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We consider a set of nonlinear boundary-layer equations that have been derived by
Duck, Foster & Hewitt (1997a, DFH), for the swirling flow of a linearly stratified
fluid in a conical container. In contrast to the unsteady analysis of DFH, we re-
strict attention to steady solutions and extend the previous discussion further by
allowing the container to both co-rotate and counter-rotate relative to the contained
swirling fluid. The system is governed by three parameters, which are essentially non-
dimensional measures of the rotation, stratification and a Schmidt number. Some of
the properties of this system are related (in some cases rather subtly) to those found
in the swirling flow of a homogeneous fluid above an infinite rotating disk; however,
the introduction of buoyancy effects with a sloping boundary leads to other (new)
behaviours. A general description of the steady solutions to this system proves to be
rather complicated and shows many interesting features, including non-uniqueness,
singular solutions and bifurcation phenomena.

We present a broad description of the steady states with particular emphasis on
boundaries in parameter space beyond which steady states cannot be continued.

A natural extension of this work (motivated by recent experimental results) is to
investigate the possibility of solution branches corresponding to non-axisymmetric
boundary-layer states appearing as bifurcations of the axisymmetric solutions. In
an Appendix we give details of an exact, non-axisymmetric solution to the Navier–
Stokes equations (with axisymmetric boundary conditions) corresponding to the flow
of homogeneous fluid above a rotating disk.

1. Introduction and formulation
The recent work of Duck, Foster & Hewitt (1997a, hereafter referred to as DFH),

MacCready & Rhines (1991) and Hewitt, Davies, Duck & Foster (1999, hereafter
referred to as HDDF), has considered the influence of buoyancy in boundary layers
that are commonly found in spin-up problems. The work of DFH considered the
boundary layer arising in the spin-up of a rotating stratified fluid in a container with
sloping walls (a cone being the chosen geometry). In the analysis of DFH and the
following papers (Hewitt et al. 1997b; HDDF), it was noted that a description of the
steady states available for the governing boundary-layer equations and an analysis of
their stability is a non-trivial exercise. Although a stability analysis was given for some
of the available steady states by HDDF, a complete analysis of all the features of the
problem is still lacking. In particular, as a first step towards the eventual development
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Figure 1. A schematic of the geometry and coordinate system. Θ is a scaled boundary-layer
coordinate. Û(Θ), V̂ (Θ) are radial and normal velocity components in the boundary layer, and are
introduced by a similarity-type solution of von Kármán form, which removes the radial dependence.
The fluid density in the interior flow is a linear function of the fluid depth. The cone-angle α can be
scaled out of the boundary-layer equations.

of a stability analysis, we note that there has been little discussion concerning non-
uniqueness of the steady solution branches, or any investigation of where (in terms
of the three-dimensional parameter space) steady solutions exist. Furthermore, in all
the analyses of the stratified, spin-up process it has been assumed that the sense of
rotation of the fluid at the boundary-layer edge is always the same as the container,
that is, there is no counter-rotation.

For a swirling flow of homogeneous fluid above an infinite rotating disk, the
effects of counter-rotation have been shown to lead to qualitatively different be-
haviour in both the steady and unsteady cases. Bodonyi & Stewartson (1977) (with
a later amendment by Stewartson, Simpson & Bodonyi 1982) examined the unsteady
boundary layer that forms adjacent to a rotating disk subsequent to an impulsive
change in the sign of the disk’s angular frequency. The boundary-layer solution was
shown to break down at a finite time, with the displacement thickness becoming
infinite. This is a fundamentally different form of breakdown to that identified by
DFH for a stratified, sloping, boundary layer. In a later paper the numerical approach
utilized by Bodonyi & Stewartson was extended by Bodonyi (1978) to consider more
general counter-rotating (or ‘spin-over’) problems for rotating disks. Bodonyi pre-
sented numerical solutions of the initial value problem, which showed a limit-cycle
behaviour.

For the steady-state rotating disk problem, allowing the disk to counter-rotate
reveals a fold in the primary branch of solution; we denote the solution arising
directly from the classical von Kármán (1921) state as being the primary branch. The
solution can be continued beyond this first fold to successively higher branches. We
shall discuss this behaviour in more detail later.

The configuration that we wish to consider here is that of a swirling, linearly
stratified fluid in a rotating conical container (see figure 1). In particular we take the
Ekman number (E = ν/Ωh2) to be small and discuss the steady boundary layer. Here,
ν is the kinematic viscosity of the fluid, Ω is the rotation rate of the cone and h a
typical lengthscale. The governing Boussinesq boundary-layer equations for solutions
of a similarity type are

Û2 + V̂ ÛΘ − Ŵ 2 = ÛΘΘ − B∗, (1.1)

2ÛŴ + V̂ ŴΘ = ŴΘΘ, (1.2)

V̂B∗Θ + ÛB∗ − S∗Û =
1

σ
B∗ΘΘ, (1.3)
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2Û + V̂Θ = 0, (1.4)

with the boundary conditions

Ŵ = 1, Û = V̂ = B∗Θ = 0 on Θ = 0, (1.5)

and

Û → 0, Ŵ → Ŵe, B
∗ → Ŵ 2

e as Θ → −∞. (1.6)

The unsteady form of (1.1)–(1.4), with suitable initial conditions, was derived by
DFH for a class of axisymmetric, similarity-type solutions arising in the spin-up of a
linearly stratified fluid in a conical container; the reader is referred to this previous
work for details of the derivation of (1.1)–(1.4). More general classes of axisymmetric
container have been discussed by Hewitt et al. (1997b), in which it was shown that
the governing system (away from the rotation axis) is essentially reduced to subsets
of the equations above. In this sense the cone is the most interesting simple container
to examine.

In the system (1.1)–(1.6), Û is directly related to the radial velocity component,
whilst Ŵ and V̂ are similarly associated with azimuthal and normal boundary-layer
velocity components. This notation is consistent with that developed by DFH, and
the reader is again referred to that paper for a more complete description of the
derivation and non-dimensionalization. The term B∗ is a non-dimensional measure of
the local density perturbation, and Θ ∈ [0,−∞) is a scaled coordinate normal to the
boundary. As noted above, we shall make no assumptions concerning the sign of Ŵe.

The boundary-layer system is governed by three parameters, namely {Ŵe, S
∗, σ}.

Physically, Ŵe is the ratio of the fluid rotation rate at the boundary-layer edge to the
rotation rate of the container, S∗ is a slightly redefined Burger number, and σ is a
Schmidt number. It is worth noting that there is no parameter appearing in (1.1)–(1.4)
associated with the apex-angle of the conical container. This dependence has been
absorbed into the definitions of S∗ and B∗ as described by DFH.

Particular cases of interest are a rotating boundary but stationary fluid (Ŵe = 0,
analogous to the von Kármán 1921 problem), a small difference in rotation rates of the
boundary and far-field fluid (Ŵe ≈ 1, the linear Ekman boundary layer), a stationary
boundary but rotating far-field fluid (1/Ŵe → 0, analogous to the Bödewadt 1940
problem) and counter-rotation of the far-field fluid and boundary (Ŵe < 0).

The parameter S∗ −Ŵ 2
e is a measure of the relative importance of buoyancy effects

and Coriolis forces, with |S∗ − Ŵ 2
e | � 1 corresponding to a strongly stratified fluid.

There is a subset of the boundary-layer system that we shall refer to in some detail,
namely the case of a homogeneous fluid, B∗ = S∗ = Ŵ 2

e , for which the equations
(1.1)–(1.6) reduce to those obtained for rotating disk flows. We can recover the
classical rotating disk equations (RDE) with a change of variables,

{Û, Ŵ , V̂ , B∗, Θ} → {fz, g, 2f, Ŵ 2
e , −z}, (1.7)

to obtain

fzzz + 2ffzz − f2
z + g2 − Ŵ 2

e = 0, (1.8)

gzz + 2fgz − 2gfz = 0. (1.9)

The conditions applied to the system (1.8)–(1.9) are no-slip and impermeability at the
disk together with an unchanged rigid-body rotation at infinity,

fz → 0 , g → Ŵe as z →∞, (1.10)

f = fz = 0, g = 1 on z = 0. (1.11)
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We note that the solution for the swirling flow above a rotating disk is an exact
solution of the Navier–Stokes equations. This is not the case for the conical container
since terms of O(E1/2/r) are neglected when deriving the governing equations and the
boundary-layer structure must have some near-apex region.

The governing equations for the steady rotating disk problem appear to be relatively
straightforward at first sight, with solutions that depend on a single parameter, namely
the ratio of the angular frequency of the fluid at infinity to that of the disk (Ŵe). Never-
theless, as discussed by (amongst many others) Zandbergen (1979) and Dijkstra (1980),
the problem has a number of interesting properties. It has been shown that there are re-
gions of parameter space for which no solution can be located, and other regions where
non-unique solutions exist. Most attention has been centred near the part of parameter
space that corresponds to the fluid being at rest whilst the infinite disk rotates with a
non-dimensionalized angular frequency of unity (near Ŵe = 0 in our terminology). In
this region an infinite number of solution branches are available. It has been shown by
Dijkstra (1980) that the nth solution branch consists of an O(1) region immediately
adjacent to the disk, followed by (n − 1) inviscid cell solutions, which are separated
by viscous interlayers. Each time the solution branches, another inviscid cell solution
is added to the existing chain; the amplitude of the new cell solution can also be
related to that immediately adjacent to it.

Other well known features for the solutions to (1.8)–(1.9) include an infinity of
solution branches connected through a singular solution when Ŵ 2

e ≈ 2.061, and a

fold in the primary solution branch near Ŵe ≈ −0.1605. This latter value denotes the
emergence of a second branch of solution, which can be continued further to provide
the higher branches described above. A complete description of the large body of
work concerning aspects of the RDE is given in the review article by Zandbergen &
Dijkstra (1987). In what follows we shall use many of the concepts developed for the
RDE (which are also applicable to the more general system when B∗ ≡ Ŵ 2

e = S∗) as a
starting point for an investigation of the (stratified) boundary-layer system (1.1)–(1.6).

