
A Catalogue of Software for Matrix Functions.
Version 1.0

Higham, Nicholas J. and Deadman, Edvin

2014

MIMS EPrint: 2014.8

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

A Catalogue of Software for Matrix Functions.

Version 1.0

Nicholas J. Higham∗ Edvin Deadman†

February 12, 2014

Abstract

A catalogue of software for computing matrix functions and their Fréchet derivatives
is presented. For a wide variety of languages and for software ranging from commercial
products to open source packages we describe what matrix function codes are available and
which algorithms they implement.

Contents

1 Introduction 2

2 Applications of Matrix Functions 2

3 Matrix Function Algorithms 3

4 MATLAB Built-in Functions 4

5 Symbolic Math Toolbox for MATLAB 5

6 The Matrix Function Toolbox 5

7 The Advanpix Multiprecision Com-
puting Toolbox 7

8 Other MATLAB Functions 7

9 Expokit 8

10 EXPINT 8

11 GNU Octave 9

12 Scilab 9

13 ϕ Functions in Fortran 95 9

14 Maple 9

15 Mathematica 10

16 NAG Library 10

17 Python: SciPy 11

18 Python: SymPy 11

19 Julia 14

20 R: Expm 14

21 C++: Eigen 15

22 The GNU Scientific Library 15

∗School of Mathematics, The University of Manchester, Manchester, M13 9PL,
UK (nick.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/~higham, ed-
vin.deadman@manchester.ac.uk, http://www.maths.manchester.ac.uk/~edeadman).

1

http://www.maths.manchester.ac.uk/~higham
http://www.maths.manchester.ac.uk/~edeadman

1 Introduction

The earliest widely available software for computing functions of matrices is probably the func-
tion named fun in the original 1984 Fortran version of MATLAB:

< M A T L A B >

Version of 01/10/84

<>

help fun

FUN For matrix arguments X , the functions SIN, COS, ATAN,

SQRT, LOG, EXP and X**p are computed using eigenvalues D

and eigenvectors V . If <V,D> = EIG(X) then f(X) =

V*f(D)/V . This method may give inaccurate results if V

is badly conditioned. Some idea of the accuracy can be

obtained by comparing X**1 with X .

For vector arguments, the function is applied to each

component.

Since then, and especially in the last five years or so, the quantity of software for matrix
functions has grown tremendously—to such an extent that it is hard to keep track of what is
available. This document is an attempt to produce a catalogue of software for matrix functions
available in different languages and packages.

The document lists what is available with a brief description of and reference to the algo-
rithms that are used (where known). We make no attempt to judge the quality of the software.
We also do not document version numbers; for software still under development we are referring
to the version current at the time of writing. This document is not intended to be exhaustive.
For example, if a code or package has been superseded or is a translation of an existing code to
another language we will usually omit it.

We intend to update the catalogue from time to time and welcome notification of errors and
omissions.

For background on functions of matrices see [37], [39], or [44].

2 Applications of Matrix Functions

Matrix functions have applications in a diverse and growing range of areas of science, engineer-
ing, and the social sciences. We list a selection of areas in which we are aware of the use of
matrix function software.

• Multizone models of pollutant transport in buildings take the form of linear systems of
ordinary differential equations, which can be effectively solved using the matrix exponen-
tial [60].

• In Markov models in finance, statistics and social science [37, Sec. 2.3] transition proba-
bility matrices are related to the transition intensity matrix via the matrix exponential.
Transition matrices for shorter time scales can be generated by taking matrix roots, but
there are open questions about the existence and uniqueness of stochastic roots [41], [48].

2

• NMR spectroscopy involves evaluating the exponential of a symmetric diagonally domi-
nant relaxation matrix [33], [56]. The package SIMPSON (http://nmr.au.dk/software/
simpson) for numerical simulations of NMR experiments includes several methods for
evaluating the matrix exponential.

• In control theory, linear dynamical systems can be expressed as continuous-time systems
or as discrete-time state-space systems. The matrix exponential and logarithm can be
used to convert between the two forms [37, Sec. 2.4]. In the Control System Toolbox for
MATLAB, functions c2d and d2c carry out these conversions.

• In nuclear engineering the burnup equations are a first-order system of linear ordinary
differential equations that are usually solved by time-stepping with the matrix exponential
[62]. The Python Nuclear Engineering Toolkit (http://pynesim.org) uses the SciPy
function linalg.expm (see Section 17).

• In social and information networks the elements of either the exponential or the resolvent
of the adjacency matrix of the network can be used to quantify the importance of nodes
within the network [22]. Recent research and software development has focused on com-
puting these elements, including in cases with special structure; see [11] and the references
therein. In time-varying networks the matrix logarithm is required [29].

• A number of problems in imaging make use of the matrix logarithm, including image
registration [9], patch modeling-based skin detection [46], and in-betweening in computer
animations [63].

• In optics, the Mueller matrix M is a real 4×4 matrix associated with an element that alters
the polarization of light. One method for determining the diattenutation, retardance, and
depolarization properties of M involves computing a pth root with p ≈ 105 [16], [58]. The
logarithm of M also provides understanding of the underlying medium that M describes
[59]. A related Jones matrix can be represented in terms of the matrix exponential [10].

3 Matrix Function Algorithms

There is now a large literature on matrix function algorithms, of which a survey as of 2010
is given in [40]. It may not be clear to users from different fields which algorithms represent
the current state-of-the-art. We list the algorithms that we consider to be preferred for a few
common matrix functions, for the case where a factorization of A can be explicitly computed
and full precision is required.

• Exponential: scaling and squaring algorithm (Al-Mohy and Higham, 2009) [3].

• Logarithm: inverse scaling and squaring algorithm (Al-Mohy, Higham, and Relton, 2012,
2013) [6], [7].

• Square root: Schur algorithm (Björck and Hammarling, 1983) [14], or real version for real
matrices (Higham, 1987) [35]. Algorithm with blocking provides performance improve-
ments (Deadman, Higham, and Ralha, 2013) [18].

• General matrix function with derivatives of the underlying scalar function available:
Schur–Parlett algorithm (Davies and Higham, 2003) [17]. This uses the recurrence of
Parlett (1976) [61].

• Real matrix power At with t ∈ R: Schur–Padé algorithm (Higham and Lin, 2013) [43].

