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NEAR-OPTIMAL PERFECTLY MATCHED LAYERS
FOR INDEFINITE HELMHOLTZ PROBLEMS

VLADIMIR DRUSKIN∗, STEFAN GÜTTEL† , AND LEONID KNIZHNERMAN‡

Abstract. A new construction of an absorbing boundary condition for indefinite Helmholtz
problems on unbounded domains is presented. This construction is based on a near-best uniform
rational interpolant of the inverse square root function on the union of a negative and positive real
interval, designed with the help of a classical result by Zolotarev. Using Krein’s interpretation of
a Stieltjes continued fraction, this interpolant can be converted into a three-term finite difference
discretization of a perfectly matched layer (PML) which converges exponentially fast in the number
of grid points. The convergence rate is asymptotically optimal for both propagative and evanescent
wave modes. Several numerical experiments and illustrations are included.
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1. Introduction. An important task in science and engineering is the numerical
solution of a partial differential equation (PDE) on an unbounded domain. To give
a motivating example, let us consider the Helmholtz equation ∆u + k2

v2 u = 0 on
an unbounded half-space Ω which may correspond to the acoustic model of wave
propagation in the interior of the earth with variable wavespeed v, see Figure 1.1.
In this setup, which is typical in seismic geophysical exploration methods, a pressure
wave signal of a single frequency k > 0 is emitted by an acoustic transmitter placed on
the subsurface of the earth, travels through the underground, and is then logged by
receivers. Clearly, the computational domain for this problem needs to be truncated
as sharply as possible and hopefully this is done so that the artificial boundaries create
least possible reflections. There are various ways for achieving this, with probably the
most popular approach being known as perfectly matched layer (PML, see [7, 9, 11]).

A perfectly matched layer can be seen as a localized modification of the spatial
discretization scheme to absorb the incoming waves. In a finite difference framework
such layers typically lead to variable complex-valued step sizes, which is why this
approach is sometimes also referred to as complex coordinate stretching. The aim of
an efficient PML is to achieve a strong absorption effect by adding only a few number
of layers. The aim of this work is to extend a modern finite-difference construction
of perfectly matched layers which are near-optimal for indefinite Helmholtz problems,
that is, they achieve near-best possible absorption for a given number of layers. The
number of required layers is critical in particular for large-scale simulations of three-
dimensional exterior problems. A variety of such problems arise, for example, in oil
and gas exploration, and near-optimal grids are part of almost all electromagnetic
simulators used at Schlumberger [1, 13, 50]. However, the potential beneficiaries of
effective discretization of exterior domains are by no means limited to these problems:
other examples include ocean acoustics, the simulation of micro-electro-mechanical
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Figure 1.1. A typical setup in seismic geophysical exploration where a source emits pressure
waves into the earth subsurface which is then logged at (multiple) receivers. The wave propagation
is modeled by the Helmholtz’s equation.

systems (MEMS), the propagation of radio waves in the atmosphere, surface and
ground penetrating radars, photonic crystals, and molecular physics.

1.1. Outline of this work. We will now give a short overview of this work
and explain the structure of the paper. Let us start by considering a prototype of a
differential equation on an unbounded domain, the two-point boundary value problem

∂2

∂x2
u = Au ,

∂

∂x
u
∣∣
x=0

= −b, u
∣∣
x=+∞ = 0, (1.1)

where A ∈ CN×N is nonsingular and {b,u(x)} ⊂ CN . If A is a discretization of a
differential operator on some spatial domain Ω ⊆ R`, then (1.1) is a semidiscretization
of an (`+ 1)-dimensional partial differential equation on [0,+∞)×Ω. Assuming that
problem (1.1) is well posed (which may require some additional conditions like, e.g.,
the limiting absorption principle discussed below), its exact solution can be given in
terms of matrix functions as u(x) = exp(−xA1/2)A−1/2b. In particular, at x = 0 the
solution is given as

u(0) = F (A)b, F (z) = z−1/2. (1.2)

The function F (z) is often referred to as the impedance function (also known as Weyl
function), and it completely characterizes the reaction of the unbounded domain to an
external force [34]. The relation (1.2) allows for the exact conversion of the Neumann
data −b at the boundary x = 0 into the Dirichlet data u(0), without the need for
solving (1.1) on its unbounded domain. This is why F (A) is often referred to as the
Neumann-to-Dirichlet (NtD) operator.

When solving wave scattering problems one typically deals with a discretization
of the negative shifted Laplacian −∆− k2 on Ω ⊂ R`, in which case problem (1.1) is
a semidiscretization of the indefinite Helmholtz equation on [0,+∞) × Ω. It is thus
reasonable to consider a Hermitian indefinite matrix

A = L− k2I , (1.3)

where L ∈ CN×N is Hermitian positive definite, I ∈ RN×N is the identity matrix,
and k2 > 0 is not in the spectrum of L. For a solution of (1.1) to be unique we impose
the limiting absorption principle (see, e.g., [45]). This means that for a real number
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k we define u as a limit of solutions u (k+iε) of (1.1) with wave numbers k+ iε (ε > 0)
instead of k, i.e.,

u = lim
ε↘0

u (k+iε). (1.4)

This uniquely defines the value F (A) = A−1/2, notwithstanding that some eigenvalues
of A may lie on the standard branch cut of F (z).

We will now outline our construction in the following sections, which combines
ideas of the eminent mathematicians Y. I. Zolotarev (1847–1878), T. J. Stieltjes (1856–
1894), and M. G. Krein (1907–1989). The main aim in section 2 is to approximate
F (z) by a rational interpolant Rn(z) of type (n− 1, n), so that Rn(A) can be seen as
an approximate NtD operator, mapping the Neumann data −b to the Dirichlet data
Rn(A)b. Clearly, the 2-norm approximation error of this map is

‖Rn(A)b − F (A)b‖ =

√√√√ N∑
j=1

|Rn(λj − k2)− F (λj − k2)|2|bj |2,

where bj = v∗j b and (λj , vj) are the eigenpairs of L with ‖vj‖ = 1. We have λ1 <

k2 < λN and thus arrive at the problem of scalar rational approximation of F (z) on
the union of a positive and a negative real interval. Our rational interpolant Rn(z)
is obtained by combining two optimal Zolotarev interpolants constructed for the two
intervals separately. For illustration purposes we have graphed the relative error of
such a function in Figure 1.2. In addition to the construction of such approximants,
section 2 also contains a novel detailed convergence analysis, with the more technical
proofs given in the appendix.

In section 3 we will show that the rational function Rn(z) can be converted into
an equivalent three-term finite difference scheme on a nonuniform grid with n points.
This is achieved by formally rewriting Rn(z) as a Stieltjes continued fraction and
using Krein’s interpretation of that fraction as a finite-difference scheme. However,
due to the non-Stieltjes nature of Rn(z) (its poles may lie on a curve in complex
plane, as shown in Figure 2.1) the continued fraction coefficients can also be complex,
which results in a finite difference scheme with complex-valued grid steps. This scheme
allows for the simple and efficient computation of an NtD map and the construction of
an absorbing boundary layer for indefinite Helmholtz problems. The near-optimality
of Rn(z) implies that the number of required grid points is close to smallest possible.
A summary of an algorithm for computing this grid is given in section 4.

Section 5 is devoted to the adaptation of our PML construction to a second-
order finite difference framework. In section 5.1, we extend our optimal rational
approximation approach to the infinite lattice problem.

Finally, in section 6 we demonstrate the high accuracy and exponential conver-
gence of our perfectly matched layer with several numerical examples.

