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Isotropic flow of homeomorphisms on 5S¢
with respect to the metric Ht2/2

Shizan FANG Tusheng ZHANG

S.F.: I.M.B, UFR Sciences et techniques, Université de Bourgogne, 9 avenue Alain Savary, B.P. 47870, 21078 Dijon, France.

T.Z.: Department of Mathematics, University of Manchester, Oxford road, Manchester, M13 9PL, England.

Abstract. In this work, we shall deal with the critical Sobolev isotropic
Brownian flows on the sphere S?. Based on previous works by O. Raimond
and LeJan-Raimond (see Ann. Inst. H. Poincaré, 35 (1999), p. 313-354 and
Ann. of Prob., 30 (2002), p. 826-873), we prove that the associated flow is a
flow of homeomorphisms.

1. Introduction

Let A be the Laplace operator on S¢, acting on vector fields. The spectrum of A is given by
spectrum(A) = {—cpq; £ > 1}U{—cp5; £ > 1}, where ¢ g = L({+d—1), cp.5 = ({+1)({+d—2). Let
G be the eigenspace associated to ¢, 4 and D, the eigenspace associated to ¢, 5. Their dimension
will be denoted by D, = dimG,, D2 = dimD,. It is known (see [6]) that

(1.1) D1 =01, Dyp=0(("") asl— +oo.
Denote by {AZM k=1,---,Dy;, £>1} for i =1,2 the orthonormal basis of Gy or Dy in L*:

/d<A2k(ﬂf),Ai,5($)> dr = 0;;0000kp
s

where ¢;; is the Kronecker symbol and dz is the normalized Riemannian measure on S ¢ which is
the unique one invariant by actions of g € SO(d+1). By Weyl theorem, the vector fields {4} ;}
are smooth.

Let s > 0 and H*(S%) be the Sobolev space of vector fields on S¢, which is the completion of
smooth vector fields with respect to the norm

(1.2) V3. = /Sd<(—A+ 1)*V, V) dx.

Then {Aék/(l—i—cz,d)s/Q,Azﬁ/(l +Ce,5)5/2; (>1,1<k<D;;,1<p< Dg’g} is an orthonormal
basis of H®. If we consider

a b

(1.3) af:ma bzzm,

a>0,a,b>0,0>2

then

[ Qp . 1 / b[ o 1
(14) Dz’l - O(g(a-‘rd)/Q)’ DK,Q - O(g(a-‘rd)/Q)'

1




Let {Bj,(t); £>1, 1 <k < Dy} for i = 1,2 be two family of independent standard Brownian
motions defined on a probability space (£, F, P). Consider the series

Dgl D€2

d db
(1.5) Z{ s ZBék )ALy + DL] ZBék Aek}

>1 62 05

which converges in L2, but uniformly with respect to ¢ in any compact subset of [0, +00[. According

0 (1.4), (Wy)s>0 is a cylinder Brownian motion in the Sobolev space H“*9/2 Moreover, W; takes
values in the space H*(S?) for any 0 < s < a/2. By Sobolev embedding theorem, in order to ensure
that W, takes values in the space of C? vector fields, & must be large than d + 2. In this last case,
the classical Kunita’s framework ([5]) can be applied to integrate the vector field W; so that we
obtain a flow of diffeomorphisms. For the case of small «, the notion of statistical solutions was
introduced in [6] and the phenomenon of phase transition appears when 0 < a < 2. It was also
shown in [6] that the statistical solutions give rise to a flow of maps if a > 2, but the regularity
was not discussed. The main objective of this work is to deal with the critical case o = 2. Instead
of introducing (W;):>0 as in (1.5), we consider first the stochastic differential equations on S¢

Dy Dy 2

2n
. da db .
(1.6) day :Z{ Dgel ZAék zy) o dBy (t) + D; ZAék ay) o dB (t )} Ty =T
=1

Using the specific properties of eigen vector fields, we prove that z}(x) converges uniformly in
(t,z) € [0,T] x S%, so that we obtain the following main result of this work.

Theorem A. Let o = 2 in definition (1.3). Then the stochastic differential equation on S%:

Dy Dy

([ dag dby
(17)  dwy =) { Dt Y " Aj () 0dBj (1) + Dia > :A%,k(xt)odBl%k(t)}a To =1
=1 k=1 = k=1

has one unique strong solution (z(x))i>0, which gives rise to a flow of homeomorphisms.

In the case of the circle S, this property of flow of homeomorphisms was discovered in [7].
The main feature of this work is to handle the non-Lipschitzian stochastic differential equations:
it complements our work [4].

2. Approximating flows

In this section, we discuss the approximating flows and establish some necessary estimates. Let
n > 1. Consider the Stratanovich stochastic differential equation on S%:

2m Dy Dy 2

(2.1) dx?:Z[ dag ZAék xt)odBék() gbz ZAék xt)odBék( )]

D,
=1 LR —

with zf = € 7 given. Since A}, are smooth, it is known (see [2], [5], [8]) that the stochastic
differential equation (2.1) defines a flow of diffeomorphisms ?(z) on S9.
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For x,y € S¢, consider the Riemannian distance d(z,y), which satisfies the formula

(2.2) cosd(z,y) = (z,y)
where < , > denotes the inner product in R%!, with the Euclidean distance | - |. We have the
relation
s
(2.3) [ =yl < d(@,y) < Flr —yl-

In what follows, we shall compute the term <x{‘, x?+1>. By It6 formula,

d{z}, zpt) = <oda:t Loyt + (2 odz )

Dy,1
d
Z{ (Zi Z P Aék(xt)odBék( )>
o=
D/z 2
dby n+1
,A dB
(2.4) Dez Z Zk(mt)o ek( )>]
ontl da Dg,1
f n+1 1
+ 2 [ Dex Z xy, Ap (e ) o dBy (1))

Dez

dbg Z thék nH)OdBZk(t»]'

Let z € S?. Denote by T,,S? the tangent space at the point z. Consider the orthogonal projection
Q. : R - T,58% We have for i = 1,2,

4 4 L 4 L 4
<A%k(33?) © dBé,ka $?+ > = <A2k($?), Qm?iB?Jr >Tac" ga © dBé,k'
t
Set Ay = Qqrp :1;{‘“. Then A; has the expression

_ .n+l n+1 d
Ay =2t — (a2} el € Typ n S,
Viewing A; as a process in R, we have

dAy = dap ™t — (oda}, a} T )2} — (2}, oda} T Ya) — (z), x} ) o dal.