3

http://nmr.au.dk/software/simpson
http://nmr.au.dk/software/simpson
http://pynesim.org

Table 1: Availability of recommended algorithms.
MATLAB MATLAB NAG SciPy

built-in Third party Library
Sec. 4 Secs 6 and 8 Sec. 16 Sec. 17

eA [3] ×
√ √ √

logA [6], [7] ×
√ √ √

A1/2 [14], [18], [35]
√ √ √ √

f(A) [17]
√

–
√

×
At [43] ×

√ √ √

Estimation of cond(f,A) ×
√ √

×
eAb [5]a ×

√ √ √

Lexp [2] ×
√ √ √

Llog [7] ×
√ √

×
Lxt [43] ×

√ √
×

aKrylov methods are also available; see the following sections.

• Function of a symmetric or Hermitian matrix: diagonalization.

In many applications of matrix functions the matrix is not known exactly, due to data errors
or errors in previous computations. Even with exact data the computation of a matrix function
is subject to rounding errors. It is therefore important to understand the sensitivity of the
matrix function to perturbations in the data, which is determined by the Fréchet derivative,
denoted Lf . The recommended algorithms for computing the Fréchet derivative are as follows.

• Exponential: scaling and squaring algorithm (Al-Mohy and Higham, 2009) [2].

• Logarithm: inverse scaling and squaring algorithm (Al-Mohy, Higham, and Relton, 2013)
[7].

• Real matrix power At with t ∈ R: Schur–Padé algorithm (Higham and Lin, 2013) [43].

• General matrix function: complex step algorithm (Al-Mohy and Higham, 2010) [4] or use
of a block 2× 2 matrix formula [40, Sec. 7.3].

Table 1 summarizes the availability of the above algorithms in four key sources of software.
Details are provided in the following sections.

The worst-case sensitivity of a matrix function over all perturbations is measured by the
condition number, cond(f,A) [37, Chap. 3]. The recommended way to estimate the condition
number is by using one of the above algorithms for the Fréchet derivative in conjunction with
[37, Alg. 3.22] and the block matrix 1-norm estimator of [45]. We encourage users to compute
a condition number estimate whenever possible.

A rather different problem is to compute f(A)b, where b is a vector—the action of f(A)
on a vector—without explicitly forming f(A). Such problems can involve very large, sparse
matrices, in which case matrix factorization may not be possible and methods that require only
matrix–vector products with A are needed. Codes for the f(A)b problem are described in some
of the following sections.

4 MATLAB Built-in Functions

MATLAB has a number of built-in commands for evaluating functions of matrices.

4

• funm: Schur–Parlett algorithm for general functions (Davies and Higham, 2003) [17].

• expm: matrix exponential by scaling and squaring algorithm (Higham, 2005, 2009) [36],
[38]. Note: expm does not use the latest algorithm from [3], which avoids overscaling; see
[52].

• expmdemo1: matrix exponential by an older scaling and squaring algorithm [26, Alg. 9.3.1].
This is an M-file implementation of the algorithm that was used by expm in MATLAB 7
(R14SP3) and earlier versions.

• mpower, ^: arbitrary matrix power via eigendecomposition.

• expmdemo2: matrix exponential by Taylor series.

• expmdemo3: matrix exponential by eigenvalue decomposition.

• logm: matrix logarithm by Schur–Parlett algorithm with inverse scaling and squaring
algorithm (Higham, 2008) [37, Alg. 11.11]. Note: logm does not use the latest algorithm
from [6], [7].

• sqrtm: matrix square root by Schur method (Björck and Hammarling, 1983) [14].

• polyvalm: evaluate polynomial with matrix argument.

5 Symbolic Math Toolbox for MATLAB

The Symbolic Math Toolbox for MATLAB [68] carries out computations with symbolic variables
and also provides variable precision arithmetic. The toolbox overloads the following functions
for both symbolic and variable precision matrix arguments. For variable precision arguments
the function digits can be used to specify the number of digits of precision required.

• expm: matrix exponential.

• mpower, ^: arbitrary matrix power via eigendecomposition.

The Symbolic Math Toolbox also contains the MuPAD computer algebra system, which
provides some additional matrix function capabilities for matrices with numeric (not symbolic)
entries.

• numeric::expMatrix: computes the matrix exponential or the action of the matrix ex-
ponential on another matrix or vector. The numerical precision used can be specified by
the environment variable DIGITS. The exponential is evaluated using a choice of diagonal-
ization, interpolation, a Taylor series (apparently without scaling and squaring), or (for
eAb only) a Krylov subspace method.

• numeric::fMatrix: for a diagonalizable matrix, computes an arbitrary function of the
matrix via a diagonalization.

6 The Matrix Function Toolbox

The Matrix Function Toolbox (Higham, 2008) [34] contains MATLAB implementations of many
of the algorithms described in the book Functions of Matrices: Theory and Computation [37],
including:

5

• trigonometric matrix functions,

• condition number evaluation and estimation,

• Fréchet derivative evaluation,

• polar decomposition,

• iterative methods for computing matrix roots,

• f(A)b via Arnoldi method.

The toolbox is documented in [37, App. D] and its contents are summarized in Table 2.

Table 2: Contents of Matrix Function Toolbox.

arnoldi Arnoldi iteration
ascent seq Ascent sequence for square (singular) matrix.
cosm Matrix cosine by double angle algorithm.
cosm pade Evaluate Padé approximation to the matrix cosine.
cosmsinm Matrix cosine and sine by double angle algorithm.
cosmsinm pade Evaluate Padé approximations to matrix cosine and sine.
expm cond Relative condition number of matrix exponential.
expm frechet pade Fréchet derivative of matrix exponential via Padé approximation.
expm frechet quad Fréchet derivative of matrix exponential via quadrature.
fab arnoldi f(A)b approximated by Arnoldi method.
funm condest1 Estimate of 1-norm condition number of matrix function.
funm condest fro Estimate of Frobenius norm condition number of matrix function.
funm ev Evaluate general matrix function via eigensystem.
funm simple Simplified Schur–Parlett method for function of a matrix.
logm cond Relative condition number of matrix logarithm.
logm frechet pade Fréchet derivative of matrix logarithm via Padé approximation.
logm iss Matrix logarithm by inverse scaling and squaring method.
logm pade pf Evaluate Padé approximant to matrix logarithm by partial frac-

