

Isotropic Flow of Homeomorphisms on

 ${\it S}^d with Respect to the Metric H^{(d+2)/2}$

Fang, Shizan and Zhang, Tusheng

2006

MIMS EPrint: 2006.53

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Isotropic Flow of Homeomorphisms on S^d with Respect to the Metric $H^{d+2/2}$

Shizan Fang & Tusheng Zhang

First version: 27 September 2005

Research Report No. 13, 2005, Probability and Statistics Group School of Mathematics, The University of Manchester

Isotropic flow of homeomorphisms on S^d with respect to the metric $H^{d+2/2}$

Shizan FANG Tusheng ZHANG

S.F.: I.M.B, UFR Sciences et techniques, Université de Bourgogne, 9 avenue Alain Savary, B.P. 47870, 21078 Dijon, France.

T.Z.: Department of Mathematics, University of Manchester, Oxford road, Manchester, M13 9PL, England.

Abstract. In this work, we shall deal with the critical Sobolev isotropic Brownian flows on the sphere S^d . Based on previous works by O. Raimond and LeJan-Raimond (see *Ann. Inst. H. Poincaré*, **35** (1999), p. 313-354 and *Ann. of Prob.*, **30** (2002), p. 826-873), we prove that the associated flow is a flow of homeomorphisms.

1. Introduction

Let Δ be the Laplace operator on S^d , acting on vector fields. The spectrum of Δ is given by spectrum(Δ) = $\{-c_{\ell,d}; \ell \geq 1\} \cup \{-c_{\ell,\delta}; \ell \geq 1\}$, where $c_{\ell,d} = \ell(\ell+d-1), c_{\ell,\delta} = (\ell+1)(\ell+d-2)$. Let \mathcal{G}_{ℓ} be the eigenspace associated to $c_{\ell,d}$ and \mathcal{D}_{ℓ} the eigenspace associated to $c_{\ell,\delta}$. Their dimension will be denoted by $D_{\ell,1} = \dim \mathcal{G}_{\ell}$, $D_{\ell,2} = \dim \mathcal{D}_{\ell}$. It is known (see [6]) that

(1.1)
$$D_{\ell,1} = O(\ell^{d-1}), \quad D_{\ell,2} = O(\ell^{d-1}) \quad \text{as } \ell \to +\infty.$$

Denote by $\{A_{\ell,k}^i;\ k=1,\cdots,D_{\ell,i},\ \ell\geq 1\}$ for i=1,2 the orthonormal basis of \mathcal{G}_ℓ or \mathcal{D}_ℓ in L^2 :

$$\int_{S^d} \left\langle A^i_{\ell,k}(x), A^j_{\alpha,\beta}(x) \right\rangle dx = \delta_{ij} \delta_{\ell\alpha} \delta_{k\beta}$$

where δ_{ij} is the Kronecker symbol and dx is the normalized Riemannian measure on S^d , which is the unique one invariant by actions of $g \in SO(d+1)$. By Weyl theorem, the vector fields $\{A_{\ell,k}^i\}$ are smooth.

Let s > 0 and $H^s(S^d)$ be the Sobolev space of vector fields on S^d , which is the completion of smooth vector fields with respect to the norm

(1.2)
$$||V||_{H^s}^2 = \int_{S^d} \langle (-\Delta + 1)^s V, V \rangle \, dx.$$

Then $\left\{A_{\ell,k}^{1}/(1+c_{\ell,d})^{s/2}, A_{\ell,\beta}^{2}/(1+c_{\ell,\delta})^{s/2}; \ \ell \geq 1, \ 1 \leq k \leq D_{\ell,1}, 1 \leq \beta \leq D_{\ell,2}\right\}$ is an orthonormal basis of H^{s} . If we consider

(1.3)
$$a_{\ell} = \frac{a}{(\ell - 1)^{1+\alpha}}, \ b_{\ell} = \frac{b}{(\ell - 1)^{1+\alpha}}, \quad \alpha > 0, \ a, b > 0, \ \ell \ge 2$$

then

(1.4)
$$\sqrt{\frac{a_{\ell}}{D_{\ell,1}}} = O(\frac{1}{\ell^{(\alpha+d)/2}}), \quad \sqrt{\frac{b_{\ell}}{D_{\ell,2}}} = O(\frac{1}{\ell^{(\alpha+d)/2}}).$$

Let $\{B_{\ell,k}^i(t); \ \ell \geq 1, \ 1 \leq k \leq D_{\ell,i}\}$ for i = 1, 2 be two family of independent standard Brownian motions defined on a probability space (Ω, \mathcal{F}, P) . Consider the series

$$(1.5) W_t(\omega) = \sum_{\ell > 1} \left\{ \sqrt{\frac{da_\ell}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} B_{\ell,k}^1(t) A_{\ell,k}^1 + \sqrt{\frac{db_\ell}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} B_{\ell,k}^2(t) A_{\ell,k}^2 \right\}$$

which converges in L^2 , but uniformly with respect to t in any compact subset of $[0, +\infty[$. According to $(1.4), (W_t)_{t\geq 0}$ is a cylinder Brownian motion in the Sobolev space $H^{(\alpha+d)/2}$. Moreover, W_t takes values in the space $H^s(S^d)$ for any $0 < s < \alpha/2$. By Sobolev embedding theorem, in order to ensure that W_t takes values in the space of C^2 vector fields, α must be large than d+2. In this last case, the classical Kunita's framework ([5]) can be applied to integrate the vector field W_t so that we obtain a flow of diffeomorphisms. For the case of small α , the notion of statistical solutions was introduced in [6] and the phenomenon of phase transition appears when $0 < \alpha < 2$. It was also shown in [6] that the statistical solutions give rise to a flow of maps if $\alpha > 2$, but the regularity was not discussed. The main objective of this work is to deal with the critical case $\alpha = 2$. Instead of introducing $(W_t)_{t\geq 0}$ as in (1.5), we consider first the stochastic differential equations on S^d

$$(1.6) dx_t^n = \sum_{\ell=1}^{2^n} \Big\{ \sqrt{\frac{da_\ell}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} A_{\ell,k}^1(x_t^n) \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_\ell}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} A_{\ell,k}^2(x_t^n) \circ dB_{\ell,k}^2(t) \Big\}, x_0^n = x.$$

Using the specific properties of eigen vector fields, we prove that $x_t^n(x)$ converges uniformly in $(t,x) \in [0,T] \times S^d$, so that we obtain the following main result of this work.

Theorem A. Let $\alpha = 2$ in definition (1.3). Then the stochastic differential equation on S^d :

$$(1.7) dx_t = \sum_{\ell=1}^{\infty} \left\{ \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} A_{\ell,k}^1(x_t) \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} A_{\ell,k}^2(x_t) \circ dB_{\ell,k}^2(t) \right\}, x_0 = x$$

has one unique strong solution $(x_t(x))_{t\geq 0}$, which gives rise to a flow of homeomorphisms.

In the case of the circle S^1 , this property of flow of homeomorphisms was discovered in [7]. The main feature of this work is to handle the non-Lipschitzian stochastic differential equations: it complements our work [4].

2. Approximating flows

In this section, we discuss the approximating flows and establish some necessary estimates. Let $n \ge 1$. Consider the Stratanovich stochastic differential equation on S^d :

$$(2.1) dx_t^n = \sum_{\ell=1}^{2^n} \left[\sqrt{\frac{da_\ell}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} A_{\ell,k}^1(x_t^n) \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_\ell}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} A_{\ell,k}^2(x_t^n) \circ dB_{\ell,k}^2(t) \right]$$

with $x_0^n = x \in S^d$ given. Since $A_{\ell,k}^i$ are smooth, it is known (see [2], [5], [8]) that the stochastic differential equation (2.1) defines a flow of diffeomorphisms $\varphi_t^n(x)$ on S^d .

For $x, y \in S^d$, consider the Riemannian distance d(x, y), which satisfies the formula

(2.2)
$$\cos d(x,y) = \langle x, y \rangle$$

where $\langle \ , \ \rangle$ denotes the inner product in \mathbf{R}^{d+1} , with the Euclidean distance $|\cdot|$. We have the relation

$$(2.3) |x - y| \le d(x, y) \le \frac{\pi}{2} |x - y|.$$

In what follows, we shall compute the term $\langle x_t^n, x_t^{n+1} \rangle$. By Itô formula,

$$\begin{aligned} d\langle x_{t}^{n}, x_{t}^{n+1} \rangle &= \langle \circ dx_{t}^{n}, x_{t}^{n+1} \rangle + \langle x_{t}^{n}, \circ dx_{t}^{n+1} \rangle \\ &= \sum_{\ell=1}^{2^{n}} \Big[\sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \langle x_{t}^{n+1}, A_{\ell,k}^{1}(x_{t}^{n}) \circ dB_{\ell,k}^{1}(t) \rangle \\ &+ \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \langle x_{t}^{n+1}, A_{\ell,k}^{2}(x_{t}^{n}) \circ dB_{\ell,k}^{2}(t) \rangle \Big] \\ &+ \sum_{\ell=1}^{2^{n+1}} \Big[\sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \langle x_{t}^{n}, A_{\ell,k}^{1}(x_{t}^{n+1}) \circ dB_{\ell,k}^{1}(t) \rangle \\ &+ \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \langle x_{t}^{n}, A_{\ell,k}^{2}(x_{t}^{n+1}) \circ dB_{\ell,k}^{2}(t) \rangle \Big]. \end{aligned}$$

Let $x \in S^d$. Denote by $T_x S^d$ the tangent space at the point x. Consider the orthogonal projection $Q_x : \mathbf{R}^{d+1} \to T_x S^d$. We have for i = 1, 2,

$$\left\langle A^i_{\ell,k}(x^n_t)\circ dB^i_{\ell,k},\ x^{n+1}_t\right\rangle = \left\langle A^i_{\ell,k}(x^n_t),\ Q_{x^n_t}x^{n+1}_t\right\rangle_{T_{x^n}S^d}\circ dB^i_{\ell,k}.$$

Set $\Lambda_t = Q_{x_t^n} x_t^{n+1}$. Then Λ_t has the expression

$$\Lambda_t = x_t^{n+1} - \langle x_t^n, x_t^{n+1} \rangle x_t^n \in T_{x_t^n} S^d.$$

Viewing Λ_t as a process in \mathbf{R}^{d+1} , we have

$$d\Lambda_t = dx_t^{n+1} - \left\langle \circ dx_t^n, x_t^{n+1} \right\rangle x_t^n - \left\langle x_t^n, \circ dx_t^{n+1} \right\rangle x_t^n - \left\langle x_t^n, x_t^{n+1} \right\rangle \circ dx_t^n.$$