The outline for the paper is as follows. In § 2, we present a number of results
concerning steady solutions to the system (1.1)–(1.6). In § 2.1, we show that non-
uniform buoyancy solutions arise on S∗ = Ŵ 2

e as imperfect bifurcations from the
classical solutions to the RDE. In § 3, we determine boundaries in (S∗, Ŵe) parameter
space (with σ fixed) beyond which steady solution branches cannot be continued.
Singular solutions to the RDE have been discussed by a number of authors, Bodonyi
(1975), and § 3.3 extends this analysis, deriving a boundary in the (S∗, Ŵe) parameter
space along which such solutions can be located. In § 3.4 we discuss the limit of small
normal velocity at the boundary-layer edge since this limit is often of relevance for
steady states near critical boundaries in parameter space. Finally, in § 4 we present
some concluding remarks. The Appendix provides details of a non-axisymmetric
extension of von Kármán’s exact solution for the swirling flow above a rotating
disk, which has implications for the existence of nonlinear, non-axisymmetric, steady
boundary-layer states for the more general boundary-layer system (1.1)–(1.6).

2. Steady boundary-layer states on S∗ = Ŵ 2
e .

When S∗ = Ŵ 2
e with B∗ ≡ Ŵ 2

e , steady states of the RDE (1.8)–(1.11) are also
solutions of the more general system (1.1)–(1.6). Thus, on this surface in parameter
space, there exist solutions that have a velocity field equivalent to that obtained for
the rotating disk problem, with a uniform B∗-profile; the number of such solutions
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Figure 2. The first four solution branches to the rotating disk equations (near Ŵe = 0).

depends on the precise value of Ŵe, as illustrated by figure 2. The results shown in
this figure agree with those presented by other authors, see for example Zandbergen
(1979).

The solution branches shown in figure 2 were obtained via a finite difference
approach in which either Ŵe, or∫ −∞

0

(
V̂ (Θ̄)− V̂∞

)
dΘ̄, (2.1)

is specified. Here, V̂∞ is the value, at the boundary-layer edge, of the velocity compo-
nent perpendicular to the disk/container wall. Switching between these two param-
eters where appropriate allows the solution to be continued beyond the limit points
shown in figure 2. Later computations were performed using an orthogonal colloca-
tion method together with arc-length continuation. This approach was applied by the
package AUTO (Doedel & Wang 1995), which allows for numerical continuation of
solutions when varying any of the parameters of the problem.

Solving (1.1)–(1.6), rather than (1.8)–(1.11), can cause problems since (as we shall
see) the uniform buoyancy solution can be numerically unstable when V̂∞ < 0;
however, forcing the buoyancy to remain uniform in the computational method
removes this difficulty. A more detailed discussion of the large-Θ behaviour of the
system (1.1)–(1.6) will be presented later; however, for S∗ = Ŵ 2

e we note that solutions
with non-uniform B∗-profiles must satisfy

B∗ ∼ b0 exp (σV̂∞Θ) for |Θ| � 1, (2.2)

where b0 is a constant. Therefore V̂∞ < 0 leads to an unacceptable, exponentially
growing solution far from the boundary since Θ ∈ [0,−∞).

Higher branch solutions to the RDE (beyond those shown in figure 2) can be
obtained with the same procedure by continuing the computations beyond the point
(b) shown in the figure. Each time the solution branches another inviscid cell is
introduced into the boundary-layer solution, as described by Dijkstra (1980), and
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Figure 3. Some of the non-uniform buoyancy solutions that are available on S ∗ = Ŵ 2
e ,

with σ = 1.

thus a larger domain is required in the computation with a corresponding increase in
the necessary number of grid points.

2.1. A bifurcation to states of non-uniform buoyancy on S∗ = Ŵ 2
e

At general values of the parameter Ŵe (maintaining the restriction S∗ = Ŵ 2
e ) there

exist other states for which B∗ is non-uniform throughout the boundary layer; some
of these solution branches are shown in figure 3 for σ = 1. In figure 3, branch
(Ia) bifurcates from the branch-1 rotating disk solution, whilst branch (II ) appears
as a bifurcation from the branch-2 rotating disk solution (see figures 4 and 5).
Branch (Ia) can be continued beyond point (a) up to a critical value of Ŵe (at
which point V̂∞ = 0) and (b) is a (|Ŵe| � 1) region that we shall discuss in detail
later. The solutions displayed in figure 3 correspond to states that have a density
variation throughout the boundary-layer, matching to an interior swirling flow that
is of uniform density.

Locating solutions such as those shown in figure 3 can be difficult in general. Some
of the non-uniform branches can be found for S∗ = Ŵ 2

e by (numerically) obtaining
a higher branch steady solution at a general point in the parameter space and then
following this solution in the limit S∗ → Ŵ 2

e . A more systematic method is available
however since there are critical values of Ŵe on the solution branches of the rotating
disk equations, which when used as a starting point for a perturbation analysis of
(1.1)–(1.4), allow for both rotating-disk solutions and states with a weak density
variation. The values of Ŵe where these bifurcation points are located can be derived
from the following expansion procedure:

Ŵe = Wtc + δ , |δ| � 1, (2.3)

S∗ = W 2
tc + 2δWtc + δ2, (2.4)
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B∗ = W 2
tc + δB1(Θ) + · · · , (2.5)

(Û, V̂ , Ŵ )T = (U0(Θ), V0(Θ),W0(Θ))T + δ(U1(Θ), V1(Θ),W1(Θ))T + · · · , (2.6)

where Ŵe = Wtc is the critical parameter value at which the bifurcation occurs. Thus,
we are perturbing about a point on S∗ = Ŵ 2

e and looking for solutions that have
weakly non-uniform B∗-profiles.

At leading order, O(δ0), after substitution of the above expansions into the govern-
ing system, we obtain the RDE, but in the form

U2
0 + V0U

′
0 −W 2

0 = U ′′0 −W 2
tc, (2.7)

2U0W0 + V0W
′
0 = W ′′

0 , (2.8)

2U0 + V ′0 = 0, (2.9)

with U0 = V0 = 0, W0 = 1 on Θ = 0 and U0 → 0, W0 →Wtc as Θ → −∞. Obviously,
Wtc is not determined at this stage of the expansion. Solutions of this system for an
unrestricted far-field rotation rate (Ŵe) are given in figure 2 in the neighbourhood of
Ŵe = 0.

At next order, O(δ), we obtain

2U0U1 + V0U
′
1 + V1U

′
0 − 2W0W1 = U ′′1 − B1, (2.10)

2(U0W1 +U1W0) + V0W
′
1 + V1W

′
0 = W ′′

1 , (2.11)

V0B
′
1 +U0B1 − 2WtcU0 = σ−1B′′1 , (2.12)

2U1 + V ′1 = 0, (2.13)

with U1 = V1 = W1 = B′1 = 0 on Θ = 0 and U1 → 0, W1 → 1, B1 → 2Wtc as
Θ → −∞. The equation governing B1 can be solved separately in conjunction with
the O(δ0) (rotating disk) system. Making the substitution,

B1 = B̄1 + 2Wtc, (2.14)

reduces (2.12) to

V0B̄
′
1 +U0B̄1 = σ−1B̄′′1 , (2.15)

with B̄′1 = 0 on Θ = 0 and B̄1 → 0 as Θ → −∞. Thus (2.15) together with (2.7)–(2.9)
forms an eigenvalue problem, and thus determines the bifurcation point Wtc.

It is a straightforward process to solve (2.15) by a shooting method (from Θ = 0
to Θ → −∞) given any leading-order solution {U0, V0, W0}. Since (2.15) is linear
we may arbitrarily specify B̄1(Θ = 0) = 1, then by coupling the shooting routine
to a solution of the O(δ0) system we may iterate on Wtc to satisfy the remaining
boundary condition B̄1 → 0 as Θ → −∞. Application of this procedure shows that
for a non-trivial solution to (2.15) to exist, the rotation rate (for a branch-1, O(δ0),
leading-order solution) is Wtc ≈ −0.1487 when σ = 1. In terms of the figures, this
value of Wtc corresponds to the cross-over of the solution branch (Ia) from figure 2
and branch-1 from figure 1, as shown in figure 3.

The dependence of the bifurcation point on σ is obviously of some importance. In
particular one may ask if there is always a bifurcation to a non-uniform buoyancy
solution (e.g. for the branch-1 solutions to the RDE), or is there some finite range of
σ within which this feature can be located. The existence of the bifurcation point is
obviously crucial for the existence of steady states in the Ŵe < 0 region (see figure
4). In table 1 we show how the location of the bifurcation point (Wtc) varies with the
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σ Wtc σ Wtc

1 −0.1487 16 −0.1523
2 −0.1491 32 −0.1527
4 −0.1504 64 −0.1530
8 −0.1516 128 −0.1531

Table 1. Variation of the first bifurcation point with σ.

Schmidt number σ; as noted earlier, Wtc ≈ −0.1487 when σ = 1. As can be seen from
the table of values, the bifurcation persists at large values of σ, and Wtc asymptotes
to a finite value.

The same routine may be applied to the higher branch solutions of the rotating disk
problem to obtain other values for Wtc; in this way we can locate other non-uniform
solutions, such as that denoted by (II ) in figure 3.

