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We consider the nonlinear spin-up/down of a rotating stratified fluid in a coni-
cal container. An analysis of axisymmetric similarity-type solutions to the relevant
boundary-layer problem, Duck, Foster & Hewitt (1997), has revealed three types of
behaviour for this geometry. In general, the boundary layer evolves to either a steady
state, or a gradually thickening boundary layer, or a finite-time singularity depending
on the Schmidt number, the ratio of initial to final rotation rates, and the relative
importance of rotation and stratification.

In this paper we emphasize the experimental aspects of an investigation into the
initial readjustment process. We make comparisons with the previously presented
boundary-layer theory, showing good quantitative agreement for positive changes
in the rotation rate of the container (relative to the initial rotation sense). The
boundary-layer analysis is shown to be less successful in predicting the flow evolution
for nonlinear decelerations of the container. We discuss the qualitative features of
the spin-down experiments, which, in general, are dominated by non-axisymmetric
effects. The experiments are conducted using salt-stratified solutions, which have a
Schmidt number of approximately 700.

The latter sections of the paper present some stability results for the steady
boundary-layer states. A high degree of non-uniqueness is possible for the system
of steady governing equations; however the experimental results are repeatable and
stability calculations suggest that ‘higher branch’ solutions are, in general, unstable.
The eigenvalue spectrum arising from the linear stability analysis is shown to have
both continuous and discrete components. Some analytical results concerning the
continuous spectrum are presented in an appendix.

A brief appendix completes the previous analysis of Duck, Foster & Hewitt (1997),
presenting numerical evidence of a different form of finite-time singularity available
for a more general boundary-layer problem.

1. Introduction
The readjustment (spin-up) of a rotating fluid subsequent to an abrupt change

in the rotation rate of the bounding walls is a fundamental problem that has both
geophysical and industrial relevance. The spin-up problem for homogeneous fluids
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has received a great deal of attention; see for example Greenspan & Howard (1963),
Greenspan (1968), Benton & Clark (1974), Wedemeyer (1964) and Greenspan &
Weinbaum (1965). The level of interest can perhaps be attributed, apart from obvious
practical applications, to an ability to pose the problem in terms of a very simple
geometry. The linear analysis of Greenspan & Howard (1963) showed that the
influence of the container geometry was minimal, and that the essential physical
mechanisms are present in the unbounded flow between two infinite parallel planes.

After an impulsive change (which is assumed to be small relative to the initial
rotation) in the rotation rate of the container walls (a circular, cylindrical container
for example), Ekman layers form on the horizontal boundaries within the time taken
for one rotation of the container. For an Ekman number E = ν/Ωh2, where ν is the
kinematic viscosity of the fluid, Ω a typical angular frequency and h an appropriate
lengthscale, the timescale for a bulk readjustment of a homogeneous fluid to the
new conditions is E−1/2Ω−1. This ‘fast’ spin-up is attributed to the mass flux in the
boundary layer, caused by an imbalance between viscous, centrifugal and pressure
forces, the final result of which is a secondary, meridional circulation. The recirculation
of fluid from the Ekman layers via the sidewall layers† gradually decays as the angular
frequency of the interior fluid begins to approach that of the final state. The last stage
of spin-up is then completed by a viscous decay of any residual motion.

The later theories of Greenspan & Weinbaum (1965) and Wedemeyer (1964) treated
the global, nonlinear spin-up problem for a homogeneous fluid. Nonlinear effects can
drastically alter the spin-up behaviour; Wedemeyer (1964) and Greenspan (1968)
discuss cases (of spin-up from rest) in which the sidewall shear layer can become
detached, propagating into the interior towards the axis of rotation.

Nonlinear Ekman layers have also been discussed extensively for the case of a
swirling flow above an infinite rotating disk, Rogers & Lance (1960). For this geometry
the radial dependence can be removed in a manner first proposed by von Kármán,
reducing the governing system to ordinary differential equations without neglecting
any terms in the Navier–Stokes equations (thus providing an exact solution). The
qualitative features of the nonlinear Ekman layer are comparable with those provided
by the linear analysis. Simple approximations to nonlinear results obtained from
steady solutions to the boundary-layer equations have been used to provide an
Ekman compatibility condition, thus allowing the development of interior solutions,
Wedemeyer (1964), that are consistent with the Ekman suction/blowing required by
the boundary layers.

The next obvious extension to the large body of work concerning spin-up mecha-
nisms was to include the effect of density stratification. Attention has centred on the
problem of spin-up within a circular cylinder (for both multi-layer and linear density
gradients), with some debate over the results of the initial investigators. A theoretical
analysis of the linear spin-up process for a stably stratified fluid was presented by
Holton (1965), which proved to be qualitatively correct but had some inaccuracies
in the treatment of the sidewall layer. The boundary layer on the vertical (generally
all the investigators assumed an axis of rotation parallel to the direction of local
gravitational acceleration) sidewall of the cylinder plays a distinctly different role in
the stratified spin-up problem. In particular, because buoyancy forces inhibit vertical
motion, the mass transport from the horizontal Ekman layers (which obviously re-
main free from any direct buoyancy influence) cannot be accepted by an insulated

† Or equivalently for the case of two parallel disks, the Ekman transport forces a radial flow
from infinity to satisfy a continuity of mass constraint in the interior.
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sidewall layer. This character of the flow near the vertical walls was pointed out in a
later paper by Pedlosky (1967), but he incorrectly predicted that spin-up would then
be achieved by a diffusive mechanism. The correct description of the linear spin-up
process was later presented by Walin (1969) and Sakurai (1969), who predicted that
the effect of the stable stratification was to restrict the recirculation of fluid from
the Ekman layers to a localized region near to the horizontal boundaries (without
requiring transport into the sidewall layers in agreement with Pedlosky). The result of
this localized spin-up is a quasi-steady state, which has a linear shear in the horizontal
velocity component.

The recirculation process and penetration of the fluid ejected from the Ekman
layers into the interior flow is governed by the ratio of the frequencies due to
buoyancy and rotational inertia, as determined by the Burger number; this is defined
as S = N2/Ω2, where N2 = −(g/ρo) dρ̄(z)/dz is the Brunt–Väisälä frequency (ρo and
ρ̄(z) are a reference density and stable linear stratification respectively and z is a
vertical coordinate). This localized readjustment near to the horizontal boundaries
eventually ceases as the difference in (local) angular frequency between the Ekman
layer and adjacent fluid decreases. Therefore, a quasi-steady localized spin-up is
achieved on the fast E−1/2Ω−1 timescale with a reduction to solid-body rotation on
a viscous timescale E−1Ω−1; see for example Spence, Foster & Davies (1992). When
discussing stratified spin-up problems care must be taken concerning the definition
of a spin-up time. Since the readjustment is localized and thus position dependent, it
is possible to achieve a flow that matches the new conditions very quickly in some
regions of the container (notably adjacent to the horizontal boundaries). Nevertheless,
on defining the (global) spin-up time to be that at which the bulk of the fluid has
adjusted to the new conditions, we conclude that the time taken for a stratified fluid
to spin-up is O(E−1/2) longer than for the equivalent homogeneous problem.

Buzyna & Veronis (1971) performed a sequence of careful experiments on the small-
amplitude motion of a rotating stratified fluid. The experimental data (for a right
circular cylinder filled with a linearly stratified fluid) were compared with the theo-
retical predictions of Holton (1965), Walin (1969), and Sakurai (1969). Although the
boundary conditions applied by Holton were inappropriate for the experimental con-
figuration used by Buzyna & Veronis, a comparison was still made since, in Holton’s
paper, some experimental work had been presented that compared favourably with
the quantitative predictions of the analysis. The results of the experimental work of
Buzyna & Veronis showed that the predictions of Walin and Sakurai were in agree-
ment with the experimental data when considering the mid-plane of the contained
flow. There were discrepancies between the predictions of Holton and the experimen-
tal data everywhere in the flow, but the theory of Walin and Sakurai only had small
quantitative differences near the Ekman layer (especially near the corner region). The
former inaccuracies can obviously be attributed to the incorrect treatment of the
vertical wall-layer by Holton (casting some doubt on his experimental data), whereas
for the latter disagreement, Buzyna & Veronis suggested that the difference may be
attributed to nonlinear effects.

The linear, stably stratified spin-up problem for a circular cylinder is obviously
rather specialized. In particular, it is unclear how the effects of density stratification,
nonlinearity, background rotation and a more general container geometry will interact.
One would intuitively expect that the introduction of boundaries that are neither
perpendicular nor parallel to the vertical axis will establish a flow in which the effects
of buoyancy are coupled into the usual Ekman boundary layer. Until recently very
little work has been presented concerning buoyancy-affected Ekman layers, see for
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example Garrett, MacCready & Rhines (1993), MacCready & Rhines (1991) and
Duck, Foster & Hewitt (1997, referred to hereafter as DFH).

In this paper we wish to return to the boundary-layer problem formulated by DFH.
Rather than discussing the global spin-up process, we shall present the results of an
experimental investigation into the boundary layer that forms on the sloping wall of
a conical container immediately after a change in rotation rate; the initial state of
the fluid approximates a rigid-body rotation in all cases. The motivation for these
experiments is to make a detailed comparison with the theoretical analysis of the
boundary-layer evolution.

In § 2 we review the formulation and conclusions of the theoretical predictions,
based on the Boussinesq boundary-layer equations, from the point of view of the
laboratory investigation. In § 3 we discuss the experimental set-up and, in § 4, make
quantitative comparisons with the results of DFH over a wide range of parameters.

A detailed study of the complete set of steady solutions to the governing boundary-
layer equations is beyond the scope of this paper. However, as for the swirling flow
above a rotating disk, we note that a large number of steady states can be located
at general parameter values. The stability of those states relevant to the experimental
parameter regime is briefly considered in § 5. A complete map of the spin-up/down
parameter space is presented for a Schmidt number of 700, which is the appropriate
value for the saline solution utilized in our laboratory experiments.

The stability results of § 5, show that the eigenvalue spectrum has discrete and
continuous components. In Appendix A we give some analytical results that suggest
the continuous spectrum is always stable for regions of the parameter space relevant
to the experimental work.

Finally, in Appendix B we present a brief outline of some numerical solutions (at
large Schmidt number) to the unsteady boundary-layer equations that reveal a region
of the parameter space within which a new form of finite-time breakdown can be
observed. This type of evolution was not discovered in the previous analysis presented
by DFH. Although the parameter values at which this new evolution can be found are
not achievable in any global sense with our experimental apparatus, they are relevant
to a more general boundary-layer problem and complete the previous description of
DFH. The presence of the continuous spectrum in the linear stability analysis (as
discussed in Appendix A) is crucial to the breakdown.

2. The boundary-layer analysis
The geometry under consideration is a conical container with associated angle α

(in our experiments α = π/4 as shown in figure 2) and an axis of rotation that is
vertical. The density field of the fluid within the container is decomposed into a
constant reference density, ρo, a ‘linear’† stratification, ρ̄(z), and a general unsteady,
axisymmetric component ρ′ (here z is a vertical coordinate). In a spherical polar
coordinate system (r∗, θ∗, φ∗) centred at the cone’s apex, the full density field is
ρ(r∗, θ∗, t) = ρo + ρ̄(r∗ cos θ∗) + ρ′(r∗, θ∗, t), where t denotes time and ρ′, ρ̄ � ρo.

The velocity components within the boundary layer, length and time are made
dimensionless with respect to Ωh, h and Ω−1 respectively, and a non-dimensional
buoyancy term is introduced B = gρ′/(ρoΩ2h). Ω and h are characteristic rotation
rate and lengthscale respectively, which in our experimental investigation are taken

† Curvature of the isopycnals caused by the rotation is discussed in § 3.3.
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to be the final angular frequency of the container and the distance between the axis
and the container wall at the level that data are gathered (see figure 3).

A similarity-type solution is available, which removes the radial dependence in a
manner analogous to the von Kármán solution for a swirling flow above a rotating
disk. The similarity solution is only valid in a region sufficiently far away from
the apex of the container; in fact it is required that r̂ � E1/2, where r̂ is a non-
dimensionalized (r̂ = r/h) radial coordinate centred at the apex (we shall assume
E � 1 throughout this work).

