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STRONGLY DAMPED QUADRATIC MATRIX POLYNOMIALS ∗

LEO TASLAMAN †

Abstract. We study the eigenvalues and eigenspaces of the quadratic matrix polynomial
Mλ2 + sDλ + K as s → ∞, where M and K are symmetric positive definite and D is symmetric
positive semi-definite. The work is motivated by its application to modal analysis of finite element
models with strong linear damping. Our results yield a mathematical explanation of why too strong
damping may lead to practically undamped modes such that all nodes in the model vibrate essentially
in phase.
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1. Introduction. A way to prevent a structure from vibrating violently is to
incorporate viscous dampers into the design. A viscous damper is a device that
resists motion by producing a force proportional to the relative velocity of its ends
raised to a power α. In this paper we consider linear damping, which corresponds to
dampers with α = 1. This value of α is the default for certain product lines of seismic
dampers [1]. The resisting force produced by a viscous damper arises when fluid,
trapped in a cylinder, is forced through small holes (see Figure 1). By adjusting the
size of these holes, we can make the damper stronger. But stronger is not necessarily
better: if a damper is too strong, it resembles a rigid component and hence has little
purpose. This suggests that a structure with only very strong dampers should be quite
similar to a structure without dampers. The goal of this paper is to investigate this
phenomenon more rigorously for discretized structures. We will do this by studying
the eigenvalues and eigenspaces of a related quadratic matrix polynomial.

Consider a finite element model of a structure with r viscous dampers. If the
model vibrates freely, the displacements of its nodes are given by the solutions to the
equations of motion:

Mü(t) + sDu̇(t) +Ku(t) = 0. (1.1)

Here M , sD and K correspond to mass, the viscous dampers and stiffness, respec-
tively. We assume these matrices are n×n, real and symmetric positive semi-definite,
and further that M and K are strictly positive definite. We also assume that each
damper contributes to the damping matrix with a rank one term, so rank(D) = r and
D = RRT for some real n× r matrix R. If ‖D‖ = 1, say, the parameter s determines
the strength of the dampers, so larger s corresponds to viscous dampers with smaller
holes, and s = 0 yields an undamped system.

We find the solutions to (1.1) by solving the quadratic eigenproblem

Ps(λ)x = 0, s ≥ 0, (1.2)

where Ps(λ) = Mλ2+ sDλ+K. The spectrum of Ps(λ) lies in the left half plane and
is symmetric with respect to the real axis. Further, if (−d+ iω, x) is an eigenpair of
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Fig. 1.1. A model of a viscous damper. The larger cylinder is filled with a fluid which is
forced through holes in the piston head as the piston rod moves horizontally. This causes friction
and energy is dissipated and released as heat.

Ps(λ), where d, ω ∈ R, and x is real if ω = 0, then

u(t) = e−dt(cos(tω)Re(x) − sin(tω)Im(x)) (1.3)

is a real solution to (1.1) and is called a mode.1 We see that d and ω correspond
to damping and frequency, respectively. The solution (1.3) describes how the model
switches between two configurations, given by Re(x) and Im(x), as it vibrates. If
x = veiθ for some v ∈ Rn and θ ∈ R, then

u(t) = e−dt(cos(tω) cos(θ)− sin(tω) sin(θ))v = e−dt cos(tω + θ)v,

and we see that these two configurations must coincide and that all nodes in the
model vibrate in phase. Now, if s = 0, it is well known that all eigenvalues are
nonzero and purely imaginary, and that all eigenspaces have real bases and are pair-
wise M -orthogonal [8, Section 7.3]. In particular, all modes of an undamped model
are undamped and those modes that correspond to simple eigenvalues are such that
all nodes in the model vibrate in phase. We will see in Lemma 3.4 that this cannot
be the case when damping is present.

