removed by the exponentiation, though of course errors
of this precise form are unlikely.

The matrix

C =

 0 1× 10−8 0
−(6× 1010 + 2× 108)/3 −3 2× 1010

200/3 0 −200/3


was discussed in a blog post by Moler [Moler 2012]. It is an extreme example of a
matrix that causes overscaling and loss of accuracy in the scaling and squaring algo-
rithm of Higham [2005], Higham [2009] but not in the improved scaling and squaring
algorithm [Al-Mohy and Higham 2009b].

Using the improved scaling and squaring algorithm, the relative residual in the
identity eCe−C = I is 4.1× 1021, with resmax = 2.8× 1036, and the relative backward
error is 5.8× 10−12. Using expm, the relative residual is 3.0× 1064 and the relative
backward error is 4.7× 102. Our methods correctly identify the preferred algorithm,
even though cond(exp, C) ≈ 3.1× 1018, so that the validity of the first order bounds is
questionable. Note that the large relative residuals are due to the small norm in the
denominator of (4.19) compared with the terms in the numerator.



A:12

7. CONCLUDING REMARKS
We have proposed two methods for testing matrix function algorithms based on evalu-
ating residuals in matrix function identities. In the first method a maximum residual
consistent with backward stability is computed, while in the second a backward error
for the matrix function evaluations is obtained by solving an underdetermined linear
system. The methods are based on a linearized analysis. In numerical experiments
both methods are able to distinguish between algorithms that are behaving stably and
those that are not.

The methods have two intrinsic limitations. First, they can not attribute unstable
behaviour to any particular matrix function evaluation in the test identity. Second
errors in the constituent functions evaluations can cancel, as illustrated by Experi-
ment 4, so instability can fail to be detected, though such behavior can be expected to
occur only for very special test matrices.

Computing the maximum residual in our first method requires fewer than 20
Fréchet derivative evaluations for the identities considered here, with a cost of O(n3)
flops. The method requires only that the matrix functions and their Fréchet deriva-
tives can be evaluated. Explicit solution of the linear system in our second method
requires O(n6) flops, which severely restricts n. For large n, an iterative solver such
as LSMR or ALSQR can be used, with each iteration involving the computation of 4
Fréchet derivatives and hence costing O(n3) flops, but numerical experiments suggest
that the convergence can be very slow.

This work is of particular benefit for testing implementations of matrix function
algorithms for numerical software libraries. The use of identities avoids the need for
the computation or storage of reference solutions, and in particular does not require
high precision arithmetic. Our analysis quantifies the maximum size of a residual
that is consistent with stable behavior and so provides a sound basis for choosing the
tolerances in the tests.

Acknowledgements
We thank Jennifer Pestana for her advice on the iterative solution of the underdeter-
mined linear system (5.23).

A. DERIVATION OF ADJOINTS
We first derive the adjoint L?pd(A) : Cn×n → Cn×2n of the linear operator Lpd(A) :

Cn×2n → Cn×n defined by

Lpd(A,E) = Lf (A,E1)g(A) + f(A)Lg(A,E2),

where E = [E1, E2] ∈ Cn×2n. We have

〈E,L?pd(A, Y )〉 = 〈Lpd(A,E), Y 〉 by (2.4)
= 〈Lf (A,E1)g(A), Y 〉+ 〈f(A)Lg(A,E2), Y 〉
= 〈Lf (A,E1), Y g(A)

∗〉+ 〈Lg(A,E2), f(A)
∗Y 〉

= 〈E1, L
?
f (A, Y g(A)

∗)〉+ 〈E2, L
?
g (A, f(A)

∗Y )〉.

Since this is true for all E, we conclude that

L?pd(A, Y ) = [L?f (A, Y g(A)
∗), L?g (A, f(A)

∗Y )].



A:13

For the trigonometric identity sin2A + cos2A = I, the same method can be applied
to (4.21). We find

〈E,L?sc(A, Y )〉 = 〈Lsc(A,E), Y 〉
= (sinA)Ls(A,E1) + Ls(A,E1) sinA+ (cosA)Lc(A,E2) + Lc(A,E2) cosA

= 〈E1, L
?
s (A, (sinA

∗)Y )〉+ 〈E1, L
?
s (A, Y sinA∗)〉

+ 〈E2, L
?
c (A, (cosA

∗)Y )〉+ 〈E2, L
?
c (A, Y cosA∗)〉.

We conclude that

L?sc(A, Y ) =
[
L?s
(
A, Y sinA∗ + (sinA∗)Y

)
, L?c

(
A, Y cosA∗ + (cosA∗)Y

)]
.