tion form.
mft test Test the Matrix Function Toolbox.
mft tolerance Convergence tolerance for matrix iterations.
polar newton Polar decomposition by scaled Newton iteration.
polar svd Canonical polar decomposition via singular value decomposition.
polyvalm ps Evaluate polynomial at matrix argument by Paterson–Stockmeyer

algorithm.
power binary Power of matrix by binary powering (repeated squaring).
quasitriang struct Block structure of upper quasitriangular matrix.
riccati xaxb Solve Riccati equation XAX = B in positive definite matrices.
rootpm newton Coupled Newton iteration for matrix pth root.
rootpm real pth root of real matrix via real Schur form.
rootpm schur newton Matrix pth root by Schur–Newton method.
rootpm sign Matrix pth root via matrix sign function.
signm Matrix sign decomposition.
signm newton Matrix sign function by Newton iteration.
sqrtm db Matrix square root by Denman–Beavers iteration.
sqrtm dbp Matrix square root by product form of Denman–Beavers iteration.

6

Table 2: (continued)

sqrtm newton Matrix square root by Newton iteration (unstable).
sqrtm newton full Matrix square root by full Newton method.
sqrtm pd Square root of positive definite matrix via polar decomposition.
sqrtm pulay Matrix square root by Pulay iteration.
sqrtm real Square root of real matrix by real Schur method.
sqrtm triang min norm Estimated minimum norm square root of triangular matrix.
sylvsol Solve Sylvester equation.

7 The Advanpix Multiprecision Computing Toolbox

The Advanpix Multiprecision Toolbox [54] is an extension to MATLAB for computing with
arbitrary precision. The toolbox provides arbitrary precision analogues to the built-in MATLAB
matrix functions as well as some trigonometric matrix functions. It is specifically optimized for
quadruple precision.

The following matrix function routines are available in the toolbox: funm, expm, sqrtm,
logm, sinm, cosm, sinhm, and coshm. The first four use the same algorithms as their MATLAB
counterparts, with some adaptations to arbitrary precision.

8 Other MATLAB Functions

MATLAB functions implementing algorithms developed in several research papers are available
online.

• Al-Mohy and Higham (2009) [3]: a scaling and squaring algorithm for the matrix expo-
nential. Available from http://eprints.ma.man.ac.uk/1442/

• Al-Mohy and Higham (2011) [5]: a scaled Taylor series algorithm for the action of the ma-
trix exponential on a vector. Available from http://www.mathworks.com/matlabcentral/

fileexchange/29576-matrix-exponential-times-a-vector

• Al-Mohy and Higham (2011) [6]: an inverse scaling and squaring algorithm for the matrix
logarithm. Available from http://www.mathworks.com/matlabcentral/fileexchange/

33393-matrix-logarithm.

• Al-Mohy, Higham, and Relton (2013) [7]: an algorithm for the matrix logarithm (a real
version of the algorithm in [6]) together with Fréchet derivatives and condition number
estimates. Available from http://www.mathworks.com/matlabcentral/fileexchange/

38894-matrix-logarithm-with-frechet-derivatives-and-condition-number.

• Aprahamian and Higham (2014) [8]: an algorithm for computing the matrix unwinding
function. Available at http://eprints.ma.man.ac.uk/2094.

• Caliari et al. (2013) [15]: a method for computing the action of the matrix exponen-
tial (for a matrix with spectrum in the left half of the complex plane) based on inter-
polation at Leja points. Available from http://www.mathworks.com/matlabcentral/

fileexchange/44039-matrix-exponential-times-a-vector

7

http://eprints.ma.man.ac.uk/1442/
http://www.mathworks.com/matlabcentral/fileexchange/29576-matrix-exponential-times-a-vector
http://www.mathworks.com/matlabcentral/fileexchange/29576-matrix-exponential-times-a-vector
http://www.mathworks.com/matlabcentral/fileexchange/33393-matrix-logarithm
http://www.mathworks.com/matlabcentral/fileexchange/33393-matrix-logarithm
http://www.mathworks.com/matlabcentral/fileexchange/38894-matrix-logarithm-with-frechet-derivatives-and-condition-number
http://www.mathworks.com/matlabcentral/fileexchange/38894-matrix-logarithm-with-frechet-derivatives-and-condition-number
http://eprints.ma.man.ac.uk/2094
http://www.mathworks.com/matlabcentral/fileexchange/44039-matrix-exponential-times-a-vector
http://www.mathworks.com/matlabcentral/fileexchange/44039-matrix-exponential-times-a-vector

• Eiermann and Güttel (2008) [1], [20]: a restarted Krylov algorithm for computing f(A)b;
it also implements deflated restarting [21]. Available from http://www.guettel.com/

funm_kryl.

• Frommer, Güttel and Schweitzer (2013) [23]: a quadrature-based restarted Krylov method
for f(A)b. Available from http://www.guettel.com/funm_quad.

• Greco and Iannazzo (2010) [28]: a binary powering Schur algorithm for matrix roots.
Available from http://poisson.phc.unipi.it/~maxreen/bruno/codes/rootpm_real_

2.m.

• Güttel (2010): a rational Chebyshev series method for computing eAb, where A is sym-
metric and has no positive eigenvalues. Available from http://www.mathworks.com/

matlabcentral/fileexchange/28199-matrix-exponential.

• Güttel and Knizhnerman (2011) [30]: a black-box rational Arnoldi method for comput-
ing f(A)b, where f is a Markov matrix function. Available from http://guettel.com/

markovfunmv. See also [31].

• Hale, Higham and Trefethen (2008) [32]: algorithms for evaluating f(A) and f(A)b by
contour integration. MATLAB code is embedded in the paper.

• Higham and Lin (2013) [43]: a Schur–Padé algorithm for fractional matrix powers to-
gether with Fréchet derivatives and condition estimates. Available from http://www.

mathworks.com/matlabcentral/fileexchange/41621-fractional-matrix-powers-with-

frechet-derivatives-and-condition-number-estimate

• Iannazzo and Manasse (2012) [47]: a Schur logarithmic algorithm for fractional powers
of matrices. Available from http://poisson.phc.unipi.it/~maxreen/bruno/codes/

pthrootlog.m.