1.2. Review of related work. It was already shown in [16,32] that a rational
approximant Rn(z) of type (n − 1, n) for the function F (z) can be converted into
an equivalent three-term finite difference scheme on a special nonuniform grid with
n points, mapping the Neumann data −b to the Dirichlet data Rn(A)b. In these
papers the authors were mainly concerned with a special instance of (1.1) where A
corresponds to a discretization of the negative Laplacian −∆, in which case A is
a real symmetric positive definite matrix. The error of the approximate Neumann-
to-Dirichlet (NtD) map is then bounded by the maximum of |Rn(z) − F (z)| on the
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Figure 1.2. Relative error |Rn(z)/F (z)−1| of a rational approximant Rn(z) for F (z) = z−1/2

on [−1e3,−1]∪ [1, 1e4]. We have adopted a special plotting type for simultaneously visualizing large
intervals on the negative and positive real semiaxes in logarithmic scales, with the gray linear region
in the middle gluing the two intervals together. The rational function Rn(z) is of type (n − 1, n),
n = 9, and it has been constructed by combining two Zolotarev interpolants with m1 = 8 and m2 = 10
interpolation nodes for the negative and positive intervals, respectively. Visually the solution of our
complex rational approximation problem behaves similarly to the max-norm optimal errors of the real
problems, i.e., it shows “equal ripples” on the targeted intervals (although the Chebyshev alternation
theory [2, Ch. II] is not applicable in the complex case [47]).

positive spectral interval of A. Approximation theory allows for the construction
of exponentially convergent rational functions Rn(z) with a convergence rate weakly
dependent on the condition number of A, thus producing a three-term finite difference
scheme with a so-called optimal grid (also known as finite-difference Gaussian rule or
spectrally matched grid). The connection of Rn(z) and this grid is inspired by Krein’s
mechanical interpretation of a Stieltjes continued fraction [34]. It was shown in [5]
that the same grids produce exponentially convergent NtD maps even for problems
arising from the semidiscretization of anisotropic elliptic PDEs and systems with
mixed second-order terms, i.e., when the second-order ODE system in (1.1) is modified
by adding a first-order term.

It should be noted that the positive and negative eigenmodes of A correspond
to so-called evanescent and propagative solutions η(A)u(x) and η(−A)u(x), respec-
tively, with η(s) denoting the Heaviside step function. The evanescent modes, i.e., the
nonzero eigenmodes in the spectral decomposition of η(A)u(x), decay exponentially
as x increases (hence the name). Therefore a simple, though possibly not the most
efficient, way to absorb them is to truncate the domain at some (sometimes quite
significant) distance from the targeted area of interest, and then to deal with the
propagative modes alone. On the other hand, the norm ‖η(−A)u(x)‖ does actually
not depend on x, so simple boundary truncation will not be effective for absorbing
propagative modes.

In their seminal paper [19], Enquist and Majda computed Rn(z) as a Padé ap-
proximant of F (z) at some real negative point and then evaluated it via continued
fraction-type recursions. This approach yielded exponential convergence on the neg-
ative real semiaxis, however, with the rate quickly deteriorating towards the origin.
Another celebrated approach for absorbing propagative modes is called complex scal-
ing and was originally introduced in [7] for molecular physics calculations. It is also
known as perfectly matched layer (PML), a term coined in the influential work [9],
where it was independently rediscovered and adapted for time-domain wave propa-
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gation. We will use the latter term because it seems to be more established in the
wave propagation literature. The well-posedness of the PML formulation was studied
in [3, 8]. The essence of the PML approach is a complex coordinate transformation
which changes purely imaginary exponentials of propagative modes to complex decay-
ing ones, thus, in principle, allowing reflectionless domain truncation [7,11]. However,
coarse PML discretizations introduce undesirable numerical reflections which decay
rather slowly with the grid size in case of low-order discretization schemes. This
problem was partially circumvented in [4] for the solution of time-domain wave prob-
lems, where the optimal gridding approach was extended to PML discretizations. By
choosing an appropriate purely imaginary grid this approach allowed for the construc-
tion of all possible rational interpolants Rn(z) for F (z) on a real negative interval,
including the Padé approximants constructed in [19], and preferably the best uniform
approximants targeting the spectral support of the expected solution. See also [37]
and [17] for adaptations of the optimal gridding approach to the hyperbolic elastic-
ity system and the Helmholtz equation, respectively. A non-optimal PML layer for
absorbing both evanescent and propagative modes in dispersive wave equations has
been proposed in [49]. However, the problem of designing discrete PMLs which are
optimal for both wave modes remained open.

Our construction in section 2 is inspired by a “trick” originally used by Zolotarev
and Newmann, writing the relative approximation error Rn(z)/F (z) − 1 in terms of
Hm(s)/Hm(−s), where Hm(s) is a polynomial of degree m = 2n, s2 = z. This trick
was rediscovered in [26, 27], where Hm(s)/Hm(−s) was identified with the numeri-
cal reflection coefficient, and a continued-fraction absorbing condition was explicitly
constructed in terms of the roots of Hm(s) and introduced in the PDE discretization
via a so-called trapezoid finite element method. However, these important papers fell
short of introducing optimal approximants. In addition to the construction of these
approximants, section 2 also contains a novel detailed convergence analysis. To make
our paper more pleasant to read we have decided to present the technical proofs in
an appendix.

In an unfinished report [15], the authors suggested to split Hm(s) into the product
of polynomials with real and imaginary roots, thus decoupling the approximation
problems on the positive and negative intervals. It was then suggested to apply
conventional optimal rational approximants on each of the two intervals, and the
resulting error was only determined by the largest error of these two approximants.
A drawback of such an approach is that it requires the splitting of the PML grid into
two subdomains with nonlocal finite difference stencils at the conjugation interfaces.

2. Construction of a near-optimal approximant on two intervals. The
function z−1/2 is commonly defined in the complex plane C with the slit (−∞, 0] ⊂ R.
However, in our application we need an analytic continuation F (z) of z−1/2 from the
positive real semiaxis R+ = {x ∈ R | x > 0} to −R+ in accordance with the limiting
absorption principle (1.4), i.e., attaining the values

F (z) = −i(−z)−1/2 for z ∈ −R+,

and the principal value of the square root for z ∈ R+. We will therefore assume in
the following that F (z) is defined in C with the branch cut in the lower half-plane.

Following [15], we now construct a rational interpolant Rn(z) of type (n − 1, n)
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to F (z) on the union K of two real intervals

K = K1 ∪K2, K1 = [a1, b1], K2 = [a2, b2],
a1 < b1 < 0 < a2 < b2,

using solutions of a classical Zolotarev problem on each of the two intervals. In view
of the definition (1.3), these intervals will correspond to the spectral subintervals
[λ1 − k2, λi0 − k2] and [λi0+1 − k2, λN − k2] (or their estimates), respectively, where
λ1 ≤ · · · ≤ λi0 < k2 < λi0+1 ≤ · · · ≤ λN .

Separating the odd and even parts of a polynomial Hm of degree m = 2n, we
define polynomials Pn−1 and Qn of degrees ≤ n− 1 and n, respectively, such that

Hm(s) = −s Pn−1(s2) +Qn(s2). (2.1)

The rational function

Rn(z) =
Pn−1(z)
Qn(z)

(2.2)

will be considered as an approximant for F (z) on K. We have

sRn(s2) =
s Pn−1(s2)
Qn(s2)

=
Hm(−s)−Hm(s)
Hm(−s) +Hm(s)

, (2.3)

and thereby obtain an expression of the relative averaged approximation error as

2

∣∣F (s2)−Rn(s2)
∣∣

|F (s2) +Rn(s2)|
= 2

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ .
Following [15, Section 2], we can split the approximation problem on K into two
independent problems on K1 and K2.