Denote by $\frac{D}{dt}$ the covariant derivative along x_t^n . Then

$$\frac{D}{dt}\Lambda_t = Q_{x_t^n} \circ d\Lambda_t = Q_{x_t^n} \circ dx_t^{n+1} - \langle x_t^{n+1}, x_t^n \rangle \circ dx_t^n$$

which is equal to

$$\begin{split} &\sum_{\ell=1}^{2^{n+1}} \Big[\sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} Q_{x_t^n} (A_{\ell,k}^1(x_t^{n+1})) \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} Q_{x_t^n} (A_{\ell,k}^2(x_t^{n+1})) \circ dB_{\ell,k}^2(t) \Big] \\ &- \left\langle x_t^n, x_t^{n+1} \right\rangle \sum_{\ell=1}^{2^n} \Big[\sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} A_{\ell,k}^1(x_t^n) \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} A_{\ell,k}^2(x_t^n) \circ dB_{\ell,k}^2(t) \Big]. \end{split}$$

It follows that the Itô contraction $\left\langle \frac{D}{dt}\Lambda_t, A^i_{\ell k}(x^n_t) \right\rangle \cdot dB^i_{\ell k}(t)$ is given by

(2.5)
$$\sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \left\{ \left\langle Q_{x_t^n} A_{\ell k}^i(x_t^{n+1}), A_{\ell k}^i(x_t^n) \right\rangle - \left\langle x_t^n, x_t^{n+1} \right\rangle \left\langle A_{\ell k}^i(x_t^n), A_{\ell k}^i(x_t^n) \right\rangle \right\} dt.$$

On other hand, the Itô contraction $\sqrt{\frac{da_\ell}{D_{\ell,1}}} \langle \frac{D}{dt} A^1_{\ell k}, \Lambda_t \rangle \cdot dB^1_{\ell k}$ is equal to

$$\left\langle (\nabla_{A_{\ell k}^1} A_{\ell k}^1)(x_t^n), Q_{x_t^n} x_t^{n+1} \right\rangle dt.$$

Now passing to Itô integrals, we get

$$\left\langle A_{\ell,k}^{1}(x_{t}^{n}), Q_{x_{t}^{n}} x_{t}^{n+1} \right\rangle \circ dB_{\ell,k}^{1} = \left\langle A_{\ell,k}^{1}(x_{t}^{n}), Q_{x_{t}^{n}} x_{t}^{n+1} \right\rangle dB_{\ell,k}^{1}$$

$$+ \frac{1}{2} \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \left\{ \left\langle \left(\nabla_{A_{\ell,k}^{1}} A_{\ell,k}^{1} \right) (x_{t}^{n}), Q_{x_{t}^{n}} x_{t}^{n+1} \right\rangle$$

$$+ \left\langle A_{\ell,k}^{1}(x_{t}^{n}), Q_{x_{t}^{n}} A_{\ell,k}^{1}(x_{t}^{n+1}) \right\rangle - \left\langle x_{t}^{n}, x_{t}^{n+1} \right\rangle \left\langle A_{\ell,k}^{1}(x_{t}^{n}), A_{\ell,k}^{1}(x_{t}^{n}) \right\rangle \right\} dt.$$

Using (A.6), we get

$$\sum_{k=1}^{D_{\ell,1}} \left\langle A_{\ell,k}^{1}(x_{t}^{n}), Q_{x_{t}^{n}} x_{t}^{n+1} \right\rangle \circ dB_{\ell,k}^{1} = \sum_{k=1}^{D_{\ell,1}} \left\langle A_{\ell,k}^{1}(x_{t}^{n}), Q_{x_{t}^{n}} x_{t}^{n+1} \right\rangle dB_{\ell,k}^{1}$$

$$+ \frac{1}{2} \sum_{k=1}^{D_{\ell,1}} \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \left\{ \left\langle A_{\ell,k}^{1}(x_{t}^{n}), A_{\ell,k}^{1}(x_{t}^{n+1}) \right\rangle - \left\langle x_{t}^{n}, x_{t}^{n+1} \right\rangle |A_{\ell,k}^{1}(x_{t}^{n})|^{2} \right\} dt.$$

The same kind of calculations hold for vector fields $\{A_{\ell k}^2\}$. Let M_t^n be the martingale part of $\langle x_t^n, x_t^{n+1} \rangle$ and V_t^n the drift part:

$$d\langle x_t^n, x_t^{n+1} \rangle = dM_t^n + V_t^n dt.$$

Then by above calculations, we have

$$(2.7) dM_t^n = \sum_{\ell=1}^{2^n} \left[\sqrt{\frac{da_\ell}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \langle A_{\ell k}^1(x_t^n), x_t^{n+1} \rangle dB_{\ell k}^1(t) + \sqrt{\frac{db_\ell}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \langle A_{\ell k}^2(x_t^n), x_t^{n+1} \rangle dB_{\ell k}^2(t) \right] \\ + \sum_{\ell=1}^{2^{n+1}} \left[\sqrt{\frac{da_\ell}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \langle A_{\ell k}^1(x_t^{n+1}), x_t^n \rangle dB_{\ell k}^1(t) + \sqrt{\frac{db_\ell}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \langle A_{\ell k}^2(x_t^{n+1}), x_t^n \rangle dB_{\ell k}^2(t) \right].$$

By (A.4), we have

$$\sum_{k=1}^{D_{\ell,1}} |A_{\ell,k}^1(x)|^2 = \frac{D_{\ell,1}}{d} \sum_{i=1}^d \sum_{k=1}^{D_{\ell,1}} |T_{ki}^\ell|^2(g) = D_{\ell,1},$$

where $g \in SO(d+1)$ such that $x = gP_0$. So V_t^n has the following expression

$$V_{t}^{n} = \sum_{\ell=1}^{2^{n}} \left[\frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left\langle A_{\ell k}^{1}(x_{t}^{n}), A_{\ell k}^{1}(x_{t}^{n+1}) \right\rangle + \frac{db_{\ell}}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left\langle A_{\ell k}^{2}(x_{t}^{n}), A_{\ell k}^{2}(x_{t}^{n+1}) \right\rangle \right]$$

$$- \sum_{\ell=1}^{2^{n}} d(a_{\ell} + b_{\ell}) \left\langle x_{t}^{n}, x_{t}^{n+1} \right\rangle$$

$$+ \frac{1}{2} \sum_{\ell=2^{n+1}}^{2^{n+1}} \left[\frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left\langle A_{\ell k}^{1}(x_{t}^{n}), A_{\ell k}^{1}(x_{t}^{n+1}) \right\rangle + \frac{db_{\ell}}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left\langle A_{\ell k}^{2}(x_{t}^{n}), A_{\ell k}^{2}(x_{t}^{n+1}) \right\rangle \right]$$

$$- \frac{1}{2} \sum_{\ell=2^{n+1}}^{2^{n+1}} d(a_{\ell} + b_{\ell}) \left\langle x_{t}^{n}, x_{t}^{n+1} \right\rangle.$$

Define

(2.9)
$$f_{\ell}(\theta) = a_{\ell} \left[(d - 1 + \cos^{2} \theta) \gamma_{\ell}(\cos \theta) - \cos \theta \sin^{2} \theta \gamma_{\ell}'(\cos \theta) \right] + b_{\ell} \left[d \cos \theta \gamma_{\ell}(\cos \theta) - \sin^{2} \theta \gamma_{\ell}'(\cos \theta) \right] - d(a_{\ell} + b_{\ell}) \cos \theta.$$

Let $\theta_t^n = d(x_t^n, x_t^{n+1})$. Then, $\langle x_t^n, x_t^{n+1} \rangle = \cos \theta_t^n$. Then according to proposition A.4 and (2.8), V_t^n has the expression

(2.10)
$$V_t^n = \sum_{\ell=1}^{2^n} f_\ell(\theta_t^n) + \frac{1}{2} \sum_{\ell=2^n+1}^{2^{n+1}} f_\ell(\theta_t^n).$$

Now by expression (2.7), the quadratic variation $d\Theta_t^n = dM_t^n \cdot dM_t^n$ of M_t^n is given by

$$d\Theta_{t}^{n} = \sum_{\ell=1}^{2^{n}} \left\{ \frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left(\left\langle A_{\ell k}^{1}(x_{t}^{n}), x_{t}^{n+1} \right\rangle + \left\langle A_{\ell k}^{1}(x_{t}^{n+1}), x_{t}^{n} \right\rangle \right)^{2} + \frac{db_{\ell}}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left(\left\langle A_{\ell k}^{2}(x_{t}^{n}), x_{t}^{n+1} \right\rangle + \left\langle A_{\ell k}^{2}(x_{t}^{n+1}), x_{t}^{n} \right\rangle \right)^{2} \right\} + \sum_{\ell=2^{n+1}}^{2^{n+1}} \left\{ \frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left\langle A_{\ell k}^{1}(x_{t}^{n+1}), x_{t}^{n} \right\rangle^{2} + \frac{db_{\ell}}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left\langle A_{\ell k}^{2}(x_{t}^{n+1}), x_{t}^{n} \right\rangle^{2} \right\} dt.$$

Using proposition A.5, we see that

$$\frac{d}{D_{\ell,i}} \sum_{k=1}^{D_{\ell,i}} \langle x_t^n, A_{\ell k}^i(x_t^{n+1}) \rangle^2 = \sin^2 \theta_t^n,$$

and

$$d\Theta_{t}^{n} = 2(\sin\theta_{t}^{n})^{2} \sum_{\ell=1}^{2^{n}} \left\{ a_{\ell} \left(1 - \cos\theta_{t}^{n} \gamma_{\ell} (\cos\theta_{t}^{n}) + (\sin\theta_{t}^{n})^{2} \gamma_{\ell}' (\cos\theta_{t}^{n}) \right) + b_{\ell} (1 - \gamma_{\ell} (\cos\theta_{t}^{n})) \right\} dt + (\sin\theta_{t}^{n})^{2} \sum_{\ell=2^{n}+1}^{2^{n+1}} (a_{\ell} + b_{\ell}) dt.$$

Now introduce the function G_n defined by

(2.11)
$$G_n(\theta) = \sum_{\ell=1}^{2^n} \frac{\gamma_{\ell+1}(\cos \theta)}{\ell^3} = \sum_{\ell=1}^{2^n} \frac{\tilde{\gamma}_{\ell}(\theta)}{\ell^3}.$$

Recall that

$$\tilde{\gamma}_{\ell}(\theta) = \int_{0}^{\pi} (\cos \theta - \sqrt{-1} \sin \theta \cos \varphi)^{\ell} \sin^{d} \varphi \frac{d\varphi}{c_{d}}.$$