To see the similarities between strongly damped structures and undamped ones,
we will prove that the eigenvalues of Ps(λ) approach nonzero points on the imagi-
nary axis as s → ∞, with the exception of 2r real eigenvalues which correspond to
overdamped modes (that is, non-oscillating modes). This implies that the consid-
ered model has n − r practically undamped modes for large enough s. Regarding
the eigenspaces of Ps(λ) as s → ∞, we will show the following. If two eigenvalues
converge to distinct points on the imaginary axis, then the corresponding eigenspaces
become more and more M -orthogonal in terms of the principal angles (defined in
Section 2.1). Further, we will prove that the span of all eigenvectors associated with
eigenvalues converging to a given point has an M -orthonormal basis that become
more and more real in the sense that the norms of the imaginary parts go to zero. In
particular, eigenvalues converging to points to which no other eigenvalues converge,
are, for large enough s, associated with almost real eigenvectors. This corresponds
to the case of simple eigenvalues for the undamped problem, and from (1.3) we see
that the associated modes are such that all nodes in the model vibrate essentially in
phase.

1.1. Outline. In Section 2 we introduce the notion of principal angles and es-
tablish two results, Proposition 2.4 and Proposition 2.5, which are needed for Section
4. In Section 3, we study the eigenvalues of Ps(λ) as s → ∞, and prove an eigenvalue
location result which extends some early work by Lancaster [8]. In Section 4 we study
the eigenspaces of Ps(λ) as s → ∞.

1The term ‘mode’ is ambiguous and is sometimes, although not in this paper, used to refer to an
eigenvector.
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2. Preliminaries. In what follows, 〈·, ·〉 denotes an arbitrary positive definite
inner product on Cn and ‖ · ‖ denotes the induced norm. Further, for a subspace X
we define S(X ) = {x : x ∈ X , ‖x‖ = 1}.

2.1. The principal angles. The angle between two nonzero vectors u and v is
defined as

∡(u, v) = arccos

( |〈u, v〉|
‖u‖‖v‖

)
.

To generalize the concept of angles to subspaces the principal angles (or canonical
angles) are introduced. Given two subspaces U and V , such that p = dimU ≤ dimV =
q, there are p principal angles

θ1(U ,V) ≤ θ2(U ,V) ≤ · · · ≤ θp(U ,V),

which all lie in [0, π/2]. For convenience, we shall with θmax(U ,V) refer to θp(U ,V).
The first principal angle is defined as

θ1(U ,V) = min{ ∡(u, v) : u ∈ S(U), v ∈ S(V)} = ∡(u1, v1),

where u1 and v1 are some minimizing vectors. The remaining angles are then defined
recursively by

θi(U ,V) = min{ ∡(u, v) : u ∈ S(U), v ∈ S(V),
〈u, uj〉 = 〈v, vj〉 = 0, j = 1, 2, . . . , i− 1}

= ∡(ui, vi),

where ui and vi are minimizing vectors. The vectors u1, u2, . . . , up and v1, v2, . . . , vp
are obviously not unique but the principal angles are. This is easily seen from the next
theorem, which is due to Björck and Golub [2]. The proof in [2] is for the standard
inner product, but it can easily be extended to an arbitrary inner product.

Theorem 2.1. Suppose the inner product 〈·, ·〉 corresponds to a symmetric posi-
tive definite matrix A, so 〈x, y〉 = x∗Ay for any vectors x and y. If the columns of U
and V form A-orthonormal bases for U and V, respectively, then

θi(U ,V) = arccos(σi),

where σi is the ith singular value of U∗AV .
If dimU = dimV , then it is known (see e.g., [12, p. 249]) that the largest principal

angle is given by

θmax(U ,V) = max
u∈S(U)

min
v∈S(V)

∡(u, v). (2.1)

See [13] for a proof.
We note that U and V are orthogonal if and only if θ1(U ,V) = π/2, and that

U = V if and only if θmax(U ,V) = 0 and dimU = dimV .
In the following lemmas the calligraphic notation X (s) refers to a subspace which

depends on the parameter s ≥ 0.
Lemma 2.2. Let ε ∈ (0, 1) and assume that

lim
s→∞

θ1(U1(s),U2(s)) = π/2.
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For sufficiently large s, ‖u1 + u2‖ = 1, where u1 ∈ U1(s) and u2 ∈ U2(s), implies that

1/(1 + ε) < ‖u1‖2 + ‖u2‖2 < 1/(1− ε).