• Kloster and Gleich [50]: an algorithm for computing a column of the exponential of a
stochastic matrix. Code is available from https://www.cs.purdue.edu/homes/dgleich/

codes/nexpokit.

9 Expokit

Expokit (Sidje, 1998) [66], [67] is a package of Fortran and MATLAB codes to compute eA

(using scaling and squaring) and eAb (using Krylov subspace methods). An R interface to
Expokit is available at http://cran.r-project.org/web/packages/expoRkit.

10 EXPINT

EXPINT (Berland, Skaflestad and Wright, 2007) [12], [13] is a MATLAB package providing
exponential integrators for ordinary differential equations. A large range of Runge–Kutta,
multistep and general linear integrators is available. The functions ϕk(z) =

∑∞
j=0 z

j/(j + k)!
underlying the methods are evaluated at matrix arguments using Padé approximants with a
scaling and squaring scheme.

8

http://www.guettel.com/funm_kryl
http://www.guettel.com/funm_kryl
http://www.guettel.com/funm_quad
http://poisson.phc.unipi.it/~maxreen/bruno/codes/rootpm_real_2.m
http://poisson.phc.unipi.it/~maxreen/bruno/codes/rootpm_real_2.m
http://www.mathworks.com/matlabcentral/fileexchange/28199-matrix-exponential
http://www.mathworks.com/matlabcentral/fileexchange/28199-matrix-exponential
http://guettel.com/markovfunmv
http://guettel.com/markovfunmv
http://www.mathworks.com/matlabcentral/fileexchange/41621-fractional-matrix-powers-with-frechet-derivatives-and-condition-number-estimate
http://www.mathworks.com/matlabcentral/fileexchange/41621-fractional-matrix-powers-with-frechet-derivatives-and-condition-number-estimate
http://www.mathworks.com/matlabcentral/fileexchange/41621-fractional-matrix-powers-with-frechet-derivatives-and-condition-number-estimate
http://poisson.phc.unipi.it/~maxreen/bruno/codes/pthrootlog.m
http://poisson.phc.unipi.it/~maxreen/bruno/codes/pthrootlog.m
https://www.cs.purdue.edu/homes/dgleich/codes/nexpokit
https://www.cs.purdue.edu/homes/dgleich/codes/nexpokit
http://cran.r-project.org/web/packages/expoRkit

11 GNU Octave

GNU Octave [24] is an open source problem-solving environment (PSE)1 with a high-level
programming language similar to (and mostly compatible with) MATLAB. It contains several
matrix function routines.

• expm: matrix exponential by Ward’s version of the scaling and squaring algorithm (1977)
[70].

• logm: matrix logarithm by an inverse scaling and squaring algorithm (Higham, 2008) [37].

• sqrtm: matrix square root by the Schur method (Björck and Hammarling, 1983) [14].

An extra linear algebra package is available for Octave http://octave.sourceforge.net/

linear-algebra/. This contains some additional matrix function routines.

• thfm: trigonometric and hyperbolic functions and their inverses. It implements textbook
definitions, in terms of expm, logm, and sqrtm.

• funm: general matrix function via diagonalization.

12 Scilab

Scilab [64] is another open source PSE. Scilab syntax is similar to that of MATLAB and a code
translator is available to convert code from MATLAB to Scilab. Scilab contains several matrix
function routines.

• expm: matrix exponential using block diagonalization with a Padé approximant applied
to each block.

• logm: matrix logarithm via diagonalization.

• sqrtm: matrix square root via diagonalization.

• power: matrix power using diagonalization for non-integer powers.

13 ϕ Functions in Fortran 95

Koikari (2009) [51] has written Fortran 95 software for computing the functions ϕ`(z) =∑∞
k=0 z

k/(k+ `)! by scaling and squaring and by a block Schur–Parlett algorithm. The code is
available as a supplement to the paper on the ACM website.

14 Maple

Maple contains some matrix function routines in its LinearAlgebra package. The matrix
functions are computed symbolically using polynomial interpolation at the matrix eigenvalues.

• MatrixExponential: exponential of a matrix.

• MatrixPower: general (non-integer) power of a matrix.

• MatrixFunction: general function of a matrix. The function is supplied in the form of
an analytic expression by the user.

1 A PSE provides a programming language, an interactive command window with the display of graphics,
and the ability to export graphics and more generally publish documents to HTML, PDF, TEX, and so on.

9

http://octave.sourceforge.net/linear-algebra/
http://octave.sourceforge.net/linear-algebra/

15 Mathematica

Mathematica evaluates the functions listed below via a Jordan decomposition if the matrix is
provided in symbolic form. If the matrix is in floating point format the indicated algorithms
are used.

• MatrixFunction: the Schur–Parlett algorithm [17] is used to evaluate a general matrix
function (derivatives are computed symbolically).

• MatrixExp: the matrix exponential is computed by scaling and squaring [36], [38]. This
function can also compute the action of the matrix exponential on a vector, using Krylov
methods.

• MatrixLog: the matrix logarithm is evaluated via a Schur decomposition. The action of
the matrix logarithm on a vector can also be computed.

16 NAG Library

The NAG Library [55] has a large set of matrix function routines in its Chapter F01, covering
computation of matrix functions and their Fréchet derivatives and estimation of the condition
numbers of matrix functions.

• NAG Fortran Library Mark 23 and NAG Toolbox for MATLAB Mark 23 (released 2011):

– Matrix exponential using scaling and squaring algorithm (Higham, 2005) [36], [38].

– Function of real symmetric or Hermitian matrix via eigendecomposition.

• NAG C Library Mark 23, released 2012, also contains:

– Schur–Parlett algorithm for general functions and for cos, sin, cosh, sinh, exp (Davies
and Higham, 2003) [17].

– Matrix logarithm by Schur–Parlett algorithm with inverse scaling and squaring al-
gorithm (Higham, 2008) [37].

• NAG Fortran Library Mark 24 and the NAG Toolbox for MATLAB Mark 24 (released
2013) also contain:

– Action of the matrix exponential by scaled Taylor series algorithm (Al-Mohy and
Higham, 2011) [5].

