
Performance Analysis of Asynchronous Parallel
Jacobi

Hook, James and Dingle, Nick

2013

MIMS EPrint: 2013.52

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Performance Analysis of Asynchronous Parallel

Jacobi

James Hook ∗& Nick Dingle†

October 29, 2013

Abstract

The directed acyclic graph (DAG) associated with a parallel al-
gorithm captures the order in which separate local computations are
completed and how their outputs are subsequently used in further com-
putations. Unlike in a synchronous parallel algorithm the DAG asso-
ciated with an asynchronous parallel algorithm is not predetermined.
Instead it is a product of the asynchronous timing dynamics of the
machine and, as such, it is best thought of as a pseudorandom vari-
able. In this paper we present a new tighter bound on the rate of
convergence of asynchronous parallel Jacobi (APJ), which is based on
statistical properties of the DAG and is valid for systems which satisfy
a standard sufficient condition for convergence.

We also describe an experiment in which we make a precise log of
the calculations taking place during an implementation of APJ on a
distributed memory multicore machine, which enables us to reconstruct
and study the DAG. We demonstrate that our bound provides a good
approximation of the true rate of convergence in these examples and
show how problems in the algorithm’s implementation can affect the
asynchronous timing dynamics and in turn the rate of convergence of
the algorithm.

Introduction

Jacobi’s method for solving a linear system of equations iterates an affine
map x 7→Mx+ b. In a distributed memory parallel environment x,M and

∗This author was supported by Engineering and Physical Sciences Research Council
(EPSRC) grant EP/I005293 “Nonlinear Eigenvalue Problems: Theory and Numerics”.
†This author was supported by EPSRC grant EP/I006702/1 “Novel Asynchronous

Algorithms and Software for Large Sparse Systems”.

1

b can be broken up into N blocks of rows, so that processor i stores xi, bi
and Mi:. Processor i is then responsible for updating its own block of rows
and iterates the map by

xi 7→Mi,ixi + bi +
∑
j 6=i

Mi,jxj ,

where the xj are the input from other processors. In order to update its state
processor i must have appropriate input from its neighbouring processors.

In the synchronous implementation, a processor cannot finish computing
its update until it receives updates from its neighbours previous computa-
tions:

for k=1,2,...

x(k)=M*x(k-1)+b

wait to receive all y(n-1) values

x(k)=x(k)+y(k-1)

if converged stop

broadcast new state

end

Delays in interprocessor communication give rise to delays and idle time in
the whole computation.

Introduced by Chazan and Miranker [1], chaotic or asynchronous itera-
tions are parallel asynchronous processes in which idle time is removed by
allowing individual processors to begin a new iteration as soon as their pre-
vious one is completed using whatever input data they have stored in their
local memory. This means that processors may use iterate components that
are out of date and that some processors will be able to update many more
times than others.

In the asynchronous implementation, processors successively update with-
out waiting for communication from their neighbours:

for k=1,2,...

x(k)=M*x(k-1)+b

x(k)=x(k)+y

if converged stop

broadcast new state

end

The idea is that by minimizing idle time the update rate of the individual
processors is increased and that this can improve the rate of convergence.

2

However the possible use of older input data can slow convergence and even
lead to instability and divergence.

In [2, 3] the authors study the performance of asynchronous parallel Ja-
cobi (APJ) in terms of time to converge. In this paper we will make a similar
study except that we record a complete log of the relevant calculations that
take place in the implementation. We record all data of the form “at time t
processor i updates for the nth time using the mth value of processor j as
an input”.

The composite of all this data is a directed acyclic graph (DAG), whose
vertices are the successively computed values associated with each processor
and whose edges represent use in computation. The DAG contains an edge
from processor j’s mth update to processor i’s nth update if processor i
updates for the nth time using the mth value computed by processor j for its
input. The DAG therefore gives us a complete account of the asynchronous
dynamics of the algorithm’s execution and enables us to explain and make
accurate predictions about performance.

Although we will only study an implementation of APJ, there are many
other asynchronous algorithms that could benefit from this sort of detailed
study.

Avron and Gupta [4] propose a shared-memory asynchronous method for
general symmetric positive definite matrices based on the randomised variant
of the Gauss-Seidel iteration. Here the rate of convergence is bounded below
using the condition number of the matrix and the quantity τ , which is
defined as the maximum difference in ‘iteration number’ between the input
and output of a single computation. The authors suggest this should be of
the same order as the number of processors. We will see in our experiments
that this can be quite a lot larger. In the experiments described in this
paper on a 24 processor machine we found τ = 10203 in the first example
and τ = 308 in the second.

