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Abstract We consider the (radial) stretching flow of an incompressible viscous fluid between two parallel plates.
For infinite plates, a well-known self-similar solution reduces the Navier–Stokes equations to a simple nonlinear
boundary-value problem. We demonstrate that, for large Reynolds numbers, a naïve matched asymptotic description
of the self-similar flow yields a continuum of solutions. To describe which of the continuum of states is realised
requires the inclusion of terms that are beyond all orders in the asymptotic description. Sensitivity to exponen-
tially small terms in the asymptotic description has practical significance in that (i) exponentially small symmetry
imperfections in the boundary conditions have a leading-order effect, and (ii) linearised perturbations are seen to
decay only on exponentially long space/time scales owing to the presence of eigenmodes that are exponentially
near neutral. The results of axisymmetric Navier–Stokes computations are presented to show that the asymptotic
description of the self-similar states (and their stability) is of practical relevance to finite-domain solutions.

Keywords Exact solutions · Exponential asymptotics · Stability · Stagnation-point flows

1 Introduction and formulation

Exact solutions to the incompressible Navier–Stokes equations have always been of great interest. Solutions of
stagnation-point type, in which the velocity components vary at most linearly with distance from some line/axis
of symmetry have been discussed in great detail. In these cases, the assumed self-similar stagnation form reduces
the steady Navier–Stokes equations to a nonlinear boundary-value problem for a system of ordinary-differential
equations. This class of solutions contains some of the most well-known and well-studied states, including the
flows described by Berman [1] and Terril [2] (driven by suction/injection through porous walls), Karman [3] (driven
by boundary rotation) and Brady and Acrivos [4] (driven by a stretching wall motion). The full history of these
solutions is too extensive to describe here, and the interested reader is directed to the detailed discussion presented
in the recent book by Riley and Drazin [5].

Exact stagnation-type solutions are of inherent interest in that, whilst simple and generic in form, they can
also be extended to unsteady flows without breaking the self-similar form. In many cases, the resulting unsteady
nonlinear problem exhibits interesting features, including non-uniqueness of steady states, limit points, pitchfork
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64 R. E. Hewitt, I. Harrison

Fig. 1 A schematic view of
the flow geometry. The fluid
motion is driven by the
radial stretching of the
bounding walls. The motion
of each wall is towards the
axis of symmetry, with a
magnitude that is
proportional to the distance
from the axis

bifurcations, Hopf bifurcations, finite-time singularities and regions of parameter space in which no steady solution
can be located.

The solutions of ‘stretching type’ are driven by a boundary motion that corresponds to the wall stretching in its
own plane. In the current article, we consider the radial stretching problem, in which the flow is confined between
two planes, each of which is in motion towards an axis of rotational symmetry as shown in Fig. 1. The speed of
the wall motion is proportional to the distance from the axis of rotational symmetry. These flows may seem, at first
sight, to be of less practical significance than the corresponding states driven by a simple rotation of, or transpiration
through, a bounding wall, but they are of significance to steady-streaming problems. For example, these flows have
application to problems in which bounding walls are in small-amplitude, high-frequency, periodic motion normal to
their plane, which leads to a wall stretching rate that is related to the local streaming Reynolds number. An example
of just such an application is the recent study of Hall and Papageorgiou [6], which considered a planar motion
driven by periodic oscillation of two parallel walls. In their case, the sub-problem in the steady-streaming limit is an
analogous planar stretching flow. The mid-plane symmetry breaking bifurcation of this planar stretching flow was
shown to be crucial, since it is the subsequent Hopf bifurcation of the symmetry broken steady-streaming flow that
is responsible for the quasi-periodic behaviour (and ultimately the subsequent chaotic motion). As we shall show
in this study, the switch from a planar stretching flow to a radial stretching flow leads to a qualitative change in the
solution structure, with the radial case being significantly more subtle.

The analysis we present herein is related to the well-known Berman–Terril–Robinson (BTR) problem for flow
in a planar porous channel; see [7,8]. The BTR problem is one in which, in the inviscid limit, there are a number
of discrete solution branches; however, two of the states only differ by terms that are exponentially small. Similar
behaviour is also found for porous pipes, and the early article of Terrill [9] was an important step in recognising the
influence of exponentially small terms in the asymptotic description. The BTR class of problems are not isolated
cases and a thorough review of other situations (across a broad range of disciplines) that present comparable features
was presented in [10].

For the flow under consideration here we show that the system behaves differently from the BTR problem.
Rather than the exponentially small terms distinguishing between a pair of discrete solutions to the boundary value
problem, we demonstrate that, to algebraic order, a continuum of solutions exists at large Reynolds numbers. For
the high Reynolds number limit to result in a (locally) unique solution (selecting one solution from the ‘algebraic
continuum’), we show that terms beyond all orders must be included in the asymptotic description. This provides
a mechanism for perturbations that are beyond all orders in the asymptotic series to determine the leading order
response of the flow; a behaviour that, one may argue, is potentially more significant than that found in the BTR
problem.

1.1 Formulation

We consider the axisymmetric flow between two parallel planes of infinite extent, separated by a distance 2L .
Between the two boundaries is an incompressible, viscous fluid of density ρ and kinematic viscosity ν. A dimensional
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Exponential sensitivity to symmetry imperfections 65

cylindrical polar coordinate system (r∗, ϑ, z∗) with velocity field (u∗, 0, v∗) is centred midway between the planes
on the axis of symmetry, such that the boundaries are at z∗ = ±L , and the system is (notionally) of radial extent
R. The boundaries undergo a stretching motion in such a way that the radial, dimensional velocity u∗ on z∗ = ±L
is u∗(r∗,±L) = −C±L−1r∗, for constants C±. As noted above, whilst such a boundary condition might not
appear useful at first sight, it is applicable to a subset of broader practical problems. One important case arises
in steady-streaming flows, for which the wall speed constants C± will be related to the local streaming Reynolds
number.