– Condition number estimation in the 1-norm for general matrix functions and for cos,
sin, cosh, sinh, exp.

• Coming in NAG C Library Mark 24 (2014), NAG Fortran Library Mark 25 (2015), and
NAG Toolbox for MATLAB Mark 25 (2015):

– Improved scaling and squaring algorithms for matrix exponential and logarithm (Al-
Mohy and Higham, 2009, 2012) [3], [6].

– Matrix square root using Schur method with blocking (including real arithmetic
algorithm of Higham [35]) [14], [18], [35].

– Matrix power Ap, p ∈ R, via Schur–Padé algorithm (Higham and Lin, 2011, 2013)
[42], [43].

10

– Latest Fréchet derivative and condition number algorithms for the matrix exponen-
tial, logarithm, and real powers [2], [7], [43].

Documentation can be found at: http://www.nag.co.uk/support_documentation.asp.
A complete list of all of the NAG matrix function routines, together with their Mark of intro-
duction and the algorithms used, is given in Table 3.

17 Python: SciPy

SciPy [65] is a Python package for scientific computing. It has a number of matrix function
codes, some of which are new to version 0.13.0, released in October 2013:

• linalg.expm3, linalg.expm2, linalg.expm: matrix exponential using Taylor series,
eigenvalue decomposition, and scaling and squaring (Higham, 2005) [36], respectively.

• sparse.linalg.expm: matrix exponential using the more recent algorithm of Al-Mohy
and Higham (2009) [3].

• linalg.logm: matrix logarithm via inverse scaling and squaring algorithm (Al-Mohy and
Higham, 2012) [6].

• linalg.sinm, linalg.cosm, linalg.tanm, linalg.sinhm, linalg.coshm, linalg.tanhm:
implemented in terms of linalg.expm.

• linalg.funm: unblocked Schur–Parlett algorithm [26, Alg. 9.1.1], [37, Alg. 4.1.3].

• linalg.fractional matrix power: arbitrary real power of matrix by Schur–Padé algo-
rithm (Higham and Lin, 2011, 2013) [42], [43].

• linalg.signm: matrix sign function via Newton iteration [37, Sec. 5.3].

• linalg.expm frechet: Fréchet derivative of matrix exponential by scaling and squaring
algorithm (Al-Mohy and Higham, 2009) [2].

• linalg.sqrtm: matrix square root by blocked version of Schur method of Björck and
Hammarling (1983) [14], [18].

• linalg.expm multiply: action of matrix exponential on a vector or matrix via scaled
Taylor series algorithm (Al-Mohy and Higham, 2011) [5].

• linalg.polar: polar decomposition via the SVD [37, Chap. 8].

18 Python: SymPy

SymPy [69] is a Python library for symbolic mathematics. It contains some numerical matrix
function capabilities in its mpmath module and variable precision arithmetic is supported. The
precision is set using either mp.prec (to set the binary precision, measured in bits) or mp.dps

(to set the decimal precision).

• mpmath.expm: matrix exponential by scaling and squaring with Taylor series or Padé
approximant.

• mpmath.sinm, mpmath.cosm: matrix sine and cosine implemented via the matrix expo-
nential.

11

http://www.nag.co.uk/support_documentation.asp

Table 3: Matrix Function Routines in the NAG Library.

Short

Name

Long Name Purpose Arithmetic Algorithms Used Marks of
Introduction

F01EC nag real gen matrix exp Exponential Real Scaling & squaring [3] FL22 & CL9 1

F01ED nag real symm matrix exp Exponential, symmetric matrix Real Diagonalization FL23 & CL9
F01EF nag matop real symm matrix fun Symmetric matrix function Real Diagonalization FL23 & CL23
F01EJ nag matop real gen matrix log Logarithm Real Scaling & squaring [6] FL24 & CL23 2

F01EK nag matop real gen matrix fun std sin, cos, sinh, cosh or exp Real Schur–Parlett [17] FL24 & CL23
F01EL nag matop real gen matrix fun num General user-provided function Real Schur–Parlett [17] FL24 & CL24
F01EM nag matop real gen matrix fun usd General user-provided function Real Schur–Parlett [17] FL24 & CL23
F01EN nag matop real gen matrix sqrt Square root Real [14], [35], [18] FL25 & CL24
F01EP nag matop real tri matrix sqrt Upper triangular square root Real [14], [35], [18] FL25 & CL24
F01EQ nag matop real gen matrix pow General real power Real [42], [43] FL25 & CL24
F01FC nag complex gen matrix exp Exponential Complex Scaling & squaring [3] FL23 & CL23 1

F01FD nag complex gen matrix exp Exponential, Hermitian matrix Complex Diagonalization FL23 & CL23
F01FF nag matop complex symm matrix fun Hermitian matrix function Complex Diagonalization FL23 & CL23
F01FJ nag matop real gen matrix log Logarithm Complex Scaling & squaring [6] FL24 & CL23 2

F01FK nag matop real gen matrix fun std sin, cos, sinh, cosh or exp Complex Schur–Parlett [17] FL24 & CL23
F01FL nag matop real gen matrix fun num General user-provided function Complex Schur–Parlett [17] FL24 & CL24
F01FM nag matop real gen matrix fun usd General user-provided function Complex Schur–Parlett [17] FL24 & CL23
F01FN nag matop real gen matrix sqrt Square root Complex [14], [18] FL25 & CL24
F01FP nag matop real tri matrix sqrt Upper triangular square root Complex [14], [18] FL25 & CL24
F01FQ nag matop real gen matrix pow General real power Complex [42], [43] FL25 & CL24
F01GA nag matop real gen matrix actexp Action of matrix exponential Real [5] FL24 & CL24
F01GB nag matop real gen matrix actexp rcomm Action of matrix exponential Real [5] rev comm3 FL24 & CL24
F01HA nag matop complex gen matrix actexp Action of matrix exponential Complex [5] FL24 & CL24
F01HB nag matop complex gen matrix actexp rcomm Action of matrix exponential Complex [5] rev comm3 FL24 & CL24
F01JA nag matop real gen matrix cond std sin, cos, sinh, cosh, exp cond Real Schur–Parlett [17] FL24 & CL24

1The original implementation of this code uses an older scaling and squaring algorithm of Higham (2005) [36], [38]. The updated implementation using the algorithm
in [3] will be available from Mark 25.