In fact any variant of the Gauss-Seidel iteration will admit the formu-
lation we develop in section 2. The classical Gauss-Seidel iteration or over
relaxation methods give rise to an iteration with a predetermined DAG,
whilst randomised Gauss-Seidel iteration gives rise to a random DAG whose
randomness derives from a pseudorandom number generator rather than the
chaotic dynamics of the execution itself (as is the case in APJ).

Richtarick and Takac [5] propose a family of distributed parallel asyn-
chronous algorithms for certain nonlinear convex optimization problems.
These methods can be thought of as hybrids between parallel stochastic
gradient descent and randomized parallel block coordinate descent. As in
[4], the performance analysis is based on the quantity τ .

3

Lu and Tang [6] propose an algorithm for solving systems with symmetric
positive definite matrices over a network of asynchronous agents, whose
interactions are controlled by some (random) external network dynamics.
For example the agents could be thought of as devices in a wireless network
which are physically moving around, so that their network of connectivity is
constantly changing. Here the rate of convergence is bounded below using
spectral properties of the problem matrix and a connectedness measure of
the dynamic interaction network.

This paper is organized as follows. In section 1 we review APJ. In section
2 we explain our data logging technique and examine the basic statistics of
two different implementations of APJ. In section 3 we prove a sandwich
of bounds on the rate of convergence. In section 4 we apply these bounds
to our examples and discuss the weakest link scenario, in which the rate
of convergence is determined completely by the update rate of the slowest
processor.

1 Asynchronous Parallel Jacobi

We choose Jacobi’s method as the algorithm on which to base our inves-
tigations because there exist sufficient conditions for it to converge both
synchronously and asynchronously.1 Jacobi’s method for the system of lin-
ear equations Ax = b, where the n×n matrix A is assumed to be nonsingular
and to have nonzero diagonal, computes the sequence of vectors x(k), where

xi(k) =
1

aii

(
bi −

∑
j 6=i

aijxj(k − 1)
)
, i = 1:n.

The xi(k), i = 1:n, are independent, which means that vector element up-
dates can be performed in parallel. Jacobi’s method is also amenable to
an asynchronous parallel implementation in which newly-computed vector
updates are exchanged when they become available rather than by all pro-
cessors at the end of each iteration. This asynchronous scheme is known
to converge if ρ(|M |) < 1 [1], where ρ(|M |) denotes the spectral radius
(maximum absolute value of the eigenvalues) of the matrix |M | = (|mij |)
and M = −D−1(L + U), which we call the iteration matrix. Here, D,L,U
are, respectively, the diagonal and strictly lower and upper triangular parts

1In practice, synchronous parallel versions of other iterative schemes (e.g. conjugate
gradient methods) are often preferred, but asynchronous parallel versions of these ap-
proaches are not yet well developed.

4

of A. The synchronous version of Jacobi’s method converges if the weaker
condition ρ(M) < 1 holds.

2 DAG logging

We instrument our implementation as follows. When a processor finishes
computing a vector update it records the current time and local iteration
number in an array in memory. The local iteration number is then trans-
mitted with the vector update when the update is communicated to the
processor’s neighbours. When this vector is used to update a remote pro-
cessor’s local vector, the iteration number associated with the vector, the
current time and the local iteration number are also recorded in an array.
As all the logging information is stored in memory and not written to disk
until the iterations have converged, the effect on the run-time of the overall
calculation is minimized.

Example 2.1 (Processor 23 problem) We solve Ax = b for A ∈ Rn×n
with n = 20 000 000. A is tridiagonal with 2.001 on the diagonal and −1
on the off diagonals, and bi = i/n i = 1, . . . , n. The iteration matrix M is
therefore non-negative with zeros everywhere except on the sub and super-
diagonal where the entries are all 1/2.001. There exist explicit formulae for
the eigenvalues of matrices of this form [7]. We have implemented a parallel
Jacobi solver using C++ and MPI, and executed it on the Computational
Shared Facility (CSF) at the University of Manchester. Each CSF node con-
tains two 6-core Xeon 2.50GHz CPUs and 48GB of memory, and multiple
nodes are connected via Infiniband. The MPI library is OpenMPI version
1.4.3.

Table 1 summarizes the number of iterations and total solution time
observed when executing our solver on 24 cores (2 nodes) of the CSF for
synchronous and asynchronous Jacobi. We observe that the solution time is
much higher for the asynchronous execution than the synchronous, and that
the average number of iterations in the synchronous case is approximately
the same as the lowest number of iterations in the asynchronous case.