Following the introduction of the dimensionless coordinates r∗ = Rr, z∗ = Lz, velocities u∗ = AC− u(r, z, t),
v∗ = C− v(r, z, t) and pressure p∗ = ρC−2 A2 p(r, z, t), the governing equations become

ut + uur + vuz = −pr + 1

Re

{
uzz + 1

A2

(
urr + 1

r
ur − u

r2

)}
, (1a)

vt + uvr + vvz = −A2 pz + 1

Re

{
vzz + vrr

A2

}
, (1b)

ur + u

r
+ vz = 0, (1c)

where the Reynolds number is Re = C−L/ν and A is an aspect ratio of the domain defined to be A = R/L . The
boundary conditions are u(r, z = −1) = −r, u(r, z = 1) = −C+r/C− and v(r, z = ±1) = 0.

There is a well-known self-similar solution for the flow in the stagnation-point form:

(u(r, z, t), v(r, z, t))T = (rU (z, t), V (z, t))T , (2a)

p(r, z, t) = r2 P(t)

2
+ 1

A2 Q(z, t). (2b)

This solution is exact in the framework of the Navier–Stokes, that is, the terms proportional to A−2 in (1) are
identically zero, and no approximations are required. However, we may also view this solution as a leading-order
(boundary-layer type) solution for domains of large aspect ratio A � 1. To apply (2) to ‘large’ domains requires
us to neglect any far-field conditions at r∗ = R under the common assumption that they are ‘sufficiently far away’
to not impact the solution elsewhere. We will address this assumption later in this article through a combination of
a spatial stability analysis and computation of solutions to (1) at finite values of A.

If we restrict attention for the moment to steady self-similar solutions, then we are required to solve a deceptively
simple fourth-order boundary-value problem for the velocity components U (z), V (z) and pressure constant P:

U ′′

Re
= P + U 2 + V U ′, (3a)

2U + V ′ = 0, (3b)

where

U (−1) = −1, U (1) = C+/C− ≡ −(1 + �), and V (±1) = 0. (3c)

Here the prime notation indicates differentiation with respect to the dimensionless axial coordinate z and � is a
measure of asymmetry in the wall boundary conditions. Throughout this study, we concentrate on the case where
any asymmetry in the boundary conditions is small.

2 Numerical solutions for steady self-similar states

We begin by presenting some brief (self-similar) numerical results, which we shall use to motivate the subsequent
asymptotic descriptions. Numerical solutions to (3) have been obtained by several methods, which were all in
agreement. For the figures presented herein, we used a finite-difference representation of the governing equations,
writing the system as four first-order equations and evaluating the equations at mid-nodal points with a second-order
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Fig. 2 Profiles of the radial component U (z) for increasing
Reynolds number with a small imperfection of � = 10−6. We
note the dramatic loss of a mid-plane symmetric (about z = 0)
profile for Re = 45, 60, 75
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Fig. 3 Computations for increasing Re with an imperfection in
the symmetry of the wall boundary conditions of � = ±10−6.
A symmetric profile is maintained for all Re when � = 0, for
which V (z = 0) = 0. Despite the qualitative appearance of
a softened pitchfork bifurcation, we emphasise that this is not
the case, and there is no bifurcation

accurate scheme. The nonlinearity is handled by Newton iteration and all tolerances were set to 10−10. Computa-
tional meshes ranged up to 8 × 104 points across the domain; the need for this very large number of points (for a
simple boundary value problem) is associated with a subtle sensitivity of the system to asymmetry about z = 0.

Numerical difficulties (convergence failure) can occur when attempting to solve the problem for � = 0 unless
the symmetry is enforced by solving over the half-domain z ∈ [0, 1]. As we shall explain herein, this difficulty
is a feature of the solution set of (3), the source of which lies in the existence of a continuum of states that are
parameterised by exponentially small differences in the symmetry of the boundary conditions. Similarly, if one
monitors the determinant of the Jacobian matrix during the solution procedure to detect bifurcation points, then
spurious bifurcations will typically be observed.

Solution of the imperfect problem (� �= 0) is a more straightforward process, and results are shown in Figs. 2, 3,
4 and 5. It is immediately apparent, see Fig. 2, that the radial velocity profile becomes skewed at sufficiently large
values of the Reynolds number, even for small symmetry imperfections. It is worth noting at this stage that the
radial flow is bi-directional (owing to the obvious mass conservation constraint), and this makes the linear stability
problem (as discussed later in this study) a little more challenging than would be the case for uni-directional flows.

No computational difficulties are encountered when beginning at, for example, Re = 1 with � = 10−6, and then
using a continuation procedure to progress to larger values of Re. However, any subsequent attempt to continue
these solutions back to � = 0 can lead to convergence difficulties at larger values of Re.

At first sight, from the results of Fig. 3, one might believe that there is a singular point on the symmetric solution
branch (near Re ≈ 40) that corresponds to a pitchfork bifurcation and a loss of mid-plane symmetry. However,
although Fig. 3 has qualitative features in line with a disconnected (softened) pitchfork bifurcation, our later asymp-
totic description will demonstrate that no such bifurcation exists and the symmetric solution branch is locally unique.
This uniqueness is demonstrated in the results of Figs. 4 and 5. Figure 4 demonstrates that mid-plane symmetric
flow is indeed recovered (smoothly) at Re = 50, but only for symmetry imperfections of � � 10−8. Similarly in
Fig. 5, we present V (z = 0) as the obvious measure of asymmetry in the flow as a function of the imperfection
� for a range of Reynolds numbers. As is clearly seen, for Re = 60 we obtain what appears to be very close to a
continuum of states near � = 0, with −0.4 < V (z = 0) < 0.4. However, a view of Fig. 5 over a sufficiently small
range of � shows that V (z = 0) remains single valued, but the slope of the data is exponentially increasing with
Re.
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Fig. 4 Profiles of U (z) for � = 10−8, 10−7, . . . , 10−3 for
fixed Re = 50. It is clear that imperfections in the symmetry
of the boundary conditions have a dramatic influence on the
O(1) velocity components. Furthermore, we note the passive
nature of the near wall regions
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Fig. 5 A (mid-plane symmetry) measure, the normal velocity
V evaluated at the midplane z = 0, as a function of the imper-
fection parameter � for a range of Reynolds number Re =
20, 30, 40, 50, and 60 (increasing in the direction of the arrow
shown). For increasing Re, the system is clearly highly sen-
sitive to �; however, V (z = 0) remains single-valued as a
function of �

The origin of all the numerical features described above will be clarified below by an asymptotic investigation of
the high-Reynolds number structure of the solutions. As we shall show, convergence difficulties are to be anticipated

in that, as Re → ∞, there exists an O(1) sensitivity to exponentially small, O(Re− 1
2 exp(−μRe)) perturbations to

the symmetry of the boundary conditions; here 0 < μ < 1
3 is a parameter to be described later. It is worth recalling

here that since this is an exact solution of the Navier–Stokes equations, these features must also be present in the
broader context of the full governing equations for at least a subset of boundary conditions applied at the edge
(r∗ = R) of the domain.

3 A perturbation expansion for self-similar steady states as Re → ∞

On the basis of Fig. 4, we conjecture that the large Reynolds number structure consists of two inviscid regions
z ∈ [−1, c] and z ∈ [c, 1] with a viscous shear layer at z = c. We note that there is little evidence of any structure
near the walls at z = ±1, and we shall assume from the outset (as suggested by the results of Fig. 5) that the measure
of the imperfection � � Re−k for any positive value k. A schematic of the proposed structure is shown in Fig. 6.

3.1 Inviscid regions: z ∈ [−1, c] and z ∈ [c, 1]

For large-Re, we seek an outer perturbation expansion in the form:

U = U±
0 + U±

1 Re−1 + · · · , (4a)

V = V ±
0 + V ±

1 Re−1 + · · · , (4b)

P = P±
0 + P±

1 Re−1 + · · · , (4c)

where the terms (·)+i terms are the expansion components in z ∈ [c, 1] and the terms (·)−i terms are the corresponding
terms in the region z ∈ [−1, c].
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68 R. E. Hewitt, I. Harrison

Fig. 6 A schematic view of the asymptotic regions as Re → ∞. Here the viscous wall layers spanned by the rescaled coordinates Y ±
only need to be considered for terms that become exponentially small for increasing Reynolds number

In the lower inviscid region, this leads to

P−
0 + U−

0
2 + V −

0 U−
0

′ = 0, (5a)

2U−
0 + V −

0
′ = 0. (5b)

In the absence of any leading-order near-wall structure at z = −1, solving subject to U−
0 (−1) = −1, V −

0 (−1) = 0
and V −

0 (c) = 0 yields

V −
0 (z) = 2(c − z)(1 + z)

c + 1
, U−

0 (z) = 2z + 1 − c

c + 1
, P−

0 = −1. (6a)

The same process in the region z ∈ [c, 1] provides

V +
0 (z) = 2(c − z)(z − 1)

c − 1
, U+

0 (z) = 2z − 1 − c

c − 1
, P+

0 = −1. (6b)

3.2 The viscous shear layer: z = c + ηRe−1/2

This viscous inner layer straddles the point z = c. In this region, given the nature of the outer solutions, we seek an
expansion in the form:

U = 1 + Ũs1(η)Re−1/2 + · · · , (7a)

V = −2ηRe−1/2 + Ṽs1(η)Re−1 + · · · . (7b)

At leading order, we obtain

Ũ ′′
s1 = 2Ũs1 − 2ηŨ ′

s1, (8a)

2Ũs1 + Ṽ ′
s1 = 0, (8b)

subject to matching with the outer inviscid solutions above as η → ±∞. The appropriate solution is

Ũs1(η) = 2

(
η [c + erf(η)] + e−η2

√
π

)
/
(

c2 − 1
)

, (9)

Ṽs1(η) = −ηŨs1(η) − erf(η)/
(

c2 − 1
)

. (10)

The viscous shear layer’s reduction in radial mass flow results in a correction to the inviscid region of O(Re−1).
Continuing our expansion further reveals the additional corrections in the outer inviscid problems. These are
straightforward to determine following matching with the above shear-layer solution:
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V −
1 (z) = (1 + z)2

(1 + c)3(c − 1)
, U−

1 (z) = − 1 + z

(1 + c)3(c − 1)
, P−

1 = 0, (11a)

and

V +
1 (z) = − (z − 1)2

(c − 1)3(c + 1)
, U+

1 (z) = z − 1

(c − 1)3(c + 1)
, P+

1 = 0. (11b)

3.3 The influence of the boundary layers

Clearly in the expansion thus far, there is no role for the imperfection � since we have chosen it to be beyond all
orders in magnitude. Furthermore, we may observe that there is no mechanism for determining the constant c in
the leading-order solution. In fact, to the order we have described here, we must conclude that there is a continuum
of solutions parameterised by the value of c. We conjecture at this stage that continuing to higher order in the
hierarchical expansion scheme outlined above does not, at any algebraic order, act to determine a unique value of c.

In this section, we will show that the value of c, which effectively determines the shape of the leading-order
velocity profiles as shown in Figs. 2 and 4, is fixed by the beyond all orders imperfection �. To demonstrate this, we
must consider the influence of boundary layers at z = ±1, even though these boundary layers are only non-trivial
for terms that are exponentially small. The concept of a boundary layer is rather less applicable to exponentially
small terms, but this discussion is nonetheless useful in motivating a later WKB technique that is more global in
nature.