The solution of (2.15) determines the location of the bifurcation point; however,
since this equation for B̄1 is linear we must continue the expansion procedure in order
to determine an ‘amplitude’ for the bifurcated solution. It is easy to see that a general
solution to the O(δ) system can be written as

U1 = U1H + AŨ1, (2.16)

V1 = V1H + AṼ1, (2.17)

W1 = W1H + AW̃1, (2.18)

B1 = 2Wtc + AB̃1, (2.19)

where A is a real constant (representing some amplitude measure) that remains
undetermined at this order. We note that {Ũ1, Ṽ1, W̃1} satisfy (2.10)–(2.11), (2.13) but
with {U1, V1, W1} → {Ũ1, Ṽ1, W̃1} and the changed boundary condition W̃1 → 0 as
Θ → −∞.

The solution parts {U1H, V1H, W1H} represent the first correction term in a Taylor
series expansion of the rotating disk solution about the critical point, that is

U1H =
∂U0

∂Ŵe

∣∣∣∣∣
Ŵe=Wtc

, V1H =
∂V0

∂Ŵe

∣∣∣∣∣
Ŵe=Wtc

, W1H =
∂W0

∂Ŵe

∣∣∣∣∣
Ŵe=Wtc

. (2.20)

To determine the constant A we must continue the above expansion to O(δ2), at
which point the density transport equation can again be solved in isolation given the
solutions (2.16)–(2.19). Substitution of the expansions (2.3)–(2.6) leads to

V0B
′
2 + V1B

′
1 +U0B2 +U1B1 − 2WtcU1 −U0 = σ−1B′′2 , (2.21)

with boundary conditions B′2 = 0 on Θ = 0 and B2 → 1 as Θ → −∞. Substitution of
the solutions (2.16)–(2.19) into (2.21), together with (2.14) and the redefinition

B2 = B̄2 + 1, (2.22)

leads to

V0B̄
′
2 +U0B̄2 − 1

σ
B̄′′2 = −A(V1HB̃

′
1 +U1HB̃1)− A2(Ṽ1B̃

′
1 + Ũ1B̃1) (2.23)

with B̄′2 = 0 on Θ = 0 and B̄2 → 0 as Θ → −∞.



Steady boundary-layer solutions for a swirling stratified fluid in a cone 347

Since the homogeneous form of (2.23) has a non-trivial solution, an orthogonality
condition must be satisfied for the inhomogeneous equation to have a solution. Hence
we determine the amplitude constant, A, from the solvability condition

A2a2 + Aa1 = 0; (2.24)

the real constants a1 and a2 are easily shown to be

a1 =

∫ −∞
Θ=0

Φ(Θ){V1H (Θ)B̃′1(Θ) +U1H (Θ)B̃1(Θ)} dΘ, (2.25)

a2 =

∫ −∞
Θ=0

Φ(Θ){Ṽ1(Θ)B̃′1(Θ) + Ũ1(Θ)B̃1(Θ)} dΘ, (2.26)

where Φ(Θ) corresponds to the adjoint of the homogeneous form of (2.23). Thus
there are two solution branches that correspond to A = 0 (the rotating disk solution)
and A = −a1/a2 (the weakly non-uniform buoyancy solution).

Rather than solving the adjoint problem and computing the integrals to give a1,2

we take a slightly more direct approach. We solve the leading-order rotating disk
system (2.7)–(2.9) in conjunction with the eigenvalue problem (2.15) to obtain B̃1

and Wtc, then the terms {U1H, V1H, W1H} are obtained directly and {Ũ1, Ṽ1, W̃1} can
be determined by solving the discretized system resulting from a central differencing
scheme. The amplitude constant A is then determined by an iteration scheme applied
directly to (2.23), solved by the same shooting approach applied to (2.15). For the
specific example given above we find

for σ = 1: Wtc ≈ −0.1487, A ≈ 0.18045.

We should note at this stage that not all states available for S∗ = Ŵ 2
e arise as

bifurcations from the rotating disk solutions. In particular, as σ is increased it is
possible to locate other states (again with non-uniform B∗-profiles) that are isolated
from the rotating disk solutions.

2.1.1. An imperfect bifurcation

The behaviour of the state loci in the {V̂∞, Ŵe}-plane (for S∗ = Ŵ 2
e , Ŵ

2
e ± 10−3,

with σ = 1) is shown in figures 4 & 5 for specific cases. It is clear that the bifurcation
described above is structurally unstable when the modified Burger number, S∗, is
perturbed away from S∗ = Ŵ 2

e . Therefore, we may anticipate that S∗ − Ŵ 2
e acts as an

imperfection when considering steady states near to the bifurcation point Ŵe = Wtc,
S ∗ = W 2

tc.

To discuss this more general case, we can perturb about Ŵe = Wtc as before, but
to introduce the imperfection we must also perturb S∗ such that S∗ −W 2

tc = O(δ2); in
this approach, additional terms will contribute to the final solvability condition. On
writing

Ŵe = Wtc + δ, |δ| � 1, (2.27)

S∗ = W 2
tc + 2δWtc + (1 + S̃)δ2, (2.28)

where S̃ = O(1), the development of the expansion proceeds as before until, at O(δ2),
(2.21) becomes

V0B
′
2 + V1B

′
1 +U0B2 +U1B1 − 2WtcU1 − (1 + S̃)U0 = σ−1B′′2 , (2.29)
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e , Ŵ

2
e ± 10−3. Notice the bifurcation point

near Ŵe ≈ −0.1487.

or equivalently

V0B̄
′
2 +U0B̄2 − 1

σ
B̄′′2 = −A(V1HB̃

′
1 +U1HB̃1)− A2(Ṽ1B̃

′
1 + Ũ1B̃1) + S̃U0. (2.30)

Again A must satisfy a solvability condition, which in this case is of the form

A2a2 + Aa1 + S̃a0 = 0, (2.31)

where a1 and a2 are as defined in the previous approach, and

a0 =

∫ ∞
Θ=0

Φ(Θ)U0(Θ) dΘ. (2.32)

Therefore

A =
−a1 ± (a2

1 − 4S̃a2a0

)1/2

2a2

, (2.33)

leading to the previous result (2.24) when S̃ = 0. However, there is a critical per-
turbation such that no solutions (see figure 7) to (1.1)–(1.4) are available in this
neighbourhood of the rotating disk solution when S∗ = W 2

tc + δ2S̃ , with

S̃ > S̃crit ≡ a2
1

4a2a0

. (2.34)

In figure 6(a) we show the behaviour of the amplitude constant A with the
imperfection parameter S̃ . Rather than computing the adjoint function and the
constants a0, a1 and a2 we again iterate directly on the solution of (2.30). As noted
above, when S̃ = 0 the two solutions are A = 0 and A ≈ 0.18 (the solution with
non-uniform B∗-profiles). The critical value of S̃ = S̃crit ≈ −13.21, as defined by
(2.34), is clearly shown. We can interpret this critical value as a fold of the surface
in parameter space that defines the steady states. For example, as shown in figure
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S̃crit is associated with a fold in the solution surface, as shown here for Ŵe = −0.149, the fold is at
S∗ = 0.0222.

6(b) with Ŵe = −0.149, continuation of the branch-1 steady state shows a fold at
S∗ = S∗fold = 0.0222 (to four decimal places), which is also the value given by the local
description (as provided by the above expansion)

S∗fold = Ŵ 2
e + S̃crit(Ŵe −Wtc)

2, (2.35)

to this accuracy.
A similar bifurcation analysis can be applied to the RDE to search for non-

axisymmetric solutions of von Kármán similarity form. In the Appendix we present
details of a bifurcated solution branch corresponding to an exact solution of the
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Figure 7. A schematic view of the (S ∗, Ŵe)-plane near Ŵe = Wtc. The solid lines represent the set
of one-sided bifurcation points near to the critical value Ŵe = Wbif . The local analysis determines
this set to be S∗ = W 2

tc + a2
1(Ŵe −Wtc)

2/4a2a0.

Navier–Stokes equations for a non-axisymmetric flow above a rotating disk; the axi-
symmetric boundary conditions are maintained in this flow. This result will hopefully
provide a starting point for a continued discussion of the conical/stratified boundary-
layer problem extended to include non-axisymmetric flows. (Experimental, unsteady,
non-axisymmetric flow evolutions have been discussed by HDDF for the spin-down
of stratified fluid in a conical container.)

3. Critical boundaries in parameter space
Much of our motivation for the present analysis arises from an attempt to un-

derstand the evolution of time-dependent ‘spin-up/down’ processes for a linearly
stratified fluid in a container with sloping walls. Obviously, an ability to classify the
whole parameter space in terms of the steady states that exist is invaluable both for
choosing parameter values for experimentation and when considering the stability of
these states. As has been seen in the previous papers of DFH, and HDDF, boundaries
in the (S∗, Ŵe)-plane (with σ fixed) beyond which steady states cannot be continued
can play a crucial role in parameter-space diagrams used to interpret the readjustment
process of spin-up/down.

The behaviour of the solution branches near existence boundaries can be classified
into three main groups, namely folds, singular solutions and states for which V̂∞ → 0
on approaching the critical boundary. As noted by HDDF, for fixed σ the solution
branches are best considered as a surface in {S∗, Ŵe, V̂∞}-space. Folds in this surface
occur, in general, at finite values of V̂∞ and can only be obtained (globally) by
numerical solution of the governing boundary value problem. We can however give
some details concerning the other two cases, namely singular solutions and cases for
which |V̂∞| � 1. Before presenting descriptions of these two regimes we shall give a
brief discussion of the large-|Θ| form of available solutions. We shall also discuss the

region (b), |Ŵe| � 1, as shown in figure 3.