The initial state of the system is assumed to be a rigid-body rotation and the
boundary-layer analysis of DFH describes the flow dynamics in an infinite geometry
subsequent to an impulsive, nonlinear change in the rotation rate. The analysis of
DFH applies to axisymmetric similarity-type solutions to the unsteady, nonlinear,
Boussinesq boundary-layer equations. These solutions were classified according to
their large-time behaviour over an unrestricted parameter range, the only exception
being that the far-field fluid and container are not permitted to counter-rotate. This
is not a conceptual restriction however.

Parameters of interest for this system are the Burger number, rotation ratio, cone
angle and Schmidt number

S = N2/Ω2
f , Ŵe = Ωi/Ωf, α, σ = ν/κ . (2.1)

Here

N2 = − g

ρ0

dρ̄

dz
, (2.2)

Ωi, Ωf are the initial/final angular frequencies of the container, ν is the kinematic
viscosity and κ is the density diffusion coefficient.

DFH showed that the evolution of the boundary-layer system is governed by just
two parameters (for a fixed Schmidt number σ), namely S∗ and Ŵe. This reduction
in the number of parameters was achieved by absorbing the pressure, and cone-angle
dependences into redefined versions of the Burger number, S (as defined above), and
the buoyancy term B. This redefinition leads to the introduction of a ‘modified Burger
number’, S∗, defined by

S∗ = Ŵ 2
e + sin α(S sin α− B̂e) . (2.3)

The analysis of DFH allows for a density perturbation in the interior, which requires
that the buoyancy is of the form B = r̂B̂e in this region. However, for application of
the analysis to our experimental results we shall assume throughout that B̂e = 0 and
that the interior stratification is that measured when the container was initially filled
and at rest.

The final conclusions of the boundary-layer analysis are reproduced in figure 1,
which shows the parameter space diagram for a Schmidt number of unity (σ = 1).
As can be observed from the figure, there are four main regions corresponding to the
four classifications of large-time behaviour, as follows.

Steady State. Following a positive change in the rotation rate of the container
(0 < Ŵe < 1), the boundary layer approaches a steady state when S∗ is less than some
critical value (S∗crit(Ŵe)). We must note that the geometry considered in the theoretical
analysis is an infinite cone, and is therefore capable of maintaining a steady boundary-
layer state with an associated mass transport up/down the inside of the container
wall. In a finite container, mass transported in the boundary layers must eventually
recirculate and lead to an adjustment to the interior conditions. Therefore, in our
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Figure 1. Parameter space for a Schmidt number of σ = 1. S ∗ is a measure of the importance of

stratification, and Ŵe is the ratio of initial to final rotation rates. The evolution of the boundary
layer has been classified according to its large-time behaviour.

laboratory experiments we may only see a boundary-layer state that approximates
the appropriate steady state over a timescale for which recirculation effects are not
important.

Growing boundary layer. In this regime a slowly thickening layer is obtained rather
than the boundary layer attaining a steady state. A large-time asymptotic analysis
of this regime shows that the velocity components in the boundary layer approach a
limiting form, but only with a non-dimensional boundary coordinate that is scaled

with t̂
1/2

, where t̂ is a non-dimensional time (t̂ = Ωt). In this case the boundary
layer thickens into the interior and the mass transport in the layer (up/down the
inside of the container walls) decays algebraically. This scenario is always predicted
by the theoretical analysis for flows dominated by stratification effects (S∗ � 1), and
is associated with an inhibition of vertical mass transport by buoyancy forces.

Finite-time breakdown. The velocity components in the boundary layer become
singular at a finite time. Unsteady numerical computations have been shown to agree
with asymptotic descriptions of the singularity in this region.

Region 1. In this sub-region there are stable, steady states available, but these are
not obtained by a time-dependent process from an initial state of rigid-body rotation.
An evolution to a finite-time breakdown is preferred at these parameter values.

We must note that the results of figure 1 are presented for a Schmidt number of
unity. Our laboratory experiments are performed with a saline solution for which
the Schmidt number is σ ≈ 700. A complete picture of the parameter space for
large values of the Schmidt number is given in § 5; however, for the subsequent
experimental discussion it is enough, at this stage, to note that increasing σ has the
effect of decreasing S∗crit.
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2.1. Physical interpretation of the parameter space diagram

There are a number of qualitative conclusions that may be drawn from the form of
the parameter space diagram shown in figure 1 that will be useful in discussing the
following experimental results.

The boundaries between evolution types are all known explicitly: S∗ = Ŵ 2
e and

S ∗ = S∗crit(Ŵe). (In fact S∗crit is determined by solving a reduced problem and represents
a boundary in parameter space beyond which the primary steady state cannot be
continued.) Consequently, it may be expected that the eventual behaviour of the
solutions is largely insensitive to the initial conditions. In particular any form of
rotation change (not necessarily impulsive) that is over a timescale less than the
rotation period (2π/Ωf) may not affect the classification of the large-time behaviour;
this is easily shown to be the case for computational solutions of the unsteady
boundary-layer equations.

Since it is only the buoyancy/acceleration due to gravity that defines the vertical
direction, we can see that for the boundary layer, setting α = 0 is equivalent to
considering a homogeneous fluid. Although the main body of fluid can still have
a density stratification, when α = 0 the buoyancy coupling in the boundary layer
is absent. In these cases the boundary layer is effectively the classical Ekman layer
above an infinite rotating disk. The governing equations for the swirling flow above
an infinite plane are thus recovered along a cross-section of the parameter space
defined by S∗ = Ŵ 2

e ; see for example Bodonyi (1978), Bodonyi & Stewartson (1977),
Zandbergen & Dijkstra (1987) for details of the rotating-disk problem.

In figure 1, increasing S∗ above S∗crit and Ŵ 2
e corresponds to moving further into

the growing boundary-layer region of the parameter space. The effect of an increased
S∗ (by considering a density stratification with a larger Brunt–Väisälä frequency for
example) is, in general, to cause a more rapid growth (up to some limiting description)
of the boundary layer into the interior. Likewise parameter values just below the S∗crit
boundary only attain a steady state after a considerable period of time, and the final
steady state has a (large) boundary-layer thickness that also scales with the proximity
of S∗ to S∗crit (see DFH). Therefore, in this sense, the change in the large-time evolution
from a steady state to a growing boundary layer (as S∗ becomes larger than S∗crit)
can be considered to be ‘smooth’, and it is unlikely that its location could be con-
firmed experimentally to any degree of accuracy.

As noted above, the parabola S∗ = Ŵ 2
e corresponds to considering the equations

governing the homogeneous swirling flow above an infinite rotating disk. In fact,
in a typical laboratory experiment of the form we describe here, for a linearly
stratified fluid in a conical container, the S∗ < Ŵ 2

e region of parameter space
corresponds to a statically unstable interior stratification. When considering a more
general boundary layer however, we do not restrict the parameter space, but do
recognize that it must be interpreted correctly when applied to a specific experimental
investigation. Nevertheless, it must be noted that the finite-time breakdowns discussed
by DFH for nonlinear spin-down (Ŵe > 1) occur over relatively short timescales,
typically within just a few background rotations even when the parameter values
are only slightly within the breakdown region. It may therefore be possible for this
mechanism to dominate in other flow configurations or in some local region of a
laboratory experiment. However, as we shall discuss in § 4.3, the relevance of the
DFH boundary-layer analysis to the experimental spin-down readjustment process
is open to question since the flow, in general, becomes non-axisymmetric in these
cases.
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Shooting probe
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Unseeded fluid

100 cm

Light sheet

p 4

Figure 2. Experimental apparatus. The structure shown rotates on a levelled, computer-
controlled turntable with the CCD camera fixed in the rotating frame.

3. Experimental configuration
A series of laboratory experiments have been performed to test the predictions of

the boundary-layer analysis given by DFH. The apparatus used in the experimental
investigation is shown schematically in figure 2. The fluid within the cone is seeded with
particles of a mean diameter less than 250 microns, then the unsteady flow resulting
from a change in the container rotation rate is visualized by illumination of these
particles with a horizontal light sheet. A camera, fixed in the frame of the container,
views the particle motion from above (figure 3). There can be significant changes in
the uniformity of the light sheet intensity over a cross-section (figure 3) of the conical
container, which can make resolution of particles by the tracking software (Dalziel
1992) difficult. These difficulties can be overcome by using diametrically positioned
light sources to produce intersecting light sheets; however for the axisymmetric flow
evolution it was found to be sufficient to obtain tracking data in the quarter of the
cone cross-section nearest to the light source. The larger volume of unseeded fluid
shown in figure 2 is used to reduce the optical difficulties associated with maintaining
a horizontal light sheet through the container.

Density information is gathered with a calibrated aspirating conductivity probe,
as described by Davies et al. (1991), which measures vertical density profiles near
to the axis of rotation. In some experiments the profile was monitored at intervals
throughout the readjustment phase and therefore measurements were restricted to the
near-axis region. The experiments involve nonlinear changes in the container rotation
rate and the density profiles were therefore taken near the centre of rotation (the area
of least fluid velocity) to minimize any artificially introduced disturbances caused by
flow around the probe shaft.

Typical laboratory parameter values used in this investigation are

light sheet radius 0.08 6 h 6 0.11 m,
kinematic viscosity ν ≈ 10−6 m2 s−1,
Brunt–Väisälä frequency 0 6 N2 6 5 s−2,
Schmidt number σ = 700,
typical angular frequency π/10 6 Ω 6 π/4 rad s−1,
cone angle α = π/4.

The experiments are performed with a stable, (approximately) linearly stratified fluid,
that has a density variation within the limits ρ ∈ [1000, 1080] (kg m−3). This density
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Light sheet

Intersection of light sheet
with conical container

Typical camera view

hr̄ =r

r̄φ̄

v̄r v̄φ

Figure 3. The laboratory coordinate system; r̄ = r/h is a radial coordinate, non-dimensionalized
with the light sheet radius h, and {v̄φ, v̄r} are non-dimensionalized velocity components. The
dimensional fluid velocity is given by {vφ, vr} = h∆Ω{v̄φ, v̄r}. For a swirl flow, the local angular
frequency in the cross-section plane is denoted by ω = vφ/r and a non-dimensional quantity of
interest is |ω/∆Ω|.

range is required to obtain the Brunt–Väisälä frequencies noted above. The height of
the free surface above the apex of the container (measured while the container is at
rest) was maintained at a constant 16.5± 0.2 cm throughout the experiments.

A typical Ekman number is E ≈ 10−4, for which we expect stratified (global) spin-
up on a dimensional timescale (E−1Ω−1) measured in hours rather than the several
minutes necessary to achieve a readjusted state with a homogeneous fluid. We shall
use the specific notation Ωi and Ωf when referring to the initial and final rotation
rates of the container.

Because the container has a cross-section that varies with height, it is not possible
to use the standard double reservoir (Oster 1965) technique for generating the linear
density gradient. Similarly, filling the container with several distinct layers and waiting
for a diffusion to an approximately linear stratification, in general, leads to large
regions of low-N near the free surface and apex. Accurate (throughout the majority
of the container depth) linear gradients were generated using a variation of the
Oster method that involved the construction of a partitioned filling apparatus that
compensated for the non-vertical sidewalls of the conical container.

3.1. Homogeneous reference experiments

In figures 4(a) and 4(b) we present typical evolutions of the angular frequency
distribution for the spin-up of a homogeneous fluid in the conical container. The
fluid density was chosen so that the particles experienced very little buoyancy force
in order to maximize the suspension time and thus allow the residual motions in the
container to decay to sufficiently low levels. The particles were tracked over a quarter
of the cone, as indicated in figure 3, then averaged spatially and over a 2 s tracking
interval. The raw data are then used to produce a segmented average over an interval
r̄ ∈ [iδ, (i+ 1)δ], where δ = 0.01, for i = 40, 41, . . . , 99. The smooth curve is simply a
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Figure 4. Homogeneous results, showing the development of |ω/∆Ω|, where ω is a local angular
frequency (see figure 3) and ∆Ω = |Ωi−Ωf |. r̄ is a dimensionless radial coordinate, where r̄ = 0 at the
axis, r̄ = 1 at the container wall, and τ = Ωf t/2π is a rotation number. (a) Spin-up from Ωi = 0 s−1

to Ωf = π/5 s−1, (b) spin-down from Ωi = π/5 s−1 to Ωf = π/10 s−1, with a linear deceleration over
the interval τ ∈ [0, 3].

b-spline fit to the data. The parameter τ shown in the figures can be thought of as a
background rotation number, defined by τ = Ωf t/2π. The initial state of rigid-body
rotation corresponds to ω/|∆Ω| = 1, and the final state of rigid-body rotation is such
that ω/|∆Ω| = 0.