Denote by % the covariant derivative along xy'. Then

DA = Qup 0 = Qup o duf™ — (2 af) o daf
which is equal to
— w n+1 1 dbi s n+1 2
; [ Dz ) Z Qup Ae p(Ti 7)) odBy (t) + Z Quy (A7 p(apth)) o dBé,k(t)]
on Dy Dy,
ot ™) [y G D Al o B0+ [ S Atutat) 0aBE (0]
=1 2 k=1



It follows that the Itd contraction (£ A, A}, (27')) - dBj,(t) is given by

(2.5) \/ gjel {<Qm A (27, A (7)) — (o, o) (A (), Al (2 )>}dt

On other hand, the It6 contraction , / <DA}k, At> -dB},, is equal to

(2.6) ((Vaz, Al (7). Qupary ™) dt.
Now passing to It6 integrals, we get

<A%,k($t) an$?+1> © dBlk = <A£ k(7)) Qm”xt +1> dBé

1 dag n
2 \/ m{«vf‘},k‘élé,k)(xt) Qapxy +1>

(AL (aD), Qup AL (@i ) = (a2 ) (AL (o)), AL (1)) | dt.

Using (A.6), we get

Dy Dy
Z<A},k(xt) Qr”$?+1> © dBt},k = Z<A},k(xt) Qupxf +1> de
k=1 k=1

De 1

—Z Bre{ (A, Af) = (o ai ) Ad ) P

The same kind of calculations hold for vector fields {42, }. Let M]* be the martingale part of
(xp, "+1> and V" the drift part:

d{x}, xp ™y = dM + V)" dt.

Then by above calculations, we have

on DZ 1 De y
d dby .
dMy" = Z[ D(Zel Z (Abp(xf), ap™)dBy (1) + ﬁé Z<Agk($?)7 PHYAB(t )}
(=1 2 k=1
(27) on+1 da Dy db Dy o
# 3 [|) oy DAl BRI S (b, a0
=1 2 k=1
By (A.4), we have . .
¢,1 ) ) De,l d ¢,1
Z |Aek(33)‘ = TZ ‘ = Dy 1,
k=1 i=1 k=1

where g € SO(d+1) such that x = gFPy. So V;* has the following expression
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on Dy 1 Dy >

d " db "
Vit = ;[% ;<Aek(l’t) S Ap (@) + D; kZl<Aek( 2, Ay (a +1)>}
on
- Z d(ag + bg)<x?, x?+1>
(=1
(2.8) gn+1 Dy Dy,2
1 day n+1 dbé n+1
T3 Z [D“ Z<A£k z}), Agy, (a7 ) + Z<A£k z}), Afy (x} )>]
r=2n41 k=1
ontt
— 5 Z d ag +be)<(L‘t, n+1>.
r=2n41
Define
fe(0) = ay {(d — 1+ cos? 0) y¢(cos §) — cos O sin” 6 ~,(cos 9)]
(2.9)

+ by [d cos 0 y;(cos ) — sin? 0 v, (cos 9)} — d(ag + by) cos@.

Let 07 = d(z},2}™"). Then, (2, 2;*") = cos#p. Then according to proposition A.4 and (2.8),
V™ has the expression

2" 2ntt
(2.10) V= ful07) + Z fe(07).
=1 2,2 241
Now by expression (2.7), the quadratic variation dO©} = dM]" - dM;* of M} is given by
2 [ dag & 2
n L n n n n
dey = Z{— Z <<A%k(‘rt) xt+1> <Aek( +1)a Ty >)
Dy
(=1 " k=1
Dy

+%Z<<Aﬁk<xt o) 4+ (Af (=), x?>)2}

ontl Dy Dy

day " w2 dby n n\2
+ Z { (Ap (i th), x}) +—Z<Aek( P, 2y }dt~
Dy o
£=2n41 k=1 2 k=1
Using proposition A.5, we see that
d D@,'L
% kg@:t ,Agk "H > = sin 0
and
2’77,
dO" = 2(sin §7")? Z{az (1 — cos 0]ye(cos 07") + (sin 0;") %7, (cos 6’?))
=1
ontl
+ by(1 — ~e(cos Hf)}dt + (sin 67")? Z (ag + by)dt.
(=2m+41



Now introduce the function G,, defined by

 yesi(cos) e (h)
(2.11) Gn(0) =) g = > T
=1 =1
Recall that
~ T . ¢ . q do
W(H):/ (cos@ — v/—1sinf cos ) sin -
0 d
~/ / . / ;}}é(e)
We have: 7,(6) = vy, (cos8)(—sin®) or vy, (cosd) = g Define
T Al6)
- 7
(2.12) Ea(0)= > ’23 .
(=241

Using these notations, introduce

Vo(0) =a {(d —sin% 0) G, () + cos B sin QG;(Q)}

+ b[d €08 G (6) + sin HG;(e)] — d(a+b) cosd G (0)

(2.13) .
+ = {a [(d — sin*0)=,,(0) + cos O sin H=], (9)]
2
+b [d cos 02, (0) + sin =, (9)] —d(a+b) cosfZE,(0) }
Then
V" = Va(67).
Define
U, (0) = 25in® 0 {a [Gn(o) — 030 G (0) — sin 0 G, (6)
(2.14)
+ (G (0) — Gn(e))} +5in20 (a+ b)Z,(0).
Then

OF = Un(67).