For the rotating disk system, that is (1.1)–(1.6) with B∗ ≡ Ŵ 2
e = S∗, the appropriate

large-|Θ| form can be determined by writing Û = u(Θ), V̂ = V̂∞ + v(Θ), Ŵ = Ŵe +
w(Θ) and then neglecting nonlinear terms of u, v and w. The relevant exponential
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form of the unknowns can then be determined after some algebra, and has been given
by Rogers & Lance (1960). In our more general case, following the above procedure
together with writing B∗ = Ŵ 2

e + b(Θ), we find that assuming the exponential form

{u(Θ), v(Θ), w(Θ), b(Θ)}T = {u0, v0, w0, b0}T exp(λΘ), |Θ| � 1, (3.1)

where u0, v0, w0 and b0 are constants, leads to the polynomial

λ5 − V̂∞(2 + σ)λ4 + V̂ 2
∞(1 + 2σ)λ3 − σV̂ 3

∞λ
2

+ (4Ŵ 2
e − σ[Ŵ 2

e − S∗])λ− σV̂∞(3Ŵ 2
e + S∗) = 0. (3.2)

If λ1 is the smallest positive root of this equation, then the multiplying constants must
satisfy

w0

b0
= 2Ŵe/(λ

4
1 − 2V̂∞λ3

1 + V̂ 2∞λ2
1 + 4Ŵ 2

e ), (3.3)

u0

w0
= (λ2

1 − V̂∞λ1)/2Ŵe, (3.4)

and (from the continuity of mass condition) v0/u0 = −2/λ1. This description has been
checked against numerical results for a number of the solution branches obtained at
general parameter values. We note that, in all the cases for which we have obtained a
numerical solution with B∗ 6= Ŵ 2

e , the edge behaviour has been such that V̂∞ > 0. At
general values of S∗ 6= Ŵ 2

e we cannot rule out that a solution of the full equations is
possible with λ1 > 0 and V̂∞ < 0; however we have been unable to locate any such
states.

3.1. The region |Ŵe| � 1

The large-|Θ| behaviour described by (3.2) is only strictly valid for solutions with

B∗ 6= Ŵ 2
e , Ŵe 6= 0. When Ŵe = 0, with a general S∗ 6= 0 we find that the appropriate

large-|Θ| scalings are

V̂ ∼ V̂∞, and {Û, Ŵ , B∗}T ∼ {u0 exp (2V̂∞Θ),

w0 exp (V̂∞Θ), b0 exp (2V̂∞Θ)}T , (3.5)

where {u0, w0, b0}T are constants, which satisfy the relations

u0

b0

= 2V̂ 2∞

(
1− 2

σ

)
/S∗, (3.6)

w2
0

b0

= 1− 2V̂ 2∞
u0

b0

. (3.7)

As we have already noted (with reference to figure 3), the origin of the (S∗, Ŵe)-
plane is also a special case. For some solution branches, on approaching the origin
(S ∗ = Ŵe = 0) it is possible to obtain states that have V̂∞ → 0 but which are not
described by the general (V̂∞ � 1) asymptotic analysis that we shall present in the
next section. In this special case we can find three separate large-|Θ| forms for the
boundary-layer system (1.1)–(1.6).

|Θ| � 1 behaviour when |Ŵe| � 1: Case (i )

Here, we balance the Ŵ and B∗ terms in the Û-momentum equation by assuming
that the solution has the following behaviour for large, negative Θ:

Û → U0/Θ
2, V̂ → 2U0/Θ, B∗ → B0/Θ

2γ, Ŵ →W0/Θ
γ, (3.8)
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where γ < 2 is necessary for self-consistency. The equations for the coefficients U0,
W0, B0 (all assumed to be non-zero for consistency) are found to be

W 2
0 = B0, (3.9)

2U0(1− γ) = γ(γ + 1), (3.10)

2U0(−2γ) +U0 =
2γ

σ
(2γ + 1). (3.11)

Combining the above leads to the following condition for γ:

γ2(8− 4σ) + γ(−3σ − 4) + σ − 4 = 0. (3.12)

To maintain a self-consistent description we need roots to (3.12) that satisfy the
requirement that γ < 2. It is easy to see that when σ ∈ [0, 20/21] ∪ [4,∞) there exists
a single root of the polynomial (3.12) with the property 0 < γ < 2.

Allowing for a perturbation about the origin of parameter space, for example by
considering the solution on the curve S∗ = Ŵ 2

e as Ŵe → 0, we have Ŵe = ε� 1 and
S∗ = ε2. Obviously, the form of decay for B∗ and Ŵ (at large values of Θ) suggests
an outer layer is required when B∗ ∼ ε2. This outer layer is defined through the scaled
coordinate Θ̃ = Θε1/γ , and leads to

Û = ε2/γŨ(Θ̃) + · · · , V̂ = ε1/γṼ (Θ̃) + · · · ,
Ŵ = εW̃ (Θ̃) + · · · , B∗ = ε2B̃(Θ̃) + · · · .

}
(3.13)

We shall restrict attention to the case S∗ = Ŵe = 0 since outer regions can be
discussed for each of the following cases in a similar manner.

|Θ| � 1 behaviour when |Ŵe| � 1: Case (ii )

In this case we balance the Û and B∗ terms in the Û-momentum equation by assuming
the large-|Θ| form

Û → U0/Θ
2, V̂ → 2U0/Θ, (3.14)

B∗ → B0/Θ
4, Ŵ →W0/Θ

β. (3.15)

This type of decaying behaviour leads to the following equation to determine β:

β2 + β(1 + 2U0)− 2U0 = 0, (3.16)

where U0 = −20/7σ, B0 = 3U2
0 + 6U0 and W0 remains undetermined at this order.

For the appropriate balance of the Û-momentum equation we require that β > 2.
There are two relevant roots to (3.16) for U0 6 −3/2 − √2 ≡ U∗0 . At U0 = U∗0 , the
two β values come together at 1 +

√
2, then as U0 decreases below U∗0 , the two values

of β separate, attaining values of 2 and 3 at U0 = −3. Since the appropriate root
would correspond to the slowest decaying solution at large |Θ|, the smaller value of
β is the correct choice. This smaller root attains the value of 2, where U0 = −3 and
σ = 20/21, which means that this solution connects smoothly to the structure given
as Case (i) above. Therefore, the solution domain is constituted by

20
21
< σ < 40

7
(3− 2

√
2), (3.17)

and the appropriate choice of β is the smaller root of (3.16).
We note that the other obvious scaling at large |Θ|, which involves a balance

between Û and Ŵ terms in the Û-momentum equation, is not applicable and leads
to a contradiction.
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Figure 8. A comparison between the predicted, Case (ii), asymptotic solution (solid line) and the full

numerical solution (dashed) as Ŵe → 0−, with S∗ = 0, and σ = 0.5. Ŵe = −9,−7,−5,−3,−1×10−3.
The horizontal line is at the constant value U0 (see the text for a description).

|Θ| � 1 behaviour when |Ŵe| � 1: Case (iii)
In contrast to the previous two cases there is a large-|Θ| behaviour that involves

an exponential rather than algebraic decay and for which the V̂ -term approaches a
constant at the boundary-layer edge. The appropriate behaviour in this case is

Û → U0 exp (V̂∞Θ), V̂ → V̂∞, (3.18)

B∗ → B0 exp (σV̂∞Θ), Ŵ →W0 exp (V̂∞Θ), (3.19)

where clearly we require V̂∞ > 0 and σ > 1 to obtain the necessary balance.

Numerical results for |Ŵe| � 1

Obtaining solutions to the full boundary-layer equations in the region |Ŵe| � 1
is numerically difficult because, in general, long lengthscales are required. In figure 8
we show a comparison of the full numerical solution with the predicted asymptotic
behaviour for the scaled velocity component Û (as described by Case (i) above). The
numerical results were obtained by following the branch denoted by (Ia) in figure 3
but at a Schmidt number of σ = 0.5 as Ŵe → 0− with S∗ = Ŵ 2

e . At this value of σ
the appropriate root of the polynomial (3.12) is γ ≈ 1.3491, leading to U0 ≈ −4.5391,
and it is this value that is shown in the figure as the horizontal line.

In figure 9 we show the form of a non-uniform solution branch for |Ŵe| � 1 (with
S∗ = Ŵ 2

e ) at a range of Schmidt numbers. Similarly, in figure 10(a) we present a
cross-section of the solution surface at fixed S∗ = 0 and σ = 5.0. As can be seen
from the figure, the structure around Ŵe = 0 is rather complicated. Figure 10(b) is a
rescaled view of the solution branches shown in figure 10(a). The repeated folding of
the solution branch and its intersection with Ŵe = 0 is typical for moderate values
of σ, and the solution branches can be continued further (to lower values of V̂∞) but
to do so requires very large domains in the computation. The scalings of Case (iii)
can be verified at each point where Ŵe = 0 along the solution branches of figure
10, as shown in figure 11(b). Figure 11(a) shows profiles of V̂ at the points denoted
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Figure 9. Solution branches in the region |Ŵe| � 1, with S∗ = Ŵ 2
e and varying σ.

by (i) and (ii) in figure 10(b) and (iii) in figure 10(a); it is at these points that the
comparisons of figure 11(b) are made. The resolution of the solution requires a large
numerical domain when V̂∞ → 0 as can be seen from the scalings (3.19).

We must note that the analytical description of the small-Ŵe region is not entirely
complete. In particular the appropriate form of the solution at large-|Θ| is unclear
when σ ∈ (40(3 − 2

√
2)/7 ≈ 0.98042, 1]. None of the cases described above are

directly applicable in this parameter range; however the numerical results obtained
for Schmidt numbers in this region present no convincing evidence that solutions
do not exist. Since this region of parameter space is so small it could be that the
numerical solutions cannot be continued exactly to Ŵe = S∗ = 0 but the definitive
resolution of this feature is beyond any practical range achievable by the numerical
scheme. The alternative is that there is an additional form of large-|Θ| behaviour that
we have not discovered, which is valid within this range of σ.