Proof. The limit condition of the lemma implies that |〈u1, u2〉| < ‖u1‖‖u2‖ε for
large enough s. We have

|‖u1‖2 + ‖u2‖2 − 1| ≤ 2|〈u1, u2〉| < 2ε‖u1‖‖u2‖ ≤ (‖u1‖2 + ‖u2‖2)ε,

from which the lemma follows.
Lemma 2.3. Let U(s) = span{U1(s),U2(s)}. If

lim
s→∞

θ1(U1(s),U2(s)) = lim
s→∞

θ1(U1(s),V(s)) = lim
s→∞

θ1(U2(s),V(s)) = π/2,

then

lim
s→∞

θ1(U(s),V(s)) = π/2.

Proof. Let u ∈ U(s) and v ∈ V(s) be any vectors such that ‖u‖ = ‖v‖ = 1. We
have u = u1 + u2 where u1 ∈ U1(s) and u2 ∈ U2(s) and

|〈u, v〉| = |〈u1, v〉+ 〈u2, v〉| ≤ |〈u1, v〉|+ |〈u2, v〉|. (2.2)

By Lemma 2.2 the norms of u1 and u2 are bounded when s is sufficiently large. Hence
the right hand side of (2.2) can be forced to be arbitrarily small by taking s large
enough.

Proposition 2.4. Suppose V(s) ⊆ span{U1(s),U2(s) . . . ,Up(s)} and dimUk(s) =
dimV(s) for a fixed k ∈ {1, 2, . . . , p}. If for any i 6= k and any j 6= ℓ, it holds that

lim
s→∞

θ1(V(s),Ui(s)) = lim
s→∞

θ1(Uj(s),Uℓ(s)) = π/2,

then

lim
s→∞

θmax(V(s),Uk(s)) = 0.

Proof. Let W(s) = span{Ui(s) : i 6= k}. Lemma 2.3 implies

lim
s→∞

θ1(V(s),W(s)) = lim
s→∞

θ1(Uk(s),W(s)) = π/2.

Pick N and ε ∈ (0, 1) such that for any s > N it holds that

max
uk∈Uk(s)
w∈W(s)

|〈uk, w〉|
‖uk‖‖w‖

< ε/4 (2.3)

and

max
v∈S(V(s))
w∈S(W(s))

|〈v, w〉| < ε/2. (2.4)
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Let v ∈ S(V(s)) and write v = uk + w, where uk ∈ Uk(s) and w ∈ W(s). Due to
Lemma 2.2 we may, by possibly choosing a larger N , assume that ‖uk‖ < 2 (for any
choice of v), so (2.3) yields |〈uk, w〉|/‖w‖ < ε/2. We get

∣∣∣∣
|〈uk, w〉|
‖w‖ − ‖w‖

∣∣∣∣ ≤ max
w̃∈S(W(s))

|〈uk, w̃〉+ 〈w, w̃〉| = max
w̃∈S(W(s))

|〈v, w̃〉| < ε/2,

where (2.4) is used for the last inequality, and hence ‖w‖ < ε. Further,

‖uk‖2 ≥ ‖v‖ − ‖w‖2 − 2|〈uk, w〉| = 1− ‖w‖2 − 2‖w‖ |〈uk, w〉|
‖w‖ > 1− 2ε2.

Note that this holds for any choice of v = uk + w ∈ V(s) for s > N . Now, by (2.1),
we have θmax(V(s),Uk(s)) = arccos(x), where

x = min
v∈S(V(s))

max
ũk∈S(Uk(s))

|〈v, ũk〉| ≥ min
uk+w∈S(V(s))

uk∈Uk(s)
w∈W(s)

∣∣∣∣‖uk‖+
〈w, uk〉
‖uk‖

∣∣∣∣

≥ min
uk+w∈S(V(s))

uk∈Uk(s)
w∈W(s)

‖uk‖ − ‖w‖ >
√
1− 2ε2 − ε.

Since ε can be chosen to be arbitrarily small, the lemma follows.
Proposition 2.5. Suppose the inner product 〈·, ·〉 corresponds to a real sym-

metric positive definite matrix A, so 〈x, y〉 = x∗Ay for any vectors x and y. If
dimU(s) = p for s > N and

lim
s→∞

θmax(U(s),U(s)) = 0,

then for any ε > 0, U(s) has an A-orthonormal basis {u1, u2, . . . , up} with ‖Im(ui)‖ <
ε, i = 1, 2, . . . , p, for large enough s.