Therefore there exists a real Brownian motion W,,(¢) defined on the same probability space such
that

(2.15) dcos0) = /Uy, (07)dW,(t) + V,,(6}) dt.
Using the relation § = cos™!(cos ), we obtain

Un(07')

sin 6}

Va(67) | 1 costy
sin 9? 2 ¢in® Ht”

(2.16) oy = —

AW, () — ( Un(et”)) dt.

Of course, we have to justify the passage from (2.15) to (2.16), by taking care of the points 0 and
m. We shall see below in proposition 2.4 that 7 is polar for 6}.
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Let

Vo(0) 1 cosf

(2.17) B (0) = sinf ' 2sin%0

U (6).

By (2.13) and (2.14), we find

B, (0) = ‘ii;; {a(Ga(6) — 056 Gu(0)) + bcosB(G(®) — Ca(0) }
(2.18) +bG,(0) + %(a cosf +b)=! (0) — % sinf =,,(0)

* QSilnH {(ad + bd cos0)Z,,(6) — (d — 1)(a+b) cos 62, (0) }.

Lemma 2.1 There exists a constant C > 0 independent of n such that

2
(2.19) 1G,,(0)] < C (flog % +27"), forall § € [0,7].
d
Proof. Let z(6,¢) = cosf — v/—1sinf cosp. Then @2(0 p) = —sinf — /—1cosfcosp. It is
clear that p
2(6, ) |50.9)| <1
We have
é 1 4 d(,D
2.2 — (0 in? o= .
(220) Z/ G709 sin o2
Let
(2.21) Z 7
=1
y (2.20), we see that G/, converge uniformly to G’ over [0,7]. Now as in [6], using the relation
e% - f+°° e~' sds, we express G', as
d dy
o)t lets . d
Z// s@z(ﬁ,go) sin gpc—d
(2.22) - " —% 0.0) it p 4
— e*S Cd
+OO n p—Sed 2] d
// )2 € Sdgz( 790) Sind(p_ﬂﬂ'
1—2(0,p)es Cd

Let I,, be the last term in (2.22). We have the estimate

+oo 72 se—s d
s [
- 790 e~*

—2 Se=Sg +oo —2 Se=Sg
< sin? —+// sin o =&
// L @) 7 1 [2(0,9)le* *”

= in1 + In,Q'




n
—2 Se=Sg _on e~ S

For s > 1, using the inequality =200, 7)) <e o5’ we get
n [T esg
(2.23) I <e? /1 s < c2 "
For 0 < s <1,
e ’s e %s

1—12(60,¢)le™ 1 —e=5/cos? 0 + sin’ 6 cos? o
e 55(1 4 e~*1/cos? 0 + sin? 0 cos? )
1 — (cos2 6 + sin? 6 cos? p)e—2s

S

2se”

T 1—e25 fsin?fsin® pe—2s
2se® < 2es <
= e.
2s _ 1 +sin?@sin®p ~ 2s+sin?fsin®p

It follows that

(2.24) In1 < // o S0 ‘pd ds < e27",

Combining (2.23) and (2.24), we get |I,,| < C'27". Now going back to (2.22) and letting n — 400,
we get that

T e s g52(0, ) dyp
2.25 d9 in? o -2
( ) / / 1-— Z )6 s S @ Cd

Moreover

sup |G (0)—G'(9)|<C27™.

0€[0,r]
Now the estimate (2.19) follows from the following main result. =

Theorem 2.2

(2.26) G/(8)] < COlog 27” 6 e [0,7].

Proof. We compute the term

d%z(@,go) B —sinf — y/—1cosf cos
1—2(0,0)e=*  1—cosfe 5+ +/—1sinf cospe=s’

which has the real part

—sin @ + sinf cos fsin? pe~*

(1—cosfe*)2+ e 25sinfHcos? ¢

Since G is a real valued function, it follows from (2.25) that
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+o0o _
(2.27) / / ssinf(e® — cos @sin? @) sindgpd—<p ds
— c0s0)2 + sin? 0 cos? ¢ cq

+oo
which can be written as two parts I1(6) + I>(0 / / / / .For0<s<1,

le® — cos @ sin? ¢ < e+1

(e5 — cosf)? +sin®fHcos? p ~ (e5 —1)2 4 sin?hcos? p
e+1
~ s24sin®fcos?

But

/1 2sds ] (1 + .2 9 2 ) 1 ( 2 0 2 )
=1lo sin“ 6 cos — log (sin” 6 cos
o s2+sin®6fcos? ¢ 8 7 8 4

< log2 — log (sin® f cos® ©).
It follows that

1
(o) < <F

1 T d
|sin9|<log2+log — —/ log (cos? (p)sind(’(,_‘p).
sin” ¢ 0 Cd

Therefore there exists a constant C' > 0 such that
2
() < Colog ==, 0 € (0,7,

For the estimate of I, it is sufficient to remark that

s(e® — cosfsin? @) se®

(e5 —cosf)2 +sin®fcos2p ~ (es —1)%

The proof of (2.26) is complete. n
Un(6)

sin 6

Let 0,(0) = — . We have the following key estimates.

Theorem 2.3 There exist N > 0 and a constant C > 0 such that for alln > N

(2.28) o2(0) < C (92 log 22 + 2*”),
0
(2.29) ~B,(0)<C (9 log 27” + 2*").

Proof. Using (2.14), 02 has the expression

02(6) = 20(G(0) ~ G () +2 sin2(g) Go(0) — sin0.G, (0))
(G (0) — G (6)) + (@ + B)Zn(0).