We have: $\tilde{\gamma}'_{\ell}(\theta) = \gamma'_{\ell+1}(\cos\theta)(-\sin\theta)$ or $\gamma'_{\ell+1}(\cos\theta) = -\frac{\tilde{\gamma}'_{\ell}(\theta)}{\sin\theta}$. Define

Using these notations, introduce

$$(2.13) V_n(\theta) = a \Big[(d - \sin^2 \theta) G_n(\theta) + \cos \theta \sin \theta G_n'(\theta) \Big]$$

$$+ b \Big[d \cos \theta G_n(\theta) + \sin \theta G_n'(\theta) \Big] - d(a+b) \cos \theta G_n(0)$$

$$+ \frac{1}{2} \Big\{ a \Big[(d - \sin^2 \theta) \Xi_n(\theta) + \cos \theta \sin \theta \Xi_n'(\theta) \Big]$$

$$+ b \Big[d \cos \theta \Xi_n(\theta) + \sin \theta \Xi_n'(\theta) \Big] - d(a+b) \cos \theta \Xi_n(0) \Big\}.$$

Then

$$V_t^n = V_n(\theta_t^n).$$

Define

(2.14)
$$U_n(\theta) = 2\sin^2\theta \left\{ a \left[G_n(0) - \cos\theta G_n(\theta) - \sin\theta G_n'(\theta) \right] + b \left(G_n(0) - G_n(\theta) \right) \right\} + \sin^2\theta \left(a + b \right) \Xi_n(0).$$

Then

$$\Theta_t^n = U_n(\theta_t^n).$$

Therefore there exists a real Brownian motion $W_n(t)$ defined on the same probability space such that

(2.15)
$$d\cos\theta_t^n = \sqrt{U_n(\theta_t^n)} dW_n(t) + V_n(\theta_t^n) dt.$$

Using the relation $\theta = \cos^{-1}(\cos \theta)$, we obtain

(2.16)
$$d\theta_t^n = -\frac{\sqrt{U_n(\theta_t^n)}}{\sin \theta_t^n} dW_n(t) - \left(\frac{V_n(\theta_t^n)}{\sin \theta_t^n} + \frac{1}{2} \frac{\cos \theta_t^n}{\sin^3 \theta_t^n} U_n(\theta_t^n)\right) dt.$$

Of course, we have to justify the passage from (2.15) to (2.16), by taking care of the points 0 and π . We shall see below in proposition 2.4 that π is polar for θ_r^t .

Let

(2.17)
$$B_n(\theta) = \frac{V_n(\theta)}{\sin \theta} + \frac{1}{2} \frac{\cos \theta}{\sin^3 \theta} U_n(\theta).$$

By (2.13) and (2.14), we find

$$(2.18) B_n(\theta) = \frac{d-1}{\sin \theta} \left\{ a(G_n(\theta) - \cos \theta G_n(0)) + b\cos \theta (G_n(\theta) - G_n(0)) \right\}$$

$$+ bG'_n(\theta) + \frac{1}{2} (a\cos \theta + b)\Xi'_n(\theta) - \frac{1}{2}\sin \theta \Xi_n(\theta)$$

$$+ \frac{1}{2\sin \theta} \left\{ (ad + bd\cos \theta)\Xi_n(\theta) - (d-1)(a+b)\cos \theta \Xi_n(0) \right\}.$$

Lemma 2.1 There exists a constant C > 0 independent of n such that

(2.19)
$$|G'_n(\theta)| \le C\left(\theta \log \frac{2\pi}{\theta} + 2^{-n}\right), \quad \text{for all } \theta \in [0, \pi].$$

Proof. Let $z(\theta, \varphi) = \cos \theta - \sqrt{-1} \sin \theta \cos \varphi$. Then $\frac{d}{d\theta} z(\theta, \varphi) = -\sin \theta - \sqrt{-1} \cos \theta \cos \varphi$. It is clear that

$$|z(\theta,\varphi)| \le 1, \quad \left|\frac{d}{d\theta}z(\theta,\varphi)\right| \le 1.$$

We have

(2.20)
$$G'_n(\theta) = \sum_{\ell=1}^{2^n} \int_0^{\pi} \frac{z(\theta, \varphi)^{\ell-1}}{\ell^2} \frac{d}{d\theta} z(\theta, \varphi) \sin^d \varphi \frac{d\varphi}{c_d}.$$

Let

(2.21)
$$G(\theta) = \sum_{\ell=1}^{+\infty} \frac{\tilde{\gamma}_{\ell}(\theta)}{\ell^{3}}.$$

By (2.20), we see that G'_n converge uniformly to G' over $[0,\pi]$. Now as in [6], using the relation $\frac{1}{\ell^2} = \int_0^{+\infty} e^{-\ell s} s \, ds$, we express G'_n as

$$(2.22) \qquad G'_n(\theta) = \sum_{\ell=1}^{2^n} \int_0^{\pi} \int_0^{+\infty} z(\theta, \varphi)^{\ell-1} e^{-\ell s} s \frac{d}{d\theta} z(\theta, \varphi) \sin^d \varphi \frac{d\varphi}{c_d}$$

$$= \int_0^{\pi} \int_0^{+\infty} \frac{e^{-s} s \frac{d}{d\theta} z(\theta, \varphi)}{1 - z(\theta, \varphi) e^{-s}} \sin^d \varphi \frac{d\varphi}{c_d}$$

$$- \int_0^{\pi} \int_0^{+\infty} \left(z(\theta, \varphi) e^{-s} \right)^{2^n} \frac{e^{-s} s \frac{d}{d\theta} z(\theta, \varphi)}{1 - z(\theta, \varphi) e^{-s}} \sin^d \varphi \frac{d\varphi}{c_d}.$$

Let I_n be the last term in (2.22). We have the estimate

$$|I_n| \le \int_0^{\pi} \int_0^{+\infty} \frac{e^{-2^n s} e^{-s} s}{1 - |z(\theta, \varphi)| e^{-s}} \sin^d \varphi \, \frac{d\varphi}{c_d}$$

$$\le \int_0^{\pi} \int_0^1 \frac{e^{-2^n s} e^{-s} s}{1 - |z(\theta, \varphi)| e^{-s}} \sin^d \varphi \, \frac{d\varphi}{c_d} + \int_0^{\pi} \int_1^{+\infty} \frac{e^{-2^n s} e^{-s} s}{1 - |z(\theta, \varphi)| e^{-s}} \sin^d \varphi \, \frac{d\varphi}{c_d}$$

$$= I_{n,1} + I_{n,2}.$$

For $s \ge 1$, using the inequality $\frac{e^{-2^n s}e^{-s}s}{1-|z(\theta,\varphi)|e^{-s}} \le e^{-2^n}\frac{e^{-s}s}{1-e^{-s}}$, we get

(2.23)
$$I_{n,2} \le e^{-2^n} \int_1^{+\infty} \frac{e^{-s}s}{1 - e^{-s}} \, ds \le C \, 2^{-n}.$$

For $0 \le s \le 1$,

$$\begin{split} \frac{e^{-s}s}{1 - |z(\theta, \varphi)|e^{-s}} &= \frac{e^{-s}s}{1 - e^{-s}\sqrt{\cos^2\theta + \sin^2\theta\cos^2\varphi}} \\ &= \frac{e^{-s}s(1 + e^{-s}\sqrt{\cos^2\theta + \sin^2\theta\cos^2\varphi})}{1 - (\cos^2\theta + \sin^2\theta\cos^2\varphi)e^{-2s}} \\ &\leq \frac{2se^{-s}}{1 - e^{-2s} + \sin^2\theta\sin^2\varphi e^{-2s}} \\ &= \frac{2se^s}{e^{2s} - 1 + \sin^2\theta\sin^2\varphi} \leq \frac{2es}{2s + \sin^2\theta\sin^2\varphi} \leq e. \end{split}$$

It follows that

(2.24)
$$I_{n,1} \le \int_0^{\pi} \int_0^1 e^{-2^n s} e^{\frac{\sin^d \varphi}{c_d}} d\varphi \, ds \le e^{2^{-n}}.$$

Combining (2.23) and (2.24), we get $|I_n| \leq C \, 2^{-n}$. Now going back to (2.22) and letting $n \to +\infty$, we get that

(2.25)
$$G'(\theta) = \int_0^{\pi} \int_0^{+\infty} \frac{e^{-s} s \frac{d}{d\theta} z(\theta, \varphi)}{1 - z(\theta, \varphi) e^{-s}} \sin^d \varphi \frac{d\varphi}{c_d}.$$

Moreover

$$\sup_{\theta \in [0,\pi]} |G'_n(\theta) - G'(\theta)| \le C \, 2^{-n}.$$

Now the estimate (2.19) follows from the following main result. \blacksquare

Theorem 2.2

(2.26)
$$|G'(\theta)| \le C \theta \log \frac{2\pi}{\theta}, \quad \theta \in [0, \pi].$$

Proof. We compute the term

$$\frac{\frac{d}{d\theta}z(\theta,\varphi)}{1-z(\theta,\varphi)e^{-s}} = \frac{-\sin\theta - \sqrt{-1}\cos\theta\,\cos\varphi}{1-\cos\theta\,e^{-s} + \sqrt{-1}\sin\theta\,\cos\varphi\,e^{-s}},$$

which has the real part

$$\frac{-\sin\theta + \sin\theta\cos\theta\sin^2\varphi e^{-s}}{(1-\cos\theta e^{-s})^2 + e^{-2s}\sin^2\theta\cos^2\varphi}$$

Since G is a real valued function, it follows from (2.25) that

(2.27)
$$G'(\theta) = -\int_0^{\pi} \int_0^{+\infty} \frac{s \sin \theta (e^s - \cos \theta \sin^2 \varphi)}{(e^s - \cos \theta)^2 + \sin^2 \theta \cos^2 \varphi} \sin^d \varphi \frac{d\varphi}{c_d} ds$$

which can be written as two parts $I_1(\theta) + I_2(\theta) = \int_0^{\pi} \int_0^1 + \int_0^{\pi} \int_1^{+\infty}$. For $0 < s \le 1$,

$$\frac{|e^s - \cos\theta \sin^2\varphi|}{(e^s - \cos\theta)^2 + \sin^2\theta \cos^2\varphi} \le \frac{e+1}{(e^s - 1)^2 + \sin^2\theta \cos^2\varphi}$$
$$\le \frac{e+1}{s^2 + \sin^2\theta \cos^2\varphi}.$$

But

$$\int_0^1 \frac{2s \, ds}{s^2 + \sin^2 \theta \cos^2 \varphi} = \log \left(1 + \sin^2 \theta \cos^2 \varphi \right) - \log \left(\sin^2 \theta \cos^2 \varphi \right)$$
$$< \log 2 - \log \left(\sin^2 \theta \cos^2 \varphi \right).$$

It follows that

$$|I_1(\theta)| \le \frac{e+1}{2} |\sin \theta| \Big(\log 2 + \log \frac{1}{\sin^2 \theta} - \int_0^{\pi} \log (\cos^2 \varphi) \sin^d \varphi \frac{d\varphi}{c_d} \Big).$$

Therefore there exists a constant C > 0 such that

$$|I_1(\theta)| \le C \theta \log \frac{2\pi}{\theta}, \quad \theta \in [0, \pi].$$

For the estimate of I_2 , it is sufficient to remark that

$$\frac{s(e^s - \cos\theta \sin^2\varphi)}{(e^s - \cos\theta)^2 + \sin^2\theta \cos^2\varphi} \le \frac{se^s}{(e^s - 1)^2}.$$

The proof of (2.26) is complete. \blacksquare

Let $\sigma_n(\theta) = -\frac{\sqrt{U_n(\theta)}}{\sin \theta}$. We have the following key estimates.