To quantify the performance of an execution we define the effective up-
date rate to be the update rate that would be required of a synchronous
execution to achieve the same convergence time

effective update rate =
numer of iterations required for synchronous execution to converge

time for execution to converge in seconds
.

5

Iterations Time Update Rate (s−1)
Min. Average Max. (s) Mass Effective

Synchronous – 7 866 – 569.8 13.8 13.8
Asynchronous 7 748 14 239 17 951 1038.72 13.7 7.6

Table 1: Processor 23 problem results

Processor ID Update number Time (ms)

23 3 200
21 6 358
23 4 361
24 8 417
22 4 417
23 5 524

Table 2: Subset of update array for example 2.1

Since this is only equal to the actual update rate in the synchronous case we
also define the mass update rate to be the total update rate averaged over
the number of processors in either the synchronous of asynchronous case

mass update rate =
total number of processor iterations performed during execution

24× time for execution to converge in seconds
.

Therefore the mass update rate measures roughly how quickly an implemen-
tation is performing updates and the effective updates measures how useful
these updates actually are.

Surprisingly, in this example the mass update rate of the synchronous
execution is greater than that of the asynchronous iteration, which is not
what we would have expected as the asynchronous execution ought to be
faster. Since the time to converge is much greater in the asynchronous case
the effective update rate is much smaller.

A small sample of calculation data that we recorded from the asyn-
chronous execution is displayed in Table 2 and Table 3. Table 2 contains
update data which tells us that, for instance, processor 23 updated for the
5th time at t = 524ms. Table 3 contains calculation the corresponding data
that tells us that when processor 23 made this update it used processor 22’s
7th value and processor 24’s 8th value.

We bring together all of this data to produce the DAG of the execu-
tion. Figure 1 shows a plot of the reconstructed DAG. Vertices represent

6

Processor ID Update number Neighbour ID Input update number

21 7 22 4
21 7 20 6
24 8 23 3
23 5 24 8
23 5 22 7

Table 3: Subset of calculation array for example 2.1

successive updates and edges represent use in computation. Note that every
processor’s update uses its own previous state in the computation so strictly
speaking there should be an edge between each processor’s successive up-
dates. However since this is always the case and since it would make the
figure hard to read we omit these edges.

We can now analyse the properties of the DAG. We define the inter-
update time to be the duration of time between successive updates of a
processor. We also define the input freshness of a piece of input data created
by processor j and used by processor i to be the duration of time between
processor j’s update that produces the data and processor i’s update that
uses the data. In terms of the DAG plots the input freshness is the horizontal
span of an edge in the graph. Figure 2 shows the average inter-update times
of each processor as well as the average input freshnesses for communication
between neighbouring processors.

Processor 23 is a clear outlier in terms of interupdate times. Its mean
interupdate time is roughly double that the other processors.

Since the iteration matrix has a tridiagonal structure there is only com-
munication between processors with ID differing by one. We say that com-
munication from processor i+ 1 to i is downwards and that communication
from processor i−1 to i is upwards. Notice that the upwards communication
is consistently slower than the downwards communication. This is because
of the order in which processors broadcast their newly updated values and
process inputs from their neighbours. If we reverse this communication or-
dering we also reverse the relationship between the upwards and downwards
input freshnesses. Reversing the communication ordering also causes pro-
cessor 2 to be the slowest (rather than 23), which leads us to theorise that
the poor performance of processor 23 has something to do with the internal
workings of the MPI library.

Notice also that communication from processor 23 to processor 24 is
considerably slower than all of the other communication channels. This can

7

0 100 200 300 400 500 600
0

5

10

15

20

DAG Trace: Start of Execution

Time

P
ro

c
e
s
s
o
r

ID

4.283 4.284 4.285 4.286 4.287 4.288 4.289

x 10
5

0

5

10

15

20

25

Time

P
ro

c
e
s
s
o
r

ID

DAG Trace: Showing Longest Communication Edge

Figure 1: Example 2.1. Reconstructed DAG. Red circles represent updates,
blue lines represent use in computation. Bold black lines highlight compu-
tations also displayed in the above tables. The bold red line indicates the
most out of date input used in the execution.

be attributed to the slower update rate of processor 23. Even when 24 uses
the most recent value from 23 it will often be quite old in terms of time
delay.

We can break down these results further by studying the sampled dis-
tributions of interupdate times and input freshnesses. Figure 3 shows the
sampled distributions of interupdate times for each processor, where 23 can
clearly be seen to be an outlier. Notice that the processors other than 23
have a mode at around 50ms and that processor 23 appears to have modes
at multiples of 50ms.