Lemma 2.1. Let m1 and m2 be positive integers such that m = m1 +m2, and let
Hm1 and Hm2 be polynomials of degrees m1 and m2 with roots on F (K1) and F (K2),
respectively. Define

Hm(s) = Hm1(s)Hm2(s).

Then

max
s∈F (K1)

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ = max
s∈F (K1)

∣∣∣∣ Hm1(s)
Hm1(−s)

∣∣∣∣
and

max
s∈F (K2)

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ = max
s∈F (K2)

∣∣∣∣ Hm2(s)
Hm2(−s)

∣∣∣∣ .
Proof. This lemma immediately follows from the equalities∣∣∣∣ Hm1(s)

Hm1(−s)

∣∣∣∣ = 1 if s ∈ F (K2),

and reciprocally ∣∣∣∣ Hm2(s)
Hm2(−s)

∣∣∣∣ = 1 if s ∈ F (K1).
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Let us consider a single real interval [c, d] with 0 < c < d, and the problem of
finding a real monic polynomial Z(c,d)

m of degree m ≥ 1 (denoted as Z(c,d)
m ∈ Pm,real)

which attains the minimum in the Zolotarev problem

E(c,d)
m = min

Z∈Pm,real
max
c≤s≤d

∣∣∣∣ Z(s)
Z(−s)

∣∣∣∣ . (2.4)

It is known from [38,51] that this minimizer Z(c,d)
m exists uniquely, that its roots s(c,d)j

(j = 1, . . . ,m) are located in (c, d), and that they are expressible in terms of elliptic
integrals. More details are given in the appendix, in particular, formula (A.1).

We choose positive integers m1 and m2 and introduce the polynomial

Hm(s) = Z(
√
−b1,

√
−a1)

m1
(−is) · Z(

√
a2,
√
b2)

m2 (s) (2.5)

of degree m = m1 +m2. From Lemma 2.1 we obtain the following result.
Proposition 2.2. The polynomial Hm(s) defined in (2.5) satisfies

max
s∈F (K)

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ = max
{
E(
√
−b1,

√
−a1)

m1
, E

(
√
a2,
√
b2)

m2

}
.

It is well known that the classical Zolotarev functions in (2.4) converge expo-
nentially. Let us denote by ρ(δ) the Cauchy–Hadamard convergence rate of Z(c,d)

m ,
i.e.,

ρ(δ) = lim
m→∞

m

√
E

(c,d)
m , δ = c/d.

An exact expression of ρ(δ) in terms of elliptic integrals is given in (A.3). For small
interval ratios δ one can derive a simple approximate expression

ρ(δ) ≈ exp

(
− π2

4 log 2√
δ

)

in terms of elementary functions [32, Appendix A]. This expression shows the weak
dependence of the Cauchy–Hadamard convergence rate on the interval ratio δ.

In view of Proposition 2.2, m1 and m2 should be chosen to balance the errors of
both Zolotarev functions. One way of achieving this is by setting

ρ1 = ρ(
√
b1/a1), ρ2 = ρ(

√
a2/b2) (2.6)

and

m1 = m · log ρ2

log ρ1 + log ρ2
+ θ, m2 = m−m1, |θ| ≤ 1/2, (2.7)

where θ is chosen to round (m log ρ2)/(log ρ1 + log ρ2) to the nearest integer. We are
now in the position to formulate a near-optimality result for the obtained approximant.

Theorem 2.3. Let us denote

ρ = exp
(

log ρ1 log ρ2

log ρ1 + log ρ2

)
. (2.8)
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Let the polynomial Hm be defined by (2.5), the polynomials Pn−1 and Qn defined
by (2.1), the rational fraction Rn defined by (2.2), and m = 2n. Further let the
conditions (2.7) and

2 max
{
ρ
−1/2
1 , ρ

−1/2
2

}
ρm < 1 (2.9)

be satisfied. Then the upper relative error bound

max
z∈K

∣∣∣∣Rn(z)
F (z)

− 1
∣∣∣∣ ≤ 4 max

{
ρ
−1/2
1 , ρ

−1/2
2

}
ρm

1− 2 max
{
ρ
−1/2
1 , ρ

−1/2
2

}
ρm

(2.10)

holds. On the other hand, if P and Q 6≡ 0 are arbitrary polynomials of degrees ≤ n−1
and ≤ n, respectively, then R = P/Q satisfies the lower error bound

max
z∈K

∣∣∣∣R(z)
F (z)

− 1
∣∣∣∣ ≥ 2ρm

1 + ρm
. (2.11)

This theorem, whose proof is given in the appendix, implies that the upper er-
ror bound for our Zolotarev approximant Rn(z) and the lower bound for the best
possible approximant have the same Cauchy–Hadamard convergence rate ρ, i.e., our
approximant is asymptotically optimal in the Cauchy–Hadamard sense. As is also
demonstrated by the following numerical example (and the corresponding Table 2.1),
the Zolotarev approximant can be worse than the best possible approximant only by
a moderate factor. We should point out that, unlike their real counterparts, complex
max-norm optimal rational approximation problems are generally not convex and may
have non-unique solutions [47]. It therefore seems unlikely that the near-optimality
result of Theorem 2.3 can be improved significantly.

Example 2.1. Let us, as in Figure 1.2, consider the problem of approximating
F (z) = z−1/2 by a rational function Rn(z) of type (n − 1, n) on the union of two
intervals K = [a1, b1] ∪ [a2, b2] = [−1e3,−1] ∪ [1, 1e4]. Using the exact formula (A.3)
we calculate

ρ1 ≈ 0.361, ρ2 ≈ 0.439, ρ ≈ 0.634.

In Table 2.1 we list the error bounds of Theorem 2.3 for various values of m = 2n
together with the actual approximation error. The calculations confirm the bounds
and show that they are roughly of the same order, i.e., our approximants Rn(z) have
relative errors of the same order as the best possible approximants.

The logarithmic surface plot in Figure 2.1 shows the relative error |Rn(z)/F (z)−1|
for the case n = 9 (the same as in Figure 1.2). Note how the poles align on a
curve in the lower-left quadrant of the complex plane. We speculate that this curve
asymptotically (as n → ∞) approximates the shifted branch cut C of the analytic
continuation of F (z) into the lower half-plane, and that C possesses the so-called S-
property (“symmetry property”, see [24, 25, 43]) with respect to K. This would imply
that the equilibrium charge of the condenser (K,C) has a logarithmic potential which
is (constant and) minimal on K over all “attainable” branch cuts. Our experiments
also suggested that the curve C coincides exactly with the negative imaginary semiaxis
in the case of symmetric intervals K1 = −K2, and that it approaches the real positive
or negative semiaxis for large or small ratios m1/m2, respectively.