(2.30)
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2
Since E,(0) < % 27", (2.28) follows from (2.19). The estimate for (2.29) is much more delicate.

Remark first that 6 — B, () is smooth over 0, 7], but explodes at 0 and w. More precisely, let

Boa(0) = =1 {a(Gn(O) — €080 G (0)) + beosd (G (6) — Gn(O))},

sin @

B,,2(0) = bG,,(0) — gsinﬂEn(H) + %(a cosf + b)=) (6).

Boa(6) = 3= {(ad 4 bdcos 0)E,(8) — (d—1)(a + b) cosd :n(O)}.
We have:
ontl 1
20Ol > pErmeoy =2
0=2n41
From (2.19), we see that
2w _
(2.31) |Bn,2(0)] < C (flog 7 +27"), 0€l0,m7].

When 6 — 0, By, 1 behaves as (d — 1)(a + b)G,,(6), which is dominated by C (flog ZF +27"); and
B, 3 will behave as

QSiné’(a +b0)Z,(0) — +o0.

When 0 — 7, B,, 1 will behave as

d—1

sin 6

(2.32)

[a(Gn(w) + Gn(0)) + b(G (0) — Gn(w))} — +o0,

while B,, 3 will behave as

(2.33) 5 Siln 5 [dla = B)Za(m) + (d - (a +1)Z.(0)]
Since for k£ > 2", " .
1 1 1 1
Bo(k+1)3 31&(21 11)L3 <6275
it is clear that
(2.34) |2, (m)] <6-27"E,(0).

This together with (2.33) shows that B, 3 will go to 400 as § — 7. However in order to get
the uniform estimate (2.29), we have to prove that the change of signs near 0 and 7 will be done
independently of n.

By the mean-value formula, there exists o €]0, 0 such that Z,,(0) = Z,,(0) +0 Z/, («). Write B,, 3
near 0 in the form

Zn(0)

= —
50 (ad 4+ bdcos0) E; ().

Bn,3(9) =

{ad(l —cosf) + (a+b) COSH} + 50

10



The last term in the above equality is bounded by C'27™. The first term in the above equality
is always positive. So (2.29) holds for B,, 3 near 7 uniformly for n. Now we shall deal with the
problem at w. Replacing Z,,(6) by =, () + (0 — 7)Z,,(5) in expression of B,, 3, we get

B, 3(0) = QSil—n@{(ad + bdcos0)=,(m) — (d—1)(a+ b) cos QEn(O)}

n 0—m
2sin 6

(2.35)

(ad + bd cos 0)Z!,(5).

Using (2.34), we have
(ad + bd cos )=, (m) — (d — 1)(a + b) cos 0=, (0)

> (a+0) [—(d— 1) cosf — 6d - 27"] =,(0)

d—1
Let N > 1 such that 27V < i Then there exists 6, €]F, n[ such that

—(d—1)cosf —6d-27" >0 forallf e [f, ], n>N.
Combining the above discussions, we arrive at
27 n
—B,3(0) < C (flog - +27™), 0 €07
For the behavior of B, ; near 7, consider
¢(0) = a(G(0) — cos0 G(0)) + beos6(G(6) — G(0)).

We have
d = p(m) = a(G(7) + G(0)) + b(G(0) — G(w)) > 0.

There exists 6y < 7 such that p(0) > /2 for § € [6y, w]. Since

on(0) = a(G,(0) — cos8 G, (0)) + beos (G (0) — G, (0))

converges to ¢ uniformly over [0, 7r]. There exists a big enough N such that
0(0) —pn(0)| < 6/4, 6 €[0,7], n=>N.
It follows that for 6 € [0y, 7] and n > N,
on(0) > 0/4.
This implies that
—B1(0) < C(8log 27” oy, 6 elo,q].
Combining above facts with (2.18) yields (2.29).
Proposition 2.4 Let d > 3. Then the process 07 does not hit the point 7.

11



2B, .
Proof. By (2.31) and (2.32) and the expression of ¢,,, we see that —~ at the neighborhood of 7

n

behaves as
d—1 a(Gn(m) + Gn(0)) + b(Gn(0) — Gn(m)) + (a+ b)En(0)/2 +d(a —b)En(m)/(d—1)
™—40 a(Gn(T) + Gn(0)) + b(Gn(0) — Gu(m)) + (a + b)=,(0)/2

which is > ﬁ for d > 3 and for n big enough. Therefore

/: exp {/: 203;((499))619} dy = +oo.

0 0

By Breiman'’s criterion (see [6], p. 856), 8" does not hit the point 7. =

Remark 2.5 The process 07 could meet the point 0.

3. Flow of homeomorphisms

Let 27 be the solution of the stochastic differential equation (2.1) with the initial point z, ="

with the initial point y # x. Set
O (1) = d(af, a7 th).

Let p > 2. By It6 formula, we have
1
der (t) = poh = (t) df,(t) + 2P = 107 =2(t) O (t) - b (t).
By (2.16), we have

do% (t) = po =" (t)on (0n(t)) dWn(t) — pOh ™ (1) Br(0a(t)) dt

3.1

&y + 1plo — OO0 (6,(0)

Using (2.28), = p/ 071 (5)0, (0n(5)) dW,(s) is a martingale. Let u(t) = (9;—(t))p Since
T

the coefficient 97~ B,, () explodes at the point 7, to insure that the function ¢t — E(u(t)) is
differentiable, we mtroduce for 6 > 0,

75 = inf{t > 0, 6,(t) > 7™ —d}.
By proposition 2.4, we see that 75 T 400 as § | 0. Now by (2.29), we have