3.3.1 A wall layer at z = ±1

The radial momentum equation, when evaluated at either wall, determines the pressure constant to be

P = 1

Re
U ′′|z=±1 − U 2|z=±1. (12)

Because the upper wall boundary condition is U (1) = −(1 + �), the proposed form for the pressure is

P = −1 + P̄0� + · · · , (13)

where � � Re−k for any exponent k > 0. There is a standard wall-layer region, spanned by Y ± = O(1), where
z = ±1 ∓ Y ±/Re1/2, in which the expansions are

U = −1 + · · · + u±
0 (Y ±)� + · · · , (14a)

V = ∓2Y ± Re−1/2 + · · · + v±
0 (Y ±)� Re−1/2 + · · · , (14b)

with d/dz = ∓Re1/2d/dY ±. The key difference here is that we are applying a straightforward Re−1/2 wall-layer
scaling, but it is to terms that are exponentially small.

The equations in this wall layer are

u±
0

′′ = P̄0 − 2u±
0 + 2Y ±u±

0
′
, (15a)

2u±
0 ± v±

0
′ = 0, (15b)

to be solved subject to u−
0 (0) = 0, v−

0 (0) = 0 in the lower wall layer at z = −1 but u+
0 (0) = 1 (corresponding

to the imperfection in boundary conditions), v+
0 (0) = 0 in the upper wall layer at z = 1; here the prime notation

denotes differentiation with respect to the appropriate argument Y ±. The solution is found to be

u±
0 = 1

2

(
(2J± − P̄0)[ exp(Y ±2

) − √
πY ±erfi(Y ±) ] + P̄0 + 4C1Y ±)

(16)

for some constant C1 and J+ = −1, J− = 0, where erfi(Y ±) = −ierf(iY ±). Here J± plays the role of the
imperfection, which is only applied at the upper wall.
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70 R. E. Hewitt, I. Harrison

We note that as η → ±∞ in the mid-plane shear layer,

Ũs1 ∼ 2η

c ∓ 1
+ 1√

π(c2 − 1)

e−η2

η2 , (17)

while as Y ± → ∞ in the upper/lower wall layer, we find that

u±
0 ∼ P̄0 − 2J±

4

eY ±2

Y ±2 . (18)

This exponential growth on leaving the wall layers is inevitable and must be properly taken account of in the
asymptotic solution.

The η term in (17) matches to the O(1) core-flow solution as η → ∞; however, it seems that the only term
that can (indirectly) match with the exponentially growing term in (18) is the corresponding decaying term in (17).
This is consistent with our assumption that � � Re−k for any exponent k > 0 and suggests that we examine the
intermediate z = O(1) region in more detail.

3.3.2 A WKB expansion in the interior regions

We clearly cannot ignore the exponentially small terms and therefore, as discussed in the review article [10], the
strategy is to isolate these terms so that they can be treated separately from the algebraic part of the asymptotic
series. There are two interior regions, c < z < 1 and −1 < z < c, in which we denote quantities using the
superscripts (·)+ and (·)−, respectively.

In each interior layer, we introduce expansions of the form:

U = U±
0 (z) + U±

1 (z)Re−1 + · · · + U±
w (z) �±(Re,�) + · · · , (19)

with a similar expansion for V , where the gauge functions �±(Re,�) � 1 are exponentially small, but their exact
form is to be determined as part of the matching process.

The pressure perturbation �P̄0 does not influence this region, and the governing equations for the unknowns
(U±

w , V ±
w ) are

Re−1 U±
w

′′ = 2
[
U±

0 + Re−1U±
1 + · · ·

]
U±

w

+
[
V ±

0 + Re−1V ±
1 + · · ·

]
U±

w
′ +

[
U±

0
′ + Re−1U±

1
′ + · · ·

]
V ±

w , (20a)

2Uw + V ′
w = 0, (20b)

where the bracketed terms are as provided by (6a)–(6b) and (11a)–(11b).
Solving via a WKB method is a somewhat lengthy but otherwise straightforward process, yielding the solutions:

U+
w (z) =

{
Re

(c − 1)(c − z)2(z − 1)2 + · · ·
}

exp (Re F0(z) + F1(z)) , (21a)

U−
w (z) =

{
Re

(1 + c)(c − z)2(1 + z)2 + · · ·
}

exp (Re G0(z) + G1(z)) , (21b)

where F0,1 and G0,1 are not given explicitly here. However, to match the solutions together, we do require the
limiting forms of these solutions as z → ±1 and z → c±.

As z → 1 we find that

F0(z) = 1 − 3c

3(c − 1)
+ (z − 1)2 + O

(
(z − 1)3

)
, (21c)

F1(z) = − 1

3(c − 1)3(c + 1)
+ O

(
(z − 1)3

)
, (21d)

and as z → c+,
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Exponential sensitivity to symmetry imperfections 71

F0(z) = c2(c − 3)

3(c − 1)
− (z − c)2 + O

(
(z − c)3

)
, (21e)

F1(z) = − (c − 1)3 + 1

3(c − 1)3(c + 1)
+ O(z − c). (21f)

As z → −1 we find that

G0(z) = − 3c + 1

3(c + 1)
+ (z + 1)2 + O

(
(z + 1)3

)
, (21g)

G1(z) = − 1

3(c + 1)3(c − 1)
+ O

(
(z + 1)3

)
, (21h)

and as z → c−,

G0(z) = c2(c + 3)

3(c + 1)
− (z − c)2 + O

(
(z − c)3

)
, (21i)

G1(z) = (c + 1)3 − 1

3(c + 1)3(c − 1)
+ O(z − c). (21j)

3.3.3 Matching across the channel

We now require that the series (19) in each core region matches to (14) on approaching the boundaries and (7) on
approaching the shear layer. To achieve this, it only remains to match the exponentially small terms, ensuring that
(21) matches to (18) as z → 1 (Y + → ∞) and to (17) as z → c+ (η → ∞), which leads to