Although the results of figure 4(a) are presented for a ‘near-impulsive’ change in
the rotation rate (typically the rotation rate changes over a period of τ ∈ [0, 0.1]),
the spin-down results of figure 4(b) are shown for a linear deceleration of the tank
to a state of rest over the period τ ∈ [0, 3]. A deceleration of the container over a
shorter period results in the development of a dominating centrifugal instability (at
the light sheet level that was chosen for this experiment), which makes tracking results
unreliable since the motion is strongly three-dimensional in the boundary layer.

Similar results can be shown for a range of rotation rate changes, background
rotation values and light sheet levels. Typical features that are found in the homo-
geneous case are the distinctive curvature of the profiles of local angular frequency,
regions of slightly increased angular frequency near to the boundary (figure 4b), and
quasi-steady profiles over a short period of time after the rotation change (figure 4a).
All these features are well known for homogeneous spin-up and can be attributed to
an ‘Ekman transport’ in the boundary layer, which results in a ‘fast’ spin-up over the
dimensional timescale E−1/2Ω−1 through a meridional circulation (see for example,
Benton & Clark 1974).

3.2. Evolution of the density profile

Each time the container is filled with an appropriately stratified fluid, a typical
sequence of experiments is:

(a) spin-up, Ωi = 0 s−1, Ωf = π/5 s−1,
(b) spin-up, Ωi = π/5 s−1, Ωf = π/4 s−1,
(c) spin-down, Ωi = π/4 s−1, Ωf = π/5 s−1,
(d) spin-down, Ωi = π/5 s−1, Ωf = π/10 s−1,
(e) spin-up, Ωi = π/10 s−1, Ωf = π/5 s−1,
(f) spin-down, Ωi = π/5 s−1, Ωf = 0 s−1.
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Figure 5. Evolution of the density profile: a sequence of vertical density profiles; the stated
Brunt–Väisälä frequency denotes a local value measured at the level of the light sheet when the
container is at rest. The initial profile is repeated at each stage as the dashed line, a description of
the labels (a)–(f) is given in the text.

Density profiles are taken before each change in rotation rate, and at intervals
during some of the experiments. A significant period is required for the readjustment
to take place between each change. A comparison of profile measurements is given in
figure 5. The labels (a)–(f) denote profiles taken immediately before the corresponding
change denoted in the list above. The data presented in the figure are running averages
of those gathered from the aspirating conductivity probe, and the original profile (a)
is given at each stage for comparison.

Although great care was taken in the experiments to ensure that the aspirating
probe remained free of blockages, it is possible for the quantitative data to vary by
small amounts if particles are drawn into the probe tip. However, the qualitative
features of figure 5, namely the development of a low-N region near the surface and
a slight downward shift in the profile at high rotation rates are repeatable.

For stratification at a sufficiently ‘low’ Brunt–Väisälä frequency (e.g. N2 6 1 s−2 for
rotation rates typical in these experiments), completion of the sequence (a)–(f) above
can be difficult to justify since centrifugal instabilities associated with the nonlinear
spin-down process can cause significant mixing near the free surface. Obviously,
any transient centrifugal instability will develop in the boundary-layer region during
spin-down, and the larger radius of the container near the free surface means that
supercritical conditions are maintained there over a longer period of time than
elsewhere. The transient growth of Taylor–Görtler vortices and the associated vertical
motion is therefore suggested as the mechanism responsible for the development of
the low-N region near the surface on this timescale. The readjustment process for
spin-down cases will be discussed in more detail in § 4.3.

3.3. Experimental error

3.3.1. Particle tracking

Quantitative data are obtained by tracking the particles over a quarter view of the
cone (as shown in figure 3) then averaging spatially over the tracking domain (when
the flow is axisymmetric) and temporally over a period between 0.5 to 2 s depending
on the experiment. We have given, where appropriate, some graphical indication of
the scatter in the data obtained in this manner.
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It is possible for particles to adhere to the inner surface of the cone, resulting in
a bright annular region when illuminated by the light sheet. Because the light sheet
is approximately 6 mm deep where it intersects with the container, this bright region
can make particle tracking difficult immediately adjacent to the wall.

For large changes in rotation rate the fluid velocity of the resulting motion relative
to the container can be sufficient for the particles to move significantly in the 1/50th
of a second between consecutive interlace fields of the video. When combining these
fields for tracking this can result in ‘ghost’ particles, that is, single particles being
effectively in two positions. To avoid these complications the particle size (as seen in
the video recordings) was maximized by adjusting the brightness level and defocusing
(very slightly) the CCD camera. The interlace fields were averaged where problems
were unavoidable; however, this was only required for highly nonlinear changes in
the rotation; this latter option obviously reduces the tracking resolution.

3.3.2. Free-surface curvature

We are considering a density-stratified fluid that is initially either at rest or rotating
at a constant angular frequency Ωi. All the results obtained from the laboratory
investigations discussed in this paper have been obtained for a fluid-filled conical
container with a free surface. This configuration will obviously be affected by rotation,
leading to curvature of the free surface and a deviation from the density profile as
measured whilst the container is at rest. (The introduction of a rigid lid would reduce
the free-surface curvature effects but at the expense of introducing a further boundary
layer, the influence of which may dominate in some regions of the flow.) However,
since the maximum initial angular frequency considered in this work is π/4 s−1,
the associated Froude number based on the maximum radius of the container and
maximum depth of fluid is F ≈ 0.05. Therefore the parabolic curvature of the free
surface is small relative to the fluid depth.

The parabolic curvature of the isopycnals also causes a refractive index gradient
that will inevitably cause some deviation of the light sheet from the horizontal;
however this difference is less than the width of the sheet over the region of interest.
The modified Burger number, S∗, depends on the Brunt–Väisälä frequency, N, for
which we use a local value at the light sheet level, as measured while the container is
at rest. There can be some slight adjustment to the exact value of N caused by the
rotation effects, but at such small rotation rates this effect is neglected.

3.3.3. Other sources of error

In none of the results have we allowed for the variation of the kinematic viscosity
possible at high salinity levels, which can be as much as 10% for the working fluids
in our experiments.

The length scale used in the non-dimensionalization process is the radius of the
light sheet (or equivalently, since the coneangle was fixed at α = π/4, the vertical apex
to light sheet distance). This light sheet level is determined by using the aspirating
probe (whose position is known to ±1 mm) to measure the z-location of the top and
bottom of the light sheet and then averaging the two values. As noted above, at the
centre of the conical container the light sheet is approximately 6 mm deep since some
divergence is unavoidable.

The initial and final angular frequencies of the container were accurate to
±0.002 rad s−1; however there was some decaying oscillation of the rotation rate
subsequent to large, nonlinear, changes in the rotation rate. This oscillatory be-
haviour is a property of the drive mechanism and has been confirmed by tracking
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an arrangement of reference lights on the rotating table with the camera in the non-
rotating frame. The oscillations are only noticeable for large |∆Ω| and decay within
a few rotations of the table with no significant effect on the large-time behaviour of
the fluid system.

In particle tracking tests performed some 24 hours after a rotation rate change
(with a linearly stratified fluid) there was some evidence of a mean drift relative to the
container; the velocities involved were an order of magnitude smaller than typically
measured in an experiment. The effect of this drift of particles is not believed to be
significant and is related to the Sweet–Eddington circulation; see Buzyna & Veronis
(1971). The circulation can be a significant factor at large rotation rates, but the effect
is small in the experiments we consider here. The deviation from a rigid-body rotation
is difficult to observe at our parameter values without digitally processing the video
recordings of the particles to produce particle streaks on a timescale comparable with
several rotations of the tank.

It is difficult to provide error estimates for the axial symmetry of the container. No
evidence of any divergence from an axisymmetric flow on a dimensional E−1/2Ω−1

f

timescale was observed in the homogeneous spin-up experiments or on any larger
timescale for the stratified spin-up experiments.

4. Comparison of the boundary-layer theory with laboratory experiments
It is possible to make some detailed comparisons between the particle tracking

data obtained from spin-up experiments and the predictions of the boundary-layer
analysis. However, the coordinate system and non-dimensionalization utilized in the
theoretical approach need some consideration before a direct comparison can be
made.

DFH used a spherical-polar coordinate system (r∗, θ∗, φ∗) to describe the flow. The
coordinate system is centred on the apex of the conical container, with (v∗r , v∗θ , v∗φ)
denoting the radial, meridional and azimuthal velocity components respectively. The
boundary layer on the inside of the conical surface is defined through the scaled
normal coordinate θ ∈ [0,−∞), where

θ∗ − (π/2− α) = E1/2θ. (4.1)

Here E = ν/(Ωh2) denotes the Ekman number based on a typical lengthscale, h,
angular frequency Ω and kinematic viscosity ν.

An axisymmetric, non-dimensional, solution of similarity-type, was sought for the
governing Boussinesq boundary-layer equations:

r̂ = r∗/h, (4.2)

Θ = r̂θ = O(1), (4.3)

v̂r = r̂Û(Θ, t̂ ) + . . . , (4.4)

v̂θ = V̂ (Θ, t̂ )−ΘÛ(Θ, t̂ ) + . . . , (4.5)

v̂φ = r̂Ŵ (Θ, t̂ ) + . . . , (4.6)

t̂ = Ωt, (4.7)

where r̂ � E1/2. To avoid confusion with the previous definitions of the experimental
work, the hat-notation has been introduced to indicate quantities that have been
non-dimensionalized as described by DFH.



182 R. E. Hewitt, P. A. Davies, P. W. Duck and M. R. Foster

1.0

0.8

0.6

0.4

0.2

1.00.80.60.40.20

1.0

0.8

0.6

0.4

0.2

ô=2(a)

1.00.80.60.2 0.4

(b)

r̄

x
D¿| |

r̄

ô=2

ô=16ô=16

0

Figure 6. A comparison between experiment (data points) and boundary-layer analysis predic-
tions (solid lines) at τ = 2, 4, 8, 16 (τ = Ωft/2π), showing the development of |ω/∆Ω|, where
ω is a local angular frequency (see figure 3), and ∆Ω = |Ωi − Ωf |, Ωi = 0 s−1, Ωf = π/5 s−1.

(a) N2 = 2.5 s−2 (Ŵe = 0, S∗ = 6.3), (b) N2 = 4.4 s−2 (Ŵe = 0, S∗ = 11.2). Numerical results are
obtained with σ = 700.

The equations considered by DFH were non-dimensionalized so that the az-
imuthal velocity component in the boundary layer is unity at the container wall,
Ŵ (Θ = 0, t̂ > 0) = 1. Since a spherical-polar coordinate system was chosen, this
non-dimensionalization needs to be related to that utilized in a typical laboratory
experiment. If, from a non-rotating frame of reference, the container is rotating with
angular frequency Ωi at t̂ = 0−, with an impulsive change to Ωf at t̂ = 0, then the
dimensional azimuthal velocity at the cone is v∗φ(r∗, θ∗ = π/2− α, t > 0) = r∗Ωf cos α.
The cos α coefficient is introduced because r∗ is a radial coordinate in a spherical
rather than cylindrical coordinate system. Thus, in effect, the rotation rate used in the
non-dimensionalization process of DFH is Ω = Ωf cos α.

To compare the results of the boundary-layer analysis with those of the particle-
tracking experiments we can examine a normalized, non-dimensional angular fre-
quency, ω̄ (relative to a rotating frame of reference fixed with the container) com-
pared to a non-dimensional radial coordinate, r̄, (relative to the axis of rotation) at
non-dimensional times t̄, where we define

ω̄(r̄, t̄) = |ω/∆Ω| = |Ωf(1− Ŵ (Θ, t̂))/(Ωf − Ωi)|, (4.8)

r̄ = 1− Ē1/2Θ/ sin α, (4.9)

Ē = ν/(Ωfh
2 cos α), (4.10)

t̄ = t̂/ cos α = Ωft. (4.11)

These definitions are consistent with those introduced in § 3, as summarized by
figure 3, and for comparisons with the experimental results we use α = π/4.