Likewise we plot the input freshness distributions in Figure 4. As in
Figure 2 we see that upwards communication is generally slower than down-
wards communication. When we average over the non-outlying communica-
tion delay distributions we see that the while both distributions have modes
at around 50ms and 100ms the upwards distribution has a heavier tail, which
accounts for its greater average. Communication from processor 23 to its
neighbours provides two outliers. Communication from 23 to 24 is on aver-
age the slowest and has a very sporadic distribution. While communication
from 23 to 22 is not as slow on average it does have a markedly different
distribution to the other communication channels, with a strong mode at
around 100ms.

8

0 5 10 15 20 25
0

20

40

60

80

100

120

140
Average Interupdate Times

Processor ID

A
v
e

ra
g
e

 I
n

te
ru

p
d

a
te

 T
im

e
 (

m
s
)

0 5 10 15 20 25
0

50

100

150

200

A
v
e

ra
g

e
 I

n
p

u
t

F
re

s
h
n

e
s
s
 (

m
s
)

Processor ID

Average Input Freshness

Figure 2: Example 2.1. Left, average processor interupdate times. Right,
Average communication delay between processors, upwards in blue, down-
wards in red. Black lines show average values for synchronous execution.

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

D
e
n
s
it
y

Interupdate Time (ms)

Interupdate Time Distributions

Figure 3: Example 2.1. Sampled distribution of interupdate times for each of
the 24 processors. Processor 23 in red. Group average of all other processors
in green.

9

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
D

e
n
s
it
y

Input Freshness (ms)

Input Freshness Distributions

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Input Freshness (ms)

D
e
n
s
it
y

Input Freshness Distributions − Outliers

Figure 4: Example 2.1. Sampled distributions of input freshness. Upwards
in blue, downwards in red. Bold yellow is overall distribution of downwards
communication, bold black upwards. Bold red is communication from 23 to
22, bold blue is communication from 23 to 24.

The longest single communication delay is 466ms which is attained by
processor 23 broadcasting its 3340th value to processor 24, which is used in
its 5558th computation.

We can also measure input freshness in the discrete timeframe induced
by the updates sequence. If processor j updates at time t1 and processor
i uses this value to update at time t2 then the iteration freshness of this
communication is equal to the number of times that j updates in the inter-
val (t1, t2). Figure 5 is a stacked chart of the iteration freshness of upwards
and downwards communication. We found iterations delays of up to 6 but
they where so infrequent that they are not visible in the chart. Upwards
communication mostly has iteration freshness of 1, while downwards com-
munication has mostly iteration freshness of 0.

A possible explanation of the pathological behaviour observed in this ex-
ecution is that the communication causes a weak synchronisation between
neighbouring nodes. This would explain why the input freshness distribu-
tions all have modes at multiples of 50ms, which is the mode of the interup-
date times. If the updates are roughly in time with each other then whatever
the input freshness is in terms of iteration delay it will always be a multiple
of 50ms in time delay.

This could also explain the longer interupdate times of processor 23.

10

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Processor ID

P
ro

p
o
rt

io
n

Upwards Input Iteration Freshness

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Downwards Input Iteration Freshness

P
ro

p
o
rt

io
n

Processor ID

Figure 5: Example 2.1. Stack column charts showing iteration freshness.
Darkest regions represent zero delay with delay increasing by one with each
new region. Upwards communication in blue on left, downwards communi-
cation in red on right.

Perhaps it must wait for some other processor to communicate with it before
it can update itself (as it is being given some extra work to oversee all of the
communication), and this is why it is slower and why its interupdate times
tend to be multiples of 50ms.

Example 2.2 (Processor 23 problem resolved) It was not immediately
obvious what was causing processor 23’s poor performance. We discounted a
hardware fault as the same behaviour was consistently observed across mul-
tiple executions on different CSF nodes. A’s regular structure meant that
computational load was balanced across the MPI ranks, as was the amount
of data communicated at each iteration (save for the edge ranks, 1 and 24,
which only communicated with one neighbour rather than two). The asyn-
chronous solver was implemented using MPI-2’s single-sided communication
functionality, and we theorised that this behaviour was a manifestation of
the inner-workings of the MPI-2 implementation on our machine.

To test this we used a variant of our solver which employed MPI-1’s
asynchronous communication methods and explicit buffer management to
achieve asynchronous execution. We also implemented a synchronous ver-
sion using standard MPI-1 functions as the synchronous solver in the previ-
ous section also used MPI-2 single-sided communication.