Proof. Let U = [u1, u2, . . . , up] be any A-orthonormal basis of U(s) and note that

the columns of U is an A-orthonormal basis of U(s). Since A is real, UTAU is complex
symmetric and hence enjoys a singular value decomposition on the form QΣQT (also
known as a Takagi factorization) [4, Corollary 4.4.4]. By the limit assumption and
Theorem 2.1, all singular values are in (1 − ε, 1] for large enough s. Define Y =
[y1, y2, . . . , yp] = UQ, and note that

Y TAY = Q∗UTAUQ = Q∗QΣQTQ = Σ.

The columns of Y form an A-orthonormal basis of U(s), and

2‖Im(yi)‖2 = Re(y∗iAyi − yTi Ayi) < ε

for i = 1, 2, . . . , p.

3. Eigenvalues. In this section we study the eigenvalues of Ps(λ). Let (·)1/2
denote the principal square root, and introduce A = M−1/2DM−1/2 and B =
M−1/2KM−1/2. Clearly, Ps(λ) is equivalent to Iλ2 + sAλ + B, so they have the
same Jordan structure. We will repetitively make use of the following linearization:

[
sB−1/2A B−1/2

−I

]

︸ ︷︷ ︸
S

[
I

−B −sA

]

︸ ︷︷ ︸
Companion
linearization

[ −I

B1/2 sA

]

︸ ︷︷ ︸
S−1

=

[
B1/2

−B1/2 −sA

]
. (3.1)
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Re z

Im z

iωmax

iωmin

Fig. 3.1. The shaded area is S, and the left and right thick lines are Sout and Sin respectively.

Lemma 3.1. If λ1, λ2, . . . , λr are the eigenvalues of sA, then we have Gerschgorin-
like discs

G0 =
{
z : |z| ≤ ‖B‖1/22

}
and Gi =

{
z : |z − λi| ≤ ‖B‖1/22

}

for i = 1, 2, . . . , r, such that the eigenvalues of Ps(λ) are contained in the union
G0∪G1∪· · ·∪Gr. Furthermore, k Gerschgorin-like discs contain exactly k eigenvalues
(counting multiplicities) if they are disjoint from the remaining discs.

Proof. Apply a real orthogonal similarity transformation to Iλ2 + Aλ + B, to
obtain Iλ2 + Ãλ+ B̃, where Ã is diagonal. Note that all but r of the diagonal entries
of Ã must be zero. Consider the linearization (3.1), with Ã and B̃ in place of A and

B, respectively. Since Ã is normal and ‖B̃‖2 = ‖B‖2 the lemma follows from [11,
Theorem 2.1 and Corollary 2.5].

Let ωmax = ‖B‖1/22 and ωmin = σmin(B)1/2 (where σmin refers to the smallest
singular value) and define the following sets:

Sin = {z : −ωmin < z < 0}, Sout = {z : z < −ωmax} (3.2)

and

S = {z : ωmin ≤ |z| ≤ ωmax, Re(z) ≤ 0}. (3.3)

See Figure 3.1 for an illustration. Lancaster showed that all non-real eigenvalues of
Ps(λ) lie in the half annulus S [8, Chapter 9]. Hence any eigenvalues that is not in S
must be in either Sin or Sout. Our first goal in this section is to bound the number
of such eigenvalues. To do so, we need the following lemma.

Lemma 3.2. All eigenvalues of Ps(λ) that lie in Sin or Sout are semi-simple.
Proof. Let λ be a real defective eigenvalue of Iλ2 + sAλ+ B, and note that any

corresponding real right eigenvector is also a left eigenvector. By [8, Theorem 4.6]
there exists an eigenpair (λ, v), where ‖v‖2 = 1, such that

vT
(

d

dλ
(Iλ2 + sAλ+B)

)
v = vT (2Iλ+ sA)v = 0.