3.2. The region Ŵe ≈ 1

Linear solutions in the region of parameter space near to Ŵe = 1 correspond to
a buoyancy-affected Ekman layer. The linearized analysis of DFH showed that the
steady solution presented by Thorpe (1987) was only strictly valid when |Ŵe−1| � E2,
where E is an Ekman number based on the rotation rate of the container. It was
also noted by DFH that the preferred final state from the point of view of the
readjustment process (with an initial state of rigid body rotation Ŵe = 1) was a fully
nonlinear solution. The analysis of this nonlinear state near Ŵe = 1 was continued
in the later paper by HDDF, in which it was shown that moderate values of σ can
further complicate the form of the solution branches in this region. The stability
analysis of HDDF showed that the primary solution branch was linearly unstable
and had both discrete and continuous spectra.

The nonlinear solution available in the region Ŵe ≈ 1 appears as a bifurcation of
the trivial state Ŵ = B∗ = 1, Û = V̂ = 0 at Ŵe = 1, S∗ = 1, 1 − 4/σ; see figure 12.
It is at this latter value that one of the critical boundaries (denoted by S∗crit(Ŵe, σ), as

discussed both by DFH and later in this paper) approaches Ŵe = 1. Near this region
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Figure 10. A cross-section of a solution surface for fixed S ∗ = 0 and σ = 5; (b) is an expanded

view of the |Ŵe| � 1 region of (a).

a cusp-catastrophe is introduced into S∗ > 0 for sufficiently large Schmidt numbers.
In figure 13(a) we show a set of steady states represented as a surface in {V̂∞, Ŵe, S

∗}
space for the case σ = 10. As can be observed from the figure, a fold develops in
the locus of {V̂∞, Ŵe} at a critical value of S∗. The projection of this fold region

onto the (S∗, Ŵe)-plane is (locally) a cusped region, the two boundaries of which are
sets of one-sided bifurcation points; see figure 13(b). Viewing the structure of figure
13(a) along the locus in parameter space that bisects the cusp, then the feature would
appear as a symmetric bifurcation in which three solutions evolve from one when
moving beyond the critical point.

It is worth noting that the behaviour described above is only one example of a
feature that can be located at a number of regions in the full parameter space. We
should also point out that many of the other bifurcation phenomena described in
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(ii) and (iii) shown in figure 10. (b) Large-|Θ| decay as described by Case (iii).

this paper have been discussed previously by Benjamin (1978) for general steady
flows; nevertheless we find it surprising that so many complex features arise in what
appears, at first sight, to be a relatively uncomplicated system.

3.3. Singular solutions

It is well known that the RDE have regions in the (one-dimensional) parameter space
within which many solutions can be found. In our notation the regions of partic-
ular interest are near Ŵe = 0 and Ŵe = ±1.4355. The qualitative behaviour of the
region near Ŵe = 0 has been discussed above (figure 2), but when sufficiently close to
the other critical values of Ŵe = ±1.4355 it has been shown that one can construct an
infinity of solution branches that connect through a singular solution; see Ockendon
(1972) and Bodonyi (1973). Ockendon allowed for a small suction applied at the disk
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Figure 12. The nonlinear steady state at Ŵe = 1. This state appears as a bifurcation from the

trivial state (Û = 0, V̂ = 0, Ŵ = 1, B∗ = 1) at S∗ = 1, 1− 4/σ, and is shown here for σ = 10.

and showed that a chain of inviscid cell solutions can be constructed that match each
other, the far-field conditions and the boundary conditions at the disk through viscous
sublayers. Later, Bodonyi (1975) applied matched asymptotic methods directly to the
RDE (without the small suction) to reveal the structure of the solution branches as
Ŵe → −1.4355, deducing this critical value directly from the analysis. We note that
the solution branches described by the analysis of Bodonyi have f(z → ∞) → +∞
as Ŵe → −1.4355 (in the notation of (1.7)), and therefore we expect (on considering
the form of (2.2)) that the structure may be extended to cover our more general
boundary-layer equations (1.1)–(1.4).

In an extension to the analysis of Bodonyi (1975) we shall discuss the form of the
primary solution branch as the modified Burger number approaches a limit S∗ →
S ∗sing(Ŵe, σ); this defines a surface in parameter space near which solutions of this
asymptotic structure can be located. The exact dependence of S∗sing on the other
parameters, Ŵe and σ, will be derived as part of the asymptotic description. By
analogy with the work of Bodonyi, we restrict attention to three distinct regions
(though higher-branch solutions involving more regions are possible) defined by
Θ = O(ε1/4), Θ = O(ε−1/4) and Θ = −Cε−1/4 + O(ε1/4), where ε = S∗ − S∗sing(Ŵe, σ),
S ∗sing is to be determined and C is a constant.

3.3.1. Inner viscous layer: Region I

In a viscous region adjacent to the boundary we introduce the scaled coordinate
ξ = Θε−1/4 = O(1), and write

Û = ε−2/4(U0(ξ) + εU1(ξ) + · · ·), (3.20)

V̂ = ε−1/4(V0(ξ) + εV1(ξ) + · · ·), (3.21)

Ŵ = W0(ξ) + εW1(ξ) + · · · , (3.22)

B∗ = Ŵ 2
e + (S∗sing − Ŵ 2

e )B0(ξ) + εB1(ξ) · · · . (3.23)
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Figure 13. Numerical results for steady states near to Ŵe = 1, σ = 10.

At leading order, after substitution of the above expansions, the governing boundary-
layer equations are reduced to

U2
0 + V0U

′
0 = U ′′0 , (3.24)

2U0W0 + V0W
′
0 = W ′′

0 , (3.25)

V0B
′
0 +U0(B0 − 1) = σ−1B′′0 , (3.26)

2U0 + V ′0 = 0, (3.27)

with boundary conditions U0 = V0 = 0, W0 = 1 on ξ = 0. There is a simple solution
to this system, namely

V0 = −Aξ2 , U0 = Aξ , B0 = 1. (3.28)

At this stage we have used a notation similar to that employed by Bodonyi (1975)
(obviously the constant A is unrelated to that used in the preceding sections of
this paper); however, there is a sign change in the coordinate since the appropriate
domain is ξ ∈ [0,−∞) in our notation. Given the above solutions, the equation for
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the azimuthal velocity component, W0, reduces to

W ′′
0 + Aξ2W ′

0 − 2AξW0 = 0, (3.29)

which can be solved in terms of confluent hypergeometric functions, to give

W0 = C1U
(
−2

3
,
2

3
,−Aξ

3

3

)
+ C2 exp

(
−Aξ

3

3

)
U
(

4

3
,
2

3
,
Aξ3

3

)
. (3.30)

Comparison of the shear stress values (at the boundary Θ = 0) obtained from
numerical results indicate that the constant A is positive. Therefore, the large-ξ
behaviour together with the no-slip boundary condition determine the constants C1

and C2 to be

C1 = −3
Γ
(

2
3

)
Γ
(

1
3

) , C2 = 0. (3.31)

Furthermore, as ξ → −∞ we have W0 ∼ −31/3Γ(2/3)/Γ(1/3)(−Aξ3)2/3, and the
expansion fails when εW 2

0 /ξ
2 = O(1), suggesting an outer layer needs to be considered.

3.3.2. Inviscid outer layer: Region II

This outer region is defined by the scaled coordinate η = ε1/4Θ = O(1), and we
introduce

Û = ε−1(Ū0(η) + · · ·), (3.32)

V̂ = ε−5/4(V̄0(η) + · · ·), (3.33)

Ŵ = ε−1(W̄0(η) + · · ·), (3.34)

B∗ = Ŵ 2
e + (S∗sing − Ŵ 2

e )B̄0(η) + · · · . (3.35)

Applying these expansions reduces the leading-order system to

Ū2
0 + V̄0Ū

′
0 − W̄ 2

0 = 0, (3.36)

2Ū0W̄0 + V̄0W̄
′
0 = 0, (3.37)

V̄0B̄
′
0 + Ū0(B̄0 − 1) = 0, (3.38)

2Ū0 + V̄ ′0 = 0. (3.39)

We can give an exact solution to this system,

Ū0 = C3 sin (C5η), V̄0 = −2C3

C5

[1− cos (C5η)], (3.40)

W̄0 = C3[1− cos (C5η)], B̄0 = 1 + C4V̄
1/2
0 , (3.41)

where C3, C4 and C5 are constants. Matching this outer-layer description with the
large-ξ form of the solution in region I leads to

C3 =
A

C5

, and C5 = 2
Γ
(

2
3

)
Γ
(

1
3

) ( 3

A

)1/3

. (3.42)

We note that C3 and C5 are both positive, implying C4 = 0 since V̄0 < 0.

3.3.3. Outer viscous layer: Region III

The expansion for region II fails when C5η = −2π, thus we obtain a further
viscous outer layer defined by the scaled coordinate Θ = −(2π/C5)ε

−1/4 + ζε1/4. In
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this region the expansions are equivalent to those presented for the inner viscous
layer (region I), and the resulting equations are also as given in (3.24)–(3.27). The
boundary conditions as ζ → +∞ are determined from the solutions of region II as
η → 2π. As noted by Bodonyi, there are two possible outer boundary conditions for
this region, corresponding to matching with the far-field solution (Û → 0, Ŵ → Ŵe,
B∗ → Ŵ 2

e ) or matching with a further inviscid outer region of the form described
above. In this way an arbitrarily large number of solution branches can be obtained.

We note that at this order the constant A is undetermined. For comparisons between
the asymptotic description and the numerical results it is sufficient to compute an
approximation to A by considering the shear stress components as S∗ → S∗sing .