4.1. Comparison of local angular frequency

In figures 6 and 7 we present some comparisons of the normalized, local angular
frequency obtained from particle tracking (data points) with the corresponding pre-
diction, ω̄(r̄, t̄), of the boundary-layer analysis (solid lines). The theoretical results are
presented in the form (4.8)–(4.11) above, with the change in rotation rate assumed
to be impulsive. The data points shown in the figure are a segmented average of
the particle tracking data obtained over the quarter-cone viewed by the camera. The
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Figure 7. As figure 6 but at τ = 2.5, 5, 10, 20, and Ωi = π/5 s−1, Ωf = π/4 s−1.

N2 = 4.4 s−2 (Ŵe = 4/5, S∗ = 11.2 + Ŵ 2
e ).

tracking interval over which the data are acquired is typically 1 or 2 s, depending on
the speed of the flow and particle number density within the light sheet.

The two comparisons presented in figure 6 are for a spin-up from rest to a final
angular frequency of π/5 s−1, corresponding to Ŵe = 0 in the notation of DFH;
obviously this flow is dominated by nonlinear effects. We note that, in the latter
case (figure 6b), the agreement can be improved by assuming an adjustment of
the kinematic viscosity (to account for the density change at high Brunt–Väisälä
frequencies); this results in a larger Ekman number and a corresponding thickening
of the theoretically predicted profiles. However, the boundary-layer analysis assumes a
constant viscosity with respect to the vertical coordinate, and therefore, for consistency,
we use the value ν = 10−6 m2 s−1, which is for water at room temperature with a
density of approximately 1000 kg m−3. In figure 7 we present a similar comparison at
a more general point in the parameter space.

The comparisons shown in figure 6 and 7 are over a timescale comparable to that
required for homogeneous spin-up and there is clearly a remarkable level of quantita-
tive agreement. The theoretical predictions of DFH are made with a boundary-layer
approximation, which, as can be seen from figures 6 and 7, is difficult to justify over
any significantly larger timescale.

Although it is difficult to verify experimentally, the level of agreement between
experiments (which gather data from a range of heights within the total fluid depth)
and theory suggests that the similarity solutions introduced by DFH were realized
throughout the majority of the container during spin-up. Obviously there must exist
regions near to the free surface and apex of the cone within which there is some
divergence from the similarity form. The region near the apex is over a lengthscale
hE1/2 as noted previously; however we have no such estimate of the corresponding
region near to the free surface. As we shall discuss in later Sections, the effects of the
finite geometry are eventually felt in many areas of the parameter space as Ekman
mass transport in the boundary layers results in recirculation affecting the interior
flow.
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Figure 8. Variation of η∗ with S∗ as predicted by the large-time asymptotics of

the boundary-layer analysis. Shown here for σ = 700, Ŵe = 0.

4.1.1. Estimate of the boundary-layer thickness

It has been shown by DFH that the large-time behaviour of the growing boundary
layer can be described asymptotically with an outer layer on the non-dimensional
boundary-layer scale η = Θ/t̂1/2 = O(1); the definitions of Θ and t̂ are given in (4.3)
and (4.7). Therefore, a dimensional ‘thickness’, of the boundary layer visualized by
the light sheet is simply (for sufficiently large times) γ = (ν/Ω)1/2η∗t̂1/2, where η∗ is
related to some arbitrary thickness measure (for example, where the local angular
frequency is 99% of that in the interior). In the notation of the theoretical approach, a
more useful expression (in this particular problem) is the ratio of the boundary-layer
thickness to the light sheet radius, γ̃ say, which is (following the arguments at the
start of this Section)

γ̃ =
√

2E1/2η∗t̄1/2, (4.12)

where E = ν/Ωfh
2, and h is the radius of the light sheet.

The functional dependence of η∗ on the parameters S∗, Ŵe and σ is determined by
the large-time asymptotics of the boundary-layer analysis. In figure 8 we show the
dependence of η∗ on the modified Burger number S∗ for σ = 700 and Ŵe = 0, which
are typical laboratory parameters for the spin-up from rest of a salt-water solution.
As suggested in the figure, η∗ approaches zero as S∗ approaches the critical value
S∗crit(Ŵe = 0; σ = 700). This must be the case since the system evolves to a steady
state for S∗ < S∗crit and the large-time analysis involving the temporally growing outer

layer no longer holds. The data shown in figure 8 suggests that (at least when Ŵe = 0,
σ = 700) we should expect the rate at which the boundary layer grows into the
interior to be only weakly dependent on S∗ for modified Burger numbers above a
limiting value.

An analysis of the large-time limit provides a good estimate for a typical spin-up
problem; this can be argued more precisely with comparisons between the unsteady
computations and the large-time asymptotic predictions, but we do not do so here.
Given an estimate of the upper limit of γ̃, below which the boundary-layer approxima-
tion gives good quantitative results, we can use the large-time asymptotic result (4.12)
to provide a similar approximation to the timescale on which accurate quantitative
predictions can be expected over a range of S∗.
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Ē ¿f t Ē ¿f t

¼

¼

N 2= 0s–2 N 2=1.0s–2

N 2=2.5s–2 N 2=4.4s–2

Figure 9. A comparison between experiment and boundary-layer analysis predictions. Parameter

values are Ωi = 0 s−1, Ωf = π/5 s−1, and N2 = 0, 1, 2.5, 4.4 s−2, corresponding to Ŵe = 0 and
S∗ = 0, 2.5, 6.3, 11.2 respectively. Numerical results are obtained with σ = 700. Note that data
gathered at small values of t̄ are not shown for clarity, but are discussed in § 4.2.1.

4.2. A global measure of the readjustment

Another obvious way to compare the theoretical approach with experimental data is
to examine how some global measure of the axisymmetric flow (at the level of the
light sheet) varies with time. A dimensionless quantity that is easily obtained from
the particle tracking data is

Φ̄(̄t) =

∣∣∣∣∣
∫ r̄=1

r̄=0

v̄φ(r̄, t̄) dr̄

∣∣∣∣∣ , where v̄φ =
vφ

h|Ωi − Ωf | , (4.13)

which can be thought of as a mean flow component in the quarter-cone view, or a
normalised measure of the azimuthal transport within the light sheet.

A comparison between theory and experiment for the quantity Φ̄ (averaged over
the quarter-cone viewed by the camera) is given in figure 9; the time-axis has been
non-dimensionalized and scaled with the Ekman number, Ē, as defined in (4.10). The
error bars shown in figure 9 represent a measure of the data scatter obtained from the
particle tracking process. For an ideal impulsive change in the container rotation rate
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Figure 10. The qualitative effect of varying S ∗ (when Ŵe = 0, σ = 700) on the Ekman transport in
the growing boundary-layer scenario.

v̄φ/(h|Ωi−Ωf |) = r̄+O(Ē1/2), for t̄� 1, and therefore Φ̄(̄t = 0+) = 1
2

for the theoretical
results, as shown in the figure. Obviously, the experimental apparatus cannot be
adjusted impulsively and has a small response time; therefore the experimental data
points actually approach Φ̄ = 0 at sufficiently small times rather than showing an
impulsive change from Φ̄ = 0 to Φ̄ = 1 at t = 0; we shall discuss the t̄� 1 regime in
§ 4.2.1.

The agreement between theory and experiment (as shown in figure 9) remains
when Φ̄ − 0.5 is not too large (which corresponds to requiring that the boundary-
layer approximation still holds). We can interpret the timescale of figure 9 by noting
that, using the above estimate (4.12) with typical values of η∗ ≈ 3.5 (see figure
8) and γ̃ = 1

2
(a ratio of boundary-layer thickness to light sheet radius of 1

2
, cf.

figures 6 and 7) gives a time of ĒΩft̄ ≈ 1/72
√

2 ≈ 0.014. Therefore, the eventual
divergence of the experimental data from theoretically predicted values over the
timescale shown in figure 9 (for N2 > 1) is consistent with a failure of the boundary-
layer approximation. It appears that the boundary-layer analysis overestimates the
quantity Φ̄ beyond this timescale, which corresponds to a similar overestimation of
the time necessary for readjustment to take place. Since we are primarily interested
in making comparisons with the boundary-layer analysis, we do not give any detailed
quantitative experimental data for the timescale required for a global spin-up. We
note that the non-dimensional timescale shown in figure 9 equates to approximately
20 minutes based on a typical value of Ē = 10−4.

It is interesting to compare the decay of the quantity Φ̄ at low S∗ with the data
gathered at higher values, as shown in figure 9. As we have noted previously in § 2.1,
at sufficiently low values of S∗ the analysis predicts that the boundary layer should
attain a steady state rather than gradually thickening into the interior. In particular,
a steady (von Kármán) solution is predicted for spin-up from rest in a homogeneous
fluid, N2 = 0 s−2, since the appropriate point in parameter space (S∗ = Ŵe = 0) lies
within the steady-state region for all values of the Schmidt number. It is evident from
the N2 = 0 s−2 results of figure 9 that there is a sudden divergence of the experimental
data from the predicted value of Φ̄ corresponding to the von Kármán state. To resolve
this apparent discrepancy we obviously have to interpret the boundary-layer analysis
in terms of the finite geometry of the container, the level of the light sheet, and the
Ekman transport up/down the container wall. In particular, the difference between



Spin-up of stratified rotating flows 187

the experimental data and theoretical predictions for a homogeneous fluid is caused
by a sustained mass transport towards the free surface in the boundary layer (since
there is no inhibition by buoyancy forces). This results in a global recirculation that
acts to alter the interior flow conditions, leading to a rapid change in Φ̄.

Recirculation effects can also be obtained for stratified fluids, even at values of
S∗ for which steady states are not predicted. It has been shown by DFH that an
asymptotic description of the evolution leading to a gradually thickening boundary
layer can be given in the large-time limit. In particular DFH discuss the quantity V̂∞,
which is essentially a measure of the fluid velocity normal to the boundary at the
boundary-layer edge. It was shown that

V̂∞ = V̄∞t̂
−1/2

+ · · · , (4.14)

where V̂∞(t̂) = V̂ (Θ → −∞, t̂), as defined by (4.3), and V̄∞ is a function of S∗, Ŵe and
σ. In figure 10 we show how the leading-order quantity V̄∞ varies with S∗ at Ŵe = 0
(σ = 700), as determined (numerically) from the large-time asymptotics; these values
of σ and Ŵe correspond to a typical laboratory experiment for spin-up from rest, as
shown in figure 9. Obviously, V̄∞ is related, through the continuity of mass constraint,
to the Ekman transport, and, as can be seen in the results of figure 10, the analysis
predicts a significantly larger mass transport in the Ekman layer for S∗ ≈ 2 when
compared to S∗ ≈ 6, 11.

Therefore, although in a growing boundary-layer evolution (as described in § 2) the
mass transport is predicted to decrease with the square-root of time, the decay for
S∗ ≈ 2 (in our spin-up from rest, Ŵe = 0, experiments) seems to be sufficiently slow
for a slight meridional circulation to take place. This mechanism acts to decrease
the overall spin-up time, causing relatively sudden changes in the gathered data as
the recirculation affects the fluid at the level of the light sheet. A comparison of
experimental data gathered for three different Brunt–Väisälä frequencies is shown in
figure 11 at a non-dimensional time of t̄ = 64π (τ = 32). The data points of the figure
are a segmented average of the raw tracking data, and the solid lines are simply
a smooth fit to the data points. We can again note the distinctive curvature of the
N2 = 1 s−2 profile, indicating that some slight meridional circulation has occurred
before the mass transport in the boundary layer can be inhibited by buoyancy effects.

We should note that the effect of varying S∗ on the mass transport, as represented
by V̄∞ in figure 10, has been approximated by utilizing the large-time behaviour of
the growing boundary-layer asymptotics of DFH. Unsteady computations for spin-up
from rest (Ŵe = 0) suggest that the leading-order asymptotic description of V̂∞ =

V̄∞t̂
−1/2

is generally a good description within just two or three rotations of the system,
although there can be a significant superimposed oscillation at the frequency N sin α.