P o o5 (t) 2 -
—(%)pen L) B, (0,(1)) < Cp P iam)p log9 ()+C'p(2 E -2
Cult) log ﬁ + Cp(%)pfl gn

and in the same way,

2 (2m)P

L2 = 1) g 24524, (1)) < 2 3 Lu(t)log % +Cp(p — 1)(%)”’1 27"

12



Consider

0, (t N 7'5))10'

(3.2) us(t) = u(t A 15) = ( -

Let ¢(t) = E(us(t)). Then t — ¢(t) is differentiable. Using the above computations, we get

ug(t +1) — us(t) < M ((t+0) A75) = Ma(t A 75) )

o

p+1 [ 1 Y0 NS
C—— log ——ds + Cp“(=)P~"27"n.
+ 2 \ Ué(s) 0og U5(3) s+0Cp (2) n

It follows that
p+1

Using the inequality (see [3])
—flogé+ K< —(E+K)log(E+K), for0<¢<2740<K <274,

and letting ¥ (t) = ¢(t) + 27", we get

1 1
(3.3) W) < O pt)log ——,  $(0) = dP(a,y) +27".
2 ¥(t)
It follows that
_Cy,
p(t) < (t) < (¥(0))° , >0
Or
_Cy,
E(05(t A 7)) < (207 ($(0))°
Letting § | 0 and by Fatou lemma, we get
_Cy,

(3.4) E(d(e}, o)) < (2m)7 (1(0))°
Now write zy (z) for ' with initial data z. Using the inequality (a + b)* < a® +b* for 0 < a <
1, a>0,b> 0, we get for x # v,

—C(p+1)t/2 e~ Cp+1)t/2

(3.5) E(d(a} (@), (1)) < (2m)°[27 + d(z,y)”

By continuity, the inequality (3.5) holds for all =,y € S9.
Proposition 3.1 Let T' > 0. There exists a constant C' > 0 independent of n such that

(3.6) E(d(xg(g;) x"(ﬂz))p> < Clt—sP2, stel0,T].

rrs
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Proof. Fix u € S¢ and consider 7; = <u,x?> We have

N dby
dne = ;{ D“Z u, 4 (2})) 0 dBy(t) + m;<u,A?,k<x?>>odB%,k<t>}.
! 2 k=1

Let Ay = Q;»u be the orthogonal projection of u onto T,» S We have
d<u A k($?)> = d<Ata A%,k(l‘?»

_<tht?A€k J"t >+<At7 thZ k)(xt)>

D
where % denotes the covariant derivative along {z};t > 0}. The Itd contraction <At, EA%’Q -
dB},.(t) is given by

dag

D <At,VA“AM>dt

?

For the computation of At, using expression Ay = u — <u, x?> xy, it gives

d
A - dBL(0) = =[5 (s AL (o) + (o} AL ()]
Therefore
D da
< AuAe 1z )> : dBt},k(t) = - —e<u7x?><A%k($?)7A%k($?)> dt.
dt Dyy

Let M; be the martingale part of 7, and V; be the drift part. Then V; has the expression

on Dy
= 32 B {0 (Tag A — () (A o), A )
k=1
1@”2 g (o 2 (o
+ 2 Dy o Z{(u, (VAﬁkAek)(xt )> <U7xt ><Aek(33t )s Agr (2 )>}
=1 5% =1
By (A.6), we get
(3.7) V= -2 Zd a + b) (u, 2 ) = —%d(a + )G (0.

Now the quadratic variation dM; - dM; is given by

on Dy Dy >

dag 1 n dbg 2 A\ 2
=1 k=1 k=1
Using (A.13), we obtain
211
dMy - dM; = (ag + by) sin® 6 = (a + b)Gp(0)(1 — cos® 6),
=1
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where 6 is the angle between a and 27: cosf = (u, }) = n;.

Now by Biirkholder inequality, for ¢1 > to,

" 2 2 22 5.\
B((M;, - M) < GE[( [ (@060 - i) ds) "]
to
< Cp(a+b)PG(0)P [ty — tof?/2.
Combining with (3.7), there exists a constant C), independent of n such that

E(|77t1 - ntQ‘p) < CP ‘tl - t2|p/27

or
E(|(u,f, — 23,)I”) < Gy [t1 — o/

d+1
Using |z, — z4,|* = Z [(us, z — x} )%, where {u;, i = 1,---d + 1} is an orthonormal basis of
i=1

R, we get the estimate (3.6). u

Theorem 3.2 Let x € S¢ and T > 0 be fizred. Then almost surely, as n — oo,

(3.8) zy(x) converges uniformly with respect to t € [0,T].
Proof. Seeing z7(z) as an element of R%*! and using (3.5) and (3.6), we have for s,t € [0,T],
(3.9) E(Jo} () — 2 (@)) < Cp (|t = sf?/2 427007,

where § = e~ C@tDT/2 Lot ¢ = 279/P < 1. Define ag = 0,a, = ch. Then as = limy, 400

k=1
is finite. Define
noy Ondl =8 g 5 — o
X(s,t,x) =af(x) ———— + 27" (1) —————, S € [an, apt1)-
(s:t0) =a () 22 @) 0 s [, an)
Using (3.9), we get for (s1,82) € [0, as0]? and (t1,12) € [0, T)?,
(3.10) E(|X (s1,t1,2) — X (55,12, 2)|") < Cp (|51 — sal” + |11 — ta17/2).

By Kolmogoroff modification theorem, X has a continuous version X. But we have

() = X(ap, t,x) = X(ap,t).

This last term converges uniformly with respect to ¢t € [0, 7], which finishes the proof. »

Let {z¢(x), t € [0,T]} be the uniform limit of {z}(z), t € [0,T]}.