�

4Re
(P̄0 + 2) = Re�+ 1

(c − 1)3 exp

{
− 1 − 3c

3(1 − c)
Re − 1

3(c − 1)3(c + 1)

}
(22a)

(because J+ = 1) and

1

Re3/2
√

π

1

c2 − 1
= Re�+ 1

(c − 1)3 exp

{
c2(c − 3)

3(c − 1)
Re − (c − 1)3 + 1

3(c − 1)3(c + 1)

}
, (22b)

respectively. Similarly, in the lower region, we require that (21) matches to (18) as z → −1 (Y − → ∞) and to (17)
as z → c− (η → −∞), which leads to

�P̄0

4Re
= Re�− 1

(c + 1)3 exp

{
− 3c + 1

3(c + 1)
Re − 1

3(c + 1)3(c − 1)

}
, (23a)

(because J− = 0) and

1

Re3/2
√

π

1

c2 − 1
= Re�− 1

(c + 1)3 exp

{
c2(c + 3)

3(c + 1)
Re + (c + 1)3 − 1

3(c + 1)3(c − 1)

}
, (23b)

respectively.
The constraints (22b) and (23b) serve to define the functions �± in (19); they are both O(Re−5/2 exp(−μ± Re)),

where μ± are positive constants, the values of which depend upon the location of the interior shear layer, c.
On eliminating in favour of � and c, under the assumption that 0 < c < 1 corresponding to a shear layer that is

displaced towards the ‘upper’ wall, we find that

� = 2

(c2 − 1)
√

π Re
exp

{
−1

3

(
(c − 1)2 Re − 1

c + 1

)}
; (24)

a similar result obviously holds in the −1 < c < 0 case.
Figure 7 shows profiles of the radial component U (z) for Re = 25, 50, 100 and 200 as computed from the

original governing equations. In these calculations the boundary conditions have a slight symmetry imperfection,
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Fig. 7 A series of profiles for U (z) (shown as solid lines) for Re = 25, 50, 100, and 200. In this case, the upper boundary condition is
U (z = 1) = −1 − �, where � is chosen to induce an exponentially decreasing imperfection to the mid-plane symmetry by applying
(24) with c = 0.5. As can be seen, this exponentially decreasing imperfection leads to a persistent O(1) effect on the radial velocity
profile, it being skewed to peak at z = c = 0.5 as Re → ∞. The dashed lines show the leading-order inviscid solution confirming
the matching process that determines the functional relation between c and the imperfection �. At the final value of Re = 200, the
symmetry imperfection in the boundary conditions is such that |�| ≈ 7.7 × 10−9

with U (−1) = −1 and U (1) = −1 −�. However, we have chosen � to satisfy (24) with c specified to be c = 0.5.
As can be seen from the figure, the analysis above makes the correct predictions in that, for this functional form
of �, the numerical data approach the asymptotic description in a convincing manner. It is worth noting that at the
final Reynolds number (Re = 200) shown, the imperfection in the symmetry of the boundary conditions is only
slightly larger than the tolerance applied in the numerical scheme (in this case |�| ≈ 7.7 × 10−9). It is also worth
emphasising yet again that the solution (when � = 0) is locally unique and symmetric at this Reynolds number
(there is no bifurcation), and that the O(1) asymmetry in the profile is purely a consequence of (indeed, forced by)
this 10−9 imperfection. For a second-order finite difference scheme, accurate computation of the boundary value
problem in this case, with Re = 200, was performed with 8 × 104 nodal points in z.

4 Linear perturbations to the mid-plane symmetric, self-similar, state

In the high Reynolds number limit, to algebraic order in the asymptotic description, there is a continuum of states
parameterised by c ∈ [−1, 1]. It is only when terms that are exponentially small are included that the base flow
profile, i.e. the value c, is determined. In the absence of any imperfection (� ≡ 0) we obtain the similarity solution
that is symmetric about the channel midplane (c = 0). One might naturally wonder what the consequences of this
‘near continuum’ of states are in terms of the spatial and temporal stability of this symmetric self-similar state.

4.1 Temporal modes

For unsteady motion of this self-similar form, we simply augment the system (3) with the acceleration term Ut

in the radial momentum equation; it is well known that this stagnation form of solution is preserved for unsteady
flows. We can therefore address the temporal stability of the perfect (� ≡ 0) base flow to linear perturbations of
the same self-similar form by seeking a solution in the form

u(r, z, t) = r
(
U (z) + δũ(z)est) , (25a)

v(r, z, t) = V (z) + δṽ(z)est , (25b)

p(r, z, t) = 1

2
r2 P + 1

A2 Q(z) + δ

(
1

2
r2 p̃ + 1

A2 q̃(z)

)
est , (25c)
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where δ � 1 and p̃ is a constant. The governing eigenvalue problem for the temporal growth rate s is,

sũ + 2Uũ + V ũ′ + ṽU ′ = − p̃ + ũ′′

Re
, (26a)

2ũ + ṽ′ = 0, (26b)

where we have not given the decoupled equation for the pressure correction q̃ and the boundary conditions are
ũ = ṽ = 0 on z = ±1.

Given the results of the previous section, we should expect at least one temporal (symmetry breaking) eigenmode
to exist with s exponentially small. Such modes must exist because one can construct a neutral solution to (26),
accurate to all algebraic order, by considering the difference of two neighbouring states in the ‘algebraic continuum’
of base flows about � = 0. More formally, the matched asymptotic approach considered for the base flow can
equally be applied to the perturbation equations (26), although we avoid most of the details here as they follow the
method applied in the previous section. It is sufficient to note that the dominant eigenmode must have p̃ ≡ 0 (for
it to break the mid-plane symmetry of the base flow), and the core solution for z ∈ [0, 1] is

ũ = 1 − z + O(Re−1), ṽ = (z − 1)2 + O(Re−1), (27)

with analogous expressions in the region z ∈ [−1, 0]. This outer solution again (as for the base flow) satisfies the
conditions at the wall, but a boundary layer region is still required for exponentially small terms.