A remarkable feature in Figure 2.1 is that the relative error |Rn(z)/F (z) − 1|
stays uniformly small “above” the set K, i.e., for complex numbers z with positive
imaginary part and real part in K. We will return to this observation in section 6.2.
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Table 2.1
Lower and upper error bounds of Theorem 2.3 and actual errors maxz∈K |Rn(z)/F (z) − 1|,

F (z) = z−1/2, for various values of m = 2n. The set K is chosen as K = [−1e3,−1] ∪ [1, 1e4].

m m1 m2 bound (2.11) relative error bound (2.10)
6 3 3 1.22e− 01 3.42e− 01 5.52e− 01
12 5 7 8.41e− 03 2.47e− 02 2.85e− 02
18 8 10 5.49e− 04 1.15e− 03 1.83e− 03
24 11 13 3.57e− 05 8.95e− 05 1.19e− 04
30 13 17 2.32e− 06 7.01e− 06 7.72e− 06
36 16 20 1.51e− 07 3.29e− 07 5.02e− 07
42 19 23 9.79e− 09 2.37e− 08 3.26e− 08
48 21 27 6.36e− 10 2.01e− 09 2.12e− 09
54 24 30 4.13e− 11 9.43e− 11 1.38e− 10
60 27 33 2.69e− 12 6.28e− 12 8.94e− 12

Figure 2.1. Relative error |Rn(z)/F (z) − 1| of a Zolotarev approximant Rn(z) for K =
[−1e3,−1] ∪ [1, 1e4] and n = 9 shown as a logarithmic surface plot over a region in the complex
plane. The imaginary axis is plotted in reversed direction for a better panoramic view.

3. Finite difference grids from rational approximants. We now explain
how a rational function Rn(z) ≈ F (z) can be transformed into an equivalent finite
difference grid for (1.1). Assume that we are given primal grid points and steps

0 = x0, x1, . . . , xn, hj = xj − xj−1,

and dual grid points and steps

0 = x̂0, x̂1, . . . , x̂n, ĥj−1 = x̂j − x̂j−1,

with j = 1, . . . , n in both cases. Denote by u0,u1, . . . ,un approximations to the
solution u(x) of (1.1) at the primal grid points x0, x1, . . . , xn. Let the first-order
finite differences (uj − uj−1)/hj be located at the dual points x̂j (j = 1, . . . , n). We



10 V. DRUSKIN, S. GÜTTEL, AND L. KNIZHNERMAN

assume that the following finite difference relations

1

ĥ0

(
u1 − u0

h1
+ b

)
= Au0, (3.1)

1

ĥj

(
uj+1 − uj
hj+1

− uj − uj−1

hj

)
= Auj , j = 1, . . . , n− 1, (3.2)

are satisfied with the convention that un = 0. It can be verified by back-substitution
that the value u0 specified by these recursive relations can be written as

u0 = Rn(A)b,

where Rn(z) is a rational function of type (n− 1, n). By construction, −Rn(A)−1 is
the Schur complement of the submatrix with positive indices of the system (3.1)–(3.2).
Written as a finite-length Stieltjes continued fraction (S-fraction1) this function takes
the form

Rn(z) =
1

ĥ0z +
1

h1 +
1

ĥ1z + · · ·+
1

hn−1 +
1

ĥn−1z +
1
hn

. (3.3)

Recalling from above that the exact solution of (1.1) satisfies u(0) = A−1/2b, we are
apparently left with the problem of determining Rn(z) such that Rn(A)b ≈ A−1/2b,
optimally in some sense. The conversion of Neumann data −b to Dirichlet data u(0)
can now be realized by solving a finite difference relation on a grid generated from
quantities ĥj−1 and hj (j = 1, . . . , n) in (3.3).

The connection between the S-fraction (3.3) and the finite difference problem
(3.1)–(3.2) is due to Mark Krein (see, e.g., [34]). He viewed the problem (3.1)–(3.2)
as a so-called Stieltjes string, which is a string of point masses ĥj−1 and weightless
stiffnesses hj (j = 1, . . . , n), both real positive. There is a one-to-one correspondence
between the set of Stieltjes strings and Stieltjes spectral functions Rn(z), which are
rational functions of type (n−1, n) having n non-coinciding real negative poles and real
positive residues. For this case, the S-fraction parameters ĥj−1 and hj (j = 1, . . . , n)
can be computed via 2n steps of the Euclidean polynomial division algorithm (see,
e.g., [31]), which can be stably executed with the help of the reorthogonalized Lanczos
algorithm [16]. The optimal rational approximation of F (z) on a positive real interval
is a Stieltjes problem [32], hence the generated grid steps are real positive. The
approximation problem on a single negative interval can be solved by using Rn(−z),
where Rn(z) is the approximation on the symmetrically reflected positive interval.
This reflection rotates the grid steps ĥj−1 and hj (j = 1, . . . , n) by an angle of π/2 in
C, i.e., it makes the grid steps purely imaginary. Generally, the problem of optimal
approximation on the union of a positive and a negative interval leads to non-Stieltjes

1We now allow for complex-valued bhj−1, hj (j = 1, . . . , n) in (3.3), which is different from the
classical definition of S-fractions with real positive parameters.
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rational functions Rn(z) of type (n− 1, n). Assuming absence of breakdowns (which
are unlikely but can not be definitely excluded), the transformation to the non-Stieltjes
rational function (3.3) can still be carried out via the complex 2n-step Euclidean
algorithm. We used the bi-Lanczos extension of the Lanczos-based algorithm [16]
which, according to our experience, always produced meaningful results.

Example 3.1. We begin with reproducing a real optimal grid from (3.3) generated
for a real positive interval K = [1, 1e4], see Figure 3.1 (left). Similar results were
reported in [32]. We can consider this example as a degenerate case of the two-interval
problem with m1 = 0 and m2 = 10. The plot shows “alternation” of the primal and
dual grid points and monotonically growing steps. The grid looks like an equidistant
grid stretched by a rather smooth transform. It was shown in [32] that for large n and
small interval ratios such transforms are asymptotically close to the exponential.

In Figure 3.1 (right) we plot the complex finite difference grid points obtained
from the continued fraction (3.3) in the case when K = [−1e3,−1] ∪ [1, 1e4] and
m1 = 8 and m2 = 10. We notice the “alternation” of the primary and dual points
on some “curve”, which is an intuitive evidence of a good quality of the grid, i.e., we
can speculate that the finite difference solution approximates the exact solution with
second-order accuracy on that curve. This curve can be interpreted as the complex
PML transform of the real positive axis in accordance with [7, 11].

In summary, we observe that the finite-difference operators on grids obtained
from (3.3) approximate the second-order derivative operator on curves in the com-
plex plane. This can be viewed as a complex extension of Krein’s results on the
convergence of the Stieltjes discrete string with impedance Rn(z) to its continuous
counterpart with impedance F (z) when Rn → F on R+ [34]. Besides internal beauty,
this phenomenon may have useful consequences. For example, it lets us hope that
pseudospectral estimates and stability results for continuous PMLs and damped 1D
differential operators [3, 8, 14] remain valid for (3.1)–(3.2) with the optimal grid.

10
−3

10
−2

10
−1

10
0

10
1

−1

−0.5

0

0.5

1

 

 

primal grid points
dual grid points

10
−3

10
−2

10
−1

10
0

10
1

−10
1

−10
0

−10
−1

−10
−2

−10
−3

−10
−4

 

 

primal grid points
dual grid points

Figure 3.1. Grid points generated from quantities in the continued fraction (3.3). Left: In this
single-interval case the set K is chosen as K = [1, 1e4] with m2 = 10 (and m1 = 0). Right: The
set K is chosen as K = [−1e3,−1] ∪ [1, 1e4] with m1 = 8 and m2 = 10. The gray “continuous”
curve has been obtained by connecting the grid points generated with the parameters m1 = 27 and
m2 = 33, and we conjecture that the grid points align on a limit curve as m→∞.