15



Theorem 3.3 {z:(z), t > 0} is the unique solution of the equation:

00 Dy Dy,2
/ da db

{=1

Proof. We first show that {z:(x), t > 0} satisfies the equation (3.11). It suffices to show that
for any u € S¢,

0 Dy 1 Dy,

(3.12) d{u, ;) = Z{ gjél Z(u A (1)) 0 dBy(t) + gig Z(U Af o (we)) 0 dB i (t )}

{=1

Set n, = <u,xt>,n[‘ = <u,x?> From the proof of Proposition 3.1 that

t
(3.13) ny = (u,x) + M —|—/ Vids,
0

where

2" Dy 1 Dy,

avy =3 dafz (0, AL (@) B + ([ 5= S (u ARy (a))dBE (1)}

D
— 0,1

and V" = —%d(a +b)G,(0)n;'. Put
[ee] da Di 1 db Dz,z
ant = > { | 5 z (u, Ab (@) dBEL(E) + (| 525 D (u AR (@) )dB3 (1) |,

=1 62 00

1
and V; = —§d(a +0)G(0)n;. Clearly, V;* — V;. Fix any positive integer Ny, when n is big enough

M} can be split into two parts:

No DZ,I t Dé2
M[‘:Z{ dag Z/ (u, AL (2™)) dBL(s) + 4| 2L 2/ u, A7 (7)) dB] i (s )}
W\ Dy =t Jo ¥ ’ Dy

Dgl DZZ
dag 1 1 dbg /
(u, A (7)) dBy 1 (s) + (u, A? ))dB
o ) ABiele) + ([ 5 37 [ Al B (5}

= N0+1
= MY 4 ™
Similarly,
No day X dbe o
e N Rl

0o Do Dy,2
d db
+ E:{ %E:/@AM% dBj 1, (s \/Dzi E / (u, A7 i (25))dB] (s }



=M+ M.
By (A.13), as in the proof of Proposition 3.1 we have

]3[(]\41‘/(71,2))2}é Z (ag + by), E[(Mt(2))2]§ Z (ar + by),
¢=No+1 ¢=Nop+1

both of which tend to zero uniformly with respect to n as Ny — oco. On the other hand, for fixed
N07
Mt(n’l) — Mt(l), as n — oo.

Combining above arguments with the triangle inequality, we conclude
M — M;, asn— o0.

Letting n — oo in (3.13) proves (3.12).

Next we prove the pathwise uniqueness for the equation (3.11). Let x4, y:,t > 0 be two solutions
to equation (3.11) such that xg = yo. Fix u € 5S¢, Seeing x; and y; as elements in R**!, consider
N = <U,«’Et - yt>- Put

+o00 ld Dy 1
Mt:;{ Djelz/<UAek [L‘S Afky5>dBfk
[db, &
D“ Z/ u, Aek xs) — A7 k(y8)>dB£ k(s )}

We have dn, = dM; — 5(& + b)G(0)n; dt and

Dy 1

d
d@t = th . th Z{ ae Z| u, AE k(l‘s) AE k(y5)>|2
= Dy

(3.14) O

db £,2

Dee2 Z| U Afk .Z'S A%’k(ys)>|2}dt
Hence
(3.15) dni = 2n; dM; — d(a + b)G(0)n; dt + d©;.

Let & = |z; — y;|?. Using (A.10) and (A.11), we have

da De 9
Y 1 1
- Ap i (xs) — Ay 1 (ys
Dy 1 kzl| Z,k( ) e,k(y )|
Dy 1
day -
- o S 1AL @0 + 140 — 2(ALo0). Ay (w1)) }

k=1

= 2da, — 2ay ((d — 1+ cos? 0;)ye(cos 8;) — cos by sin? 0,7, (cos Ht)),
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and in the same way

Dyo

day 2 2 2
—_— Aj (zg) — A s
Dis ; | Z,k( ) Z,k(y )‘

= 2db, — 2b, (d cos 0yye(cos 6;) — sin? 6,7, (cos Ht)>
where 8, = d(z,y,). It follows from (3.15) that
(3.16) d¢; = Martingale — d(a + b)G(0)&, dt + B(6;) dt
with
B(O) =2 [daG(o) - a((d — 1+ cos? 0)G(6) + cossin ee’(e))
(347 + dbG(0) — b(d cos 0G(0) + smeG’(e))] .
Let o(t) = E(&,). By (3.16), we get

¢'(t) = —d(a+D)G(0)p(t) + E(B(6:)).

2
By (2.26), |B(0)| < C 6?log % It follows, according to (2.3), that

() < Cp(t) log ﬁ £(0) =0

which implies that ¢(¢) = 0. Therefore for each ¢, zy = y;. The two processes are indistinguish-
able. n

Theorem 3.4 {z:(z), t € [0,T]} has a version &(x) such that almost surely, for all t € [0,T],

x — Z(z) is a homeomorphism of S¢.

Proof. Let X(s,t,x) be defined as in the proof of Theorem 3.2. Using (3.5) and (3.6), we have
(3.18) E(|X(s1,t1,2) = X(s3,12,9)") < Cp(Is1 = 52l + [ta — o]/ + d(,)"").

Recall that § = e=¢@+DT/2 Therefore it exists a small Ty > 0 and a big enough p > 2, so that we
can apply the Kolmogoroff modification theorem. In this way, z}(x) converges uniformly to x(z),
with respect to (¢,z) € [0,Tp] x S?. Remark that Tj is not dependent of the particular Brownian
motion, but of its law. Now consider the family of the Brownian motion {(f1,B)(t), t > 0}, where
(01, B)8,.(t) = B (t + To) — B, (Tp) and i = 1,2. Denote explicitly o7 (x,w) the solution of (2.1),
with respect to the given family of Brownian motion {Bj, (¢), t > 0}, and z}'(z, f1,w) with respect
to {(01,B)(t), t > 0}. Then we have

(3.19) vl (r,w) = 2 (27, (7,w), (Or,w)).