We now consider the upper wall layer and, as before, introduce z = 1 − Y + Re−1/2 then the appropriate
expansion is

u = r
(
[−1 + · · · ] + δ[Y + Re−1/2 + · · · + γ (Re)ũ+

0 (Y +) + · · · ]est
)

, (28a)

v = [2Y + Re−1/2 + · · · ]
+ δ[Y +2

Re−1 + · · · + γ (Re)Re−1/2ṽ+
0 (Y +) + · · · ]est , (28b)

where γ (Re) is beyond all orders and to be determined by a matching process. The only significant question to
address for this problem is: how does the exponentially small temporal growth rate appear in the eigenproblem?
We can see from (28) that if

s = s0 Re1/2γ (Re), (29)

then the governing system for the exponentially small components ũ+
0 , ṽ+

0 is forced by an inhomogeneity, s0Y +,
which then leads to exponential growth as Y + → ∞. This growth must be matched via a WKB solution in the core
to the exponential terms in the shear layer around z = 0 (as in the previous section). This results in a least damped
temporal growth rate of

s = O

(
Re exp

(
− Re

3

))
. (30)

As s remains real, we may view this as the base flow being exponentially close to possessing a symmetry-breaking
pitchfork bifurcation; however, no zero of s is ever achieved. Indeed, there is no evidence of any other eigenmode
becoming unstable, therefore this ‘exponentially close to neutral’ mode is the most relevant and will dominate the
unsteady dynamics of this flow for increasing values of Re.

In Fig. 8, we present a numerical computation of the temporal growth rate s, scaled by the large Reynolds number
behaviour (30). To determine s numerically, we first discretise (26) to obtain the full discrete spectrum by solving
with a QZ algorithm, before subsequently refining the solution with a much greater numerical resolution for the
‘least damped’ mode by a local refinement procedure (effectively solving (26) as a nonlinear problem with s as an
unknown).

Any transient (mid-plane) symmetry-breaking perturbation of the self-similar system will therefore require a
time scale of O(Re−1 exp(Re/3)) to decay. Nonlinear computations of the unsteady form of the self-similar equa-
tions readily show this exponentially long persistence of asymmetry, which is entirely in line with this eigenvalue
analysis. We do not present such results here, and prefer instead to concentrate on the spatial analogue of this
analysis.
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Fig. 8 Eigenvalues for the
spatial (λ, upper line) and
temporal (s, lower line)
growth rates, scaled by the
large Reynolds number
behaviour
(s, λ ∼ Re exp(−Re/3)).
These are spatial/temporal
eigenmodes that are
exponentially close to
neutral and are both real
valued

-10

-5

 0

 5

 10

 0  5  10  15  20  25  30  35  40

4.2 Spatial modes

For spatial eigenmodes of the symmetric (� = 0) base flow, we seek an expansion of the form:

u(r, z, t) = rU (z) + δr1+λũ(z), (31a)

v(r, z, t) = V (z) + δrλṽ(z), (31b)

p(r, z, t) = 1

2
r2 P + 1

A2 Q(z) + δ

(
1

2
r2+λ p̃ + rλ

A2 q̃(z)

)
, (31c)

where δ � 1, and p̃ is a constant. The governing eigenvalue problem for the spatial growth ‘rate’ λ, under appropriate
assumptions, is

(2 + λ)Uũ + V ũ′ + ṽU ′ = −1

2
(2 + λ) p̃ + ũ′′

Re
, (32a)

(2 + λ)ũ + ṽ′ = 0, (32b)

where we have not given the decoupled equation for the pressure q̃ and the boundary conditions are ũ = ṽ = 0 on
z = ±1. We say ‘under appropriate assumptions’ here because, although the base flow (U, V ) is an exact reduction
of the Navier–Stokes equations, the equations for a spatial perturbation are obtained in the large aspect ratio limit.
In the derivation of (32), we have neglected terms of the form A−2 r−2 (for example), where A = R/L is the aspect
ratio. The large-aspect ratio limit parabolises the perturbation equations, leading to a linear-eigenvalue problem,
which then has eigenmodes of the form: (31).

Precisely as discussed for the temporal modes, we find that in the large Reynolds number limit, the least damped
spatial growth rate is exponentially small, such that

λ = O

(
Re exp

(
− Re

3

))
. (33)

In Fig. 8, we also present results from a numerical computation of the ‘least damped’ spatial eigenvalue λ, scaled
by the large Reynolds number behaviour (33).

5 Nonlinear, steady, finite-domain solutions

When the flow domain is finite in its radial extent, we must solve the full axisymmetric Navier–Stokes equations
(1) with an additional condition at the edge of the boundary (r = 1). To address the relevance of the previous
asymptotic discussion to ‘real’ flows that are necessarily finite in radial extent, we shall find steady solutions to (1)
numerically, subject to the boundary conditions:
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v(r, z = −1) = 0, v(r, z = 1) = 0, (34a)

u(r, z = −1) = −r, u(r, z = 1) = −r(1 + �(1 − eA(r−1))), (34b)

u(r = 0, z) = 0, vr (r = 0, z) = 0, (34c)

u(r = 1, z) = Uc=0(z; Re) + ε sin(π z), vr (r = 1, z) = 0. (34d)

Here � is a measure of asymmetry in the lateral wall boundary conditions, ε is a measure of asymmetry at the
domain’s edge, and Uc=0 is the mid-plane symmetric similarity solution. Given that Uc=0(z = 1) = −1 the
boundary conditions at the corner position r = 1, z = 1 are self-consistent for any O(1) value of the perturbation
amplitudes ε and �.