11

Iterations Time Update Rate (s−1)
Min. Average Max. (s) Mass Effective

Synchronous – 7 865 – 495.5 15.8 15.8
Asynchronous 8 120 8 317 8 428 490.5 17.0 16.0

Table 4: Processor 23 fixed results

Table 4 summarises the number of iterations and total solution time
observed when executing our new solvers on 24 cores (2 nodes) of the CSF
for synchronous and asynchronous Jacobi. Compared with Table 1, it can
be seen that removing MPI-2’s single-sided communication improved the
performance of both the synchronous and asynchronous solvers, and that
the asynchronous solver now outperforms the synchronous. Furthermore,
the distribution of iteration counts is much less widely spread than for the
MPI-2 solver, and we no longer find that rank 23 performs significantly fewer
iterations than the other ranks.

We reconstruct the DAG from the calculation data as in example 2.1.
Figure 6 shows a sample of the reconstructed DAG. With the exception of the
communication from processor 1 to processor 2 the structure of this graph is
far more regular than before. Although there are some random fluctuations
the interupdate times are all roughly the same and communication tends
to have iteration delay equal to 1 on all channels. Communication from
processor 1 to processor 2 tends to be slower, although processors 1 and 2
complete their updates no slower than the other processors.

Figure 7 shows the average interupdate times and average input freshness
for this execution. Figure 8 shows the sampled distributions of interupdate
times and input freshness. The interupdate times have a bell shaped dis-
tribution and there is little difference between the different processors. The
‘spikiness’ of the distribution is due to the coarse time measurement. The
input freshness distributions look like a (stochastic) linear combination of
uniform distributions with end points at multiples of 60ms (the mode of the
interupdate times).

The longest single delay is 382ms which is attained by processor 1 broad-
casting its 1130th value to processor 2, which is used in its 1129th compu-
tation.

Figure 9 shows the input iteration freshness. The vast majority of com-
munication has freshness 1. Communication from processor 1 to processor
2 is often quite a lot slower. We found iteration delays of up to 7 but they
where so infrequent that they are not visible in the stacked chart.

12

0 100 200 300 400 500 600
0

5

10

15

20

25
DAG trace

Time (ms)

P
ro

c
e
s
s
o
r

ID

2.5 2.51 2.52 2.53 2.54 2.55 2.56

x 10
4

0

5

10

15

20

25
DAG trace

Time (ms)

P
ro

c
e
s
s
o
r

ID

Figure 6: Example 2.2. Reconstructed DAG. Red circles represent updates,
blue lines represent use in computation. Bold black lines highlight regular
structure.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Processor ID

A
v
e
ra

g
e
 I
n
te

ru
p
d
a
te

 T
im

e
 (

m
s
)

Average Interupdate Times

0 5 10 15 20 25
0

20

40

60

80

100

120

140
Average Input Freshness

Procesor ID

A
v
e
ra

g
e
 I
n
p
u
t
F

re
s
h
n
e
s
s
 (

m
s
)

Figure 7: Example 2.2. Left, average processor interupdate times. Right,
averaged input freshness, upwards in blue, downwards in red. Black lines
show average values for synchronous execution.

13

50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Interupdate Time Distributions

Interupdate Time (ms)

D
e
n
s
it
y

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Input Freshness (ms)

D
e
n
s
it
y

Input Freshness Distributions

Figure 8: Example 2.2. Left, sampled distribution of interupdate times for
each of the 24 processors. Group average of 1-12 bold green, 13-24 bold
red. Right, sampled distributions of communication times. Upwards in
blue, downwards in red. Bold yellow is overall distribution of downwards
communication, bold black upwards.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Upwards Input Iteration Freshness

Processor ID

P
ro

p
o
rt

io
n

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Downwards Input Iteration Freshness

Processor ID

P
ro

p
o
rt

io
n

Figure 9: Example 2.2. Stack column charts showing iteration freshness.
Darkest regions represent zero delay with delay increasing by one with each
new region. Upwards communication in blue on left, downwards communi-
cation in red on right.

14

In spite of the slow communication between processors 1 and 2, these
results are far more like we would expect. Since the processors update
independently they should appear to be randomly out of phase with each
other so that whenever there is a communication with iteration freshness 1
the time taken for the communication should be uniformly distributed on
(60ms,120ms), likewise if it has iteration freshness 2 then it will be uniformly
distributed on (120ms,180ms) and so on.

We conclude that in this execution the individual processors are updating
independently and not having to wait for any sort of communication from
each other. Then as we would expect the mass update rate is higher. The
poor performance of the communication from processor 1 to processor 2
remains a mystery for now. We shall see that for this example problem the
performance of the communication channels is far less important than the
individual processor update rates, which is why the asynchronous execution
has a greater effective update rate than the synchronous one in this case.