3.3.4. The critical boundary S∗ = S∗sing(Ŵe, σ)

We can determine the critical value of S∗ (given Ŵe and σ) by continuing the analysis
of region I to next order. In particular, substitution of the relevant expansions into
the Û-momentum equation leads to

V ′′′1 + Aξ2V ′′1 − 2AξV ′1 + 2AV1 = 2(W 2
0 − S∗sing). (3.43)

Equation (3.43) has been considered by Bodonyi (1973), and we derive a similar
solution to this system with little alteration:

V1(ξ) = C6ξ
2 + 2ξ

∫ −ξ
0

∫ γ

0

exp

(
Aη3

3

)∫ η

0

x2(W 2
0 − S∗sing) exp

(
−Ax

3

3

)
dx dη dγ,

(3.44)
where C6 is a constant of integration. Differentiation of this expression leads to

V ′′′1 (ξ)

2
= W 2

0 (ξ)− exp

(
−Aξ

3

3

){
S∗sing − A

∫ −ξ
0

x2W 2
0 (x) exp

(
−Ax

3

3

)
dx

}
; (3.45)

therefore, since A > 0 and ξ ∈ [0,−∞), eliminating the exponentially growing term in
(3.45) provides a surprisingly simple extension to the result of Bodonyi (1975), namely

S∗sing =
9Γ2

(
2
3

)
Γ2
(

1
3

) ∫ ∞
0

U(− 2
3
, 2

3
, t) exp (−t) dt. (3.46)

The expression (3.46) shows that, in terms of the S∗, Ŵe parameter space, the
singular solutions are available along a line of constant S∗ = S∗sing ≈ 2.061; that is,

the critical value is independent of both Ŵe and the Schmidt number σ. Numerical
results showing the behaviour of V̂∞ as the critical value of S∗ is approached are
given in figure 14. The values of Ŵe and σ were arbitrarily chosen to demonstrate
that S∗sing is indeed independent of the other parameters.

It is also interesting to note the form of the profiles for B∗, which are uniform over
the majority of the boundary layer. In regions I and II, B∗ = S∗sing +O(ε), with a rapid

transition to the edge conditions (B∗ = Ŵ 2
e ) in a thin, O(ε1/4), outer viscous layer.

Figure 15 shows profiles of Ŵ and B∗ as S∗ → S∗sing; the outer viscous region (III) is
clearly seen in the otherwise uniform B∗-profiles.

As we have already noted, the solutions to the RDE are applicable to the more
general boundary-layer system along the parabola S∗ = Ŵ 2

e . This parabola intersects

S∗ = S∗sing at Ŵe = ±1.4355, at which points the B∗-profiles are uniform throughout
the whole domain and the above expansion reduces to the form given by Bodonyi
(1975).
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Figure 14. The singular solution branch as S ∗ → S∗sing . (a) A comparison between scaled
numerical results (solid lines) and the asymptotic result for region II (shown as data points
for clarity) as S∗ → S∗sing . (b) The behaviour of V̂∞ for varying S∗: (i) Ŵe = −1.4, σ = 5.

(ii) Ŵe = −0.5, σ = 1. (iii) Ŵe = −0.5, σ = 5. (iv) Ŵe = 0.5, σ = 5.

3.4. The limit V̂∞ → 0

DFH considered the readjustment of a linearly stratified fluid (in a conical container)
to an impulsively imposed change in the container rotation rate. The final result of
their analysis was that, at order-one values of the Schmidt number, the evolution
could be classified into three main types; the effect of higher values of σ was later
considered by HDDF. The boundaries that separate the evolution types in parameter
space were shown to be either explicitly known, obtained (numerically) from a reduced
asymptotic problem or determined by a stability analysis. Specifically, the boundary
that separated parameter values for which a steady state could be achieved from a
scenario involving a gradual thickening of the boundary layer was determined by
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e )/S∗ as S∗ → S∗sing; S∗ ∈ [2.299, 2.068],

Ŵe = −0.5 and σ = 1.

considering steady solutions with 0 < V̂∞ � 1. The growing boundary-layer regime
was found to be a preferred state only for parameter values to which the steady
state could not be extended, that is, for S∗ > S∗crit (in the DFH notation). Therefore,
boundaries beyond which solutions cannot be continued can be of some practical
importance both when considering time-dependent readjustment processes and when
choosing parameter values for experimental work.

The description of the boundary S∗crit is as follows. For a small perturbation about
the critical value of the form

S∗ = S∗crit + δ, (3.47)

we introduce the following expansion in a Θ = O(1) layer adjacent to the Θ = 0
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boundary:

{Û, V̂ , Ŵ , B∗}T = {0, 0, 1, 1}T + δ{U1(Θ), V1(Θ), W1(Θ), B1(Θ)}T + · · · . (3.48)

Substitution into the governing boundary-layer equations leads to the following system
for {U1, V1, W1, B1}T :

−2W1 = U ′′1 − B1, (3.49)

2U1 = W ′′
1 , (3.50)

U1(1− S∗crit) =
1

σ
B′′1 , (3.51)

2U1 + V ′1 = 0, (3.52)

with conditions U1(0) = V1(0) = B′1(0) = 0 and W1(0) = 1 on Θ = 0. Solution of
(3.49)–(3.52) leads to

V1 = −2C

{
E+

λ(1 + i)
− E−

λ(1− i)

}
− 2iC

λ
, (3.53)

W1 = iC

{
2

λ2
− 1

λ2
(E+ + E−)− 2λΘ

(
λ2 − 1

λ2

)}
, (3.54)

B1 = iC

{
2(E+ + E−)

[
λ2 − 1

λ2

]
− 4λΘ

[
λ2 − 1

λ2

]
+

4

λ2

}
, (3.55)

where C is a constant, E± ≡ exp [λ(1± i)Θ], and

λ4 = 1
4
[4− σ(1− S∗crit)]. (3.56)

For Θ → −∞ we observe that

U1 → 0, V1 → µ, W1 ∼ µΘ(λ4 − 1), (3.57)

where µ = −2iC/λ. As we noted in § 3.2, S∗ = 1 − 4/σ is a limiting value and
corresponds to λ→ 0 in the above description.

The large-|Θ| behaviour in this inner solution, together with the form of the
expansions (3.48) suggests an outer layer defined in terms of the scaled coordinate
Θ̃ = δΘ = O(1), in which the appropriate expansion is

{Û, V̂ , Ŵ , B∗}T = {δ2Ũ1(Θ̃) + · · · , δṼ1(Θ̃) + · · · ,
W̃1(Θ̃) + · · · , B̃1(Θ̃) + · · ·}T + · · · . (3.58)

The equations governing the leading-order solution in this outer layer are

W̃ 2
1 = B̃1, (3.59)

2Ũ1W̃1 + Ṽ1W̃
′
1 = W̃ ′′

1 , (3.60)

Ṽ1B̃
′
1 + Ũ1(B̃1 − S∗crit) =

1

σ
B̃′′1 , (3.61)

2Ũ1 + Ṽ ′1 = 0. (3.62)

This system has to be solved according to the conditions (3.57) at Θ̃ = 0 and Ũ1 → 0,
W̃1 → Ŵe and B̃1 → Ŵ 2

e as [sign (δ)Θ̃]→ −∞.
A subtlety of this expansion is that the constant µ can be set to unity by a suitable

redefinition of the quantities Ṽ1 and Θ̃ in the outer-layer description; however, the
sign of µ remains important when determining the appropriate solution domain. It is
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Branch-1: w0 = 1.0 w1 = −0.1542
Branch-2: w2 = −0.0983 w3 = 0.0571
Branch-3: w4 = 0.0565 w5 = −0.0442

Table 2. Some of the values Ŵe = wi for which rotating disk solutions exist with zero normal
velocity far from the disk.

only by comparing the above description with a numerical solution of the full system
that the sign of µ can be obtained and it is this that fixes the appropriate sign for δ
(in order to maintain a solution domain for which the outer solution is exponentially
decaying rather than growing). It is in this way that we can determine on which ‘side’
of the S∗crit boundary steady states can be located.

The outer-layer system (on setting µ = ±1 as appropriate) can be combined into
a single third-order system and solved by the application of a simple Runge–Kutta
method. Iterating on the value of S∗crit for a given Ŵe enables the edge conditions
to be satisfied; thus we obtain S∗crit(Ŵe, σ). For a sequence of numerical results
concerning S∗crit(Ŵe, σ) the reader is referred to the paper of HDDF.

Given the wide range of solutions that are available to the full governing boundary-
layer equations and the level of non-uniqueness it would be surprising if the above
analysis was the only |V̂∞| � 1 description. In fact, other expansions that lead to
different (S∗crit) boundaries in the (S∗, Ŵe) parameter space are possible.

The crucial feature of the expansion (3.48) is that, for the inner layer, V̂ = O(δ)
as Θ → −∞. In the case discussed above this is achieved because the leading-order
solution (3.48) in the inner layer is simply the trivial solution (Û = V̂ = 0, Ŵ =
B∗ = 1). This |V̂∞| � 1 description is non-unique since, rather than the expansion
(3.48), we can introduce a more general inner-layer expansion,

{Û, V̂ , Ŵ , B∗}T = {U0(Θ), V0(Θ), W0(Θ), w2
i }T + O(δ), (3.63)

where {U0, V0,W0} is a solution of the rotating disk equations with W0 → wi as
Θ → −∞, B∗ = w2

i a constant, and wi is such that V0 → 0 as Θ → −∞. It is well
known that there are an infinity of solutions to the rotating disk equations that have
zero axial flow; some typical values are given in table 2 (also see figure 2)

In this more general description, the critical value of the modified Burger number is
fixed to be S∗crit = w2

i for consistency of the inner-layer description. However, we note
that when i = 0 the corresponding rotating disk solution is the trivial state and in this
case the critical value of S∗ remains undetermined until the next-order inner layer is
considered and matched to a corresponding outer layer. In this case the derivation
reverts to that summarized above (3.47)–(3.62). For i 6= 0 the critical value S∗crit = w2

i

is independent of Ŵe; the outer layer in this case has the same scalings noted above
(3.58) and acts to adjust the solution to the appropriate edge behaviour.