This result follows from an arbitrary Jordan decomposition of a certain real lineariza-
tion. By choosing a Jordan decomposition such that all eigenvectors corresponding
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Re z

Im z

ωmax

Fig. 3.2. An illustration of what the Gerschgorin-like discs may look like for r = 3 and large
enough s. The disc (from left to right) are G1,G2,G3,G0 and the dots are the nonzero eigenvalues of
−sA. Lemma 3.1 implies that G1∪G2∪G3 contains three eigenvalues of Ps(λ), counting multiplicities.

to λ are real, we may assume that v is real as well. If we define a = svTAv and
b = vTBv, we have λ = −a/2. Further,

vT (Iλ2 + sAλ+B)v = λ2 + aλ+ b =
a2

4
+

a2

2
+ b = 0,

which implies a = 2
√
b, and hence λ = −

√
b ∈ S.

Theorem 3.3. The sets Sin and Sout each contains at most r eigenvalues of Ps(λ)
(counting multiplicities). Furthermore, r eigenvalues go to −∞, and r eigenvalues go
to 0, as s → ∞.

Proof. By Lemma 3.1, r eigenvalues of Ps(λ) approach −∞ as s → ∞, and all
remaining eigenvalues lie in S ∪Sin; see Figure 3.2 for an illustration when r = 3. We
now show that Sout cannot contain more than r eigenvalues for intermediate values of
s. Let L(s) denote the linearization (3.1). By Lemma 3.2 all eigenvalues in Sout are
semi-simple and hence differentiable with respect to s [7, Theorem 6]. Consider an
eigenvalue λ ∈ Sout for an arbitrary s. Since λ is real, the corresponding eigenspace
of L(s) has a real basis. If the columns of W is such a basis, it is easy to see that
W = [V TB1/2, λV T ]T , where the columns of V are real eigenvectors with respect
to λ of the corresponding quadratic matrix polynomial. Furthermore, the columns of
[−V TB1/2, λV T ]T is a basis of the corresponding left eigenspace, and

[
−V TB1/2 λV T

] [B1/2V
λV

]
= λ2V TV − V TBV

is positive definite since λ2 > ω2
max = ‖B‖2. Suppose, without loss of generality, that

V satisfies

λ2V TV − V TBV = I,

(otherwise we can replace V by V Z for an appropriate Z). Then, the derivatives of
the eigenvalues that equal λ for the considered value of s, is given by the eigenvalues
of the following matrix [7, Theorem 7],

[
−V TB1/2 λV T

] d

ds
L(s)

[
B1/2V
λV

]
= −λ2V TAV,

which is negative semi-definite. Hence all eigenvalues that enter Sout will stay in Sout

as s → ∞.
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Let ∼ denote the equivalence relation for matrix polynomials. To compute the
number of eigenvalues in Sin, we consider

rev Ps(λ) = Kλ2 + sDλ+M ∼ Iλ2 + sK−1/2DK−1/2
︸ ︷︷ ︸

Â

λ+K−1/2MK−1/2
︸ ︷︷ ︸

B̂

,

and note that B̂ is similar to B−1. It is easy to see that λ is an eigenvalue of Ps(λ)
if and only if 1/λ is an eigenvalue of rev Ps(λ) with the same algebraic multiplicity.
The proved part of the theorem implies that r eigenvalues of rev Ps(λ) go to −∞
as s → ∞, so r eigenvalues of Ps(λ) must go to zero (along the negative real axis).

Furthermore, rev Ps(λ) has at most r eigenvalues in
{
z : z < −‖B̂‖1/22

}
so Ps(λ) has

at most r eigenvalues in

{
z : −‖B̂‖−1/2

2 < z < 0
}
=

{
z : −σmin(B)1/2 < z < 0

}
= Sin.

We classify the eigenvalues of Ps(λ) based on whether or not they depend on s.
Eigenvalues are said to be affected (by damping) if they depend on s, and unaffected
otherwise. To be more precise, let the columns of V = [V1, V2] be a real M -orthogonal
basis where range(V1) is spanned by all eigenvectors of P0(λ) that are in the null space
of D. If we apply the congruence transformation defined by V to Ps(λ), the resulting
matrix polynomial decomposes into the direct sum of an “undamped part” and a
“damped part”:

V TPs(λ)V = (Ikλ
2 +K1)⊕ (In−kλ

2 + sD2λ+K2).