2The original implementation of this code uses [37, Alg. 11.11]. The updated implementation using the algorithm in [6] will be available from Mark 25.
3“Rev comm” denotes a reverse communication interface.

12

F01JB nag matop real gen matrix cond num User function, condition Real Schur–Parlett [17] FL24 & CL24
F01JC nag matop real gen matrix cond usd User function, condition Real Schur–Parlett [17] FL24 & CL24
F01JD nag matop real gen matrix cond sqrt Square root, condition Real [14], [35], [18] FL25 & CL24
F01JE nag matop real gen matrix cond pow General real power, condition Real [43] FL25 & CL24
F01JF nag matop real gen matrix frcht pow Real power, Fréchet derivative Real [43] FL25 & CL24
F01JG nag matop real gen matrix cond exp Exponential, condition number Real [2] FL25 & CL24
F01JH nag matop real gen matrix frcht exp Exponential, Fréchet derivative Real [2] FL25 & CL24
F01JJ nag matop real gen matrix cond log Logarithm, condition number Real [6], [7] FL25 & CL24
F01JK nag matop real gen matrix frcht log Logarithm, Fréchet derivative Real [6], [7] FL25 & CL24
F01KA nag matop complex gen matrix cond std sin, cos, sinh, cosh, exp cond Complex Schur–Parlett [17] FL24 & CL24
F01KB nag matop complex gen matrix cond num User function, condition Complex Schur–Parlett [17] FL24 & CL24
F01KC nag matop complex gen matrix cond usd User function, condition Complex Schur–Parlett [17] FL24 & CL24
F01KD nag matop complex gen matrix cond sqrt Square root, condition Complex [14], [18] FL25 & CL24
F01KE nag matop complex gen matrix cond pow General real power, condition Complex [43] FL25 & CL24
F01KF nag matop complex gen matrix frcht pow Real power, Fréchet derivative Complex [43] FL25 & CL24
F01KG nag matop complex gen matrix cond exp Exponential, condition number Complex [2] FL25 & CL24
F01KH nag matop complex gen matrix frcht exp Exponential, Fréchet derivative Complex [2] FL25 & CL24
F01KJ nag matop complex gen matrix cond log Logarithm, condition number Complex [6], [7] FL25 & CL24
F01KK nag matop complex gen matrix frcht log Logarithm, Fréchet derivative Complex [6], [7] FL25 & CL24

13

• mpmath.sqrtm: matrix square root evaluated using the Denman–Beavers (1976) iteration
[19].

• mpmath.logm: matrix logarithm evaluated via inverse scaling and squaring and a Taylor
series.

• mpmath.powm: Ap for p ∈ C implemented as ep logA.

Note that both SymPy and SciPy are available in Sage (http://www.sagemath.org), an
open source Python-based mathematical software package.

19 Julia

Julia [49] is an open-source, high-level, dynamic programming language designed specifically
for high-performance numerical and scientific computing. Its extensive mathematical function
library is largely written in Julia itself, but also includes calls to other libraries such as LAPACK
and OpenBLAS. Two matrix function routines are available in the Julia Standard Library:

• sqrtm: matrix square root using Schur method of Björck and Hammarling (1983) [14].

• expm: matrix exponential using the scaling and squaring algorithm of Higham (2005) [36],
[38].

20 R: Expm

Goulet, Dutang, Maechler, Firth, Shapira, and Stadelmann have written the R package expm
[27]. It contains codes not only for the matrix exponential but also for the logarithm and square
root.

• expm: the default is expm.Higham08, which uses the algorithm of (Higham, 2005) [36],
[38]. Also available are options for using an eigendecomposition and other Padé and
Taylor-based methods.

• expAtv uses a Krylov method of Sidje (1998) [67] to compute the action of the matrix
exponential on a vector.

• expmCond: computes or approximates the 1-norm or Frobenius norm condition number of
the matrix exponential using the algorithm of Al-Mohy and Higham (2009) [2] or methods
from [37, Sec. 3.4].

• expmFrechet: Fréchet derivative of matrix exponential (Al-Mohy and Higham, 2009) [2].

• logm: matrix logarithm by inverse scaling and squaring (Higham, 2008) [37, Alg. 11.9].

• sqrtm: matrix square root by the Schur method (Björck and Hammarling, 1983) [14].

• matpow: positive integer powers via binary powering.

14

http://www.sagemath.org

21 C++: Eigen

Niesen has written a matrix functions module for the Eigen C++ template library for linear
algebra [57].

• MatrixBase::exp(): matrix exponential by scaling and squaring algorithm (Higham,
2005) [36], [38].

• MatrixBase::sin(), MatrixBase::sinh(), MatrixBase::cos(), MatrixBase::cosh()
and MatrixBase::matrixFunction() are all based on the Schur–Parlett algorithm (Davies
and Higham, 2003) [17].

• MatrixBase::log(): matrix logarithm by the Schur–Parlett algorithm with inverse scal-
ing and squaring [37, Alg. 11.11].

• MatrixBase::pow(): real matrix powers At (t ∈ R) using the Schur–Padé algorithm
(Higham and Lin, 2011) [42].

• MatrixBase::sqrt(): matrix square root by Schur method (Björck and Hammarling,
1983) [14] and the real Schur method (Higham, 1987) [35].

22 The GNU Scientific Library

The GNU Scientific Library (GSL) is an open-source numerical library written in C (although
wrappers exists for many other programming languages) [25]. GSL includes an undocumented
function gsl_linalg_exponential_ss to compute the matrix exponential. This routine uses
scaling and squaring and a truncated Taylor series. The scaling and truncation parameters are
chosen as in Moler and Van Loan (2003) [53, Method 3].

Acknowledgements

We thank Awad Al-Mohy, Michael Croucher, Stefan Güttel, Sven Hammarling, Lijing Lin, and
Samuel Relton for comments and suggestions.

References

[1] Martin Afanasjew, Michael Eiermann, Oliver G. Ernst, and Stefan Güttel. Implementation
of a restarted Krylov subspace method for the evaluation of matrix functions. Linear
Algebra Appl., 429(10):2293–2314, 2008.