Theorem 2.3 There exist N > 0 and a constant C > 0 such that for all $n \ge N$

(2.28)
$$\sigma_n^2(\theta) \le C\left(\theta^2 \log \frac{2\pi}{\theta} + 2^{-n}\right),$$

$$(2.29) -B_n(\theta) \le C\left(\theta \log \frac{2\pi}{\theta} + 2^{-n}\right).$$

Proof. Using (2.14), σ_n^2 has the expression

(2.30)
$$\sigma_n^2(\theta) = 2a \Big(G_n(0) - G_n(\theta) + 2\sin^2(\frac{\theta}{2}) G_n(\theta) - \sin\theta G_n'(\theta) \Big) + 2b(G_n(0) - G_n(\theta)) + (a+b)\Xi_n(0).$$

Since $\Xi_n(0) \leq \frac{\pi^2}{6} 2^{-n}$, (2.28) follows from (2.19). The estimate for (2.29) is much more delicate. Remark first that $\theta \to B_n(\theta)$ is smooth over $]0,\pi[$, but explodes at 0 and π . More precisely, let

$$B_{n,1}(\theta) = \frac{d-1}{\sin \theta} \Big\{ a(G_n(\theta) - \cos \theta \, G_n(0)) + b \cos \theta \, (G_n(\theta) - G_n(0)) \Big\},$$

$$B_{n,2}(\theta) = bG'_n(\theta) - \frac{a}{2} \sin \theta \, \Xi_n(\theta) + \frac{1}{2} (a \cos \theta + b) \Xi'_n(\theta).$$

$$B_{n,3}(\theta) = \frac{1}{2 \sin \theta} \Big\{ (ad + bd \cos \theta) \Xi_n(\theta) - (d-1)(a+b) \cos \theta \, \Xi_n(0) \Big\}.$$

We have:

$$|\Xi'_n(\theta)| \le \sum_{\ell=2^{n+1}}^{2^{n+1}} \frac{1}{\ell^2} \le 2^{-2n} (2^{n+1} - 2^n) = 2^{-n}.$$

From (2.19), we see that

(2.31)
$$|B_{n,2}(\theta)| \le C \left(\theta \log \frac{2\pi}{\theta} + 2^{-n}\right), \quad \theta \in [0, \pi].$$

When $\theta \to 0$, $B_{n,1}$ behaves as $(d-1)(a+b)G'_n(\theta)$, which is dominated by $C(\theta \log \frac{2\pi}{\theta} + 2^{-n})$; and $B_{n,3}$ will behave as

$$\frac{1}{2\sin\theta}(a+b)\Xi_n(0)\to +\infty.$$

When $\theta \to \pi$, $B_{n,1}$ will behave as

(2.32)
$$\frac{d-1}{\sin \theta} \left[a(G_n(\pi) + G_n(0)) + b(G_n(0) - G_n(\pi)) \right] \to +\infty,$$

while $B_{n,3}$ will behave as

(2.33)
$$\frac{1}{2\sin\theta} \Big[d(a-b)\Xi_n(\pi) + (d-1)(a+b)\Xi_n(0) \Big].$$

Since for $k \geq 2^n$,

$$\frac{1}{k^3} - \frac{1}{(k+1)^3} = \frac{3k^2 + 3k + 1}{k^3(k+1)^3} \le 6 \cdot 2^{-n} \frac{1}{k^3},$$

it is clear that

$$(2.34) |\Xi_n(\pi)| \le 6 \cdot 2^{-n} \Xi_n(0).$$

This together with (2.33) shows that $B_{n,3}$ will go to $+\infty$ as $\theta \to \pi$. However in order to get the uniform estimate (2.29), we have to prove that the change of signs near 0 and π will be done independently of n.

By the mean-value formula, there exists $\alpha \in]0, \theta[$ such that $\Xi_n(\theta) = \Xi_n(0) + \theta \Xi'_n(\alpha)$. Write $B_{n,3}$ near 0 in the form

$$B_{n,3}(\theta) = \frac{\Xi_n(0)}{2\sin\theta} \left\{ ad(1-\cos\theta) + (a+b)\cos\theta \right\} + \frac{\theta}{2\sin\theta} (ad+bd\cos\theta) \,\Xi'_n(\alpha).$$

The last term in the above equality is bounded by $C2^{-n}$. The first term in the above equality is always positive. So (2.29) holds for $B_{n,3}$ near π uniformly for n. Now we shall deal with the problem at π . Replacing $\Xi_n(\theta)$ by $\Xi_n(\pi) + (\theta - \pi)\Xi'_n(\beta)$ in expression of $B_{n,3}$, we get

(2.35)
$$B_{n,3}(\theta) = \frac{1}{2\sin\theta} \left\{ (ad + bd\cos\theta) \Xi_n(\pi) - (d-1)(a+b)\cos\theta \Xi_n(0) \right\} + \frac{\theta - \pi}{2\sin\theta} (ad + bd\cos\theta) \Xi'_n(\beta).$$

Using (2.34), we have

$$(ad + bd\cos\theta)\Xi_n(\pi) - (d-1)(a+b)\cos\theta\Xi_n(0)$$

$$\geq (a+b)\left[-(d-1)\cos\theta - 6d\cdot 2^{-n}\right]\Xi_n(0)$$

Let $N \ge 1$ such that $2^{-N} \le \frac{d-1}{6d}$. Then there exists $\theta_o \in]\frac{\pi}{2}, \pi[$ such that

$$-(d-1)\cos\theta - 6d \cdot 2^{-n} \ge 0 \quad \text{for all } \theta \in [\theta_o, \pi], \ n \ge N.$$

Combining the above discussions, we arrive at

$$-B_{n,3}(\theta) \le C \left(\theta \log \frac{2\pi}{\theta} + 2^{-n}\right), \quad \theta \in [0, \pi].$$

For the behavior of $B_{n,1}$ near π , consider

$$\varphi(\theta) = a(G(\theta) - \cos\theta G(0)) + b\cos\theta (G(\theta) - G(0)).$$

We have

$$\delta = \varphi(\pi) = a(G(\pi) + G(0)) + b(G(0) - G(\pi)) > 0.$$

There exists $\theta_0 < \pi$ such that $\varphi(\theta) \ge \delta/2$ for $\theta \in [\theta_0, \pi]$. Since

$$\varphi_n(\theta) = a(G_n(\theta) - \cos\theta G_n(0)) + b\cos\theta (G_n(\theta) - G_n(0))$$

converges to φ uniformly over $[0,\pi]$. There exists a big enough N such that

$$|\varphi(\theta) - \varphi_n(\theta)| \le \delta/4, \quad \theta \in [0, \pi], \ n \ge N.$$

It follows that for $\theta \in [\theta_0, \pi]$ and $n \geq N$,

$$\varphi_n(\theta) \ge \delta/4.$$

This implies that

$$-B_{n,1}(\theta) \le C \left(\theta \log \frac{2\pi}{\theta} + 2^{-n}\right), \quad \theta \in [0, \pi].$$

Combining above facts with (2.18) yields (2.29).

Proposition 2.4 Let $d \geq 3$. Then the process θ_t^n does not hit the point π .

Proof. By (2.31) and (2.32) and the expression of σ_n , we see that $\frac{2B_n}{\sigma_n^2}$ at the neighborhood of π behaves as

$$\frac{d-1}{\pi-\theta} \frac{a(G_n(\pi)+G_n(0))+b(G_n(0)-G_n(\pi))+(a+b)\Xi_n(0)/2+d(a-b)\Xi_n(\pi)/(d-1)}{a(G_n(\pi)+G_n(0))+b(G_n(0)-G_n(\pi))+(a+b)\Xi_n(0)/2}$$

which is $> \frac{1}{\pi - \theta}$ for $d \ge 3$ and for n big enough. Therefore

$$\int_{\theta_0}^{\pi} \exp\left[\int_{\theta_0}^{y} \frac{2B_n(\theta)}{\sigma_n^2(\theta)} d\theta\right] dy = +\infty.$$

By Breiman's criterion (see [6], p. 856), θ_t^n does not hit the point π .

Remark 2.5 The process θ_t^n could meet the point 0.

3. Flow of homeomorphisms

Let x_t^n be the solution of the stochastic differential equation (2.1) with the initial point x, x_t^{n+1} with the initial point $y \neq x$. Set

$$\theta_n(t) = d(x_t^n, x_t^{n+1}).$$

Let $p \geq 2$. By Itô formula, we have

$$d\theta_n^p(t) = p\theta_n^{p-1}(t) \, d\theta_n(t) + \frac{1}{2}p(p-1)\theta_n^{p-2}(t) \, d\theta_n(t) \cdot d\theta_n(t).$$

By (2.16), we have

(3.1)
$$d\theta_n^p(t) = p\theta_n^{p-1}(t)\sigma_n(\theta_n(t)) dW_n(t) - p\theta_n^{p-1}(t)B_n(\theta_n(t)) dt + \frac{1}{2}p(p-1)\theta_n^{p-2}(t)\sigma_n^2(\theta_n(t)) dt.$$