A:14

REFERENCES
AL-MOHY, A. H. AND HIGHAM, N. J. 2009a. Computing the Fréchet derivative of the matrix exponential,

with an application to condition number estimation. SIAM J. Matrix Anal. Appl. 30, 4, 1639–1657.
AL-MOHY, A. H. AND HIGHAM, N. J. 2009b. A new scaling and squaring algorithm for the matrix exponen-

tial. SIAM J. Matrix Anal. Appl. 31, 3, 970–989.
AL-MOHY, A. H. AND HIGHAM, N. J. 2010. The complex step approximation to the Fréchet derivative of a

matrix function. Numer. Algorithms 53, 1, 133–148.
AL-MOHY, A. H. AND HIGHAM, N. J. 2012. Improved inverse scaling and squaring algorithms for the matrix

logarithm. SIAM J. Sci. Comput. 34, 4, C153–C169.
AL-MOHY, A. H., HIGHAM, N. J., AND RELTON, S. D. 2013. Computing the Fréchet derivative of the matrix

logarithm and estimating the condition number. SIAM J. Sci. Comput. 35, 4, C394–C410.
APRAHAMIAN, M. AND HIGHAM, N. J. 2014. The matrix unwinding function, with an application to com-

puting the matrix exponential. SIAM J. Matrix Anal. Appl. 35, 1, 88–109.
BAGLAMA, J., REICHEL, L., AND RICHMOND, D. 2013. An augmented LSQR method. Numer. Algo-

rithms 64, 2, 263–293.
CODY, W. J. 1993. Algorithm 714. CELEFUNT: A portable test package for complex elementary functions.

ACM Trans. Math. Software 19, 1, 1–21.
DAVIES, P. I. AND HIGHAM, N. J. 2003. A Schur–Parlett algorithm for computing matrix functions. SIAM

J. Matrix Anal. Appl. 25, 2, 464–485.
DENMAN, E. D. AND BEAVERS, JR., A. N. 1976. The matrix sign function and computations in systems.

Appl. Math. Comput. 2, 1, 63 – 94.
DIECI, L., MORINI, B., AND PAPINI, A. 1996. Computational techniques for real logarithms of matrices.

SIAM J. Matrix Anal. Appl. 17, 3, 570–593.
FONG, D. C.-L. AND SAUNDERS, M. 2011. LSMR: An iterative algorithm for sparse least-squares problems.

SIAM J. Sci. Comput. 33, 5, 2950–2971.
GOLUB, G. H. AND VAN LOAN, C. F. 2013. Matrix Computations Fourth Ed. Johns Hopkins University

Press, Baltimore, MD, USA.
GRECO, F. AND IANNAZZO, B. 2010. A binary powering Schur algorithm for computing primary matrix

roots. Numerical Algorithms 55, 1, 59–78.
GUO, C.-H. AND HIGHAM, N. J. 2006. A Schur–Newton method for the matrix pth root and its inverse.

SIAM J. Matrix Anal. Appl. 28, 3, 788–804.
HIGHAM, N. J. The Matrix Function Toolbox. http://www.maths.manchester.ac.uk/~higham/mftoolbox.
HIGHAM, N. J. 2002. Accuracy and Stability of Numerical Algorithms Second Ed. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA.
HIGHAM, N. J. 2005. The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix

Anal. Appl. 26, 4, 1179–1193.
HIGHAM, N. J. 2008. Functions of Matrices: Theory and Computation. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA.
HIGHAM, N. J. 2009. The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51, 4,

747–764.
HIGHAM, N. J. AND DEADMAN, E. 2014. A catalogue of software for matrix functions. Version 1.0. MIMS

EPrint 2014.8, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
Feb.

HIGHAM, N. J. AND LIN, L. 2013. An improved Schur–Padé algorithm for fractional powers of a matrix and
their Fréchet derivatives. SIAM J. Matrix Anal. Appl. 34, 3, 1341–1360.

HIGHAM, N. J. AND RELTON, S. D. 2013a. Estimating the condition number of the Fréchet derivative of a
matrix function. MIMS EPrint 2013.84, Manchester Institute for Mathematical Sciences, The Univer-
sity of Manchester, UK. Dec.

HIGHAM, N. J. AND RELTON, S. D. 2013b. Higher order Fréchet derivatives of matrix functions and the
level-2 condition number. MIMS EPrint 2013.58, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK. Nov.

HIGHAM, N. J. AND TISSEUR, F. 2000. A block algorithm for matrix 1-norm estimation, with an application
to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21, 4, 1185–1201.

IANNAZZO, B. AND MANASSE, C. 2013. A schur logarithmic algorithm for fractional powers of matrices.
SIAM J. Matrix Anal. Appl. 34, 2, 794–813.

JONES, E., OLIPHANT, T., PETERSON, P., ET AL. 2001–. SciPy: Open source scientific tools for Python.
http://www.scipy.org/.



A:15

MOLER, C. B. 2012. A balancing act for the matrix exponential. http://blogs.mathworks.com/cleve/2012/
07/23/a-balancing-act-for-the-matrix-exponential/.

NAG Library. NAG Library. NAG Ltd., Oxford. http://www.nag.co.uk.
PAIGE, C. C. AND SAUNDERS, M. A. 1982. LSQR: An algorithm for sparse linear equations and sparse least

squares. ACM Trans. Math. Software 8, 1, 43–71.
SMITH, M. I. 2003. A Schur algorithm for computing matrix pth roots. SIAM Journal on Matrix Analysis

and Applications 24, 4, 971–989.