18



Now letting n — +oo in (3.19), the right hand side tends to z¢(xr, (z,w), (67,w)) uniformly with
respect to (t,z) € [0,Ty] x S?, while the left hand side tends to iz, (z,w). It follows that we
have a continuous version

(t,x) — xz4(2z,w) over [0,2Tp] x S°.

Proceeding in this way, we get a continuous version (t,2) — z¢(z,w) over [0, +o00o[xS%. Now we
shall prove that for any t given, x — x;(z,w) is a homeomorphism of S?. First consider T € [0, Ty]
and define {BT (¢), t € [0,T]} by

T,i i i
sz (t) = Bek(T - 75) - Bék(T)’

which are time reversed independent Brownian motions. Let z7(x,w”) be the solution of (2.1),
but with {BT(t), t € [0,T]}. It is well known that

ot y(z,w) = af (e (z,w),w"),  ap_y(z,wh) =2} (er(z,wh),w).

Letting n — +o00 in the above equality, we get

rr_y(z,w) = zy(zr(z,w),wh), zr_(z,wh) =z (zr(z,w?),w).
Taking t = T, we see that the inverse of z — x7(z,w) is o7 (x,w?). Now we complete the proof
by using the method in [1] or in [3, p.174] to find a common version such that for all ¢ > 0,

x — x¢(x,w) is a homeomorphism. »

4. Appendix: Eigen-vector fields

In this section, we shall collect some notations and useful properties of the eigen vector fields
of A for readers convenience. Here we follow closely the exposition in [9]. Fix the point P, =
(0,---,0,1) € S The group SO(d+1) acts transitively on S¢. The subgroup leaving P, fixed is
SO(d) so that S = SO(d+1)/SO(d). Let x, be the action of g € SO(d+1) on S, x, : x — gx.
We have

dxn(P,) : Tp,S* — Tp, S  for hec H

where TpS¢ denotes the tangent space at the point P € S Therefore U : h — dxu(P,) is a
representation of SO(d); it is irreducible when d > 3. Let {e1,---,£4,€a11} be the canonical basis
of R4 with P, = 41 € S¢. For 1 < i < d, consider @;(t) = sinte; + costegyr. Then ¢, is a
curve on S? starting from P,, having ¢; as the tangent vector at P,. In this way, we shall identify
Tp,S¢ with R4

Let {T*; XA € A} be the family of equivalence class of unitary irreducible representations of

SO(d+1).

Definition A.1 We say that T contains a copy of U if there exists a subspace W of the base
space Vy of T, which is invariant by all {T*(h); h € H} and such that the restriction of T* to
Wy s equivalent to U.

Denote by A, such sub-family of T* having this property. By theory of representation (see [9],
[10]),

{175 A€ Ao} = {TUFV,QUVE 1> 1
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the base space of T+ ig the space Ha+1,0 of homogeneous harmonic polynomials on Rt of
degree ¢ > 1 and the base space of Q41D is the space of 2-differential forms Fa+1,¢ considered in
[9]. Let’s describe the subspace W, of Hg41, ¢ and W, of Fat1,0, which are invariant by h € SO(d).
Let Rg41,0 be the space of homogeneous polynomials on R4 of degree ¢, equipped with the
inner product < P,Q >= [¢, P(x)Q(z) dx. Let H be the orthogonal projection from R4T1LE onto
Hat1,e. Then W, = H(xgjrll -Hd,l). Set ©,(z) = C; H(xgjrllx,) for: = 1,---,d, where C; are
chosen so that we have an orthonormal basis of W,. The space W, is the vector space spanned by
{(:), = C; H(da:dH /\d@i); i=1,---,d}. Completing {O;; i =1,---,d} and {él, i=1,---,d} into
an orthonormal basis of Hgy1¢ and Fyi1,¢, we denote by (T, f]) and ( fj) the associated matrices.
For further discussions on this topic, we refer to the book [11]. The following result is taken from

[9].
Proposition A.2 We have for 1 <i,j <d, g € SO(d+1),

(A1) T} (9) = 7e(t) gij + Ve(t) Gia+19a+1,5 »
1—t2 t
(42) 59) = (e = Z=7940) 955 + (=76H) = 777 goa19a+1

where t = gq41,4+1 and

(A.3) ~ve(cosB) = / (cos® — v/—1sinf cos )t sin? gpi—(:
0

with cq = / sin? ¢ de.
0

Remark that ~,(¢) is real and |y,(t)| < 1. For ¢ = h € SO(d), t = gg+1,a+1 = 1, gi.a+1 = 0. By
(A.1), we see that Tfj (h) = hj;. On the other hand, by the choice of basis,

T4(h) =0 if k>d and 1<i<d.

The same results hold for Q. Now using the Peter-Weyl theorem, we get the spectral expansion
for eigen vector fields {A},, A% }

d d
D D
(Ad)  Al(gPo) =\ =57 D Thl9) dxg(Po)ei,  AZu(gPo) = \/ =72 D Qhslg) dxs(Po)ei
i=1 i=1

where Dy = dim(Hg1,¢) and Dy o = dim(Fg41,¢). Now we will compute the covariant derivative
of a vector field A on S?. Let Q, : R4t — T,5¢ be the orthogonal projection. Let u € T,,S% and

dns

{ns}s>0 be the curve on S such that ny = x and u = { il } . Then

- ds ) s=0

dA
A. WA =, —=
(45) (Vud)(@) = Q{ =2}
Proposition A.3 We have
Dy ;

(A.6) kzl Vai A =0, fori=1,2.
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Proof. We shall only prove (A.6) for i = 1 because of the similarity. Fix a point gPy € S¢. Let
E; = dx4(P,)e;. Then Ej is a tangent vector at the point gF.