Here k = rank(V1), V
T
1 KV1 = K1, V

T
2 KV2 = K2 and V T

2 DV2 = D2. The eigenvalues
of Ikλ

2 + K1 are clearly independent of s and hence unaffected. In particular they
must be purely imaginary. The next lemma shows that the eigenvalues of In−kλ

2 +
sD2λ + K2 are the affected eigenvalues, and furthermore that they are only purely
imaginary for s = 0.

Lemma 3.4. If λ is an eigenvalue of In−kλ
2 + sD2λ +K2 for some s > 0, then

Re(λ) < 0.

Proof. Assume the contrary and let (λ = ωi, x) be an eigenpair such that
ω ∈ R \ {0}. If v = V2x, then

v∗(K − ω2M + iωsD)v = 0,

and since v∗Mv, v∗Dv and v∗Kv are real, we must have v∗Dv = 0. Because D is
symmetric positive semi-definite, this implies that Dv = 0. But then (λ, v) is an
eigenvalue of P0(λ) for which Dv = 0. This contradicts that v ∈ range(V2).

As s → ∞ we know from Theorem 3.3 that r eigenvalues enter Sout and go to
−∞, and r other eigenvalues enter Sin and go 0. We now focus on the remaining
affected eigenvalues, that is, the ones that stay in S as s → ∞.

Theorem 3.5. For large enough s, the affected eigenvalues in S are continuous
functions of s that converge to purely imaginary points.

Proof. Recall that D = RRT with R ∈ Rn×r, and define t = 1/s, p(λ) =
det(Mλ2 +K), Q(λ) = λRT (Mλ2 +K)−1R and

qt(λ) = det(tp(λ)Ir + p(λ)Q(λ)).
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By Lemma 3.4, no affected eigenvalues are roots of p(λ) for s > 0. Thus, for t > 0,
any root λi of qt(λ) that is not a root of p(λ) is an affected eigenvalue. To see this,
we simply note that

0 = qt(λi) = p(λi)
r det (tIr +Q(λi)) = p(λi) det (tIr +Q(λi)) = detPs(λi),

where the matrix determinant lemma (related to the Sherman-Morrison formula) has
been used for the last equality. On noting that (Mλ2 +K)−1 = Adj(Mλ2 +K)/p(λ),
it is easy to see that p(λ)Q(λ) is a matrix polynomial, so qt(λ) is a polynomial, and
further

deg qt(λ) =

{
2nr if t 6= 0,

2nr − r if t = 0.

From the context, it is natural to consider q0(λ) as a polynomial of grade 2nr (see
[3]), in which case we q0(λ) has r infinite roots. Consider a finite root λi of q0(λ)
of multiplicity α. In a neighborhood of t = 0, the solutions λ of qt(λ) = 0 can be
expanded in Puiseux series in t, and α of these series (counting multiplicities) equal
λi at t = 0 [6, Chapter 5]. Thus, α roots of qt(λ), seen as functions of t, converge to
λi as t → 0. This shows that 2nr − r roots of qt(λ) converge to the finite roots of
q0(λ) as t → 0. Furthermore, from Theorem 3.3 we know that the remaining r roots
go to −∞ as t → 0.

To show that the finite roots of q0(λ) are purely imaginary we note that they are
all eigenvalues of p(λ)Q(λ). Since p(−λ)Q(−λ) = −p(λ)Q(λ)T , p(λ)Q(λ) is T-odd, so
λi is an eigenvalue if and only if −λi also is an eigenvalue [10, Theorem 4.2]. Therefore,
if q0(λ) has a root with negative real part, it also has a root with positive real part.
But this is impossible. Indeed, qt(λ) has a root with positive real part for some t > 0
only if there is an affected eigenvalue with positive real part, a contradiction.