3 Theory for non-negative matrices

Before we can state and prove our theoretical results we need to introduce
a few definitions.

Suppose that the problem Ax = b has Jacobi iteration matrix M , which
we iterate asynchronously. Let x∗ denote the solution to the problem.

Since a processor may record different values for another processor’s state
at a particular time we must be a little careful in defining the state of the
system at time t. The state of the system at time t, denoted x[t], is given
by the direct product of each of the processor’s most recently computed
values. We label individual coordinates of x with a subscript and blocks of
coordinates (as stored by the individual processors) with a superscript. In
order to talk about the state of a processor or coordinate after a certain
number of updates we use parentheses so that x1(2) is value of coordinate 1
after its second update and x1[4.214] is the value of coordinate 1 after 4.214
seconds.

As well as working directly with the logged DAG graphs that we anal-
ysed previously we will also use an expansion that we call the calculation
graph. The calculation graph is much like the DAG graph but rather than
associating vertices with processors we associated vertices with individual
coordinates. Single processor updates are replaced by many coordinate up-
dates, likewise a single edge in the DAG will correspond to many edges in
the calculation graph.

15

P
ro

ce
ss

or
ID

Time

1

2

C
o
or

d
in

at
e

Time

1

3

2

4

Figure 10: Example 3.1. Left, processor level DAG. Right, expanded cal-
culation graph. Coloured edges correspond to coloured terms in the matrix
below.

In order to reason about the rate of convergence of an asynchronous
iteration we define the error operator Ω(C,M, t), which is the unique matrix
with

Ω(C,M, t)(x(0)− x∗) = x[t]− x∗,

for all possible initial conditions x(0). In the synchronous case this would
simply be the iteration matrix M raised to the power of the number of
iterations performed by time t but in the asynchronous case it is a little
more complicated. Note that the error operator depends on the iteration
matrix, the calculation graph and the time.

Example 3.1 Suppose that we are iterating the map x 7→Mx+ b on a two
processor machine, where each processor is responsible for two coordinates.
A possible DAG and corresponding calculation graph C are displayed in
Figure 10.

If the initial state in processor 1 is x1(0) = (x1, x2) and the initial state
in processor 2 is x2(0) = (x3, x4) then the state in processor 1 after its first
update is

x1(1) = M1,1x
1(0) +M1,2x

2(0) + b1,

the state in processor 2 after its first update is

x2(1) = M2,1x
1(0) +M2,2x

2(0) + b2,

16

and the state in processor 1 after its second update is

x1(2) = M1,1x
1(1)+M1,2x

2(0)+b1 = M1,1(M1,1x
1(0)+M1,2x

2(0)+b1)+M1,2x
2(0)+b1.

As in the synchronous case we can decouple the solution from the error. Let
y = x − x∗, where x∗ is the solution to the problem. Then the behaviour
of the error y is also determined by the DAG. The error in the state at
processor 1 after its first update is

y1(1) = M1,1y
1(0) +M1,2y

2(0),

the error in the state at processor 2 after its first update is

y2(1) = M2,1y
1(0) +M2,2y

2(0),

and the state in processor 1 after its second update is

y1(2) = M1,1M1,1y
1(0) +M1,1M1,2y

2(0) +M1,2y
2(0).

Notice that for every path through the DAG graph from processor i’s nth
update back to processor j’s initial condition there is a term in i’s nth error
expression which is given by the product of the submatrices corresponding
to those edges in the path and the initial condition at j. For example from
1’s second update there are two paths to 2’s initial condition: one of length
two which gives the term M1,1M1,2y

2(0) and one of length one which gives
the term M1,2y

2(0).
The same is true for the calculation graph C, so we can express the value

of the error for a particular coordinate at a particular stage as a sum over
the paths through the graph. If we compute this sum for each coordinate
we arrive at the error operator, Ω(C,M, t) =

M(1, 1)M(1, 1)
+M(2, 1)M(1, 2)

M(1, 2)M(1, 1)
+M(2, 2)M(1, 2)

M(1, 3)M(1, 1)
+M(2, 3)M(1, 2)

+M(1, 3)

M(1, 4)M(1, 1)
+M(2, 4)M(1, 2)

+M(1, 4)

M(1, 1)M(2, 1)
+M(2, 1)M(2, 2)

M(2, 1)M(2, 1)
+M(2, 2)M(2, 2)

M(1, 3)M(1, 2)
+M(2, 3)M(2, 2)

+M(2, 3)

M(1, 4)M(2, 1)
+M(2, 4)M(2, 2)

+M(2, 4)

M(3, 1) M(3, 2) M(3, 3) M(3, 4)

M(4, 1) M(4, 2) M(4, 3) M(4, 4)


17

where t is any time after processor 1’s second update. Each term in the
matrix corresponds to a unique path through the calculation graph C. Two
terms have been coloured along with their corresponding paths through C
in Figure 10.