4. Summary of the algorithm. In the following we provide a step-by-step
description for computing the grid steps ĥj−1 and hj (j = 1, . . . , n) in (3.3).
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1. It follows from (2.3) that the numbers

−
(
s
(
√
−b1,

√
−a1)

j

)2

, j = 1, . . . ,m1, and
(
s
(
√
a2,
√
b2)

j

)2

, j = 1, . . . ,m2,

are the interpolation nodes for Rn(z) as an interpolant of F (z). Knowing in-
terpolation nodes and function values, we compute the coefficients of Pn−1(z)
and Qn(z) by means of solving the corresponding system of linear algebraic
equations in high-precision arithmetic.

2. The poles of the interpolant, i.e., the roots of Qn(z), can be computed as the
eigenvalues of an associated companion matrix, see [22, Subsection 7.4.6]. To
solve this eigenvalue problem we use the quasi-version2 of the QR transfor-
mation method [40, § 11.6] and then, if necessary, correct the roots by means
of a combination of Laguerre’s [40, § 9.5] and Newton’s [35] method.

3. Knowing the poles of Rn(z), the corresponding residues are computed.
4. Finally, the grid steps ĥj−1 and hj (j = 1, . . . , n) are computed using the

recursion formulas [16, (3.4)], with the underlying quasi-analog of an inverse
spectral problem for a symmetric tridiagonal matrix (see [16, subsection 3.1,
item 3◦], [41, theorem 7.2.1]) being solved by a quasi-Lanczos process [12,
Ch. 6] with quasi-reorthogonalization. Here we used the well-known connec-
tion between the Lanczos and Euclidean algorithms (see, e.g., [31]).

5. Adaptation to a second-order finite difference framework.

5.1. Approximation of the discrete impedance function. So far we have
considered the function F (z) = z−1/2, which arises when solving the boundary-value
problem (1.1) for x ∈ [0,+∞). When this problem is seen as an infinite extension of
some interior computational domain, the exponential convergence of the interpolant
Rn(z) is consistent with a high-order (or even spectral) discretization of the operator
acting in this computational domain.

However, it is also possible to compute the NtD map of a discretized version
of (1.1) on a uniform infinite grid via rational approximation of a slightly modified
function Fh(z) to be determined below. This function will lead to a three-term finite
difference scheme which is appropriate for being combined with a standard second-
order finite difference discretization in the interior computational domain, because it
allows for the elimination of spurious reflections from the PML boundary due to the
error of the interior discretization.

Given a fixed step size h > 0, let us consider the problem (3.1)–(3.2) on the
infinite equidistant grid with ĥ0 = 0.5h and ĥj = hj = h for j = 1, . . . ,∞. We will
determine a function Fh(z) such that

u0 = Fh(A)b

via a well-known approach widely used in the representation of irrational numbers
via continued fractions (see, e.g., [18, section 9]). This approach was already applied
in [46] to the infinite lattice problem: the infinite-length S-fraction representation of

2I.e., we formally use in the complex case the formulas intended for the real case.
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Fh analogous to (3.3) is

Rh(z) =
1

0.5hz +
1

h+
1

hz +
.. .

(for a proof of convergence we refer to [44] or [33, theorem 4.58]). The remainder
continued fraction

S(z) =
1

h+
1

hz +
1

h+
1

hz +
.. .

evidently satisfies the equation

S(z) =
1

h+
1

hz + S(z)

,

or equivalently S(z)2 +hzS(z)− z = 0. Since 0.5hz+S(z) = Rn(z)−1 = Fh(z)−1, we
have arrived at the quadratic equation

Fh(z)2 =
1

z + (0.5hz)2
.

We choose the root which converges to the exact impedance F (z) as h→ 0, i.e.,

Fh(z) =
1√

z + (0.5hz)2
. (5.1)

This function, which we will refer to as the discrete impedance function, approximates
with second-order accuracy the exact impedance at the boundary, so being centered,
the resulting finite difference scheme is of second order globally.

Analogously to what we had achieved with (1.2) for continuous x, the relation
(5.1) allows us to convert the Neumann data −b at x = 0 into the Dirichlet data u0

without actually solving the infinite lattice problem.
For a given h > 0 let us define σ = h2

4 . The invertible linear fractional change of
variables

w =
z

σz + 1
(5.2)

translates the union of a negative and a positive segment K = [a1, b1] ∪ [a2, b2] again
into the union of a negative and a positive segment. Let us assume3 that −σ−1 < a1.

3As discussed earlier, the parameter a1 should be set to a lower bound of A’s spectral interval,
in which case the condition −σ−1 < a1 corresponds to the Nyquist sampling criterion of two grid
points per wave length. This assumption should be met by any reasonable discretization scheme.



14 V. DRUSKIN, S. GÜTTEL, AND L. KNIZHNERMAN

Let Pn−1/Qn denote the rational approximant of theorem 2.3 for the image of K
under transformation (5.2). Then∣∣∣∣√w · Pn−1(w)

Qn(w)
− 1
∣∣∣∣ =

∣∣∣∣∣
√

z

σz + 1
·
Pn−1( z

σz+1 )
Qn( z

σz+1 )
− 1

∣∣∣∣∣
=

∣∣∣∣∣
√

z

σz + 1
·
Pn−1( z

σz+1 )(σz + 1)n

Qn( z
σz+1 )(σz + 1)n

− 1

∣∣∣∣∣ =

∣∣∣∣∣Fh(z) ·
Pn−1( z

σz+1 )(σz + 1)n−1

Qn( z
σz+1 )(σz + 1)n

− 1

∣∣∣∣∣
is small on K, the numerator and the denominator

Pn−1

(
z

σz + 1

)
(σz + 1)n−1, Qn

(
z

σz + 1

)
(σz + 1)n

being polynomials of degrees ≤ n − 1 and ≤ n, respectively. We have thereby es-
tablished a direct relation between the errors of the rational interpolants for F (z)
and Fh(z) on transformed compact sets, respectively, with the interpolation nodes
being transformed accordingly. This allows us to conclude that we obtain identical
convergence rates for both interpolation processes. In particular, Theorem 2.3 holds
with F (z) being replaced by Fh(z).

We would like to mention that a rational approximation-based absorbing bound-
ary condition for the infinite lattice was suggested in [46] and combined with a trape-
zoidal finite element approach in [27]. However, that approach required a modification
of the Helmholtz equation by a higher-order term. On the contrary, in our framework
the discreteness can be incorporated simply by adjusting the PML grids. Visually
these grids look very similar to the ones shown in Figure 3.1, i.e., we can specu-
late again that they approximate the exact solution u(x) of (1.1) with second-order
accuracy on some modified x-curve in the complex plane.

5.2. Matching interior and exterior discretizations via a single grid.
Let us consider the second-order infinite equidistant finite difference problem

1
h

(
uj+1 − uj

h
− uj − uj−1

h

)
−Auj = qj , j = −`, . . . ,−1, 0, 1, . . . ,∞ (5.3)

with boundary conditions

u−`−1 = 0, lim
j→∞

uj = 0, (5.4)

assuming qj = 0 for j ≥ 0. Problem (5.3) can be split equivalently into an interior
finite-dimensional system

1
h

(
uj+1 − uj

h
− uj − uj−1

h

)
−Auj = qj , j = −`, . . . ,−1, (5.5)

1
0.5h

(
−b − u0 − u−1

h

)
−Au0 = 0,

and an exterior infinite system

1
0.5h

(
u1 − u0

h
+ b

)
−Au0 = 0, (5.6)

1
h

(
uj+1 − uj

h
− uj − uj−1

h

)
−Auj = 0, j = 1, . . . ,∞,
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both systems being coupled via a vector variable b.4

Problem (5.6) (with the condition at infinity) was already considered in sec-
tion 5.1, and can be exactly eliminated using the discrete impedance function (5.1),

1
h

(
uj+1 − uj

h
− uj − uj−1

h

)
−Auj = qj , j = −`, . . . ,−1,

1
0.5h

(
−Fh(A)−1u0 −

u0 − u−1

h

)
−Au0 = 0, u−`−1 = 0.