[2] Awad H. Al-Mohy and Nicholas J. Higham. Computing the Fréchet derivative of the matrix
exponential, with an application to condition number estimation. SIAM J. Matrix Anal.
Appl., 30(4):1639–1657, 2009.

[3] Awad H. Al-Mohy and Nicholas J. Higham. A new scaling and squaring algorithm for the
matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):970–989, 2009.

[4] Awad H. Al-Mohy and Nicholas J. Higham. The complex step approximation to the Fréchet
derivative of a matrix function. Numer. Algorithms, 53(1):133–148, 2010.

[5] Awad H. Al-Mohy and Nicholas J. Higham. Computing the action of the matrix exponen-
tial, with an application to exponential integrators. SIAM J. Sci. Comput., 33(2):488–511,
2011.

15

[6] Awad H. Al-Mohy and Nicholas J. Higham. Improved inverse scaling and squaring algo-
rithms for the matrix logarithm. SIAM J. Sci. Comput., 34(4):C153–C169, 2012.

[7] Awad H. Al-Mohy, Nicholas J. Higham, and Samuel D. Relton. Computing the Fréchet
derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci.
Comput., 35(4):C394–C410, 2013.

[8] Mary Aprahamian and Nicholas J. Higham. The matrix unwinding function, with an
application to computing the matrix exponential. SIAM J. Matrix Anal. Appl., 35(1):88–
109, 2014.

[9] Vincent Arsigny, Olivier Commowick, Nicholas Ayache, and Xavier Pennec. A fast and
log–Euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vis,
33:222–238, 2009.

[10] Richard Barakat. Exponential versions of the Jones and Mueller-Jones polarization matri-
ces. J. Opt. Soc. Am. A, 13(1):158–163, 1996.

[11] Michele Benzi, Ernesto Estrada, and Christine Klymko. Ranking hubs and authorities
using matrix functions. Linear Algebra Appl., 438(5):2447–2474, 2013.

[12] H̊avard Berland, B̊ard Skaflestad, and Will Wright. EXPINT. http://www.math.ntnu.

no/num/expint/matlab.php.

[13] H̊avard Berland, B̊ard Skaflestad, and Will Wright. EXPINT—A MATLAB package for
exponential integrators. ACM Trans. Math. Software, 33(1):Article 4, 2007.

[14] Åke Björck and Sven Hammarling. A Schur method for the square root of a matrix. Linear
Algebra Appl., 52/53:127–140, 1983.

[15] Marco Caliari, Peter Kandolf, Alexander Ostermann, and Stefan Rainer. Comparison of
software for computing the action of the matrix exponential. BIT, pages 1–16, 2013. DOI
10.1007/s10543-013-0446-0.

[16] Russell A. Chipman. Mueller matrices. In Michael Bass, editor, Handbook of Optics: Vol-
ume I—Geometrical and Physical Optics, Polarized Light, Components and Instruments,
pages 14.1–14.44. McGraw-Hill, New York, third edition, 2010.

[17] Philip I. Davies and Nicholas J. Higham. A Schur–Parlett algorithm for computing matrix
functions. SIAM J. Matrix Anal. Appl., 25(2):464–485, 2003.

[18] Edvin Deadman, Nicholas J. Higham, and Rui Ralha. Blocked Schur algorithms for com-
puting the matrix square root. In P. Manninen and P. Öster, editors, Applied Parallel and
Scientific Computing: 11th International Conference, PARA 2012, Helsinki, Finland, vol-
ume 7782 of Lecture Notes in Computer Science, pages 171–182. Springer-Verlag, Berlin,
2013.

[19] Eugene D Denman and Alex N Beavers Jr. The matrix sign function and computations in
systems. Applied mathematics and Computation, 2(1):63–94, 1976.

[20] Michael Eiermann and Oliver G. Ernst. A restarted Krylov subspace method for the
evaluation of matrix functions. SIAM J. Numer. Anal., 44(6):2481–2504, 2006.

[21] Michael Eiermann, Oliver G. Ernst, and Stefan Güttel. Deflated restarting for matrix
functions. SIAM J. Matrix Anal. Appl., 32(2):621–641, 2011.

16

http://www.math.ntnu.no/num/expint/matlab.php
http://www.math.ntnu.no/num/expint/matlab.php

[22] Ernesto Estrada and Desmond J. Higham. Network properties revealed through matrix
functions. SIAM Rev., 52(4):696–714, 2010.

[23] Andreas Frommer, Stefan Güttel, and Marcel Schweitzer. Efficient and stable Arnoldi
restarts for matrix functions based on quadrature. MIMS EPrint 2013.48, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK, August 2013.

[24] GNU Octave. http://www.octave.org.

[25] GNU Scientific Library. http://www.gnu.org/software/gsl.

[26] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, USA, fourth edition, 2013.

[27] Vincent Goulet, Christophe Dutang, Martin Maechler, David Firth, Marina Shapira, and
Michael Stadelmann. R package expm. http://cran.r-project.org/web/packages/

expm/index.html.

[28] Federico Greco and Bruno Iannazzo. A binary powering Schur algorithm for computing
primary matrix roots. Numerical Algorithms, 55(1):59–78, January 2010.

[29] Peter Grindrod and Desmond J. Higham. A dynamical systems view of network centrality.
Proc. Roy. Soc. London Ser. A, 2014. To appear.

[30] Stefan Güttel and Leonid Knizhnerman. Automated parameter selection for rational
Arnoldi approximation of Markov functions. Proc. Appl. Math. Mech., 11(1):15–18, 2011.

[31] Stefan Güttel and Leonid Knizhnerman. A black-box rational Arnoldi variant for Cauchy–
Stieltjes matrix functions. BIT, 53(3):595616, 2013.

[32] Nicholas Hale, Nicholas J. Higham, and Lloyd N. Trefethen. Computing Aα, log(A), and
related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523,
2008.

[33] Timothy F. Havel, Igor Najfeld, and Ju-xing Yang. Matrix decompositions of two-
dimensional nuclear magnetic resonance spectra. Proc. Nat. Acad. Sci. USA, 91:7962–7966,
1994.

[34] Nicholas J. Higham. The Matrix Function Toolbox. http://www.maths.manchester.ac.
uk/~higham/mftoolbox.