Let L(s) denote the linearization (3.1). The matrix L(s), and hence the matrix
polynomial Ps(λ), has a constant number, k, of distinct eigenvalues for all but a finite
number of values of s, known as exceptional points [5, p. 64]. Exceptional points
are in general non-real, so for the sake of the argument, we temporarily expand the
scope and allow non-real values of s. Now, in any simple domain not containing any
exceptional points, we have a Jordan decomposition (albeit not in its usual likeness)

L(s) =

k∑

i=1

Pi(s)λi(s) +Di(s),

where Pi(s), λi(s) and Di(s) denote the eigenprojections, (distinct) eigenvalues and
eigennilpotents, respectively, and all are analytic in the considered domain [5, p. 68].
The following observation was made in [9, Theorem 3.3]: for purely imaginary s, L(s)
is skew-Hermitian so the eigennilpotents must vanish. Because any simple domain,
free of exceptional points, can be expanded to contain an interval of the imaginary
axis, in a manner that avoids including exceptional points, the eigennilpotents must
vanish identically for any non-exceptional s. Put simply, defective eigenvalues can
only exist for a finite number of exceptional values of s. This implies the following
result.

Theorem 3.6. For large enough s, all eigenvalues of Ps(λ) are semi-simple.

4. Eigenspaces. Let 〈·, ·〉 be the M -inner product and ‖ · ‖ the induced norm.
In the undamped case, s = 0, the eigenspaces of Ps(λ) corresponding to complex con-
jugate eigenvalues are identical, and any other two eigenspaces are orthogonal with
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respect to 〈·, ·〉. Furthermore, all eigenspaces have real bases. The same is, in general,
not true when s > 0. Our goal in this section is to show that for large enough s,
the same properties are almost true if we restrict ourselves to the eigenspaces corre-
sponding to eigenvalues in S and group together eigenspaces corresponding to “close”
eigenvalues; more precise statements will be made in Theorem 4.1 and Corollary 4.2.

Suppose N is big enough so there are no exceptional points in (N,∞); such N
exists due to Theorem 3.6. Then there is a constant k such that Ps(λ) has exactly k
distinct eigenvalues λ1(s), λ2(s), . . . , λk(s) for s > N , which are analytic functions of
s. Let Vi(s) denote the eigenspace corresponding to λi(s) and define

Uz(s) = span
{
Vi(s) : lim

s→∞
λi(s) = z

}
,

for s > N . We shall prove the following result.
Theorem 4.1. Let z1, z2, . . . , z2p denote the distinct nonzero points on the imag-

inary axis to which some eigenvalue of Ps(λ) converges as s → ∞. If θ1(·, ·) and
θmax(·, ·) refer to the smallest and largest principal angles with respect to 〈·, ·〉, respec-
tively, then the following hold:
(a) If zi 6= zj and zi 6= zj then lim

s→∞
θ1
(
Uzi(s),Uzj (s)

)
= π/2.

(b) lim
s→∞

θ1
(
Uzi(s),U−∞(s)

)
= π/2.

(c) lim
s→∞

θ1
(
Uzi(s),U0(s)

)
= π/2.

(d) lim
s→∞

θmax

(
Uzi(s),Uzi

(s)
)
= 0.

(e) lim
s→∞

θmax

(
U−∞(s),U0(s)

)
= 0.

Before we go on and prove the theorem, we note an immediate consequence of
part (d).

Corollary 4.2. For any ε > 0, Uzi(s) has an M -orthonormal basis
{u1, u2, . . . , uk} where ‖Im(uj)‖ < ε, j = 1, 2, . . . , k, for large enough s.

Proof. The corollary follows immediately from Proposition 2.5.
To prove Theorem 4.1, we need the following lemma.
Lemma 4.3. Let S be defined by (3.3) and consider eigenpairs (λi, vi) and (λj , vj)

of Ps(λ), for some s > 0, for which ‖vi‖ = ‖vj‖ = 1 and λi ∈ S. There are constants
c1 and c2 which are independent of vi, vj and s, such that the following bounds hold:
(a) If λj ∈ S then |v∗i Dvj | ≤ (c1/s)

2.
(b) |v∗iDvj | ≤ c2/s.

Proof. Recall that D = RRT with R ∈ Rn×r. We have

RRT vi = −(λis)
−1(Mλ2

i +K)vi.

Left multiplication with M−1/2 times the Moore-Penrose pseudo-inverse R† and tak-
ing norms yields

‖M−1/2RT vi‖ =
‖M−1/2R†(Mλ2

i +K)vi‖
|λis|

.