This formally corresponds to a Schur complement. Upon substitution Rn(A) ≈ Fh(A)
we arrive at the approximate problem

1
h

(
unj+1 − unj

h
−

unj − unj−1

h

)
−Aunj = qj , j = −`, . . . ,−1,

1
0.5h

(
−Rn(A)−1un0 −

un0 − un−1

h

)
−Aun0 = 0, un−`−1 = 0.

Hence

‖unj − uj‖ = O(‖Rn(A)− Fh(A)‖),

since all the involved linear systems are well posed uniformly in n.
Performing similar manipulations with the approximate problem in reverse order,

we obtain the equivalent system (5.7)–(5.8)

1
h

(
unj+1 − unj

h
−

unj − unj−1

h

)
−Aunj = qj , j = −`, . . . ,−1, (5.7)

1
0.5h

(
−b −

un0 − un−1

h

)
−Aun0 = 0,

1

ĥ0

(
un1 − un0

h1
+ b

)
−Aun0 = 0, (5.8)

1

ĥj

(
unj+1 − unj
hj+1

−
unj − unj−1

hj

)
−Aunj = 0, j = 1, . . . , n− 1,

by introducing b and fictitious variables unj with positive subindices which, unlike
their negative counterparts, do not approximate corresponding components of u(x).
Finally, eliminating b we can merge the systems (5.7)–(5.8) into a single recursion

1

ĥj

(
unj+1 − unj
hj+1

−
unj − unj−1

hj

)
−Aunj = qj , j = −`, . . . , n− 1,

un−` = 0, unn = 0,

4Problem (5.3)–(5.4) can be viewed as the second-order discretization of ∂2

∂x2 u − Au = q ,

u
˛̨
x=−h(`+1)

= 0, u
˛̨
x=+∞ = 0 for some regular enough q supported on [−h(`+ 1), 0]. As the infi-

nite exterior problem (5.6) approximates with second-order accuracy the same equation on [0,+∞)
with conditions u

˛̨
x=0

= −b and u
˛̨
x=+∞ = 0, the relation (5.5) approximates with second order

the same equation restricted to [−h(`+ 1), 0] with conditions u
˛̨
x=−h(`+1)

= 0 and u
˛̨
x=0

= −b.
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with the convention that ĥj := h for j < 0, hj := h for j ≤ 0, ĥj := ĥj for j > 0,
hj := hj for j > 0, and ĥ0 := ĥ0 + h/2 (see also Figure 5.1). This finite difference
scheme is easy to implement by simply modifying the n trailing primal and dual grid
steps in a given finite difference scheme with step size h. We reiterate that this scheme
converges exponentially with error O(‖Rn(A)−Fh(A)‖) to the solution of (5.3)–(5.4)
in the interior domain, i.e., for the nonpositive subindices.

The above derivation can easily be extended to variable operators A = Aj in the
interior domain and tensor-product PML discretizations. This will be illustrated by
a numerical example in section 6.2.

Primal steps

Dual steps h
^

0 h
^

1 h
^

2h/2hh

h1 h2hh h3

Figure 5.1. Schematic view of a finite difference grid appended with an absorbing boundary
layer generated from quantities in the continued fraction (3.3). The example shown here is for the
case n = 3. The gray-shaded region corresponds to the appended absorbing boundary layer, and the
grid steps bh0,bh1, . . . ,bhn−1 and h1, h2, . . . , hn in this layer are generally complex.

6. Numerical experiments.

6.1. Waveguide example. To test the accuracy of our absorbing boundary
layer, we consider the inhomogeneous Helmholtz equation

∆u(x, y) + k2u(x, y) = f(x, y)

on a rectangular domain Ω = [0, L]× [0, H] of length L and height H. We prescribe
homogeneous Dirichlet conditions at the upper and lower boundaries in y. The source
term is set to

f(x, y) = 10 · δ(x− 511π/512) · δ(y − 50π/512),

with the Dirac delta function δ(·).
Our aim is to verify that our absorbing boundary layer models the correct physical

behavior. To this end we solve the above Helmholtz equation on two rectangular
domains with fixed heightH = π and different lengths L = π and L = 2π, respectively.
See also Figure 6.1 (left and right, respectively). The wave number is chosen as k = 50.
The problem is discretized by central finite differences with step size h = π/512 in
both coordinate directions. The eigenvalues of the resulting tridiagonal matrix A,
corresponding to the operator −∂2/∂y2 − k2 on [0, π] with homogeneous Dirichlet
boundary conditions, are explicitly known and eigenvalue inclusion intervals are

[a1, b1] ∪ [a2, b2] = [−2.50e3,−1.95e1] ∪ [7.98e1, 1.04e5].

We extend the interior finite difference grid by our absorbing boundary layer with
n = m/2 additional grid points to the left of x = 0 and to the right of x = L, with
the near-optimal grid steps computed from a rational interpolant Rn(z) of Fh(z) as
explained in section 5.1. The physical domain can hence be thought of as an infinite
strip parallel to the x-axis. We therefore expect the solutions of both problems (with
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L = π and L = 2π) to coincide when they are restricted to [0, π] × [0, π]. Visually,
this is indeed the case, as one can see in Figure 6.1 (where n = 10). Note how the
amplitude of the solution is damped very quickly inside the absorbing boundary layer.

To quantify the accuracy of our absorbing boundary layer numerically, we plot in
Figure 6.2 the relative uniform norm of the difference of the two numerical solutions
u1(x, y) and u2(x, y) restricted to [0, π]× [0, π], i.e.,

err = max
0≤x,y≤π

|u1(x, y)− u2(x, y)|
/

max
0≤x,y≤π

|u1(x, y)|. (6.1)

Indeed, this figure reveals exponential convergence with the rate ρ given in Theo-
rem 2.3. In this example, the expected rate is ρ ≈ 0.57 and this is indicated by the
slope of the dashed line in Figure 6.2.

We would like to mention that absorbing boundary layers usually require some
physical separation from the support of the right-hand side (the source term) [30].
However, thanks to the efficient absorption of evanescent and propagative modes even
on spectral subintervals with extreme interval ratios, we are able to place our Dirac
source extremely close to the PML boundary (only one grid point away, see the right
of Figure 6.1) without deteriorating convergence (see Figure 6.2).

6.2. PML in multiple coordinate directions. In this experiment we demon-
strate how our perfectly matched layer can be used to mimic domains which are
unbounded in several coordinate directions. Consider the Helmholtz equation

c(x, y)∆u(x, y) + k2u(x, y) = f(x, y)

on a square domain Ω1 = [0, 1]2. The coefficient c(x, y) is set to 1 everywhere except
for a U-shaped region inside Ω1, where c(x, y) = 0 (see Figure 6.3). The wave number
is chosen as k = 120 and the source term is set to

f(x, y) = δ(x− 140/400) · δ(y − 260/400).