Using (2.28), $M_n(t) = p \int_0^t \theta_n^{p-1}(s) \sigma_n(\theta_n(s)) dW_n(s)$ is a martingale. Let $u(t) = \left(\frac{\theta_n(t)}{2\pi}\right)^p$. Since the coefficient $\theta^{p-1}B_n(\theta)$ explodes at the point π , to insure that the function $t \to \mathbf{E}(u(t))$ is differentiable, we introduce for $\delta > 0$,

$$\tau_{\delta} = \inf\{t > 0, \ \theta_n(t) \ge \pi - \delta\}.$$

By proposition 2.4, we see that $\tau_{\delta} \uparrow +\infty$ as $\delta \downarrow 0$. Now by (2.29), we have

$$-\frac{p}{(2\pi)^p}\theta_n^{p-1}(t)B_n(\theta_n(t)) \le Cp\frac{\theta_n^p(t)}{(2\pi)^p}\log\frac{2\pi}{\theta_n(t)} + Cp\frac{\theta_n^{p-1}}{(2\pi)^p} \cdot 2^{-n}$$

$$\le Cu(t)\log\frac{1}{u(t)} + Cp(\frac{1}{2})^{p-1}2^{-n}$$

and in the same way,

$$\frac{1}{2} \frac{p(p-1)}{(2\pi)^p} \theta_n^{p-2}(t) \sigma_n^2(\theta_n(t)) \leq C \frac{p-1}{2} \, u(t) \log \frac{1}{u(t)} + C p(p-1) (\frac{1}{2})^{p-1} \cdot 2^{-n}.$$

Consider

(3.2)
$$u_{\delta}(t) = u(t \wedge \tau_{\delta}) = \left(\frac{\theta_n(t \wedge \tau_{\delta})}{2\pi}\right)^p.$$

Let $\varphi(t) = \mathbf{E}(u_{\delta}(t))$. Then $t \to \varphi(t)$ is differentiable. Using the above computations, we get

$$u_{\delta}(t+\eta) - u_{\delta}(t) \le \frac{1}{(2\pi)^{p}} \Big(M_{n}((t+\eta) \wedge \tau_{\delta}) - M_{n}(t \wedge \tau_{\delta}) \Big)$$
$$+ C \frac{p+1}{2} \int_{t}^{t+\eta} u_{\delta}(s) \log \frac{1}{u_{\delta}(s)} ds + C p^{2}(\frac{1}{2})^{p-1} 2^{-n} \eta.$$

It follows that

$$\varphi'(t) \le C \frac{p+1}{2} \mathbf{E} \left(u_{\delta} \log \frac{1}{u_{\delta}} \right) + C p^{2} (\frac{1}{2})^{p-1} 2^{-n}$$

$$\le C \frac{p+1}{2} \varphi(t) \log \frac{1}{\varphi(t)} + C p^{2} (\frac{1}{2})^{p-1} 2^{-n}.$$

Using the inequality (see [3])

$$-\xi \log \xi + K \le -(\xi + K) \log (\xi + K)$$
, for $0 < \xi \le 2^{-4}$, $0 < K \le 2^{-4}$,

and letting $\psi(t) = \varphi(t) + 2^{-n}$, we get

(3.3)
$$\psi'(t) \le C \frac{p+1}{2} \psi(t) \log \frac{1}{\psi(t)}, \quad \psi(0) = d^p(x,y) + 2^{-n}.$$

It follows that

$$\varphi(t) \le \psi(t) \le (\psi(0))^{e^{-\frac{C(p+1)}{2}t}}, \quad t > 0.$$

Or

$$\mathbf{E}\Big(\theta_n^p(t\wedge\tau_\delta)\Big) \le (2\pi)^p \left(\psi(0)\right)^{e^{-\frac{C(p+1)}{2}t}}.$$

Letting $\delta \downarrow 0$ and by Fatou lemma, we get

(3.4)
$$\mathbf{E}\left(d(x_t^n, x_t^{n+1})^p\right) \le (2\pi)^p (\psi(0))^{e^{-\frac{C(p+1)}{2}t}}.$$

Now write $x_t^n(x)$ for x_t^n with initial data x. Using the inequality $(a+b)^{\alpha} \leq a^{\alpha} + b^{\alpha}$ for $0 < \alpha \leq 1$, a > 0, b > 0, we get for $x \neq y$,

(3.5)
$$\mathbf{E}\left(d(x_t^n(x), x_t^{n+1}(y))^p\right) \le (2\pi)^p \left[2^{-ne^{-C(p+1)t/2}} + d(x, y)^{pe^{-C(p+1)t/2}}\right].$$

By continuity, the inequality (3.5) holds for all $x, y \in S^d$.

Proposition 3.1 Let T > 0. There exists a constant C > 0 independent of n such that

(3.6)
$$\mathbf{E}\left(d(x_t^n(x), x_s^n(x))^p\right) \le C|t - s|^{p/2}, \quad s, t \in [0, T].$$

Proof. Fix $u \in S^d$ and consider $\eta_t = \langle u, x_t^n \rangle$. We have

$$d\eta_t = \sum_{\ell=1}^{2^n} \Big\{ \sqrt{\frac{da_\ell}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \langle u, A_{\ell,k}^1(x_t^n) \rangle \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_\ell}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \langle u, A_{\ell,k}^2(x_t^n) \rangle \circ dB_{\ell,k}^2(t) \Big\}.$$

Let $\Lambda_t = Q_{x_t^n} u$ be the orthogonal projection of u onto $T_{x_t^n} S^d$. We have

$$d\langle u, A_{\ell,k}^1(x_t^n) \rangle = d\langle \Lambda_t, A_{\ell,k}^1(x_t^n) \rangle$$
$$= \langle \frac{D}{dt} \Lambda_t, A_{\ell,k}^1(x_t^n) \rangle + \langle \Lambda_t, (\frac{D}{dt} A_{\ell,k}^1)(x_t^n) \rangle$$

where $\frac{D}{dt}$ denotes the covariant derivative along $\{x_t^n; t > 0\}$. The Itô contraction $\langle \Lambda_t, \frac{D}{dt} A_{\ell,k}^1 \rangle \cdot dB_{\ell k}^1(t)$ is given by

$$\sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \langle \Lambda_t, \nabla^1_{A_{\ell,k}} A^1_{\ell,k} \rangle dt.$$

For the computation of $\frac{D}{dt}\Lambda_t$, using expression $\Lambda_t = u - \langle u, x_t^n \rangle x_t^n$, it gives

$$d\Lambda_t \cdot dB_{\ell,k}^1(t) = -\sqrt{\frac{da_\ell}{D_{\ell,1}}} \left[\left\langle u, A_{\ell,k}^1(x_t^n) \right\rangle x_t^n + \left\langle u, x_t^n \right\rangle A_{\ell,k}^1(x_t^n) \right] dt.$$

Therefore

$$\left\langle \frac{D}{dt} \Lambda_t, A_{\ell,l}^1(x_t^n) \right\rangle \cdot dB_{\ell,k}^1(t) = -\sqrt{\frac{da_\ell}{D_{\ell,1}}} \left\langle u, x_t^n \right\rangle \left\langle A_{\ell,k}^1(x_t^n), A_{\ell,k}^1(x_t^n) \right\rangle dt.$$

Let M_t be the martingale part of η_t and V_t be the drift part. Then V_t has the expression

$$\begin{split} V_t &= \frac{1}{2} \sum_{\ell=1}^{2^n} \frac{da_\ell}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \Big\{ \left\langle u, (\nabla_{A_{\ell k}^1} A_{\ell k}^1)(x_t^n) \right\rangle - \left\langle u, x_t^n \right\rangle \left\langle A_{\ell k}^1(x_t^n), A_{\ell k}^1(x_t^n) \right\rangle \Big\} \\ &+ \frac{1}{2} \sum_{\ell=1}^{2^n} \frac{db_\ell}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \Big\{ \left\langle u, (\nabla_{A_{\ell k}^2} A_{\ell k}^2)(x_t^n) \right\rangle - \left\langle u, x_t^n \right\rangle \left\langle A_{\ell k}^2(x_t^n), A_{\ell k}^2(x_t^n) \right\rangle \Big\}. \end{split}$$

By (A.6), we get

(3.7)
$$V_t = -\frac{1}{2} \sum_{\ell=1}^{2^n} d(a_\ell + b_\ell) \langle u, x_t^n \rangle = -\frac{1}{2} d(a+b) G_n(0) \eta_t.$$

Now the quadratic variation $dM_t \cdot dM_t$ is given by

$$dM_t \cdot dM_t = \sum_{\ell=1}^{2^n} \left\{ \frac{da_\ell}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left\langle u, A_{\ell k}^1(x_t^n) \right\rangle^2 + \frac{db_\ell}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left\langle u, A_{\ell k}^2(x_t^n) \right\rangle^2 \right\} dt.$$

Using (A.13), we obtain

$$dM_t \cdot dM_t = \sum_{\ell=1}^{2^n} (a_{\ell} + b_{\ell}) \sin^2 \theta = (a+b)G_n(0)(1-\cos^2 \theta),$$

where θ is the angle between a and x_t^n : $\cos \theta = \langle u, x_t^n \rangle = \eta_t$. Now by Bürkhölder inequality, for $t_1 > t_2$,

$$\mathbf{E}((M_{t_1} - M_{t_2})^p) \le C_p \mathbf{E} \Big[\Big(\int_{t_2}^{t_1} (a+b)^2 G_n(0)^2 (1-\eta_s^2)^2 \, ds \Big)^{p/2} \Big]$$

$$\le C_p (a+b)^p G(0)^p |t_1 - t_2|^{p/2}.$$

Combining with (3.7), there exists a constant C_p independent of n such that

$$\mathbf{E}(|\eta_{t_1} - \eta_{t_2}|^p) \le C_p |t_1 - t_2|^{p/2},$$

or

$$\mathbf{E}(|\langle u, x_{t_1}^n - x_{t_2}^n \rangle|^p) \le C_p |t_1 - t_2|^{p/2}.$$

Using $|x_{t_1} - x_{t_2}|^2 = \sum_{i=1}^{d+1} |\langle u_i, x_{t_1}^n - x_{t_2}^n \rangle|^2$, where $\{u_i, i = 1, \dots d+1\}$ is an orthonormal basis of \mathbf{R}^{d+1} , we get the estimate (3.6).

Theorem 3.2 Let $x \in S^d$ and T > 0 be fixed. Then almost surely, as $n \to +\infty$,

(3.8)
$$x_t^n(x)$$
 converges uniformly with respect to $t \in [0, T]$.

Proof. Seeing $x_t^n(x)$ as an element of \mathbf{R}^{d+1} , and using (3.5) and (3.6), we have for $s, t \in [0, T]$,

(3.9)
$$\mathbf{E}\left(|x_t^n(x) - x_s^{n+1}(x)|^p\right) \le C_p\left(|t - s|^{p/2} + 2^{-(n+1)\delta}\right).$$

where $\delta = e^{-C(p+1)T/2}$. Let $c = 2^{-\delta/p} < 1$. Define $\alpha_0 = 0, \alpha_n = \sum_{k=1}^n c^k$. Then $\alpha_\infty = \lim_{n \to +\infty} \alpha_n$ is finite. Define

$$X(s,t,x) = x_t^n(x) \frac{\alpha_{n+1} - s}{\alpha_{n+1} - \alpha_n} + x_t^{n+1}(x) \frac{s - \alpha_n}{\alpha_{n+1} - \alpha_n}, \quad s \in [\alpha_n, \alpha_{n+1}].$$

Using (3.9), we get for $(s_1, s_2) \in [0, \alpha_{\infty}]^2$ and $(t_1, t_2) \in [0, T]^2$,

(3.10)
$$\mathbf{E}(|X(s_1,t_1,x)-X(s_2,t_2,x)|^p) \le C_p(|s_1-s_2|^p+|t_1-t_2|^{p/2}).$$

By Kolmogoroff modification theorem, X has a continuous version \tilde{X} . But we have

$$x_t^n(x) = X(\alpha_n, t, x) = \tilde{X}(\alpha_n, t).$$

This last term converges uniformly with respect to $t \in [0, T]$, which finishes the proof. Let $\{x_t(x), t \in [0, T]\}$ be the uniform limit of $\{x_t^n(x), t \in [0, T]\}$.