The overall conclusions are that for S∗ < S∗crit, in which a steady Ekman transport
is predicted, and for S∗ ‘slightly above’ S∗crit, in which a significant (relative to the
container size/light-sheet level) transient Ekman transport takes place, we need to take
account of the finite geometry in any description unless considering only the short-
time behaviour. At a sufficiently large Brunt–Väisälä frequency however, the growing
boundary-layer analysis of DFH provides an accurate quantitative description of the
flow since any global recirculation is strongly inhibited by buoyancy effects.

4.2.1. Short-time response of the container

As noted in the first comment of § 2.1 we expect that the large-time behaviour
should be at least qualitatively comparable irrespective of the exact form of the
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Figure 11. A comparison of experimental data gathered at Brunt–Väisälä frequencies corresponding
to N2 = 1.0, 2.5, 4.4 s−2 (S∗ ≈ 2.5, 6.3, 11.2) at a fixed non-dimensional time of τ = 32 for a spin-up
Ωi = 0 s−1, Ωf = π/5 s−1.

rotation rate change. Nevertheless, for a system as shown in figure 2 the large
inertia that has to be overcome to produce nonlinear changes in the rotation rate
suggests that the short-time response should still be considered. Another motivation
for examining the system within the first few rotations of the container is to compare
the experimental and theoretical results, at low values of S∗, on a timescale for which
the meridional circulation has little effect at the level visualized by the light sheet.

In figure 12 we present comparisons of the experimentally determined values of
the quantity Φ̄ with the theoretically predicted values. A dimensional timescale has
been used in the comparison, and we concentrate on the first 40 s after a rotation rate
change to 6 r.p.m. from an initial state of rest, which corresponds to approximately
the first four rotations of the container. The error bars shown in the figure are
used to represent the data scatter obtained from the particle tracking process. The
tracking data are obtained over a timescale of approximately 0.5 s; therefore, during
the near-impulsive change in the rotation rate, the data scatter is more pronounced
since the flow is evolving more rapidly. The difference between the experimental data
and predicted values at small times (t < 5 s) is caused by assuming that the change
in rotation is impulsive in the theoretical approach.

In the homogeneous case, N2 = 0 s−2, there is clearly some agreement between the
steady von Kármán solution and the experiments on a timescale that is larger than
the time taken for the container to attain its new rotation rate but still shorter than
that required for recirculation effects to dominate at the light sheet level. It is also
clear that in all cases there is some degree of decaying oscillation in the quantity
Φ̄. As noted previously, the short oscillatory phase (lasting just a few rotations) is
caused by non-uniform rotation of the apparatus after large nonlinear changes in the
angular frequency. The oscillations shown in figure 12(b) represent a worst case, with
an acceleration of the experimental apparatus from rest to 6 r.p.m. over a period of
approximately 3 s. There is little evidence of this transient phase affecting the later
dynamics of the fluid.
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Figure 12. Short-time response to the near-impulsive change in rotation rate. Ωi = 0 s−1,
Ωf = π/5 s−1. The solid line shows the predictions of the boundary-layer analysis with an im-
pulsive change in the rotation rate. Numerical results are obtained with σ = 700.

4.3. Spin-down, Ŵe > 1

The results presented above only show cases in which the rotation rate of the
container has been increased, corresponding to 0 < Ŵe < 1. We must note that the
axisymmetric boundary-layer analysis, although very successful in the spin-up cases,
does not provide even qualitative agreement (in general) with the experiments for
Ŵe > 1.

For moderate values of Ŵe > 1 it is possible to obtain results that can be matched to
the growing boundary layer scenario (especially for cases where the effects of a stable
stratification dominate). Nevertheless, for a general, nonlinear, spin-down experiment,
the flow evolves through a transient stage dominated by a centrifugal instability (i.e. a
Taylor–Görtler (T–G) instability) and then, settles down to a non-axisymmetric flow.
This eventual non-axisymmetric behaviour in the decelerating flow is experimentally
repeatable, and qualitatively the same for experiments performed over a range of N
(with Ŵe = 2), in particular it is maintained even when N2 = 4.4 s−2.

It was anticipated that nonlinear decelerations of the container would result in an
unstable distribution of centrifugal and pressure forces, resulting in the unsteady for-
mation of toroidal vortices in the boundary layer. Obviously, since the redistribution
of angular momentum is through an overturning motion, it may be expected that
the centrifugal mechanism in a stably stratified fluid will be inhibited (at sufficiently
large Burger numbers) as work has to be done in the movement of fluid against the
restoring buoyancy force. In connection with these ideas an evolution to a growing
boundary-layer state can be found for N2 sufficiently large and Ŵe ≈ 1 (but still
greater than unity), that is, for flows in which the T–G effect is minimized. In figure
13 we present one such example. During the experiment summarized by the figure
some slight transient three-dimensional motion could be observed in the boundary
layer. At somewhat larger values of Ŵe and/or lower Brunt-Väisälä frequencies, the
quantitative agreement was lessened considerably until the centrifugal instability was
dominant near the container wall and an obvious non-axisymmetric flow pattern
could be observed at larger times. Figure 14 is given for comparison (this experiment
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Figure 13. A comparison between experiment and boundary-layer analysis predictions at

τ = 2.5, 5, 10, 20. ∆Ω = |Ωi − Ωf |, Ωi = π/4 s−1, Ωf = π/5 s−1 (spin-down) N2 = 4.4 s−2 (Ŵe = 5/4,

S∗ = 11.2 + Ŵ 2
e ). Numerical results are obtained with σ = 700.

was performed at a larger value of Ŵe = 2 and with a lower Brunt–Väisälä frequency),
and the large divergence between the azimuthally averaged data and predictions of
the axisymmetric theory is easily seen.

The presence of the T–G mechanism is obviously of some importance in the
resulting flow evolution. The form of similarity solution introduced by DFH is
unlikely to be appropriate for a flow involving these vortices. If we consider the
simpler problem of an axisymmetric rotating flow of an inviscid, homogeneous
fluid, then Rayleigh’s criterion predicts instability when the angular momentum is a
decreasing function of the distance from the axis of rotation. Therefore, in a conical
geometry, it is possible that the criterion could be satisfied only beyond some radial
distance from the apex, and thus the similarity solution (which removes the radial
dependence) is not capable of describing this behaviour.

Great care has been taken to ensure that the level of non-axisymmetry in the
experimental apparatus is minimized; in none of the spin-up experiments (that is,
0 < Ŵe < 1) was there any evidence of a divergence from an axisymmetric flow.
For homogeneous spin-down experiments, the centrifugal instability was obviously
still present; however, there was no obvious sustained non-axisymmetry of the form
found in experiments utilizing stratified fluids.

A qualitative description of a typical flow resulting from a nonlinear spin-down
experiment with 1 s−2 6 N2 6 5 s−2 is as follows.

(i) The rotation rate is altered via a linear deceleration, from Ωi to Ωf < Ωi, over
a set interval. The method of deceleration has no qualitative effect on the resulting
flow providing that the change is over a timescale that is small compared to that
required for a global readjustment. We use a linear ramping of the rotation merely
for experimental convenience, since it minimizes any unwanted tank oscillation and
shows the appearance of the three-dimensional flow more clearly.

(ii) The centrifugal instability begins to dominate the flow near the boundary,
with obvious three-dimensional motion. This stage can occur prior to the container
attaining its final rotation rate Ω = Ωf , that is, during the deceleration phase.
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Figure 14. A comparison between experiment and boundary-layer analysis predictions at

τ = 2, 3, 4, 5. ∆Ω = |Ωi − Ωf |, Ωi = π/5 s−1, Ωf = π/10 s−1 (spin-down) N2 = 2.5 s−2 (Ŵe = 2,

S∗ = 26 + Ŵ 2
e ). Numerical results are obtained with σ = 700, and the experimental results are

an azimuthal average. In this case the axisymmetric boundary-layer analysis fails to give even
qualitative information.

(iii) After a sustained T–G phase the three-dimensional motion begins to decay,
with the emergence of a more regular non-axisymmetric flow.

(iv) Particle streaks in the non-axisymmetric flow can be followed in most of
the light sheet over timescales that are comparable with the background rotation
period. There is little obvious evidence of any associated large-scale, strong, three-
dimensionality. Experiments have been performed with continuously stratified fluids
with a fluorescent dye introduced into the lower half. The light sheet when placed
slightly above the dye interface reveals any up-welling of denser fluid as bright
regions in the field of view. Spin-down experiments of this type suggest that the non-
axisymmetry can be related to localized regions of fluid (which are advected with the
overall azimuthal flow) that are drawn upwards during the spin-down readjustment.
We cannot determine from such experiments if the dyed region is associated with
a continued up-welling or merely a sustained displacement of dyed fluid. However,
localized regions of low velocity can appear near the boundary in particle tracking
results, and may be associated with the same flow characteristics visualized by the
dye.

(v) In some cases a region of reverse flow can also be observed near to the
boundary (reverse in the sense of counter-rotation relative to the frame of reference
rotating with the container).

(vi) At large times the particle streaks near the axis of the container become
elliptical (displaced by the now large non-axisymmetric region near the container
wall). The region of smallest fluid velocity (i.e. the centre of the elliptical particle
streaks) moves away from the axis of the cone, beginning to slowly precess about it.

(vii) Eventually all non-axisymmetric behaviour begins to slowly decay leaving a
residual azimuthal motion. The spin-down process is then completed over a diffusive
timescale.

(viii) Once a flow approximating rigid-body motion has been attained, density
measurements generally reveal that, although there may have been some mixing near
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Figure 15. Two typical velocity fields for a spin-down experiment at N2 = 2.5 s−2, with Ωi = π/5 s−1,

Ωf = π/10 s−1 (Ŵe = 2, S∗ = 6.3 + Ŵ 2
e ). In each figure (a) denotes a flow feature that develops in a

continuous manner from that shown in the left-hand figure to that shown on the right.

the free surface (i.e. at large radial distance from the apex), at the mid-container
levels typically examined during an experiment there is little difference in the density
stratification (see figure 5). This suggests that there is little vertical mixing associated
with the sustained non-axisymmetric flow phase.

In figure 15 we present two typical sections of the velocity field data obtained from
particle tracking in the cross-section plane over a period of 1 s (164.5 s 6 t 6 165.5 s,
and 239.5 s 6 t 6 240.5 s), for N2 = 2.5 s−2. The axes of the figures are a rectilinear
coordinate system that has been non-dimensionalized with the light sheet radius h,
and the intersection of the light sheet with the container wall is shown as the (solid
line) arc; see figure 3. The vectors shown in the figure have been scaled such that the
dimensional fluid velocity is given by 4l/3 (h/s), where l is the arrow length.

The vector fields clearly show a divergence from an axisymmetric flow and the
region (a) denotes the same feature, which develops in a continuous manner over
the timescale spanned by the two figures. This flow feature has travelled around
the container several times in the interval 165 s < t < 240 s. These results are
qualitatively representative of non-axisymmetric evolutions obtained over the range
1 s−2 < N2 < 5 s−2 with Ŵe = 2.

For Ŵe � 1 and moderate density stratification, the subsequent evolution of the
flow is dominated by three-dimensional effects and appears to have some transition to
a turbulent flow at locations sufficiently far from the apex of the cone. The final state
in these cases is obviously still a rigid-body rotation at the new angular frequency Ωf .

We conclude this section by noting that some detailed issues with regard to the
spin-down of the cone are unresolved. It is quite clear that physical processes, namely
Taylor–Görtler instabilities that occur first in a non-axisymmetric, non-similar lower-
wall boundary layer, make any detailed comparison with the theories presented here
meaningless. Though a complete, detailed, quantitative description of that process,
and in particular the specific time-history of the development of the non-centred
eddy seen in the fluid core, has not been established, the fact remains that we have
established in the laboratory a clear distinction between spin-up and spin-down cases.
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Figure 16. (a) Steady states for S ∗ = Ŵ 2
e + 0.4, σ = 700. These parameter values correspond

to a fixed (stable) stratification, final rotation rate Ωf , and a range of initial rotation rates from
Ωi = 0 s−1 (Ŵe = 0) to Ωi = Ωf . (b) Profiles of −V̂ (Θ) for those points at Ŵe = 0 shown in (a).