We discretize Ω1 by central finite differences with step size h = 1/400 in both coor-
dinate directions. We aim to append absorbing boundary layers with n ∈ {7, 9, 11, 13}
grid points at each of the four edges of Ω1. For constructing the absorbing layers in the
x-direction (to the left of x = 0 and to the right of x = 1) we need inclusion intervals
for the negative and positive eigenvalues of Ly − k2I , where Ly is the discretization
of −∂2/∂y2 on [0, 1] with homogeneous Dirichlet boundary. Possible intervals are

[a1, b1] ∪ [a2, b2] = [−1.45e4,−2.58e2] ∪ [2.37e2, 5.99e5]. (6.2)

Likewise, for constructing the absorbing layers in the y-direction (below y = 0 and
above y = 1) we can use the same inclusion intervals (6.2) for the negative and positive
eigenvalues of Lx−k2I , where Lx is the finite difference discretization of −∂2/∂x2 on
[0, 1] with homogeneous Dirichlet boundary (the matrices Lx and Ly are identical in
this example, although this is not a requirement). From the intervals in (6.2) we can
now calculate the grid steps of absorbing boundary layers in the x- and y-directions,
and then modify the finite difference matrices to L̂x and L̂y, respectively. As in the
previous example, this is done by computing a rational interpolant Rn(z) of Fh(z)
defined in section 5.1.

However, there is a small subtlety one has to be aware of with the approach
just described: effectively, the NtD operators are now given as Fh(L̂x − k2I ) and
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Figure 6.1. Amplitude (top) and phase (bottom) of the solution to the waveguide problem in
section 6.1 on two rectangular domains (left/right) which differ in their length. The left domain is
of length L = 2π in the x-direction, whereas the right domain is of length L = π. Both domains have
been appended with absorbing layers at the left and right boundaries. As the absorbing boundary
layers serve the purpose of extending the physical domain towards infinity, both solutions are expected
to coincide on the restriction to x ∈ [0, π]. In these pictures we have chosen m = 20, so there are
n = 10 points appended to the left and right boundaries. The step size in the interior domain is
h = π/512 in both coordinate directions.
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Figure 6.2. Exponential convergence of the accuracy of the absorbing boundary layers for the
waveguide problem in section 6.1 with varying Zolotarev parameter m ∈ {8, 12, . . . , 36} (twice the
number of grid points in each absorbing boundary layer). The expected convergence rate ρ ≈ 0.57
by Theorem 2.3 is indicated by the dashed line.

Fh(L̂y − k2I ), respectively, and the involved matrices are no longer Hermitian. In
Figure 6.4 (left) we show the eigenvalues of L̂x (or L̂y, which is the same). We observe
that the eigenvalues have “lifted off” the real axis into the upper half of the complex
plane, in agreement with the analysis of [14] for continuous one-dimensional damped
operators. From Figure 2.1 we find at least visually that the Zolotarev approximant
is of a good quality in this region as well, and the accuracy of the resulting absorbing
boundary layer should be satisfactory.

To quantify the accuracy numerically, we solve the same Helmholtz problem on a
smaller domain Ω2 = [0.25, 0.75]2, again appended with absorbing boundary layers of
n grid points at each of the four edges of Ω2. As the source term f(x, y) is supported
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inside Ω2, we expect coinciding solutions u1(x, y) and u2(x, y) on their restrictions
to Ω2. In Figure 6.4 (right) we have plotted the relative uniform norm of the difference
of both solutions, i.e.,

err = max
0.25≤x,y≤0.75

|u1(x, y)− u2(x, y)|
/

max
0.25≤x,y≤0.75

|u1(x, y)|. (6.3)

Again we observe exponential convergence, and the reduction of the measured error
is in good agreement with (even slightly better than) the rate ρ = 0.55 expected from
Theorem 2.3.

Figure 6.3. Amplitude (left) and phase (right) of the solution to Helmholtz problem in sec-
tion 6.2 on a square domain Ω1 = [0, 1]2 appended with absorbing boundary layers at all boundary
edges. In these pictures we have chosen the Zolotarev parameter m = 14, so there are n = 7 grid
points appended to the boundaries. The step size in the interior domain is h = 1/400 in both coordi-
nate directions. The dashed square in the interior indicates the smaller domain Ω2 = [0.25, 0.75]2,
on which we solve the same Helmholtz problem for assessing the numerical accuracy of our absorbing
boundary layers.
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Figure 6.4. Left: Eigenvalues of the matrix bLx (same as those of bLy) associated with the
Helmholtz problem in section 6.2, appended with n = 7 grid points at the boundaries. Right: Expo-
nential convergence of the accuracy of the absorbing boundary layers with varying Zolotarev param-
eter m ∈ {14, 18, . . . , 26} (twice the number of grid points in each absorbing boundary layer). The
expected convergence rate ρ ≈ 0.55 by Theorem 2.3 is indicated by the dashed line.

7. Summary and open problems. We have presented a new approach for the
construction of discrete absorbing boundary layers for indefinite Helmholtz problems
via complex coordinate transforms. This approach is based on the use of near-optimal
relative rational interpolants of the inverse square root (or a modification thereof) on
a negative and a positive real interval. Bounds for the approximation error have been
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derived, and the exponential convergence of the approximants has been established
theoretically and demonstrated at numerical examples. Although our focus in this
paper was on absorbing boundary conditions for indefinite Helmholtz problems, it
was recently understood that these conditions also constitute good approximations to
Schur complements of certain PDE discretization matrices, and they became a crucial
component of modern Helmholtz preconditioners, such as Schwarz domain decompo-
sition [10,21] and the sweeping preconditioner in [20]. Preliminary results have shown
successful application to a multilevel domain decomposition preconditioner, and a
related Schlumberger patent application is pending.

The uniform approximation approach requires bounds for the smallest/largest
negative and positive eigenvalues, which can be rather loose due to the weak depen-
dence of the convergence rate of the Zolotarev approximants on the interval ratios.
The external bounds of the intervals can thus be estimated roughly. Still, the nu-
merical estimation of the internal bounds can be rather difficult, and accidentally at
least one eigenvalue may be very close to the origin, in which case even an optimal
approximant may require significant order for a satisfactory accuracy. To circumvent
this problem, it would be interesting to derive a parameter-free near-optimal rational
approximant of A−1/2b, which takes into account the discrete nature of the spectrum
of A and the spectral weights of the vector b. Promising first steps have been made
by using adaptive rational Krylov algorithms [28,29] for this purpose.

In its present form the developed PML can not be applied directly in combina-
tion with time-stepping methods; however, it can be used efficiently for time-domain
simulations with model order reduction [17].

Finally, we would like to point out that cloaking problems (which are popular in
the inverse problems community) are closely related with the construction of PMLs,
because the latter can be viewed as cloaking of the point at infinity. Cloaking prob-
lems can also be formulated via complex coordinate transforms [36] and lead to the
approximation of NtD maps. Although the involved Stieltjes impedance function F (z)
is typically different in these applications, techniques similar to those presented in this
paper may still be applicable.

Acknowledgments. We are grateful to Paul Childs, Martin Gander, Mikhail
Zaslavsky, and Hui Zhang for useful discussions. We also thank David Bailey for
making available the Fortran 90 multiprecision system [6].

Appendix A. Zolotarev approximation and proof of Theorem 2.3.
The solution of the Zolotarev problem (2.4) can be computed as

Z(c,d)
m (z) =

m∏
j=1

(z − s(c,d)j ), s
(c,d)
j = d · dn

(
(2m− 2j + 1)K(δ′)

2m
, δ′
)
, (A.1)

where

δ = c/d, δ′ =
√

1− δ2,

K(δ) =
∫ 1

0

1√
(1− t2)(1− δ2t2)

dt

is the complete elliptic integral of the first kind5 and where the Jacobian elliptic

5The definition of K(δ) is not consistent in the literature. We stick to the definition used
in [39, Ch. VI]. In Matlab one would type ellipke(delta^2) to obtain the value K(δ).
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function dn is defined via another such function, sn, by the relations

dn(u, κ) =
√

1− κ2 sn(u, κ), ξ = sn(u;κ), u =
∫ ξ

0

dt√
(1− t2)(1− κ2t2)

.