In figure 16 we show some numerical results, obtained for the full governing
equations (1.1)–(1.6), for solution branches at Ŵe = −0.2,−0.5 and σ = 1, 5. Figure
16(a) shows the behaviour of V̂∞ as S∗ is decreased towards the value S∗ = w2

1 (given
in table 2); as predicted, V̂∞ approaches zero as S∗ → w2

1 ≈ 0.02378. Figure 16(b)
shows the behaviour of the stress component Û ′(0) at the disk and, in agreement
with the above inner-layer description for S∗ → w2

1 , we can observe that the values
approach that associated with the appropriate rotating disk solution, as displayed by
the horizontal line. Figure 17 shows profiles of the normal velocity component V̂ (Θ)
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(over an O(1) inner-layer scale) as S∗ → w2
1 ≈ 0.02378 for σ = 1. The figure clearly

shows the profiles approaching the limiting form of the rotating disk solution (shown
as data points for clarity).

In figure 16(a, b) we have also shown numerical results for Ŵe = −0.2 and σ = 15;
in this case the steady solution does not approach V̂∞ = 0 at S∗ = w2

1 since there is a
fold in the solution at a larger value of S∗. This must be the case at these parameter
values since examination of the outer-layer equations (3.58), (3.59)–(3.62) reveals
that

W̃1 ∼ Ŵe + w̃1 exp (c1Θ̃), (3.64)

Ṽ1 ∼ Ṽe + ṽ1 exp (c1Θ̃), (3.65)
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as Θ̃ → −∞, where

c1 = σṼe

(
3Ŵ 2

e + S∗

4Ŵ 2
e − σ(Ŵ 2

e − S∗)

)
. (3.66)

Therefore, there is a critical value of σ = σcrit ≡ 4Ŵ 2
e /(Ŵ

2
e − S∗), for Ṽe > 0,

S ∗ < Ŵ 2
e , above which an unacceptable exponential growth is obtained in the outer-

layer equations. We see that when Ŵe = −0.2, S∗ = w2
1 ≈ 0.02378 we should expect

to find no solutions with 0 < V̂∞ � 1 for σ > σcrit ≈ 10, which is in agreement with
the results of figure 11. For σ = 15 the solution branch folds and can eventually be
described by the above |V̂∞| � 1 description, but at a higher critical S∗ for which
exponential decay can be achieved in the outer-layer equations.

We have already noted that the critical boundary that is dependent on Ŵe (near
which the inner-layer behaviour is the trivial rotating disk solution) figures promi-
nently in the parameter-space diagrams used to interpret the unsteady spin-up read-
justment as presented by DFH and later confirmed experimentally by HDDF. It
could perhaps be argued that this is the case because it is the relevant boundary
for the dominant stable steady state. If this is so, then the additional boundaries at
S ∗ = w2

i as provided by a more general description of the |V̂∞| � 1 limit may be
associated only with states that are unstable and therefore of limited relevance to
the large-time unsteady evolution of spin-up/down flows. Such questions cannot be
addressed without a detailed stability analysis.

4. Discussion
We have considered axisymmetric steady states available within the boundary layer

on the inside of a rotating, conical container of swirling, linearly stratified fluid. We
have described how the steady states depend on the physical parameters governing the
relative rotation, strength of stratification and diffusivity properties of the fluid and
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have shown a remarkably complicated behaviour. Although the description of such
states has some inherent interest, our motivation for considering the system in such
detail is the hope that a full understanding of the steady phenomena will assist in a
continued theoretical/experimental analysis of the unsteady, nonlinear readjustment
mechanisms in spin-up (or spin-down, spin-over) problems. This analysis is also the
first step in a discussion of the spin-over parameter regime (Ŵe < 0).

We have presented a general analysis of the steady states through a combination
of numerical continuation methods and bifurcation analysis, together with asymp-
totic descriptions where possible. At general points within the parameter space we
have shown that it is possible to locate a large number of steady states, and that
continuation of these states can be complicated unless numerical approaches that can
effectively deal with repeated folding of the solution branch are utilized.

The stability of all the states described herein remains an open question. However,
in a recent experimental/theoretical investigation into spin-up of a stratified fluid in
a cone (HDDF), some of the non-unique steady states described in this work were
obtained numerically at parameter values that were open to laboratory investigation.
A numerical linear stability analysis of these states (though not exhaustive) suggested
that there is either none or at most one stable state in the region of parameter space
Ŵe > 0, S∗ > Ŵ 2

e . (Note that the higher-branch states of the rotating-disk equations
were shown to be unstable by Bodonyi & Ng 1984.) We have also shown that the
structure of the singular solutions to the rotating-disk equations can be extended to
provide similar solutions to the boundary-layer system we consider here. It is known
for the rotating-disk equations that the steady states become increasingly (linearly)
unstable as Ŵe is varied so that the singular solution is approached and we expect
a similar result can be obtained here. At parameter values that are less accessible to
laboratory experiments, HDDF showed that the stability analysis can be extremely
complicated with the eigenvalue spectrum arising from a linear stability analysis
having both discrete and continuous components which may lead to instability.
We should note that when referring to a state as linearly ‘stable’ we mean within
the framework of the similarity equations; there is no reason to assume that the
boundary-layer states are also stable to more general forms of disturbance.

Stability issues in the half-plane of parameter space Ŵe < 0 may be equally compli-
cated to address. Of particular interest in this case is that the unsteady boundary-layer
equations can show an evolution to a finite-time breakdown. It is of interest to de-
termine if this unsteady breakdown can be related to the absence of steady states, or
an instability of steady states.

The equations governing the swirling flow above a rotating disk are seen to be a
sub-class of the boundary-layer equations we have considered here. (Although for the
more general geometry the states are no longer exact solutions to the Navier–Stokes
system.) This has allowed us to use the well known solutions to the rotating disk
equations as a starting point for our more general boundary-layer system. Indeed,
many of the problems obtained by considering limiting cases have some relationship
to the rotating disk solutions.

Perhaps most importantly, we have shown that there is a range of steady states
to the stratified problem that can be traced back to the bifurcation of a (stratified
boundary-layer) solution branch from the rotating disk solution near Ŵe ≈ −0.1487
(for σ = 1). The presence of this branch ensures that steady states can be found at
general points in Ŵe < 0, S∗ > Ŵ 2

e . The local analysis of this imperfect bifurcation
also provides details of the fold structure of neighbouring solutions.

In the Appendix we give details of a closely related analysis showing the existence
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of an exact solution to the Navier–Stokes equation, which appears as the bifurcation
of a non-axisymmetric state from a rotating disk solution of von Kármán form.
In fact the similarity form of von Kármán is preserved for this new branch. The
presence of these non-axisymmetric states is prompting future work in the area of
non-axisymmetric boundary-layer solutions for a stratified fluid in a rotating cone.
The presence of non-axisymmetric flow during the transient response of a rotating
stratified fluid in a conical container has been reported previously in the experiments
of HDDF.

We should note that the details of an extension of the non-axisymmetric analysis
to the more complex boundary-layer equations we consider in the main body of
this paper are not trivial. In particular, we can consider the boundary layer on
the interior of a conical container filled with homogeneous fluid, which leads to
the same governing equations as those in the Appendix (A 5)–(A 7) but with the
transformation

∂

∂φ
→ 1

cos α

∂

∂φ
, (4.1)

where α is the angle of the cone walls to the ‘horizontal’. As an immediate consequence
the bifurcation at Ŵe = Wbif ≈ −0.14485 discussed in the Appendix is only present
when n/ cos α = 2, where n is an azimuthal wavenumber. Thus there is a bifurcation to
the n = 2 solution for the flat-disk case (α = 0) and a similar bifurcation to an n = 1
mode when cos α = 1/2. In fact, we have been unable to continue a generalization
of the non-axisymmetric solution to non-zero α in this problem. Nevertheless, the
existence of steady non-axisymmetric states, or even similar periodic states for a
conical/stratified flow configuration remains an open question, and is the subject of
ongoing work.

The support of the EPSRC is gratefully acknowledged.

Appendix. A bifurcation to non-axisymmetric von Kármán flows
An exact solution to the Navier–Stokes equations corresponding to the swirling

flow above a differentially rotating disk has been known to exist for some time.
Von Kármán (1921) first introduced the appropriate similarity form in the case of a
rotating plane in a stationary fluid.

We utilize a cylindrical polar coordinate system (r, φ, z) centred on the axis of
rotation of an infinite disk in a swirling fluid, with associated velocity components
(U,W,V ) and pressure P . A solution of the resulting governing system can be sought
with a radial dependence of the form first presented by von Kármán, while also
maintaining the dependence on the azimuthal coordinate φ:

(U, V , W )T = (rÛ(η, φ), E1/2V̂ (η, φ), rŴ (η, φ))T , (A 1)

P = r2Ŵ 2
e /2 + E Q(η, φ). (A 2)

Here E = ν/(Ωh2) is the Ekman number and η = E1/2z is a boundary-layer coordinate.
(We have tried to retain much of our previous notation, with η negative and Ŵe

denoting the ratio of the angular frequency of far-field fluid and disk.) The boundary
conditions are azimuthal periodicity, together with

Û = V̂ = 0, Ŵ = 1 on η = 0, (A 3)
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and

Û → 0, Ŵ → Ŵe as η → −∞, (A 4)

which are the usual axisymmetric boundary conditions for rotating disk flow.
For this general non-axisymmetric flow the Navier–Stokes equations can be reduced

under a boundary-layer approximation to the fifth-order system

Û2 + V̂ Ûη − Ŵ 2 + Ŵ Ûφ = Ûηη − Ŵ 2
e , (A 5)

2ÛŴ + V̂ Ŵη + ŴŴφ = Ŵηη, (A 6)

2Û + V̂η + Ŵφ = 0. (A 7)

These are the boundary-layer equations relevant to a non-axisymmetric flow above
a rotating disk. It is well known that the axisymmetric solutions to (A 5)–(A 7) also
form an exact solution to the Navier–Stokes equations; that is, although the solution
is of boundary-layer form there is no approximation. It will be shown below that
there is also a class of non-axisymmetric solution that form an exact solution.