Since |λi| is bounded from below and above there is a constant c1 such that
‖M−1/2RT vi‖ ≤ c1/s, for any s and any choice of vi. For case (a), an analogous
argument gives ‖M−1/2RT vj‖ ≤ c1/s and Cauchy-Schwartz inequality yields

|v∗iDvj | = |〈M−1/2RT vi,M
−1/2RT vj〉|

≤ ‖M−1/2RT vi‖‖M−1/2RT vj‖
≤ (c1/s)

2.
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Similarly, for part (b), we have

|v∗i Dvj | ≤ ‖M−1/2RT vi‖‖M−1/2RT vj‖ ≤ c2/s.

for c2 = ‖M−1/2RT ‖c1.
Proof of Theorem 4.1 For i = 1, 2, . . . , 2p, define Bi = {z : |z − zi| ≤ δ} where

δ > 0 is small enough so Bi ∩ Bj = ∅ for i 6= j, and let

γ = min
i6=j

dist(Bi,Bj). (4.1)

Choose N > 0 such that for s > N it holds that Bi contains all eigenvalues of Ps(λ)
that converge to zi. The Bis will hereafter be referred to as “limit balls.”

Now, pick ε > 0 and let c1 and c2 be the constants from Lemma 4.3. By possibly
choosing an even larger N , we may assume that N > c21/(εγ) and that all eigenvalues
in Sout, defined in (3.2), have modulus greater than c2/ε. Consider two eigenpairs
(λi, vi) and (λj , vj) for which ‖vi‖ = ‖vj‖ = 1. If λi and λj belong to different limit
balls that are not complex conjugate sets, then we have for any real s that

λ
2

i v
∗
i Mvj = (λ2

iMvi)
∗vj

= (−(sDλi +K)vi)
∗vj

= v∗i (−(sDλi +K))vj

= v∗i (sD(λj − λi)− (sDλj +K))vj

= v∗i (sD(λj − λi)vj − (sDλj +K)vj)

= s(λj − λi)v
∗
i Dvj + λ2

jv
∗
i Mvj ,

and further

−v∗iMvj =
sv∗i Dvj

λi + λj

. (4.2)

From (4.1) we have |λi + λj | ≥ γ, and by part (a) of Lemma 4.3 |sv∗i Dvj | ≤ c21/s.
Thus, |v∗iMvj | < ε for s > N . Since this bound is independent of which normalized
eigenvectors vi and vj we picked, and ε > 0 is arbitrary, we have proved part (a) of
the theorem.

If λi is in a limit ball and λj ∈ Sout, then vi and vj also satisfy (4.2). By part (b)
of Lemma 4.3 |sv∗iDvj | ≤ c2 and

|λi + λj | ≥ |λj | > c2/ε.

Hence, |v∗iMvj | < ε for s > N , and we have concluded part (b) of the theorem.
Since rev Ps(λ) has the same eigenspaces as Ps(λ), part (c) follows immediately

if we consider part (b) for the reversed matrix polynomial.
For s > N , the eigenvectors corresponding to the eigenvalues of Ps(λ) in Bi and

Sout, span the subspaces Uzi(s) and U−∞(s), respectively. Furthermore, due to The-
orem 3.6, dimUzi(s) and dimU−∞(s) equals the sums of the algebraic multiplicities
of all eigenvalues in Bi and Sout, respectively. Since z1, z2, . . . , z2p can be paired into
complex conjugates, we may assume, without loss of generality, that Im(zi) > 0 for
i = 1, 2, . . . , p. We have

dimUz1 + dimUz2 + · · ·+ dimUzp + dimU−∞ = n.
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Part (a) and part (b), which we just proved, imply that

lim
s→∞

θ1
(
Uzi

(s),Uz(s)
)
= π/2

for z ∈ {z1, z2, . . . , zp,−∞} \ {zi}. Hence, part (d) follows from Proposition 2.4.
Similarly, we have

lim
s→∞

θ1
(
U0(s),Uz(s)

)
= π/2

for z ∈ {z1, z2, . . . , zp}, so also part (e) follows from Proposition 2.4.
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