Theorem 3.3 $\{x_t(x), t \geq 0\}$ is the unique solution of the equation:

(3.11)
$$dx_t = \sum_{\ell=1}^{\infty} \left\{ \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} A_{\ell,k}^1(x_t) \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} A_{\ell,k}^2(x_t) \circ dB_{\ell,k}^2(t) \right\}$$

Proof. We first show that $\{x_t(x), t \geq 0\}$ satisfies the equation (3.11). It suffices to show that for any $u \in S^d$,

$$(3.12) \ d\langle u, x_t \rangle = \sum_{\ell=1}^{\infty} \left\{ \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \langle u, A_{\ell,k}^1(x_t) \rangle \circ dB_{\ell,k}^1(t) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \langle u, A_{\ell,k}^2(x_t) \rangle \circ dB_{\ell,k}^2(t) \right\}$$

Set $\eta_t = \langle u, x_t \rangle, \eta_t^n = \langle u, x_t^n \rangle$. From the proof of Proposition 3.1 that

(3.13)
$$\eta_t^n = \langle u, x \rangle + M_t^n + \int_0^t V_s^n ds,$$

where

$$dM^n_t = \sum_{\ell=1}^{2^n} \Bigl\{ \sqrt{\frac{da_\ell}{D_{\ell,1}}} \, \sum_{k=1}^{D_{\ell,1}} \bigl\langle u, A^1_{\ell,k}(x^n_t) \bigr\rangle \, dB^1_{\ell,k}(t) \, + \, \sqrt{\frac{db_\ell}{D_{\ell,2}}} \, \sum_{k=1}^{D_{\ell,2}} \bigl\langle u, A^2_{\ell,k}(x^n_t) \bigr\rangle dB^2_{\ell,k}(t) \Bigr\}$$

and $V_t^n = -\frac{1}{2}d(a+b)G_n(0)\eta_t^n$. Put

$$dM_{t} = \sum_{\ell=1}^{\infty} \left\{ \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \langle u, A_{\ell,k}^{1}(x_{t}) \rangle dB_{\ell,k}^{1}(t) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \langle u, A_{\ell,k}^{2}(x_{t}) \rangle dB_{\ell,k}^{2}(t) \right\},$$

and $V_t = -\frac{1}{2}d(a+b)G(0)\eta_t$. Clearly, $V_t^n \to V_t$. Fix any positive integer N_0 , when n is big enough M_t^n can be split into two parts:

$$\begin{split} M^n_t &= \sum_{\ell=1}^{N_0} \Bigl\{ \sqrt{\frac{da_\ell}{D_{\ell,1}}} \, \sum_{k=1}^{D_{\ell,1}} \int_0^t \bigl\langle u, A^1_{\ell,k}(x^n_s) \bigr\rangle \, dB^1_{\ell,k}(s) \, + \, \sqrt{\frac{db_\ell}{D_{\ell,2}}} \, \sum_{k=1}^{D_{\ell,2}} \int_0^t \bigl\langle u, A^2_{\ell,k}(x^n_s) \bigr\rangle dB^2_{\ell,k}(s) \Bigr\} \\ &+ \sum_{\ell=N_0+1}^{2^n} \Bigl\{ \sqrt{\frac{da_\ell}{D_{\ell,1}}} \, \sum_{k=1}^{D_{\ell,1}} \int_0^t \bigl\langle u, A^1_{\ell,k}(x^n_s) \bigr\rangle \, dB^1_{\ell,k}(s) \, + \, \sqrt{\frac{db_\ell}{D_{\ell,2}}} \, \sum_{k=1}^{D_{\ell,2}} \int_0^t \bigl\langle u, A^2_{\ell,k}(x^n_s) \bigr\rangle dB^2_{\ell,k}(s) \Bigr\} \\ &:= M_t^{(n,1)} + M_t^{(n,2)}. \end{split}$$

Similarly,

$$M_{t} = \sum_{\ell=1}^{N_{0}} \left\{ \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \int_{0}^{t} \left\langle u, A_{\ell,k}^{1}(x_{s}) \right\rangle dB_{\ell,k}^{1}(s) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \int_{0}^{t} \left\langle u, A_{\ell,k}^{2}(x_{s}) \right\rangle dB_{\ell,k}^{2}(s) \right\}$$

$$+ \sum_{\ell=N_{\ell}+1}^{\infty} \left\{ \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \int_{0}^{t} \left\langle u, A_{\ell,k}^{1}(x_{s}) \right\rangle dB_{\ell,k}^{1}(s) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \int_{0}^{t} \left\langle u, A_{\ell,k}^{2}(x_{s}) \right\rangle dB_{\ell,k}^{2}(s) \right\}$$

$$:= M_t^{(1)} + M_t^{(2)}.$$

By (A.13), as in the proof of Proposition 3.1 we have

$$\mathbf{E}[(M_t^{(n,2)})^2] \le \sum_{\ell=N_0+1}^{\infty} (a_\ell + b_\ell), \quad \mathbf{E}[(M_t^{(2)})^2] \le \sum_{\ell=N_0+1}^{\infty} (a_\ell + b_\ell),$$

both of which tend to zero uniformly with respect to n as $N_0 \to \infty$. On the other hand, for fixed N_0 ,

$$M_t^{(n,1)} \to M_t^{(1)}$$
, as $n \to \infty$.

Combining above arguments with the triangle inequality, we conclude

$$M_t^n \to M_t$$
, as $n \to \infty$.

Letting $n \to \infty$ in (3.13) proves (3.12).

Next we prove the pathwise uniqueness for the equation (3.11). Let $x_t, y_t, t \geq 0$ be two solutions to equation (3.11) such that $x_0 = y_0$. Fix $u \in S^d$. Seeing x_t and y_t as elements in \mathbf{R}^{d+1} , consider $\eta_t = \langle u, x_t - y_t \rangle$. Put

$$M_{t} = \sum_{\ell=1}^{+\infty} \left\{ \sqrt{\frac{da_{\ell}}{D_{\ell,1}}} \sum_{k=1}^{D_{\ell,1}} \int_{0}^{t} \left\langle u, A_{\ell,k}^{1}(x_{s}) - A_{\ell,k}^{1}(y_{s}) \right\rangle dB_{\ell,k}^{1}(s) + \sqrt{\frac{db_{\ell}}{D_{\ell,2}}} \sum_{k=1}^{D_{\ell,2}} \int_{0}^{t} \left\langle u, A_{\ell,k}^{2}(x_{s}) - A_{\ell,k}^{2}(y_{s}) \right\rangle dB_{\ell,k}^{2}(s) \right\}.$$

We have $d\eta_t = dM_t - \frac{d}{2}(a+b)G(0)\eta_t dt$ and

$$d\Theta_{t} := dM_{t} \cdot dM_{t} = \sum_{\ell=1}^{+\infty} \left\{ \frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left| \left\langle u, A_{\ell,k}^{1}(x_{s}) - A_{\ell,k}^{1}(y_{s}) \right\rangle \right|^{2} + \frac{db_{\ell}}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left| \left\langle u, A_{\ell,k}^{2}(x_{s}) - A_{\ell,k}^{2}(y_{s}) \right\rangle \right|^{2} \right\} dt.$$

Hence

(3.15)
$$d\eta_t^2 = 2\eta_t \, dM_t - d(a+b)G(0)\eta_t^2 \, dt + d\Theta_t.$$

Let $\xi_t = |x_t - y_t|^2$. Using (A.10) and (A.11), we have

$$\frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} |A_{\ell,k}^{1}(x_s) - A_{\ell,k}^{1}(y_s)|^{2}
= \frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left\{ |A_{\ell,k}^{1}(x_t)|^{2} + |A_{\ell,k}^{1}(y_t)|^{2} - 2\langle A_{\ell,k}^{1}(x_t), A_{\ell,k}^{1}(y_t) \rangle \right\}
= 2da_{\ell} - 2a_{\ell} \left((d - 1 + \cos^{2}\theta_{t}) \gamma_{\ell}(\cos\theta_{t}) - \cos\theta_{t} \sin^{2}\theta_{t} \gamma_{\ell}'(\cos\theta_{t}) \right),$$

and in the same way

$$\frac{da_{\ell}}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,2}} \left| A_{\ell,k}^2(x_s) - A_{\ell,k}^2(y_s) \right|^2$$
$$= 2db_{\ell} - 2b_{\ell} \left(d\cos\theta_t \gamma_{\ell}(\cos\theta_t) - \sin^2\theta_t \gamma_{\ell}'(\cos\theta_t) \right)$$

where $\theta_t = d(x_t, y_t)$. It follows from (3.15) that

(3.16)
$$d\xi_t = \text{Martingale} - d(a+b)G(0)\xi_t dt + B(\theta_t) dt$$

with

(3.17)
$$B(\theta) = 2 \left[daG(0) - a \left((d - 1 + \cos^2 \theta) G(\theta) + \cos \theta \sin \theta G'(\theta) \right) + dbG(0) - b \left(d\cos \theta G(\theta) + \sin \theta G'(\theta) \right) \right].$$

Let $\varphi(t) = \mathbf{E}(\xi_t)$. By (3.16), we get

$$\varphi'(t) = -d(a+b)G(0)\varphi(t) + \mathbf{E}(B(\theta_t)).$$

By (2.26), $|B(\theta)| \leq C \theta^2 \log \frac{2\pi}{\theta}$. It follows, according to (2.3), that

$$\varphi'(t) \le C\varphi(t)\log\frac{1}{\varphi(t)}, \quad \varphi(0) = 0$$

which implies that $\varphi(t) = 0$. Therefore for each t, $x_t = y_t$. The two processes are indistinguishable. \blacksquare

Theorem 3.4 $\{x_t(x), t \in [0,T]\}$ has a version $\tilde{x}_t(x)$ such that almost surely, for all $t \in [0,T]$, $x \to \tilde{x}_t(x)$ is a homeomorphism of S^d .