Further theoretical description of spin down is far beyond the scope of this paper,
and is relegated to some future work.

5. Non-uniqueness and stability of the steady-state boundary layer
5.1. Steady solutions

Solving the governing steady equations numerically suggests that there is a critical
Burger number, S∗crit(Ŵe; σ), beyond which steady solutions cannot be located; S∗crit
was calculated by DFH for σ = 1. It is this boundary that defines the region in
parameter space within which steady states are achieved by the initial value problem
(see figure 1). An asymptotic description in the neighbourhood of S∗crit is possible,
providing a two-layer description of the steady solution.

In figure 16(a) we show several steady solutions for physically relevant parameter
values, with the state characterized by the velocity normal to the wall at the boundary
layer edge, V̂∞. Here, V̂∞ = V̂ (Θ → −∞) as defined in § 4. For the parameter values
of figure 16 the branch that is achieved by an unsteady evolution from an initial
state of rigid body rotation is that with the largest value of |V̂∞|. Figure 16(b) shows

profiles of V̂ for each of the four states shown in figure 16(a) at Ŵe = 0.
Since there is a multiplicity of available steady states for the boundary-layer

equations it seems sensible to address the stability of the states. The existence of several
stable steady solutions in sub-regions of parameter space could have implications for
the unsteady development of the boundary layer.

5.2. Numerical determination of the instability modes

The non-dimensionalized boundary-layer equations governing spin-up/down in a
conical container are as given by DFH,

∂Û

∂t
+ Û2 + V̂

∂Û

∂Θ
− Ŵ 2 =

∂2Û

∂Θ2
− B∗, (5.1)

∂Ŵ

∂t
+ 2ÛŴ + V̂

∂Ŵ

∂Θ
=
∂2Ŵ

∂Θ2
, (5.2)
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∂B∗

∂t
+ V̂

∂B∗

∂Θ
+ ÛB∗ − S∗Û =

1

σ

∂2B∗

∂Θ2
, (5.3)

2Û +
∂V̂

∂Θ
= 0. (5.4)

The velocity components Û, V̂ , Ŵ are as defined in § 4, and B∗ is a non-dimensional
quantity representing the density perturbation within the boundary layer. We approach
the linearized stability analysis by doing the usual decomposition,

Û = Û0(Θ) + Ũ(Θ, t), V̂ = V̂0(Θ) + Ṽ (Θ, t), (5.5)

Ŵ = Ŵ0(Θ) + W̃ (Θ, t), B∗ = B̂0(Θ) + B̃(Θ, t). (5.6)

where ( )0 represents the steady state, and ˜( ) the small disturbance. We carry out
the usual linearization, taking |Ũ| � |U0| for all Θ.

The resulting linearized equations are

Ũt + 2Û0Ũ + V̂0ŨΘ + Ṽ Û0Θ − 2Ŵ0W̃ = ŨΘΘ − B̃, (5.7)

W̃t + 2Û0W̃ + 2ŨŴ0 + V̂0W̃Θ + Ṽ Ŵ0Θ = W̃ΘΘ, (5.8)

B̃t + V̂0B̃Θ + Ṽ B̂0Θ + Û0B̃ + ŨB̂0 − S∗Ũ =
1

σ
B̃ΘΘ, (5.9)

2Ũ + ṼΘ = 0. (5.10)

We note that when B̂0 ≡ S∗ = Ŵ 2
e , and B̃ ≡ 0 (as is the case for a homogeneous

fluid) the above equations reduce to the form considered in the stability analysis of
Bodonyi & Ng (1984), that is, the stability of rotating disk flows.

For any branch of solution to the steady-state problem, we can follow the usual
procedure for locating instability modes by writing

q̃ = q(Θ)eΛt, (5.11)

where q̃ is generic for any of the quantities in (5.7)–(5.10). Substitution of (5.11)
into (5.7)–(5.10) results in an eigenvalue problem for Λ, and the existence of any
component of the spectrum with Re(Λ) > 0 implies that the steady state is unstable.
The resulting eigenvalue problem can be considered with several different methods. A
preliminary picture of the eigenvalue spectrum can be obtained by a straightforward
discretization of the governing system, followed by the application of some global
method.

In particular, by first using a QZ algorithm we can obtain the eigenvalue spectrum
after employing a relatively coarse discretization. The results of this global approach
can then be refined using a local search routine to determine the discrete modes with
a sufficiently refined numerical grid. Finally, the results of the linear stability analysis
can be compared with unsteady computations of the full boundary-layer equations
with a suitably small perturbation applied to the steady state.

Applying this approach to the steady states shown in figure 16(a) reveals that only
one of the states is stable (namely the solution arising from V̂∞ = 0.5781 at Ŵe = 0),
with the other states having at least one unstable eigenvalue.

Typically, the eigenvalue spectrum consists of both discrete and continuous parts
and at general points in the parameter space the component with the largest real
part can be either the discrete or continuous spectrum. In particular, by using a
QZ algorithm we can obtain results such as those shown in figure 17. In computing
the spectra shown in the figure, the edge conditions were applied at Θ = 50, and
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Figure 17. The eigenvalue spectrum obtained from applying a global method to the discretized

system: (a) Ŵe = 0.998, S∗ = 0.5 and σ = 700, (b) Ŵe = 0.995, S∗ = 0.5 and σ = 700. See the text

for a description of the symbols. Note that these parameter values lie in the S∗ < Ŵe region.

401 equally spaced grid points were used in the discretization. Figure 17 shows the
eigenvalues (which obviously form complex conjugate pairs) that lie in the right half-
plane. We have used the notation Λ = Λr + iΛi, where Λr > 0 leads to a temporally
growing solution. This global approach finds discrete modes (those eigenvalues that
are circled) and also attempts to resolve a discretized version of a continuous spectrum.
On increasing the number of grid points, the QZ algorithm becomes a computationally
expensive procedure. Nevertheless, considerable variation in both the number of grid
points and location at which the edge conditions are applied is required before
one can be convinced that a discretized representation of the continuous spectrum
is being produced. In particular, it was found that increasing the resolution would
typically provide a new eigenvalue between two existing eigenvalues obtained at lower
resolution. We shall examine the continuous spectrum by more analytical means in
Appendix A.

On applying a local search method to track the discrete eigenvalues we find a
behaviour similar to that noted in a number of Orr–Sommerfeld-type problems; see
for example Murdock & Stewartson (1977), Balakumar & Malik (1992), and Mack
(1976). As can be seen in figure 17(a), there are two discrete unstable modes (with
Λi = 0) when Ŵe = 0.998, S∗ = 0.5 and σ = 700. On reducing Ŵe from 0.998 to
0.994 the least damped discrete mode moves along the real axis towards the origin,
similarly the only other unstable discrete mode becomes more unstable, again with
Λi = 0. At some critical value of the parameter Ŵe the two unstable, real eigenvalues
combine to form a complex conjugate pair with Λi 6= 0. On decreasing Ŵe further the
pair of eigenvalues moves away from the real axis, as shown in figure 17(b), and are
eventually absorbed into the continuous spectrum.

This absorption of discrete modes by a continuous spectrum has been noted
before. Mack (1976) considered the temporal eigenvalues of the Blasius boundary
layer, and found only a finite number of discrete eigenvalues; however, on increasing
the Reynolds number additional eigenvalues ‘spring’ from the continuous spectrum.
Equivalently, eigenvalues are, in general, being absorbed by the continuous spectrum
on decreasing the Reynolds number.
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Figure 18. The full spin-up/down parameter space, as predicted by the axisymmetric
boundary-layer theory for σ = 700. See main text for a detailed description of the regions.

It is worth noting that at some points in parameter space the discrete mode can
appear to the right of the continuous spectrum in the Λ-plane, as shown in figure
17(a), and, at other points, there may be no unstable discrete modes, or it may be
that there are portions of the continuous spectrum to the right of the discrete mode
(figure 17b). This complicated behaviour will obviously have implications for the
large-time description of the instability and we shall return to consider it in more
detail in Appendix A.

The QZ algorithm is a computationally intensive method for obtaining the eigenval-
ues, and care is needed since it can provide spurious results. Details of the continuous
spectrum can be obtained more elegantly than by direct solution of the discretized
eigenvalue problem. Moreover, it is possible in some limiting cases (notably σ � 1,
V̂∞ � 1) to obtain an approximation to the limit point of the continuous spectrum
(corresponding to the location of a branch point singularity in a Laplace domain).
In figure 17(a, b) we have shown the location of the branch point, as determined by
this approximation (at Λr = (Ŵ 2

e − S∗)/4Ŵe, Λi = V̂∞[(7Ŵ 2
e + S∗)/4Ŵe]

1/2), as the
asterisk. A full description of the continuous spectrum, and an approximation to the
location of the branch point is given in Appendix A.

As we have noted, at general points in the parameter space there can be both
discrete and continuous components to the eigenvalue spectrum. However, detailed
numerical investigation together with the analytical results obtained for the continuous
spectrum presented in Appendix A, suggest that instability of the higher-branch steady
states in S∗ > Ŵ 2

e arises from the presence of unstable discrete modes in all cases

(i.e. the continuous spectrum is stable). The region S∗ > Ŵ 2
e (with σ = 700, and

0 < Ŵe < 1) is the area of parameter space appropriate to the laboratory experiments
(as discussed in § 2.1), and at general parameter values within this region a numerical
investigation of the steady states and their stability indicates that at most one stable
state exists. All other steady solutions relevant to the laboratory work have at least
one unstable discrete eigenvalue. Unsteady computations of the nonlinear boundary-
layer equations, from an initial state that is a small perturbation of a higher-branch
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steady solution, evolve to the one existing stable branch, and it is this state that is
obtained in the initial value problem for spin-up, 0 < Ŵe < 1.

Figure 18 shows the (S∗, Ŵe)-plane for σ = 700, with the parameter values leading
to different large-time solution characteristics clearly marked. This figure is obtained
from the axisymmetric boundary-layer theory, and differs from that presented in
figure 1 since it is obtained for σ = 700 (the appropriate value for a saline solution)
rather than σ = 1, as discussed by DFH. The main difference of relevance to the
laboratory work is the reduction in size of the region leading to steady boundary-
layer states in figure 18 compared to that shown in figure 1. The region marked (i)
in figure 18 is equivalent to the finite-time breakdown region shown in figure 1. The
region marked (I) in figure 1 denotes stable steady states that are not achieved by an
evolution from an initial state of rigid-body rotation; no such states exist at larger
values of the Schmidt number and this region is absent in figure 18. Finally, region
(ii) in figure 18 is an area of parameter space for which the primary branch of steady
states is unstable and the initial value problem at these values leads to a new variety
of finite-time breakdown as described in Appendix B. This unstable region does not
extend to those parameter values relevant to the laboratory experiments (S∗ > Ŵ 2

e );

however the other steady boundary-layer states that can be found for (S∗ > Ŵe) have
been shown to be unstable by the same stability analysis.

6. Conclusions
We have examined the readjustment of a linearly stratified fluid in a conical con-

tainer, making comparisons between experimentally gathered data and the previous
theoretical predictions of DFH. We have observed a good quantitative agreement
between the experimental data and theoretically predicted values (even for nonlinear
changes in the rotation rate) when the boundary layer is sufficiently thin, and when
the flow is not undergoing a nonlinear spin-down.

The previous analysis of the governing boundary-layer equations by DFH predicted
both evolution to a steady state (in an infinite geometry) and temporal growth of the
boundary layer into the interior; these scenarios have been confirmed experimentally.
Implicit in the predictions of the theoretical work is that, eventually, the growth
of the viscous region will be sufficient to render the boundary-layer approximation
quantitatively inaccurate. Similarly, the experimental data have to be interpreted in
terms of the finite size of the container in some regions of the parameter space,
notably when a significant Ekman mass transport is predicted. Obviously, in a finite
geometry recirculation of fluid transported in the boundary layers must occur.