The following results will be useful in our analysis.

Lemma 3.2 (Properties of operator norm) Let

‖A‖ = max
x 6=0

‖Ax‖2
‖x‖2

,

denote the l2 operator norm.

1. If A is a non-negative matrix and B is a submatrix of A then ‖A‖ ≥
‖B‖.

2. If A and B are non-negative d×d matrices then ‖A+B‖ ≥ max{‖A‖, ‖B‖}.

3. The sequence ‖Ak‖∞k=1 is eventually monotonic.

4. limn→∞ ‖Ak‖
1
k = ρ(A).

Items 1 and 2 are trivial, and 3 and 4 follow by considering the Jordan form
of A [8].

Theorem 3.3 (Weakest link performance barrier) Suppose that the prob-
lem Ax = b has non-negative Jacobi iteration matrix M , which we iterate
asynchronously with calculation graph C. Let Mi,i be the block submatrix
iterated by processor i and let ai(t) be the the number of times that processor
i has updated by time t. We have the bound

‖Ω(C,M, t)‖ ≥ ‖Mai(t)
i,i ‖,

so that for generic initial condition x(0)

lim sup
t→∞

log ‖x[t]− x∗‖
t

≥ max
i
α∗i log[ρ(Mi,i)],

where

a∗i = lim
t→∞

αi(t)

t
,

is processor i’s update rate, if this limit exists.

18

The submatrix Ω(C,M, t)i,i can be expressed as a sum of products of matri-
ces taken over all the paths through the DAG (not calculation graph) from
i’s initial condition to its current state

Ω(C,M, t)i,i =
∑

σ∈DAG:i 7→i

|σ|−1∏
k=1

Mσ(k+1),σ(k).

This sum contains the term M
ai(t)
i,i , which corresponds to the path that

moves through i’s successive updates, so by non-negativity we have

Ω(C,M, t)i,i ≥Mai(t)
i,i ,

where ai(t) is the the number of times that processor i has updated by time
t and ≥ means greater than or equal in each component. From items 1-2
from the lemma we have

‖Ω(C,M, t)‖ ≥ ‖Ω(C,M, t)i,i‖ ≥ ‖‖Mai(t)
i,i ‖.

For the second part of the theorem we need to take the SVD of the error
operator

USV T = Ω(C,M, t),

where U, S, V are parametrized by C,M, t, and the diagonal entries of S are
ordered in decreasing modulus. Now

x[t]−x∗ = Ω(C,M, t)(x[0]−x∗) = U1S(1, 1)〈x[0]−x∗, V1〉+terms perpendicular to U1,

and using the fact that S(1, 1) = ‖Ω(C,M, t)‖, we have

‖x[t]− x∗‖ ≥ ‖U1S(1, 1)〈x(0)− x∗, V1〉‖ ≥ ‖Mai(t)
i,i ‖〈x(0)− x∗, V1〉.

Since the SVD of the error operator is a function of t we need to be a bit
careful here. To make the time-dependence explicit we now include the
parametrization in the notation. Consider the set

K = {x : lim
t→∞
〈x, V1(t)〉 = 0},

clearly this set forms a subspace of Rd. Suppose that K = Rd, then
limt→∞ V1(t) = 0, which is a contradiction since ‖V1(t)‖ = 1 for all t. There-
fore K is a proper subspace and for a generic initial condition x(0), x(0)−x∗
will not lie in K. So that there exists non-zero ε such that

lim sup
t→∞

|〈x(0)− x∗, V1(t)〉| = ε.

19

Therefore using result 4 from the lemma we have

lim sup
t→∞

log ‖x[t]− x∗‖
t

≥ lim sup
t→∞

log ‖Mai(t)
i,i ‖+ log ε

t
= lim

t→∞

ai(t)

t
log ρ(Mi,i),

the full result follows by taking the maximum over all of the processors, i.e.
the maximum over i.

Theorem 3.3 shows that the performance of APJ is always held back by
its slowest sub-system. In our next result we show that there is a limit to
how poorly APJ can perform, which is determined by a slowest path through
the calculation graph.