Proof. Let X(s,t,x) be defined as in the proof of Theorem 3.2. Using (3.5) and (3.6), we have

(3.18)
$$\mathbf{E}\Big(|X(s_1,t_1,x)-X(s_2,t_2,y)|^p\Big) \le C_p\Big(|s_1-s_2|^p+|t_1-t_2|^{p/2}+d(x,y)^{p\delta}\Big).$$

Recall that $\delta = e^{-C(p+1)T/2}$. Therefore it exists a small $T_0 > 0$ and a big enough $p \ge 2$, so that we can apply the Kolmogoroff modification theorem. In this way, $x_t^n(x)$ converges uniformly to $x_t(x)$, with respect to $(t,x) \in [0,T_0] \times S^d$. Remark that T_0 is not dependent of the particular Brownian motion, but of its law. Now consider the family of the Brownian motion $\{(\theta_{T_0}B)(t),\ t\ge 0\}$, where $(\theta_{T_0}B)^i_{\ell k}(t)=B^i_{\ell k}(t+T_0)-B^i_{\ell k}(T_0)$ and i=1,2. Denote explicitly $x_t^n(x,\omega)$ the solution of (2.1), with respect to the given family of Brownian motion $\{B^i_{\ell k}(t),\ t\ge 0\}$, and $x_t^n(x,\theta_{T_0}\omega)$ with respect to $\{(\theta_{T_0}B)(t),\ t\ge 0\}$. Then we have

(3.19)
$$x_{t+T_0}^n(x,\omega) = x_t^n(x_{T_0}^n(x,\omega), (\theta_{T_0}\omega)).$$

Now letting $n \to +\infty$ in (3.19), the right hand side tends to $x_t(x_{T_0}(x,\omega),(\theta_{T_0}\omega))$ uniformly with respect to $(t,x) \in [0,T_0] \times S^d$, while the left hand side tends to $x_{t+T_0}(x,\omega)$. It follows that we have a continuous version

$$(t,x) \to x_t(x,\omega)$$
 over $[0,2T_0] \times S^d$.

Proceeding in this way, we get a continuous version $(t,x) \to x_t(x,\omega)$ over $[0,+\infty[\times S^d]]$. Now we shall prove that for any t given, $x \to x_t(x,\omega)$ is a homeomorphism of S^d . First consider $T \in [0,T_0]$ and define $\{B^T(t), t \in [0,T]\}$ by

$$B_{\ell k}^{T,i}(t) = B_{\ell k}^{i}(T-t) - B_{\ell k}^{i}(T),$$

which are time reversed independent Brownian motions. Let $x_t^n(x, \omega^T)$ be the solution of (2.1), but with $\{B^T(t), t \in [0, T]\}$. It is well known that

$$x_{T-t}^n(x,\omega) = x_t^n(x_T^n(x,\omega),\omega^T), \quad x_{T-t}^n(x,\omega^T) = x_t^n(x_T(x,\omega^T),\omega).$$

Letting $n \to +\infty$ in the above equality, we get

$$x_{T-t}(x,\omega) = x_t(x_T(x,\omega),\omega^T), \quad x_{T-t}(x,\omega^T) = x_t(x_T(x,\omega^T),\omega).$$

Taking t = T, we see that the inverse of $x \to x_T(x, \omega)$ is $x_T(x, \omega^T)$. Now we complete the proof by using the method in [1] or in [3, p.174] to find a common version such that for all t > 0, $x \to x_t(x, \omega)$ is a homeomorphism.

4. Appendix: Eigen-vector fields

In this section, we shall collect some notations and useful properties of the eigen vector fields of Δ for readers convenience. Here we follow closely the exposition in [9]. Fix the point $P_o = (0, \dots, 0, 1) \in S^d$. The group SO(d+1) acts transitively on S^d . The subgroup leaving P_o fixed is SO(d) so that $S^d = SO(d+1)/SO(d)$. Let χ_g be the action of $g \in SO(d+1)$ on S^d , $\chi_g : x \to gx$. We have

$$d\chi_h(P_o): T_{P_o}S^d \to T_{P_o}S^d$$
 for $h \in H$

where T_PS^d denotes the tangent space at the point $P \in S^d$. Therefore $U: h \to d\chi_h(P_o)$ is a representation of SO(d); it is irreducible when $d \geq 3$. Let $\{\varepsilon_1, \dots, \varepsilon_d, \varepsilon_{d+1}\}$ be the canonical basis of \mathbf{R}^{d+1} with $P_o = \varepsilon_{d+1} \in S^d$. For $1 \leq i \leq d$, consider $\varphi_i(t) = \sin t \varepsilon_i + \cos t \varepsilon_{d+1}$. Then φ_i is a curve on S^d starting from P_o , having ε_i as the tangent vector at P_o . In this way, we shall identify $T_{P_o}S^d$ with \mathbf{R}^d

Let $\{T^{\lambda}; \lambda \in \Lambda\}$ be the family of equivalence class of unitary irreducible representations of SO(d+1).

Definition A.1 We say that T^{λ} contains a copy of U if there exists a subspace W_{λ} of the base space V_{λ} of T^{λ} , which is invariant by all $\{T^{\lambda}(h); h \in H\}$ and such that the restriction of T^{λ} to W_{λ} is equivalent to U.

Denote by Λ_o such sub-family of T^{λ} having this property. By theory of representation (see [9], [10]),

$$\{T^{\lambda}; \ \lambda \in \Lambda_o\} = \{T^{(d+1)\ell}, Q^{(d+1)\ell}; \ \ell \ge 1\};$$

the base space of $T^{(d+1)\ell}$ is the space $\mathcal{H}_{d+1,\ell}$ of homogeneous harmonic polynomials on \mathbf{R}^{d+1} of degree $\ell \geq 1$ and the base space of $Q^{(d+1)\ell}$ is the space of 2-differential forms $\mathcal{F}_{d+1,\ell}$ considered in [9]. Let's describe the subspace W_{ℓ} of $\mathcal{H}_{d+1,\ell}$ and \hat{W}_{ℓ} of $\mathcal{F}_{d+1,\ell}$, which are invariant by $h \in \mathrm{SO}(d)$. Let $\mathcal{H}_{d+1,\ell}$ be the space of homogeneous polynomials on \mathbf{R}^{d+1} of degree ℓ , equipped with the inner product $\langle P,Q \rangle = \int_{S^d} P(x)Q(x)\,dx$. Let H be the orthogonal projection from $\mathcal{R}^{d+1,\ell}$ onto $\mathcal{H}_{d+1,\ell}$. Then $W_{\ell} = H\left(x_{d+1}^{\ell-1} \cdot \mathcal{H}_{d,1}\right)$. Set $\Theta_i(x) = C_i\,H(x_{d+1}^{\ell-1}x_i)$ for $i=1,\cdots,d$, where C_i are chosen so that we have an orthonormal basis of W_{ℓ} . The space \hat{W}_{ℓ} is the vector space spanned by $\{\hat{\Theta}_i = C_i\,H\left(dx_{d+1} \wedge d\Theta_i\right);\ i=1,\cdots,d\}$. Completing $\{\Theta_i;\ i=1,\cdots,d\}$ and $\{\hat{\Theta}_i;\ i=1,\cdots,d\}$ into an orthonormal basis of $\mathcal{H}_{d+1,\ell}$ and $\mathcal{F}_{d+1,\ell}$, we denote by (T_{ij}^{ℓ}) and (Q_{ij}^{ℓ}) the associated matrices. For further discussions on this topic, we refer to the book [11]. The following result is taken from [9].

Proposition A.2 We have for $1 \le i, j \le d, g \in SO(d+1)$,

(A.1)
$$T_{ij}^{\ell}(g) = \gamma_{\ell}(t) g_{ij} + \gamma_{\ell}'(t) g_{i,d+1} g_{d+1,j},$$

$$(A.2) Q_{ij}^{\ell}(g) = \left(t\gamma_{\ell}(t) - \frac{1-t^2}{d-1}\gamma_{\ell}'(t)\right)g_{ij} + \left(-\gamma_{\ell}(t) - \frac{t}{d-1}\gamma_{\ell}'(t)\right)g_{i,d+1}g_{d+1,j}$$

where $t = g_{d+1,d+1}$ and

$$(A.3) \gamma_{\ell}(\cos\theta) = \int_{0}^{\pi} (\cos\theta - \sqrt{-1}\sin\theta\cos\varphi)^{\ell-1}\sin^{d}\varphi \frac{d\varphi}{c_{d}}$$

with
$$c_d = \int_0^{\pi} \sin^d \varphi \, d\varphi$$
.

Remark that $\gamma_{\ell}(t)$ is real and $|\gamma_{\ell}(t)| \leq 1$. For $g = h \in SO(d)$, $t = g_{d+1,d+1} = 1$, $g_{i,d+1} = 0$. By (A.1), we see that $T_{ij}^{\ell}(h) = h_{ij}$. On the other hand, by the choice of basis,

$$T_{ki}^{\ell}(h) = 0$$
 if $k > d$ and $1 \le i \le d$.

The same results hold for Q^{ℓ} . Now using the Peter-Weyl theorem, we get the spectral expansion for eigen vector fields $\{A_{\ell k}^1, A_{\ell k}^2\}$:

$$(A.4) \qquad A_{\ell k}^{1}(gP_{0}) = \sqrt{\frac{D_{\ell,1}}{d}} \sum_{i=1}^{d} T_{ki}^{\ell}(g) \, d\chi_{g}(P_{0}) \varepsilon_{i}, \quad A_{\ell k}^{2}(gP_{0}) = \sqrt{\frac{D_{\ell,2}}{d}} \sum_{i=1}^{d} Q_{ki}^{\ell}(g) \, d\chi_{g}(P_{0}) \varepsilon_{i},$$

where $D_{\ell,1} = \dim(\mathcal{H}_{d+1,\ell})$ and $D_{\ell,2} = \dim(\mathcal{F}_{d+1,\ell})$. Now we will compute the covariant derivative of a vector field A on S^d . Let $Q_x : \mathbf{R}^{d+1} \to T_x S^d$ be the orthogonal projection. Let $u \in T_x S^d$ and $\{\eta_s\}_{s\geq 0}$ be the curve on S^d such that $\eta_0 = x$ and $u = \left\{\frac{d\eta_s}{ds}\right\}_{s=0}$. Then

$$(A.5) (\nabla_u A)(x) = Q_x \left\{ \frac{dA_{\eta_s}}{ds} \right\}_{s=0}$$

Proposition A.3 We have

(A.6)
$$\sum_{k=1}^{D_{\ell,i}} \nabla_{A_{\ell k}^i} A_{\ell k}^i = 0, \quad \text{for } i = 1, 2.$$

Proof. We shall only prove (A.6) for i=1 because of the similarity. Fix a point $gP_0 \in S^d$. Let $E_j = d\chi_g(P_o)\varepsilon_j$. Then E_j is a tangent vector at the point gP_0 .