In order to prove near-optimality results, we first need to study the quantity E(c,d)
m

in (2.4) carefully. Evidently, E(c,d)
m < 1. Upper and lower bounds for (2.4) were given

in [38] as

2 exp
(
−πK(µ′)

4K(µ) m
)

1 +
[
exp

(
−πK(µ′)

4K(µ) m
)]2 ≤ E(c,d)

m ≤ 2 exp
(
−πK(µ′)

4K(µ)
m

)
(A.2)

with

µ =

(
1−
√
δ

1 +
√
δ

)2

and µ′ =
√

1− µ2.

Hence the Cauchy–Hadamard convergence rate can be computed as

ρ(δ) = exp
(
−πK(µ′)

4K(µ)

)
. (A.3)

Recalling the equalities (2.6) and (2.8), let us define the sets

K̃ = F (K), K̃1 = F (K1), K̃2 = F (K2),

and consider the following auxiliary problem: find a (complex) monic polynomial Hm

of degree m being the minimizer of

min
H∈Pm

max
s∈ eK

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ . (A.4)

We now construct an approximate solution of this problem and show that the approx-
imate solution gives the maximum in (A.4) which yields the best possible functional
value up to a moderate multiplier.

Accounting, as it was done in [15, Section 2], that∣∣∣∣∣Z(
√
−b1,

√
−a1)

m1 (−is)
Z

(
√
−b1,

√
−a1)

m1 (is)

∣∣∣∣∣ = 1 if s ∈ K̃2

and ∣∣∣∣∣ Z
(
√
a2,
√
b2)

m2 (s)

Z
(
√
a2,
√
b2)

m2 (−s)

∣∣∣∣∣ = 1 if s ∈ K̃1

because these polynomials have real coefficients, the polynomial Hm defined in (2.5)
satisfies

max
s∈ eK1

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ = E
(
√
a2,
√
b2)

m2 (A.5)
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and

max
s∈ eK2

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ = E(
√
−b1,

√
−a1)

m1
. (A.6)

Lemma A.1. The polynomial Hm defined in (2.5) satisfies the inequality

max
s∈ eK

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ ≤ 2 max
{
ρ
−1/2
1 , ρ

−1/2
2

}
ρm (A.7)

with the numbers ρ1, ρ2 and ρ defined in (2.6) and (2.8), provided that m1,m2 are
chosen according to (2.7).

On the other hand, for any complex polynomial H ∈ Pm we have

max
s∈ eK

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ ≥ ρm. (A.8)

Proof. Let Hm be defined as in (2.5) and conditions (2.7) be satisfied. Accounting
for (A.5), (A.6) and (A.2), we obtain

max
s∈ eK

∣∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣ ≤ 2 max {ρm1
1 , ρm2

2 } = 2ρm max
{
ρθ1, ρ

−θ
2

}
,

which gives assertion (A.7).
To prove assertion (A.8), we consider the third Zolotarev problem in the complex

plane for the condenser
(
K̃,−K̃

)
(see [23], [48, § 8.7] or [42, § VIII.3]). Due to the

symmetry of the condenser, the two measures forming the (unique) equilibrium pair
for
(
K̃,−K̃

)
are symmetric to each other in the evident sense. Thus, one can choose an

(in the Cauchy–Hadamard sense) optimal sequence of type (m,m) rational functions
of the form H(s)/H(−s), deg(H) = m ≥ 1, such that the roots sj (1 ≤ j ≤ m) of
each polynomial H belong to K̃. Define

H(1)(s) =
∏

1≤j≤m
sj∈ eK1

(s− sj), deg(H(1)) = m1,

H(2)(s) =
∏

1≤j≤m
sj∈ eK2

(s− sj), deg(H(2)) = m2,

m1 +m2 = m.

By virtue of (A.2) and the location of the roots we have

max
s∈ eK1

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ = max
s∈ eK1

∣∣∣∣ H(1)(s)
H(1)(−s)

∣∣∣∣ ≥ 2ρm1
1

1 + ρ2m1
1

and

max
s∈ eK2

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ = max
s∈ eK2

∣∣∣∣ H(2)(s)
H(2)(−s)

∣∣∣∣ ≥ 2ρm2
2

1 + ρ2m2
2

,
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whence

max
s∈ eK

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ · max
s∈− eK

∣∣∣∣∣
[
H(s)
H(−s)

]−1
∣∣∣∣∣ = max

s∈ eK
∣∣∣∣ H(s)
H(−s)

∣∣∣∣2 ≥ max
{

2ρm1
1

1 + ρ2m1
1

,
2ρm2

2

1 + ρ2m2
2

}2

≥ max
{
ρ2m1
1 , ρ2m2

2

}
.

Since the quantity max
{
ρ2x1
1 , ρ2x2

2

}
under the conditions x1 ≥ 0, x2 ≥ 0, x1+x2 = m

is minimal at

x1 = m · log ρ2

log ρ1 + log ρ2
, x2 = m · log ρ1

log ρ1 + log ρ2
,

we obtain

max
s∈ eK

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ · max
s∈− eK

∣∣∣∣∣
[
H(s)
H(−s)

]−1
∣∣∣∣∣ ≥ ρ2m as m→∞,

so

lim inf
m→∞

(
max
s∈ eK

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ · max
s∈− eK

∣∣∣∣∣
[
H(s)
H(−s)

]−1
∣∣∣∣∣
)1/m

≥ ρ2.

It follows in view of [23, Theorem 1, Formula (12)] that the logarithmic capacity of
our condenser satisfies

exp
(
−1/ cap

(
K̃,−K̃

))
≥ ρ2.

Moreover, [23, Theorem 1, Formula (11)] yields for all H,G ∈ Pm

max
s∈ eK

∣∣∣∣H(s)
G(s)

∣∣∣∣ · max
s∈− eK

∣∣∣∣G(s)
H(s)

∣∣∣∣ ≥ ρ2m,

from which (A.8) follows.
We are now prepared to conclude the proof of Theorem 2.3.
Proof. To establish (2.10), it suffices to note that

max
z∈K

∣∣∣∣Rn(z)
F (z)

− 1
∣∣∣∣ = max

s∈ eK
∣∣∣∣s Pn−1(s2)
Qn(s2)

− 1
∣∣∣∣ ,

and to apply (A.7) from Lemma A.1, condition (2.9), and a consequence of (2.3) for
finding

∣∣∣∣sPn−1(s2)
Qn(s2)

− 1
∣∣∣∣ =

2
∣∣∣ Hm(s)
Hm(−s)

∣∣∣∣∣∣1 + Hm(s)
Hm(−s)

∣∣∣ .
To justify (2.11), set z = s2 and assume that for some pair (P,Q) and R = P/Q

we have the inequality

max
z∈K

∣∣∣∣R(z)
F (z)

− 1
∣∣∣∣ < 2ρm

1 + ρm
.
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Define H by means of (2.1) and rewrite the equality (2.3) in the form

H(s)
H(−s)

= −
R(z)
F (z) − 1(

R(z)
F (z) − 1

)
+ 2

.

We readily derive

max
s∈ eK

∣∣∣∣ H(s)
H(−s)

∣∣∣∣ < 2ρm

1+ρm

2− 2ρm

1+ρm

= ρm,

which contradicts (A.8) and thereby proves the assertion (2.11).
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