We tackle the problem using a Galerkin finite-element method for a given Reynolds number Re and aspect ratio
A = R/L . The cylindrical domain is decomposed into isoparametric, axisymmetric Q2 P1 finite elements; see [11].
The pressure is discontinuous across element boundaries and is approximated by piecewise bi-linear polynomials.
The two global coordinates (r, z) and the two velocity components (u, v) (in the meridional plane) are continu-
ous across element boundaries and are approximated by piecewise bi-quadratic polynomials. The finite-element
method is used to calculate approximate solutions to the weak form of the Navier–Stokes equations, as obtained by
weighting the equations (1) by suitable test functions and integrating over the fluid domain. A consequence of the
assumption of axisymmetric flow is that we can integrate over the azimuthal coordinate analytically. The resulting
numerical problem is formulated and solved using the oomph-lib library [12].

If ε = � = 0, then the symmetric similarity solution remains a solution of the finite-domain problem for all
radii and we use this to validate the Navier–Stokes solver over a range of Re and spatial resolutions. If � �= 0, then
we are imposing an asymmetry in the lateral boundary conditions, in a manner analogous to that considered for the
self-similar flow in Sects. 2 and 3. When ε �= 0, we are imposing a perturbation at the edge of the domain that breaks
the (mid-plane) symmetry of the base flow. The choice of sin(π z) as a perturbation ensures that the mass flux into
the domain remains zero as clearly must be the case; other symmetry-breaking mass-flux-conserving perturbations
were investigated and they did not alter the qualitative features of the results that we present herein. Some care
is required to ensure that the net mass flux of the similarity solution Uc=0(z) is less than the global tolerance for
the scheme when interpolated over the chosen spatial discretisation; this is most simply achieved by solving the
boundary-value problem for Uc=0(z) on precisely the same z-distribution of nodal points as will be applied to the
full two-dimensional (2D)computation.

5.1 Asymmetry in the stretching rates: ε = 0,� = 0.01, 0.05

We begin by computing solutions for which there is a peak 1 or 5% asymmetry in the lateral wall boundary con-
ditions (i.e. � = 0.01, 0.05), but for which symmetry is still imposed at the edge of the domain (i.e. ε = 0). The
results of Sect. 2 demonstrate that the similarity solution becomes increasingly sensitive to such asymmetry as Re
is increased, and the description of Sect. 3 showed that the origin of this sensitivity is the exponential terms in the
asymptotic description.

To assess the relevance of the self-similar results to the finite domain, we compute 2D solutions over a range
of parameters Re ∈ [0, 20], A ∈ [1, 120] and compare the resulting dimensionless transverse flow velocity at the
mid-plane, on the axis of rotational symmetry: v(r = 0, z = 0). For a mid-plane symmetric solution, we must
obviously have v(r = 0, z = 0) = 0, but we find that the asymmetry in the stretching rate of the plates does lead
to an increasingly asymmetric flow as Re is increased. In Fig. 9, we show the predicted self-similar behaviour and
the results from the 2D solution as the aspect ratio of the domain is increased to be A = 30, 60, 120.

As the length of the domain is increased, for sufficiently large symmetry perturbations the predicted self-similar
behaviour is recovered near the axis of rotational symmetry (see the � = 0.05 data set). However, for smaller
values of �, the approach to the self-similar predictions is extremely slow for increasing aspect ratios A. Given the
results of Sect. 4, we should perhaps not be surprised that, as the Reynolds number becomes large enough for the
exponential sensitivity in lateral boundary conditions to be felt, the exponentially small spatial eigenvalue leads to
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Fig. 9 The dependence of the transverse flow for a finite-domain solution, as measured at the mid-plane of the channel (z = 0), on the
axis of rotational symmetry (r = 0). We show the data for both a 1 and a 5% asymmetry in stretching rates (� = 0.01 and 0.05, with
ε = 0) and aspect ratios of A = 30, 60 and 120 as dashed lines. The data set for a radially unbounded case (A = ∞) is the similarity
solution, shown as solid lines. The asymptotic predictions of Sect. 3 are shown for Re ≥ 15 by the data points

the flow near the origin being more strongly influenced by the boundary condition at the edge of the domain unless
the aspect ratio is very large. This motivates us to consider the case of an asymmetry induced by the ‘far field’
(r∗ = R) boundary condition (with � = 0, ε �= 0).

5.2 Asymmetry at the domain’s edge: ε = 0.01, 0.05, 0.25,� = 0

We now impose an asymmetry at the edge of the domain by varying ε with � = 0 in the conditions (34). As a
metric of the response of the finite-domain solution, we examine the difference between the symmetric similarity
solution and the finite-domain numerical solution:

φ(r) = (u(r, z = 1/2) − rUc=0(z = 1/2)) (εr)−1 ; (35)

where z = 1/2 is an arbitrary choice of position for the measure. We have normalised this measure such that
φ(r = 1) = 1 and show the radial development of this difference for ε = 0.01 in Fig. 10. The figure shows the radial
decay of the asymmetry imposed at the domain’s edge for Re = 2.5, 5, 10, 20 and aspect ratios A = 15, 30, 60. As
we have already discussed in Sect. 4, a linearised mid-plane symmetry breaking perturbation in the limit of large
aspect ratio A � 1 has a radial dependence of r1+λ (for the radial velocity perturbation) where λ ∼ Re exp(−Re/3).
Figure 10 demonstrates that, even at an aspect ratio of A = 60, a Reynolds number of Re = 20 is sufficient for a
perturbation at the edge of the channel to be maintained across the entire length of the domain all the way to r = 0.

In Fig. 11, we repeat the metric of Fig. 10 but increase the amplitude of the symmetry perturbation by increasing
ε to be 0.01, 0.05, and 0.25 with A = 60. We observe that there is little qualitative difference and the dominance
of the edge condition along the entire length of the channel is maintained even for strongly nonlinear perturbations.