[35] Nicholas J. Higham. Computing real square roots of a real matrix. Linear Algebra Appl.,
88/89:405–430, 1987.

[36] Nicholas J. Higham. The scaling and squaring method for the matrix exponential revisited.
SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005.

[37] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[38] Nicholas J. Higham. The scaling and squaring method for the matrix exponential revisited.
SIAM Rev., 51(4):747–764, 2009.

[39] Nicholas J. Higham. Functions of matrices. In Leslie Hogben, editor, Handbook of Linear
Algebra, pages 17.1–17.15. Chapman and Hall/CRC, Boca Raton, FL, USA, second edition,
2014.

17

http://www.octave.org
http://www.gnu.org/software/gsl
http://cran.r-project.org/web/packages/expm/index.html
http://cran.r-project.org/web/packages/expm/index.html

[40] Nicholas J. Higham and Awad H. Al-Mohy. Computing matrix functions. Acta Numerica,
19:159–208, 2010.

[41] Nicholas J. Higham and Lijing Lin. On pth roots of stochastic matrices. Linear Algebra
Appl., 435(3):448–463, 2011.

[42] Nicholas J. Higham and Lijing Lin. A Schur–Padé algorithm for fractional powers of a
matrix. SIAM J. Matrix Anal. Appl., 32(3):1056–1078, 2011.

[43] Nicholas J. Higham and Lijing Lin. An improved Schur–Padé algorithm for fractional
powers of a matrix and their Fréchet derivatives. SIAM J. Matrix Anal. Appl., 34(3):1341–
1360, 2013.

[44] Nicholas J. Higham and Lijing Lin. Matrix functions: A short course. MIMS EPrint
2013.73, Manchester Institute for Mathematical Sciences, The University of Manchester,
UK, November 2013. To appear in Matrix Functions and Matrix Equations, Zhaojun Bai,
Weiguo Gao and Yangfeng Su (eds.), Series in Contemporary Applied Mathematics, World
Scientific Publishing.

[45] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm estimation,
with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4):1185–
1201, 2000.

[46] Weiming Hu, Haiqiang Zuo, Ou Wu, Yunfei Chen, Zhongfei Zhang, and David Suter.
Recognition of adult images, videos, and web page bags. ACM Trans. Multimedia Comput.
Commun. Appl., 78:28:1–28:24, 2011.

[47] Bruno Iannazzo and Carlo Manasse. A Schur logarithmic algorithm for fractional powers
of matrices. Technical report, Universitá di Perugia, May 2012.

[48] Robert B. Israel, Jeffrey S. Rosenthal, and Jason Z. Wei. Finding generators for Markov
chains via empirical transition matrices, with applications to credit ratings. Math. Finance,
11(2):245–265, 2001.

[49] Julia. http://julialang.org.

[50] Kyle Kloster and David F. Gleich. A fast relaxation method for computing a column of
the matrix exponential of stochastic matrices from large, sparse networks, 2013. http:

//arxiv.org/abs/1310.3423.

[51] Souji Koikari. Algorithm 894: On a block Schur–Parlett algorithm for φ-functions based
on the sep-inverse estimate. ACM Trans. Math. Softw., 36(2):12:1–12:20, April 2009.

[52] Cleve B. Moler. A balancing act for the matrix exponential. http://blogs.mathworks.

com/cleve/2012/07/23/a-balancing-act-for-the-matrix-exponential/, July 2012.

[53] Cleve B. Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003.

[54] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.

[55] NAG Library. NAG Ltd., Oxford. http://www.nag.co.uk.

[56] Igor Najfeld and Timothy F. Havel. Derivatives of the matrix exponential and their com-
putation. Advances in Applied Mathematics, 16:321–375, 1995.

18

http://julialang.org
http://arxiv.org/abs/1310.3423
http://arxiv.org/abs/1310.3423
http://blogs.mathworks.com/cleve/2012/07/23/a-balancing-act-for-the-matrix-exponential/
http://blogs.mathworks.com/cleve/2012/07/23/a-balancing-act-for-the-matrix-exponential/
http://www.advanpix.com
http://www.nag.co.uk

[57] Jitse Niesen. Eigen matrix functions module. http://eigen.tuxfamily.org/dox-devel/
/unsupported/group__MatrixFunctions__Module.html.

[58] H. D. Noble and R. A. Chipman. Mueller matrix roots algorithm and computational
considerations. Opt. Express, 20(1):17–31, 2012.

[59] Razvigor Ossikovski. Differential matrix formalism for depolarizing anisotropic media.
Optics Letters, 36(12):2330–2332, 2011.

[60] Simon T. Parker, David M. Lorenzetti, and Michael D. Sohn. Implementing state-space
methods for multizone contaminant transport. Building and Environment, 71:131–139,
2014.

[61] Beresford N Parlett. A recurrence among the elements of functions of triangular matrices.
Linear Algebra and its Applications, 14(2):117–121, 1976.

[62] Maria Pusa and Jaakko Leppänen. Computing the matrix exponential in burnup calcula-
tions. Nuclear Science and Engineering, 164(2):140–150, 2010.

[63] Jarek Rossignac and Àlvar Vinacua. Steady affine motions and morphs. ACM Trans.
Graphics, 30(5):116:1–116:16, 2011.

[64] Scilab. http://www.scilab.org.

[65] SciPy. http://www.scipy.org.

[66] Roger B. Sidje. Expokit. http://www.maths.uq.edu.au/expokit.

[67] Roger B. Sidje. Expokit: A software package for computing matrix exponentials. ACM
Trans. Math. Software, 24(1):130–156, 1998.

[68] Symbolic Math Toolbox. The MathWorks, Inc., Natick, MA, USA. http://www.

mathworks.co.uk/products/symbolic/.

[69] SymPy. http://www.sympy.org.

[70] Robert C. Ward. Numerical computation of the matrix exponential with accuracy estimate.
SIAM J. Numer. Anal., 14(4):600–610, 1977.

19

http://eigen.tuxfamily.org/dox-devel//unsupported/group__MatrixFunctions__Module.html
http://eigen.tuxfamily.org/dox-devel//unsupported/group__MatrixFunctions__Module.html
http://www.scilab.org
http://www.scipy.org
http://www.maths.uq.edu.au/expokit
http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
http://www.sympy.org