The details of the global spin-up of fluid in such a conical container have not
been presented here. Even for the case of a small-Ω change in a homogeneous fluid
this geometry presents some new challenges owing to the absence of sidewall layers
in the usual sense. The mechanism for stratified spin-up with small changes in Ω
appears to be that discussed by Walin (1969) and Spence et al. (1992). However, the
nonlinear case is more problematic. Provided the spin-up occurs with the boundary-
layer parameters in the ‘Steady State’ region of figure 1, the mechanism appears to be
essentially that of the linearized situation: owing to a mismatch in flux of fluid in the
layer on the sloping wall and in the free-surface boundary layer, an eruption occurs
in the upper corner of the container where those layers meet. That erupting fluid,
with its larger angular momentum, enters the interior of the cone, but stratification
effects distribute that momentum differentially in height. Only on a diffusive timescale,
O(E−1Ω−1), is that angular momentum made uniform in height, completing the spin-
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up. However, for spin-up (or spin-down for that matter) with parameters in other
regions of figure 1, the way in which the boundary layer imparts its new angular
momentum to the fluid bulk, and the timescale over which that happens, is much less
clear and is the subject of future work.

At least for some range of parameters, our experimental investigation of the flow
readjustment for a nonlinear spin-down has shown the evolution to be (initially)
dominated by a Taylor–Görtler instability in the boundary layer, followed by a
sustained non-axisymmetric phase. A regime diagram is complex to produce for these
cases since the flow is difficult to visualize, and there is a dependence on the light sheet
level, half-angle of the container, stratification and size of rotation change. Further
analysis of this intriguing flow regime is the subject of future work.

An analysis of the unsteady formation of these T–G vortices is extremely difficult.
For homogeneous fluids in simpler geometries energy methods have been applied
with some success to spin-decay flows in an attempt to provide sufficient conditions
for global stability; see, for example, Neitzel & Davis (1980). Later work has dealt
with similar spin-down problems numerically using finite-difference simulations of
the Navier–Stokes equations for a variety of aspect ratios and Reynolds numbers;
see, for example, Neitzel & Davis (1981) and Valentine & Miller (1994). A related
numerical investigation of the endwall boundary layers during the spin-down process
has also been given by Lopez & Weidman (1996).

The transient problem has not been considered for general geometries or stratified
flow; however, the ‘Taylor vortex flow’ between conical cylinders (rotating at a fixed
rate) has been discussed experimentally for a homogeneous fluid by Wimmer (1995). In
contrast to the simpler geometry of circular Couette flow this system exhibits regions
of both sub- and super-critical flow within the annular region, and, as well as the typ-
ical toroidal vortices, helical modes are also possible. Similarly, a possible relevance to
equatorial jet formation prompted an experimental investigation and a linear stability
analysis of stratified circular Couette flow by Boubnov, Gledzer & Hopfinger (1995).
In particular, it was shown that the sustained vortex motion driven by the differen-
tially rotating cylinders leads to the formation of discrete layers in the density profile.
(It should be noted that the problem of stratified Couette flow in circular cylinders
has a formal similarity to rotating Bénard convection, as discussed by Veronis 1970.)

To make any progress in investigating the processes involved in this part of the
parameter space it seems likely that some combination of the methods discussed above
must be applied. In particular, an experimental investigation similar to that performed
by Wimmer, but with a continuously stratified working fluid may improve our
understanding of the interaction between the T–G mechanism and buoyancy forces
in this geometry. However, as we have already noted, it is not clear that the centrifugal
instability is directly related to the eventual non-axisymmetric flow observed in the
experiments. Therefore, in connection with this latter stage of the evolution, it may be
instructive to reconsider the boundary-layer problem for the similarity form discussed
by DFH, but with the azimuthal terms included (the similarity form can still be applied
with an azimuthal dependence). It must be noted however, that in the framework of
the similarity solution, any azimuthal dependence obviously remains independent of
the radial coordinate. If no similarity between experiments and the numerical work
can be found however, it could be that the non-axisymmetric evolution is associated
with a more general radial dependence (perhaps initiated by the vortex motion),
which would complicate the numerical task considerably.

It was anticipated, and subsequently shown with numerical solutions, that a large
degree of non-uniqueness should be present for the steady boundary-layer equations.
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We have considered the linear stability of the available steady states, and shown
through a combination of different numerical approaches and analytical work that
at parameter values appropriate to the laboratory work that at most one stable
state exists. All higher-branch states have at least one unstable discrete eigenvalue.
Although the eigenvalue spectra obtained in the linear stability analysis have been
shown to have a continuous part, numerical work together with Appendix A suggests
that this instability mechanism is not active (the continuous spectrum is stable) for
the parameter values investigated by the laboratory experiments.

We should note that when considering the stability of rotating disk flows (or
equivalently the boundary-layer system that we present here) there are essentially
two different approaches. The first approach, which is the one we have taken in
this work, is to consider unsteady flows of the same similarity form. The second
approach assumes a steady flow in the appropriate similarity form and then considers
the linearized equations of motion governing three-dimensional perturbations to this
basic state. Although not a strictly rational mathematical procedure (unlike our
approach) this latter technique has been widely applied to rotating disk problems,
motivated in some cases by similarities to the flow found over swept wings, and in
others as simply an example of a three-dimensional boundary layer. Considerable
effort has been applied to making comparisons between the theoretical predictions
and experimental results, see for example Gregory, Stuart & Walker (1955), Tatro &
Mollö-Christensen (1967), and Wilkinson & Malik (1985). More recently Lingwood
(1996, 1997) has considered the absolute instability of a family of rotating flows,
obtaining results that are consistent with experimental observations of the onset of
laminar–turbulent transition. Therefore, it must be remembered that when we refer
to a flow as being stable/unstable, we mean within the framework of the assumptions
made concerning the form of disturbance.

Finally, we should note that the parameter space for a Schmidt number of unity,
as determined by DFH and reproduced in figure 1, has no region within which the
primary branch of steady solutions is unstable. Therefore, the fact that the steady
solutions represented by the shaded region (denoted by I, in figure 1), as shown in the
parameter space diagram, are not obtained by any time-dependent process cannot be
attributed to an instability of this branch of solution.

In Appendix B we have returned to the general boundary-layer problem in an
unrestricted parameter space. Only a sub-region (S∗ > Ŵ 2

e ) of this space is directly
relevant (in a global sense) to the experimental investigations we have described. The
aim of this work was to complete the analysis of the broader class of boundary-
layer behaviour, as presented by DFH, allowing for the effects of a high Schmidt
number, σ. Computational solution of the governing equations at large values of σ
(initially motivated by the experimental work) has revealed a further general class of
evolution. We have shown that the new evolution can be associated with a rather
complex stability problem in which the presence of continuous spectra (as well as
discrete modes) plays an important role. The analysis has many similarities to stability
problems derived for other, rather different, boundary-layer flows; see for example
Mack (1976), Balakumar & Malik (1992).
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Appendix A. The continuous spectrum
It has been shown by Grosch & Salwen (1978) and Salwen & Grosch (1981) that,

for the Orr–Sommerfeld equation, there may be a continuous spectrum in addition to
the discrete spectrum, in a flow defined on a semi-infinite domain, and they provide
an indication about how one might find that portion of the time response of the
system. We follow the broad outlines of their suggestions, but some of the details are
different here.

We begin by taking the Laplace transformation of (5.7)–(5.10), which leads to
(5.7)–(5.10) with ∂/∂t in each equation replaced by the Laplace variable s, and initial
conditions on the right-hand side. If the disturbances are taken to occur only at
Θ = 0, then the system remains homogeneous. Symbolically, if f denotes the vector
(Ũ, Ṽ , W̃ , B̃)T, and G denotes the spatial operator in (5.7)–(5.10), then (5.7)–(5.10)
may be written as ft + Gf = 0 and so the Laplace transform leads to

sL{f}+ GL{f} = 0, (A 1)

where L{q} is the Laplace transform of q. Grosch & Salwen indicate that the
continuous spectrum may be determined by examining the large-|Θ| behaviour of
the solutions to (A 1). We do this by writing L{f} = C exp(λΘ), which leads to a
sixth-order polynomial whose solutions give the large-|Θ| behaviour of L{f}. Note
that C = C(s), and that function cannot be determined unless the detailed connection
to the lower layer and the initial conditions are known. We return to this point later
in discussing the large-t approximations to the inversion integral.

The polynomial determining λ may be written as

(s+ V̂∞λ− λ2/σ)[(λ2 − V̂∞λ− s)2 + 4Ŵ 2
e ] + 2κ(λ2 − V̂∞λ− s) = 0, (A 2)

κ ≡ 1
2
(Ŵ 2

e − S∗), (A 3)

where V̂∞ and Ŵe are the values of V̂0 and Ŵ0 at the edge of the layer.

A.1. The case σ ≡ 1

In this case, equation (A 2) takes a simpler form that is easily solved, namely

(s+ V̂∞λ− λ2)[−2κ+ (λ2 − V̂∞λ− s)2 + 4Ŵ 2
e ]. (A 4)

The six roots are then given by

λ1,2 = − 1
2
V̂∞ ± ( 1

4
V̂ 2
∞ + s

)1/2
, (A 5)

λ3,4,5,6 = 1
2
V̂∞ ± { 1

4
V̂ 2
∞ + s± i

(
4Ŵ 2

e − 2κ
)1/2}1/2

. (A 6)

Note that the three roots with positive real part necessary to form a solution give a
function which has branch point singularities in the Laplace (s) domain. In particular,
such branch points are indicative of a continuous spectrum, since the Laplace inversion
path must be deformed about a branch cut starting at each such branch point and
running to the left, parallel to the real axis. Here, the three branch points are of the
square-root variety, and their locations are at

s = −V̂ 2
∞/4, s = −V̂ 2

∞/4± i(4Ŵ 2
e − 2κ)1/2. (A 7)

Since these branch points all lie in the half plane Re(s) < 0, the continuous spectrum
is stable and of no real importance to time-developing instabilities. Notice that at
each branch point there is a double root for λ.
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A.2. The case σ →∞, V̂∞ ≡ 0

This section deals with a limiting case of some importance, since in many situations
the value of V̂∞ is quite small and σ is large. This case is also directly relevant to
the trivial solution available at Ŵe = 1. Simply setting V̂∞ and 1/σ to zero in (A 2)
simplifies the polynomial to

(λ2 − s)2 +
2κ

s
(λ2 − s) + 4Ŵ 2

e = 0. (A 8)

The four roots are then

λ1,2,3,4 = ±
{
s− κ

s
±
(
κ2

s2
− 4Ŵ 2

e

)1/2}1/2

, (A 9)

with the two ± taken independently, leading to four roots. There are, of course, two
others corresponding to large but finite σ, but they are of no importance to the
stability of the flow. There are branch points at the zeros of the inner square root,
the most important being the one in the right half-plane that is given by

so =
κ

2Ŵe

=
Ŵ 2

e − S∗
4Ŵe

, (A 10)

and there are also square-root singularities at two other locations, namely on the
imaginary axis, at s = ±i(4Ŵ 2

e − 2κ)1/2, which leads to an algebraically decaying,

oscillatory component of the solution. Clearly, underneath the limiting curve S∗ = Ŵ 2
e ,

this branch point is always in the right-half-plane, leading an unstable, continuous
spectrum for this instability. It is important for a computational strategy, that at the
branch point, the four roots become only two; that is, there are two double roots.
Also notice that for this case, at the branch point, the values of λ are given by

λo = ±i

(
S∗ + 7Ŵ 2

e

4Ŵe

)1/2

. (A 11)

This result agrees with the statement of Grosch & Salwen (1978) that the value of
λ on the branch cut should be pure imaginary. At more general parameter values
however, the value of λ has both real and imaginary parts.

A.3. Branch point locations for the general case

Obviously, for non-zero values of 1/σ and V̂∞, it is impossible to solve (A 2) for λ(s).
However, note that in the previous cases, at a branch point location, there is a double
root for λ. Hence, whereas it is impossible to obtain complete expressions for roots,
we can obtain the branch point locations. At a double root, the λ derivative of (A 2)
must also be satisfied. Differentiating (A 2) with respect to λ leads to

((λ2 − φ)2 + 4Ŵ 2
e )φ+ 2κ(λ2 − φ) =

λ2

σ
((λ2 − φ)2 + 4Ŵ 2

e ), (A 12)

2λφ[κ+ φ(λ2 − φ)] =

(
V̂∞ − 2λ

σ

)
κ(λ2 − φ) + (V̂∞ − sλ)

(
λ2

σ
− φ

)
(λ2 − φ)

λ2

σ

−
[
V̂∞λ2

σ
− 2λ3

σ
− V̂∞φ

]
[κ+ φ(λ2 − φ)], (A 13)

where

φ ≡ s+ V̂∞λ. (A 14)
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Simultaneous solution of these equations locates the branch point and the corre-
sponding value of the double root. Setting σ = ∞ and V̂∞ to zero recovers the results
in §A.2 above. The reader is cautioned that the dependence of the branch point
locations on S∗, σ, and Ŵe is even more complicated than it appears here, because V̂∞
is itself a complicated function of those three variables, whose value must be obtained
numerically from the steady-state computation for a given set of {S∗, Ŵe, σ}.