Finally, in Fig. 12, we compare the predictions for the spatial decay rate of perturbations to the symmetric self-
similar state as A → ∞ with the results of a finite-domain computation at A = 60, Re = 10, 15, 20 and ε = 0.01.
The spatial analysis of Sect. 4 indicates that, for ε � 1, A � 1, perturbations to the self-similar base state are such
that the difference measure (35) has a predicted radial dependence of

φ(r) ∼ rλ, (36)

when dominated by a single spatial eigenmode. A local spatial decay coefficient for 2D states may therefore be
defined by

λ̂(r) = rφ′(r)

φ(r)
. (37)
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Fig. 10 The distribution of φ(r), which measures the differ-
ence between a finite domain non-self-similar solution and the
self-similar solution, shown for increasing values of Re and
A. The finite domain states have an asymmetry imposed at the
domain’s edge with ε = 0.01,� = 0 in the boundary condi-
tions (34). The cross sections are presented at Re = 2.5, 5, 10
and 20 and at aspect ratios of A = 15 (dash-dot) A = 30
(dashed) and A = 60 (solid)
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Fig. 11 The distribution of φ(r), which is a measure of the
difference between a finite domain non-self-similar solution
and the self-similar solution, shown for increasing values of
ε with Re = 15, 20, A = 60 and � = 0. Even for strongly
nonlinear asymmetry perturbations at the domain’s edge, the
flow response within the channel is qualitatively similar
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Fig. 12 A comparison of the spatial decay rate as predicted in Sect. 4 and the local decay rate of a finite-domain non-self-similar state
for an imposed asymmetry at the domain’s edge with ε = 0.01,� = 0 and A = 60. For linearised spatial perturbations, we found that
φ ∼ rλ, and can therefore compare our predicted decay rate λ for A � 1 with the local value rφ′/φ along the length of the channel.
The corresponding values of λ predicted in Sect. 4 are shown as the broken horizontal lines

Figure 12 compares the local decay coefficient (37) with the linearised, infinite domain, eigenvalue λ (see Fig. 8)
showing excellent agreement, with the modes rapidly (exponentially) becoming spatially neutral as the Reynolds
number is increased.

6 Conclusions

In this study, we have considered a well-known exact solution of the Navier–Stokes equations in a radially unbounded
flow and shown that, despite being an innocuous boundary-value problem, there is some subtlety in the solution
structure for large values of the Reynolds number. An accurate description of the Re � 1 limit is only possible if
one includes terms in the asymptotic series that are exponentially small in Re.
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That the terms beyond all orders in the Re � 1 asymptotic series are important has two consequences: (i) in the
context of the boundary-value problem for the exact solution, an exponentially small asymmetry in the boundary
conditions leads to O(1) effects, and (ii) there are linear spatial and temporal eigenmodes that are exponentially
close to being neutral. For the exponential sensitivity in the boundary-value problem, we have demonstrated that

when Re � 1 a symmetry imperfection of O(Re− 1
2 exp(−μRe)), where 0 < μ < 1

3 , will still have an O(1)

influence. With regards to linearised perturbations, we have shown that (mid-plane) symmetry-breaking unsteady
disturbances to the self-similar flow will decay like exp(st), where s < 0 and s = O(Re exp(−Re/3)). Similarly,
spatial disturbances behave like rλ, relative to the base flow, where λ > 0 and λ = O(Re exp(−Re/3)). In both
cases, the near neutral modes are the ones that dominate the spatio-temporal behaviour.

As the base flow described in this article is an ‘exact solution’, all of the features discussed in the context of the
boundary-value problem are necessarily also present in the Navier–Stokes equations, provided that the ‘far field’
(i.e. the solution for large-radius) in any problem is consistent with the similarity solution. However, in practice, one
has little control over such far-field conditions, and so we have also cast the results for these self-similar flows into
a more practical context by performing Navier–Stokes computations over a finite domain (with the radius of the
domain being up to 120 times longer than the channel half-width). Although the self-similar solutions can describe
the near-axis r � 1 finite domain solution in some cases (see Fig. 9 with � = 0.05 for example) it appears that
the spatial stability results are of most practical significance. As the Reynolds number is increased, spatial growth
rates become exponentially close to neutral which (in practice) leads to any asymmetry in the ‘far field’ affecting
the solution across the entire radial extent of the channel, rather than being localised near the edge of the domain.
Of course one can always choose a domain that is sufficiently long for the perturbation to decay, but owing to the
exponentially decreasing nature of the eigenvalue λ, the (exponentially long) lengths of channel required rapidly
make little practical sense.

Given the intricate nature of this analysis, and that the linear stability results show eigenvalues that are expo-
nentially close to being neutral, one may suspect that the problem would not have to be altered much to give rise
to a bifurcation. One could, for example (as suggested by a referee of this study) seek modes that are 3D and/or
time-periodic; however, we suggest an alternative scenario that may give rise to a robust structure even within
the confines of the steady axisymmetric formulation. Even for moderate Reynolds numbers (based on the channel
half-height), as the aspect ratio is increased, the local flow speed will also increase linearly with radius. It seems
highly likely therefore that the solution space must eventually become more complex and potentially nonunique as
a local Reynolds number based on radius (rather than channel half-height) increases. A likely scenario is therefore
that in practice, for a moderate Re (as defined herein), there will be an aspect ratio for which instability develops
beyond a critical radius in the channel. It is this large-radius instability that will then provide a (mid-plane) sym-
metry-breaking perturbation, which will then inevitably affect the entire channel length through the existence of
near-neutral spatial modes. Obviously, such modes could only be captured by a detailed computational examination
of the 2D eigenvalue problem over the parameter spaced spanned by the Reynolds number and aspect ratio.
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