The general system (A 5)–(A 7) was investigated by looking for a solution of the
form

(Û, V̂ , Ŵ )T = (U0(η), V0(η), W0(η))T + ε(Ũ(η), Ṽ (η), W̃ (η))T exp (iλφ), (A 8)

which leads to the (axisymmetric) rotating-disk equations at O(ε0) and an eigenvalue
problem at O(ε); here ε is some small perturbation parameter. The eigenvalue prob-
lem for λ can be solved numerically by computing the eigenvalues of an appropriately
discretized system via a QZ algorithm. Approaching the problem in this way allows
one to vary Ŵe, stepping along the branches to the O(ε0) rotating-disk problem, to
locate any critical values of Ŵe for which λ is an integer (to satisfy the azimuthal
periodicity condition). Computations of this sort suggest that at least one bifurca-
tion point exists, with the non-axisymmetric solution in the neighbourhood of the
bifurcation point having an azimuthal wavenumber of two.

Investigation of the bifurcation point using this numerical approach suggests that
the bifurcated solution has a rather special form (at least locally): the non-axisymmetry
is only introduced into the radial and azimuthal velocity components, and the solution
is of the form

Û(η, φ) = U0 +U1 cos(2φ), (A 9)

V̂ (η, φ) = V0, (A 10)

Ŵ (η, φ) = W0 −U1 sin(2φ). (A 11)

A consequence of this special form is that terms of the form e4iφ are never generated
and the solution described by (A 9)–(A 11) is an exact solution of the Navier–
Stokes equations corresponding to the nonlinear, non-axisymmetric flow above a
rotating disk. Although (A 5)–(A 7) were derived under a formal boundary-layer
approximation, the solution is exact for an azimuthal dependence of the form (A 9)–
(A 11) since the neglected terms of O(E/r2) in (A 5)–(A 7) cancel exactly. Furthermore,
it is straightforward to show that when V̂ is independent of the azimuthal coordinate
φ, the n = 2 solution is the only form for which the series terminates.

We note that this form of solution is similar to that considered previously by Hall,
Balakumar & Papageorgiou (1992), who discussed a class of flows associated with a
rotating disk in a fluid with a stagnation point flow at infinity. We shall make further
comments on the connection with this work later.
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To describe the bifurcation point we can introduce a perturbation

Ŵe = Wbif + ε, |ε| � 1, (A 12)

where Ŵe = Wbif is the critical value at which the bifurcation occurs and an expansion
of the form (A 9)–(A 11) can be introduced where

U0 = U∗0 + εU∗1 + · · · (A 13)

V0 = V ∗0 + εV ∗1 + · · · (A 14)

W0 = W ∗
0 + εW ∗

1 + · · · (A 15)

U1 = ε1/2u1 + ε3/2u3 + · · · . (A 16)

At O(ε0) we have the rotating disk equations for (U∗0 , V ∗0 ,W ∗
0 )T evaluated at

Ŵe = Wbif; obviously Wbif remains undetermined at this order.
At O(ε1/2) we obtain a linear eigenvalue problem for u1 of the form

2U∗0u1 + V ∗0 u
′
1 = u′′1 , (A 17)

where u1 = 0 at η = 0 and as η → −∞. We thus determine the critical parameter
value (numerically) to be

Wbif ≈ −0.14485, (A 18)

in agreement with the approach discussed above. We can therefore write

u1 = Aũ, (A 19)

where A is an amplitude measure that remains undetermined at this order, and ũ is
normalized so that ũ′(0) = 1.

At O(ε), as noted above, we only have the ‘mean flow’ terms and the solution can
be written as

(U∗1 , V
∗
1 , W

∗
1 )T = (U1H, V1H, W1H )T + A2(ũ2, ṽ2, w̃2)

T . (A 20)

The terms (U1H, V1H,W1H )T are the appropriate Taylor series corrections to the
rotating disk solution for a perturbation about the bifurcation point,

U1H =
∂U∗0
∂Ŵe

∣∣∣∣∣
Ŵe=Wbif

, V1H =
∂V ∗0
∂Ŵe

∣∣∣∣∣
Ŵe=Wbif

, W1H =
∂W ∗

0

∂Ŵe

∣∣∣∣∣
Ŵe=Wbif

. (A 21)

The terms (ũ2, ṽ2, w̃2)
T satisfy the inhomogeneous, linear system

L0(ũ2, ṽ2, w̃2)
T = (ũ2

1, 0, 0)T , (A 22)

2ũ2 + ṽ′2 = 0, (A 23)

with boundary conditions ũ2 = ṽ2 = w̃2 = 0 on η = 0 and ũ2 → 0, w̃2 → 0 as
η → −∞. HereL0 represents a linearized operator arising from a perturbation of the
axisymmetric form of (A 5) and (A 6).

At O(ε3/2) the governing system reduces to

2U∗0u3 + V ∗0 u
′
3 − u′′3 = −2(A[U1Hũ1] + A3[ũ1ũ2]). (A 24)

This system obviously requires that an orthogonality condition be satisfied and
therefore determines A through the amplitude equation

A(A2 − C) = 0. (A 25)

The amplitude of the bifurcated non-axisymmetric solution is A = ±C1/2, and A = 0
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corresponds to the usual axisymmetric rotating disk state. Here C can be determined
in terms of an integral involving ũ1, ũ2, U1H and the solution to the adjoint problem.
We note that the sign of the constant term C is obviously dependent (through U1H )
on the sign of the perturbation about Wbif; therefore we expect that the bifurcated
solution branch will only exist to one side of the critical value Ŵe = Wbif .

The full nonlinear system governing the unknowns U0, V0,W0, U1, as defined by
(A 9)–(A 11), is simply

U2
0 + V0U

′
0 −W 2

0 +U2
1 = U ′′0 − Ŵ 2

e , (A 26)

2U0W0 + V0W
′
0 = W ′′

0 , (A 27)

2U0 + V ′0 = 0, (A 28)

2U0U1 + V0U
′
1 = U ′′1 , (A 29)

with boundary conditions U0 = U1 = V0 = 0, W0 = 1 on η = 0 and U0, U1 → 0,
W0 → Ŵe as η → −∞. An investigation of this system has been performed using
the bifurcation and continuation package AUTO (Doedel & Wang 1995), the results
of which are shown in figure 18. Figure 18(b) shows the location of the bifurcated
solution branch for the non-axisymmetric states relative to the well known rotating
disk branches. Figure 18(a) shows the behaviour of an amplitude measure, U ′1(0),
for varying Ŵe. As noted above there is a square-root-like behaviour at Ŵe = Wbif;
however the Ŵe � 1 region appears to be more complicated. Numerical results
suggest the presence of a growing boundary-layer scale as Ŵe → 0−, and we have
been unable to continue the non-axisymmetric branch into the region Ŵe > 0.

A likely scenario for the limit |Ŵe| � 1 involves the development of a double
boundary-layer structure. In an inner layer (η = O(1)) adjacent to the disk the
velocity components remain O(1) with an algebraic decay of

U0 ∼ −3/η2, (A 30)

V0 ∼ −6/η, (A 31)

W0 ∼W00/η
2, (A 32)

U1 ∼ ±(9 +W 2
00)

1/2
/η2, (A 33)

as η → −∞, where W00 is a constant. The form of (A 30)–(A 33) together with the
edge conditions suggest an outer layer of the form

U0 = |Ŵe| Ũ0(η̃), (A 34)

V0 = |Ŵe|1/2 Ṽ0(η̃), (A 35)

W0 = |Ŵe| W̃0(η̃), (A 36)

U1 = |Ŵe| Ũ1(η̃), (A 37)

with a scaled outer-layer coordinate η̃ = |Ŵe|1/2η.

It is possible to make some comparisons between the predicted asymptotic form
of solution and numerical results obtained in the limit Ŵe → 0−. In particular,
the inner-layer behaviour described by (A 30)–(A 33) suggests that ηV (η) → −6 as
η → −∞; it is this quantity that is shown in figure 19(a). Similarly, (A 30)–(A 33) show
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V̂∞ = V0(η → −∞).

that (
W0

U0

)2

∼ W 2
00

9
, (A 38){(

U1

U0

)2

− 1

}
∼ W 2

00

9
, (A 39)

as η → −∞. The numerical results presented in figure 19 are consistent with these
predictions based on the algebraic decay of the inner layer, although we should note
that values of |Ŵe| ∼ 10−7 were necessary to resolve these features.

As we have already noted above, the form of solution (A 9)–(A 11) has been used in
a different context by Hall et al. (1992), who considered the unsteady problem for the
flow above a rotating disk with a stagnation point flow far from the disk surface. The
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lines).

relevance of their work to rotating disk flow was in a limiting case, namely that which
removed the presence of a stagnation point flow at infinity to leave the far-field fluid
stationary. Therefore, the problem was considered to be a nonlinear stability analysis
of the flow first considered by von Kármán, that is, the axisymmetric rotating disk
state at Ŵe = 0 in our notation. (No non-axisymmetric, steady states were located
by Hall et al. in the absence of the stagnation point flow.) The results of Hall et al.
showed that a threshold response was obtained leading to a finite-time singularity. It
is worth noting however that the description above suggests that Ŵe = 0 is a limiting
point for the non-axisymmetric states. It would therefore be of interest to consider
the stability of this branch, since if it were linearly stable, a nonlinear perturbation
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beyond the basin of attraction of the axisymmetric rotating disk states may simply
lead to these new states when Ŵe < 0 rather than a finite-time breakdown.
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