(A.7)
$$(\nabla_{A_{\ell,k}^1} A_{\ell k}^1)(gP_0) = \sqrt{\frac{D_{\ell,1}}{d}} \sum_{j=1}^d T_{kj}^{\ell}(g)(\nabla_{E_j} A_{\ell k}^1)(gP_0).$$

Let $g_{j,d+1}(s) \in SO(d+1)$ defined by $g_{j,d+1}(s)\varepsilon_{\alpha} = \varepsilon_{\alpha}$ for $\alpha \neq j, \alpha \neq d+1$ and

$$(A.8) g_{j,d+1}(s)\varepsilon_j = \cos s \,\varepsilon_j - \sin s \,\varepsilon_{d+1}, \ g_{j,d+1}(s)\varepsilon_{d+1} = \sin s \,\varepsilon_j + \cos s \,\varepsilon_{d+1}.$$

Then
$$g_{j,d+1}(0) = \operatorname{Id}$$
, $\left\{ \frac{d}{ds} g_{j,d+1}(s) P_o \right\}_{s=0} = \varepsilon_j$ and $E_j = \left\{ \frac{d}{ds} g g_{j,d+1}(s) P_o \right\}_{s=0}$. Moreover

$$\left\{\frac{d}{ds}g_{j,d+1}(s)\varepsilon_i\right\}_{s=0}=0\quad\text{for}\quad i\neq j,\quad\text{and}\quad \left\{\frac{d}{ds}g_{j,d+1}(s)\varepsilon_j\right\}_{s=0}=-\varepsilon_{d+1};$$

therefore

$$(A.9) Q_{gP_0} \left\{ \frac{d}{ds} g_{j,d+1}(s) \varepsilon_j \right\}_{s=0} = -Q_{gP_0}(g \varepsilon_{d+1}) = 0.$$

According to (A.4),

$$A_{\ell k}^{1}(gg_{j,d+1}(s)P_{0}) = \sqrt{\frac{D_{\ell,1}}{d}} \sum_{i=1}^{d} \sum_{\beta=1}^{D_{\ell,1}} T_{k\beta}^{\ell}(g) T_{\beta i}^{\ell}(g_{j,d+1}(s)) (gg_{j,d+1}(s)\varepsilon_{i}).$$

Taking the derivative with respect to s in two sides and using (A.5) and (A.9), we get

$$(\nabla_{E_j} A_{\ell k}^1)(gP_0) = \sqrt{\frac{D_{\ell,1}}{d}} \sum_{i=1}^d \sum_{\beta=1}^{D_{\ell,1}} T_{k\beta}^{\ell}(g) \left\{ \frac{d}{ds} T_{\beta i}^{\ell}(g_{j,d+1}(s)) \right\}_{s=0} E_i.$$

Therefore, by expression (A.7),

$$\sum_{k=1}^{D_{\ell,1}} \nabla_{A_{\ell k}^1} A_{\ell k}^1 = \frac{D_{\ell,1}}{d} \sum_{i,j=1}^d \sum_{k,\beta=1}^{D_{\ell,1}} T_{kj}^{\ell}(g) T_{k\beta}^{\ell}(g) \left\{ \frac{d}{ds} T_{\beta i}^{\ell}(g_{j,d+1}(s)) \right\}_{s=0} E_i$$

$$= \frac{D_{\ell,1}}{d} \sum_{i,j=1}^d \left\{ \frac{d}{ds} T_{ji}^{\ell}(g_{j,d+1}(s)) \right\}_{s=0} E_i.$$

By (A.8) the term $g_{d+1,d+1}$ in formula (A.1) and (A.2) is equal to $\cos s$; the term $g_{ji}=0,\ g_{d+1,i}=0$ for $i\neq j$ and $g_{jj}=\cos s,\ g_{j,d+1}g_{d+1,j}=-\sin^2 s$. Therefore $\left\{\frac{d}{ds}T_{ji}^{\ell}(g_{j,d+1}(s))\right\}_{s=0}=0$. We prove (A.6).

Proposition A.4 Let $x, y \in S^d$ and θ the angle between x, y. Then

(A.10)
$$\frac{d}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \langle A_{\ell k}^{1}(x), A_{\ell k}^{1}(y) \rangle_{\mathbf{R}^{d+1}} = (d-1+\cos^{2}\theta)\gamma_{\ell}(\cos\theta) - \cos\theta \sin^{2}\theta \gamma_{\ell}'(\cos\theta),$$

(A.11)
$$\frac{d}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left\langle A_{\ell k}^2(x), A_{\ell k}^2(y) \right\rangle_{\mathbf{R}^{d+1}} = d\cos\theta \gamma_{\ell}(\cos\theta) - \sin^2\theta \gamma_{\ell}'(\cos\theta)$$

Proof. In order to prove (A.10) and (A.11) in a unified way, we denote by $A_{\ell k}$ the vector field $\sqrt{\frac{D_{\ell,1}}{d}}A^1_{\ell k}$ or $\sqrt{\frac{D_{\ell,2}}{d}}A^2_{\ell k}$ and by Z^ℓ_{ki} the term T^ℓ_{ki} or Q^ℓ_{ki} and D_ℓ the associated dimension. Let $x=g_oP_o,\ y=g_oP_1$. We have $\langle x,y\rangle=\langle P_o,P_1\rangle=\cos\theta$. Then

(A.12)
$$A_{\ell k}(gx) = \sum_{\alpha=1}^{D_{\ell}} Z_{k\alpha}^{\ell}(g) \cdot d\chi_g(x) A_{\ell\alpha}(x) \quad \text{for} \quad g \in SO(d+1).$$

Using (A.12), we have $\sum_{k=1}^{D_{\ell}} \langle A_{\ell k}(x), A_{\ell k}(y) \rangle = \sum_{\alpha=1}^{D_{\ell}} \langle A_{\ell \alpha}(P_o), A_{\ell \alpha}(P_1) \rangle$. Up to a rotation in SO(d), we can suppose that P_1 is in the plan spanned by $\{\varepsilon_d, \varepsilon_{d+1}\}$. Let $P_1 = g(\theta)P_o$ with $g(\theta) \in SO(d+1)$ given by $g(\theta)\varepsilon_i = \varepsilon_i$ for $1 \le i \le d-1$ and

$$g(\theta)\varepsilon_d = \cos\theta \,\varepsilon_d - \sin\theta \,\varepsilon_{d+1}, \ g(\theta)\varepsilon_{d+1} = \sin\theta \,\varepsilon_d + \cos\theta \,\varepsilon_{d+1}.$$

We have $A_{\ell k}(P_o) = \sum_{j=1}^d Z_{kj}^{\ell}(e)\varepsilon_j = \varepsilon_k$ if $1 \le k \le d$ and $A_{\ell k}(P_o) = 0$ otherwise. On other hand, $A_{\ell k}(P_1) = \sum_{j=1}^d g(\theta)\varepsilon_j Z_{kj}^{\ell}(g(\theta))$. Therefore

$$\langle A_{\ell k}(P_o), A_{\ell k}(P_1) \rangle = \sum_{j=1}^d \langle g(\theta)\varepsilon_j, \varepsilon_k \rangle Z_{kj}^{\ell}(g(\theta)), \quad 1 \le k \le d$$

which is equal to $Z_{kk}^{\ell}(g(\theta))$ for $1 \leq k \leq d-1$ and to $\cos\theta \, Z_{dd}^{\ell}(g(\theta))$ for k=d. Hence

$$\sum_{k=1}^{D_{\ell}} \langle A_{\ell k}(x), A_{\ell k}(y) \rangle = \sum_{k=1}^{d-1} Z_{kk}^{\ell}(g(\theta)) + \cos \theta \, Z_{dd}^{\ell}(g(\theta)).$$

Now using the explicit formula (A.1) and (A.2), we get (A.10) and (A.11).

Proposition A.5 Let $x, y \in S^d$ and θ the angle between them. Then

(A.13)
$$\frac{d}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \langle A_{\ell k}^1(x), y \rangle^2 = \frac{d}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \langle A_{\ell k}^2(x), y \rangle^2 = \sin^2 \theta$$

$$(A.14) \quad \frac{d}{D_{\ell,1}} \sum_{k=1}^{D_{\ell,1}} \left(\left\langle A_{\ell k}^1(x), \ y \right\rangle + \left\langle A_{\ell k}^1(y), \ x \right\rangle \right)^2 = 2\sin^2\theta \left[1 - \cos\theta \, \gamma_{\ell}(\cos\theta) + \sin^2(\theta) \, \gamma_{\ell}'(\cos\theta) \right],$$

$$(A.15) \qquad \frac{d}{D_{\ell,2}} \sum_{k=1}^{D_{\ell,2}} \left(\left\langle A_{\ell k}^2(x), y \right\rangle + \left\langle A_{\ell k}^2(y), x \right\rangle \right)^2 = 2\sin^2\theta \left[1 - \gamma_{\ell}(\cos\theta) \right].$$

References

- [1] J.M. Bismut: *Mécanique aléatoire*, Lect. notes in Math., Vol. 866 (1981), Springer-Verlag, Berlin, New-York.
- [2] K.D. Elworthy: Stochastic differential equations on manifolds, London Mathematical Society. Lect. Note Series 70 (1982), Cambridge University Press, Cambridge.
- [3] S. Fang: Canonical Brownian motion on the diffeomorphism group of the circle, *J. Funct. Anal.*, **196** (2002), p.162-179.
- [4] S. Fang and T. Zhang: A study of a class of stochastic differential equations with non-Lipschitzian coefficients, to appear in *Prob. Theory Rel. Fields*.
- [5] H. Kunita: Stochastic flows, Cambridge Univ. Press, Cambridge, UK, 1988.
- [6] Y. LeJan and O. Raimond: Integration of Brownian vector fields, *Ann. of Prob.*, **30** (2002), p. 826-873.
- [7] P. Malliavin: The canonical diffusion above the difeomorphism group of the circle, C. R. Acad. Sci., 329, p. 325-329.
- [8] P. Malliavin: Stochastic Analysis, Grunlehren des Math. 313, Springer, Berlin, 1997.
- [9] O. Raimond: Flots browniens isotropes sur la sphère, Ann. Inst. H. Poincaré, **35** (1999), p. 313-354.
- [10] E. Stein: Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. Math. Study 63 (1970), Princeton.
- [11] N.J. Vilenkin: Fonctions spéciales et théorie de la représentation des groupes, Dunod, Paris, 1969.