(A7) (Var, Al (gPo) = wl”1§j 0)(V 5, AL) (g Po).

Let gj.a+1(s) € SO(d+1) defined by g 4+1(s)ea = € for a # j,a #d + 1 and

(A.8) 9j,d+1(s)ej =cossej —sinseqr1, gj,d+1(5)€d+1 =sinse; + cosseqit.

d d
Then g;,q4+1(0) = Id, {£gj7d+1(s)Po}s:0 =¢jand E; = {Eggj7d+1(3)Po} . Moreover

s=0

d L d
{%9j,d+1(3)5i}320 =0 for i#j, and {Egj,dJrl(S)Ej} | = et

therefore

d
(4.9) Qur{ T-g5a11(8)5i} = —Qqn,(gar1) = 0.
According to (A.4),
D d Dij
01
Abe(99j,a+1(5)Po) = \/ == Z > Tis(9)Thi(g5.a41(5)) (995.a11(s)3).
i=1 [B=1
Taking the derivative with respect to s in two sides and using (A.5) and (A.9), we get
D d Dej
[ Doy
(VE Aek (9Po) = Z Z T;f,g { T/Bz(g_] d+1(s ))}8:0 E;.

i=1 B=1

Therefore, by expression (A.7),

Dy D d Dy 1 d
2,1
> VA= 2SS T 00T { ST g ()] B
k=1 1,7=1k,3=1
d
Dy s d
e Z {%@gl(g%d“(s))}s—o Es
ij=1 -

By (A.8) the term gg41,4+1 in formula (A.1) and (A.2) is equal to cos s; the term gj; = 0, gg41,; =0

d
for i # j and g;; = cos s, gj.a1194+1,; = — sin” s. Therefore {ETﬁ(gj,dH(s))} = 0. We prove
(A6). u

Proposition A.4 Let z,y € S and 6 the angle between x,y. Then

Dy
(A.10) D Z<A£k ), Apy, (y)>Rd+1 = (d — 1+ cos® 0)ye(cos ) — cos O sin? B, (cos §),
01
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Dy
(A.11) Z AZ (x), A2, ( )>Rd+1 = d cos By(cos @) — sin? ) (cos 0)

Proof. In order to prove (A.10) and (A.11) in a unified way, we denote by Ay the vector field
D;‘A%k or D§*2 A2, and by Zf; the term T}, or Q%, and D, the associated dimension. Let
T = go,P,, y=go,P1. We have <x,y> = <PO,P1> = cosf. Then

(A12) A (g) Zz,m ~dxg(x)Aga(z) for g€ SO(d+1).

Using (A.12), we have Z Agk ), Aek(y Z<Aga ), Aga( P1)>. Up to a rotation in SO(d),

we can suppose that P1 is in the plan spanned by {ed, €da+1}. Let P, = g(0)P, with g(6) € SO(d+1)
given by g(0)e; =¢; for 1 <i<d—1 and

g(0)eq =cosbeyg —sinfegy1, g(0)eqgr1 =sinfeqg + cosbeqiq.
We have Agk(P ) = Zd Zﬁj (e)e; = e if 1 <k <dand Ay (P,) = 0 otherwise. On other hand,

A (Py) Zg €JZkJ (6)). Therefore

d
(A (Po), Ak (P1)) = (9(0)ej,ex) Zii(9(6)), 1<k<d

j=1
which is equal to Zf,(g(6)) for 1 <k < d— 1 and to cosf Z5,;(g(6)) for k = d. Hence

Dy

Z<Agk Agk ZZkk +COS€Z§d(g(9)).

k=1

Now using the explicit formula (A.1) and (A.2), we get (A.10) and (A.11). =

Proposition A.5 Let 2,y € S% and 0 the angle between them. Then

Dz 1 d DZ,Z
2 2
(A.13) Dz Z< o(®),y)” = Dia ;<A?k($)7y> = sin® 6
d Dy 9
(A14) — Z <<Aék(3:), y) + (Ag(y), x>) = 2sin% 6 [1 — cos 0 yg(cos ) + sin®(6) v, (cos 9)],
01 i
d Dy 9
(A.15) Dia ; (<A4k y) + (A (y), az>> = 2sin?6 [1 — Ye(cos 0)]
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Proof. In a similar way, we get the results. n

References

[1] J.M. Bismut: Mécanique aléatoire, Lect. notes in Math., Vol. 866 (1981), Springer-Verlag,
Berlin, New-York.

[2] K.D. Elworthy: Stochastic differential equations on manifolds, London Mathematical Society.
Lect. Note Series 70 (1982), Cambridge University Press, Cambridge.

[3] S. Fang: Canonical Brownian motion on the diffeomorphism group of the circle, J. Funct. Anal.,
196 (2002), p.162-179.

[4] S. Fang and T. Zhang: A study of a class of stochastic differential equations with non-
Lipschitzian coefficients, to appear in Prob. Theory Rel. Fields.

[5] H. Kunita: Stochastic flows, Cambridge Univ. Press, Cambridge, UK, 1988.

[6] Y. LeJan and O. Raimond: Integration of Brownian vector fields, Ann. of Prob., 30 (2002), p.
826-873.

[7] P. Malliavin: The canonical diffusion above the difeomorphism group of the circle, C. R. Acad.
Sci., 329, p. 325-329.

[8] P. Malliavin: Stochastic Analysis, Grunlehren des Math. 313, Springer, Berlin, 1997.

[9] O. Raimond: Flots browniens isotropes sur la spheére, Ann. Inst. H. Poincaré, 35 (1999), p.
313-354.

[10] E. Stein: Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. Math.
Study 63 (1970), Princeton.

[11] N.J. Vilenkin: Fonctions spéciales et théorie de la représentation des groupes, Dunod, Paris,
1969.

23