Large σ and small V̂∞
Note that, as written, the right-hand sides of (A 12) and (A 13) constitute the

corrections to (A 10) and (A 11) for non-zero values of 1/σ and V̂∞. If we insert an

expansion in powers of V̂∞ and σ−1 into these equations, the result is that

φ ∼ so +
λ2
o

σ
+ O(σ−2, V̂ 2

∞), (A 15)

λ ∼ λo − κ2V̂∞
4φ2

o(φ
2
o − κ)

+
λo

4σ

κ2 − κφ2
o + φ4

o

φ2
o(φ

2
o − κ)

+ O(V̂ 2
∞, σ

−2), (A 16)

using the notation of (A 10) and (A 11). Tacit in this approximation is the assumption
that σ−1 = O(V̂∞), and since V̂∞ is typically O(10−1), this approximation is not
necessarily valid for σ values beyond 10 or so, since terms O(V̂ 2∞) should then to
be retained. It is also evident from (A 12) and (A 13) that if κ is small, a new
approximation must be utilized, so in fact we require that V̂∞ = o(κ) as well.

Equations (A 15) and (A 16) may be rearranged to give the location of the two
right-most branch points in this limiting case as

s =
1

4Ŵe

[(
1− 7

σ

)
Ŵ 2

e −
(

1 +
1

σ

)
S∗
]
± iV̂∞

(
S∗ + 7Ŵ 2

e

4Ŵe

)1/2

+ O(V̂ 2
∞, σ

−2, V̂ 2
∞/κ).

(A 17)

This result suggests that the flow will be stable (ignoring any discrete modes for the
moment) at sufficiently small values of σ, specifically for σ < (7Ŵ 2

e + S∗)/(Ŵ 2
e − S∗).

This result must be used with care since its validity depends on the satisfaction of the
various ordering criteria.

Large-σ branch point locations

In the laboratory, σ is about 700, so it makes sense to examine solutions of (A 12)
and (A 13) for σ →∞. After some algebra, (A 12) and (A 13) can be combined into a
single equation for φ, and a second that allows computation of the corresponding λ,

κ̄Φ3/2(Φ2 − 1)1/2{1− κ̄Φ2 ± (1− Φ2)1/2}1/2 =
V̂∞

(8Ŵe)1/2
[1± (1 + κ̄Φ2)(1− Φ2)1/2],

(A 18)

λ = ±
{2Ŵe

Φ

[
± (1− Φ2)1/2 + κ̄Φ2 − 1

]}1/2

, Φ ≡ 2Ŵe

κ
φ, κ̄ ≡ κ

4Ŵ 2
e

. (A 19)

The above form for λ leads to the same four branch points noted in §A.2, in a different
notation. It is evident from this expression for Φ that, even if V̂∞ is small, one cannot
discard the right-hand side of (A 17) near the curve κ̄ = 0. If we are sufficiently far
removed from that curve, so that V̂∞/κ̄� 1, we can obtain an approximate solution
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for Φ for the right-hand branch points, in the form,

Φ ∼ 1 +
V̂ 2∞

16Ŵ 2
e κ̄

2(1− κ̄)
, V̂∞ → 0 . (A 20)

and the value of λ there is

λ ∼ λo +
1 + κ̄

4κ̄(1− κ̄)
V̂∞ + O(V̂ 2

∞). (A 21)

Eventually, after some work, we find that the branch point locations are given, to two
orders in V̂∞, as

s = λoV̂∞ +
κ

2Ŵe

[
1 +

3

32

V̂ 2∞
Ŵ 2

e κ̄
2(1− κ̄)

]
+ O(V̂ 3

∞). (A 22)

It is worth noting that unlike the Orr–Sommerfeld cases discussed by Grosch &
Salwen (1978) the values of the roots, λ, are not pure imaginary at the branch points.

A.4. A numerical criterion

The above procedure can only be followed analytically for the limiting cases given;
we require a numerical procedure for locating the branch points at general values of
the parameters. This can be done quite easily by using any standard routine capable
of finding the roots of the sixth-degree polynomial (A 2). Note that in finding the
branch points, which are apparently always square-root in nature in this problem, we
set that root to zero, thereby loosing root multiplicity. Hence, a very simple procedure
is to search the right half-plane for roots, then the locations where there is a double
root constitute branch points. The strategy noted by Grosch & Salwen (1978) is not
satisfactory here, since in our case one pair of roots is not necessarily pure imaginary
on the branch cut, as is evident from examination of the above approximate results.

By adopting this numerical procedure we are able to follow the location of the
branch point in the Laplace domain whilst gradually varying the location in the
{Ŵe, S

∗, V̂∞} parameter space (at fixed σ). On altering the parameters slightly, we
use the previously computed location as the first approximation to the branch point
for the current parameters. We can begin the procedure with an approximation to
the branch point provided by the above analysis or from an application of the QZ
algorithm with sufficient resolution.

One feature of obvious interest that can be readily obtained by this numerical
criterion is the stability boundary in parameter space beyond which the branch point
moves into the right half-plane. This stability boundary is shown in figure 18 dividing
the regions denoted by steady state and (ii); the location of this boundary was
obtained by following only the primary branch of the steady solutions.

A.5. The large-time behaviour

Clearly, for the cases when L{f} has a branch point in the right half-s-plane, the
Laplace inversion contour, given by the contour Γ , can be deformed into a new
contour, Γ1, which wraps around the one or two branch cuts. Then that portion of
the Laplace inversion that leads to instability involves simply the integration along the
segments of the branch cuts lying in Re(s) > 0. Presumably a numerical superposition
of the solutions obtained above would be one way to construct such an integral.

We now consider the large-time behaviour of the solutions at the edge of the
layer for large σ and small V̂∞. As an alternative to the integration on path Γ1, the
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large-time behaviour near the edge of the boundary layer can be deduced by the
following steepest-descent strategy.

Of the four roots of the polynomial (A 2) that have positive real part, at large Θ,
the one with smallest real part in any region of the s-plane, say λm, is dominant, hence

L{f} ∼ CmeλmΘ. (A 23)

Thus, the large-time, large-Θ behaviour of f is given by

f ∼ 1

2πi

∫
Γ1

Cm(s) est+λmΘ ds, −Θ � 1. (A 24)

Evaluation of the cut integrals is difficult, even at large (−Θ), but really unneces-
sary anyway, since the large-time behaviour can be obtained by a steepest descent
approach, requiring one more path deformation, to a path Γ2. It turns out that the
saddle points lie off the end of the branch cuts as shown. The saddle points are clearly
given by solutions of dλm/ds = −Θ/t. Let the upper location be denoted by sc. Then,
formally, provided we choose the path through the branch point to be a steepest path,
and noting that the contribution from the lower point will be the complex conjugate
of the upper, we have

f ∼
(

1

−2πΘ

)1/2

Re

(
C(sc)

(
1

|λ′′m(sc)|
)1/2

esct+λm(sc)Θ−i(π/2−ψ)

)
, (A 25)

where ψ is the angle of the path through the saddle point, and is given by ψ =
−arg(λ′′m(sc)). Since, in this expression −Θ/t = O(1), the general form of the solution
is

f ∼ 1

(−Θ)1/2
F (−Θ/t) cos

(
Im(λm(sc))Θ + Im(sc)t+Ψ

)
× exp

(
Re(sc)t+ Re(λm(sc))t

)
. (A 26)

While this expression is perhaps instructive, it cannot be further evaluated by asymp-
totic means alone because F depends on the details of the quantity C(s), whose form
cannot be found.

However, if we suppose that −Θ/t� 1, then it can be shown that the saddle point
moves in close to the branch point, so that the quantity C(sc) is given approximately
by C(so), which is a constant independent of either Θ or t. That makes evaluation of
the various quantities possible, and after considerable algebra, it can be shown that
the large-time behaviour for σ � 1 and V̂∞ � 1 is approximated by

f ∼ |C(so)|
(

ŴeΘ
2

(1− κ̄)πt3

)1/2

cos((2Ŵe(1− κ̄))1/2 (Θ − V̂∞t) +D) eκt/(2Ŵe),

t� (−Θ)� 1, and D = arg(C(so)), (A 27)

for σ � V̂−1∞ � 1. Similar expressions may be obtained for other limiting cases. Note
that this solution does not vanish for large (−Θ), but that is a result of the restriction
−Θ � t. The solution certainly decays at large (−Θ).

The important result here is that the instability is somewhat weaker than expo-
nential, behaving like t−3/2 exp(sot). Although we do not present the results here, we
have verified the algebraic component by numerically marching the linear stability
equations forward in time and comparing with the above result.
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Figure 19. A finite-time breakdown at S ∗ = 0, Ŵe = 0.9 and σ = 700.

Appendix B. A new finite-time breakdown
The parameter space diagram presented by DFH needs some modification for

Schmidt numbers, σ, somewhat greater than unity. The numerical work of DFH was
(mainly) presented for σ = 1, and it was noted that the parameter space remained
largely unchanged at higher Schmidt numbers.

A preliminary investigation of the σ � 1 regime suggested that the boundary
layer separates into a thin buoyancy layer, in which the velocity components are
Taylor series expansions from a thicker velocity boundary layer. The most significant
effect from the point of view of the parameter space diagram was a shift of S∗crit,
the boundary that separates the steady-state region from the growing boundary-layer
region, to lower values of S∗.

Recently, however, numerical computations of the governing boundary-layer equa-
tions for parameter values approaching Ŵe = 1, and at more general (larger) values
of σ, have revealed an interesting new class of breakdown. A typical example of the
breakdown is shown in figure 19, which shows profiles of Ŵ (Θ, t) as t→ t0 the time
at breakdown. Similar results can be obtained for the other components of velocity
and buoyancy.

A comparison of this figure with similar results for the finite-time singularity
obtained in the Ŵe > 1, S∗ < Ŵ 2

e region (as presented by DFH†) reveals no
similarities. In particular, the previously presented singular behaviour (in the case
Ŵe > 1) occurred largely within an inner region Θ ∼ (t− t0)1/2, whereas in this case
the breakdown dominates the profiles in a region that is displaced away from the
boundary, with the wall components of stress and buoyancy remaining finite. The
breakdown can always be associated with an increasing (spatial) oscillatory behaviour
as shown in the figure. We must note that there is some degree of assumption when
referring to the results as showing a finite-time breakdown, since we have not formally
connected the numerical results to any asymptotic description.

Rather than simply performing the unsteady computations over a wide range

† We note that there is a typographical error in the boundary condition (4.32) presented by

DFH. The correct condition is Ŵ1(η̃ = 0) = 0.
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of parameters and then inferring boundaries in the parameter space within which
this behaviour occurs, we can show that this evolution is associated with a linear
instability of the steady states. At large σ, within the steady-state region of figure
18 there exists one stable steady-state together with, typically, a number of unstable
states. The initial value problem in this region of parameter values always evolves
to the one stable solution. On moving from the steady-state region to the area of
parameter space denoted by (ii) however, the steady state becomes unstable and the
initial value problem develops a finite-time breakdown. The stability analysis is as
given in § 5, but in this case the continuous component of the eigenvalue spectrum (as
discussed in Appendix A) can be unstable and dominate the unstable discrete modes.

The stability problem can be discussed more formally, and it is by this approach
that we can determine at what parameter values this new evolution is obtained, as
shown in figure 18. Since we only consider the linear stability problem, we cannot
connect the finite-time breakdown and the instability in any formal manner. However,
unsteady computations at parameter values near the stability boundary in parameter
space (i.e. near the boundary between the steady-state region and region(ii)) suggest
that the numerical breakdown discussed above is eventually obtained after nonlinear
effects supersede the linear instability.
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