Theorem 3.4 (Shortest path performance guarantee) Suppose that the
problem Ax = b has non-negative Jacobi iteration matrix M , which we it-
erate asynchronously with calculation graph C. Let s(t) be the length of the
shortest path (in terms of number of edges) through C from an initial con-
dition (that is an update with local iteration number 1) to a value at t (that
is an update for which there is not another for the same coordinate with a
greater local iteration number before time t). Likewise let l(t) be the longest
such path. We have the bound

‖x[t]− x∗‖ ≤ ‖
l(t)∑

k=s(t)

Mk‖‖x(0)− x∗‖.

and

lim
t→∞

log ‖x[t]− x∗‖
t

≤ lim
n→∞

s(t)

t
log[ρ(M)] = s∗ log[ρ(M)],

where

s∗ = lim
n→∞

s(t)

t
,

is the shortest path growth rate, if this limit exists.

The components of Ω(C,M, t) can be expressed as sums over the paths
through the calculation graph C,

Ω(C,M, t)(i, j) =
∑

σ∈C:j→i

|σ|−1∏
i=1

M [σ(i+ 1), σ],

where the sum is taken over all paths σ through C from j’s initial condition
xj(0) to i’s most recent update at time t.

20

Consider the matrix
l(t)∑

k=s(t)

Mk.

We can expand its coordinates in terms of path weights

[

l(t)∑
k=s(t)

Mk](i, j) =
∑

ς∈Ĉ:j→i

|ς|−1∏
i=1

M [ς(i+ 1), ς],

where the sum is taken over the set of all sequences of length between s(t)
and l(t), which start at j and end at i. Therefore since the components of
the error operator are sums over subsets of this set, and since all the terms
being summed are non-negative, we have

Ω(C,M, t) ≤
l(t)∑

k=s(t)

Mk,

where ≤ means less than or equal in every component. From result 2 of the
lemma

‖Ω(C,M, t)‖ ≤ ‖
l(t)∑

k=s(t)

Mk‖,

and therefore

‖x[t]− x∗‖ ≤ ‖
l(t)∑

k=s(t)

Mk‖‖x(0)− x∗‖.

Now to calculate the convergence rate implied by this bound

lim
t→∞

log ‖x[t]− x∗‖
t

≤ lim
n→∞

log ‖
∑l(t)

k=s(t)M
k‖

n
+

log ‖x(0)− x∗‖
n

,

the second term converges to zero

lim
t→∞

log ‖x[t]− x∗‖
t

≤ lim
n→∞

log ‖
∑l(t)

k=s(t)M
k‖

n

≤ lim
n→∞

log[l(t)− s(t) + 1]

n
+

log max
l(t)
k=s(t) ‖M

k‖
n

,

21

the first term converges to zero since s and t grow at most linearly. From
result 3 in the lemma the maximum in the second term is, for sufficiently
large t, attained by k = s(t) so that

lim
t→∞

log ‖x[t]− x∗‖
t

≤ lim
n→∞

log ‖M s(t)‖
n

= lim
n→∞

s(t)

t
log[ρ(M)] = s∗ log[ρ(M)],

if this limit exists.

Corollary 3.5 Suppose that the problem Ax = b has (not necessarily non-
negative) Jacobi iteration matrix M and take everything else as in the state-
ment of theorem 3.4. We have the bound

‖x[t]− x∗‖ ≤ ‖
l(t)∑

k=s(t)

|M |k‖‖x(0)− x∗‖.

and

lim
t→∞

log ‖x[t]− x∗‖
t

≤ lim
n→∞

s(t)

t
log[ρ(|M |)] = s∗ log[ρ(|M |)],

where

s∗ = lim
n→∞

s(t)

t
,

is the shortest path growth rate, if this limit exists.

This follows by considering the two different error operators Ω(C,M, t),
and Ω(C, |M |, t). Each is a sum over paths through C, but the sum in
Ω(C, |M |, t) is taken over the absolute value of the terms in the sum of
Ω(C,M, t). So that

|Ω(C,M, t)i,j | ≤ Ω(C, |M |, t)i,j ,

for all i, j. So, from the lemma, the operator norm of the error operator of
the system with the matrix of absolute values gives an upper bound on that
of the original system and the corollary follows from theorem 3.4.

4 Weakest link scenario

To apply these bounds to our examples we need to compute the processor
update rates αi as well as the shortest path growth rate s∗. The update
rates are

αi =
numer of times processor i updates during execution

execution time in seconds
.

22

The shortest path growth rate is a little more complicated. Since the itera-
tion matrix M is tridiagonal with zeros on its diagonal, a path through the
calculation graph can either move up one coordinate index or down one coor-
dinate index at each step. This is unlike in the DAG where a path can either
stay at the same processor or move up one processor or down one processor
with each step. Since each processor stores many coordinates this means
that the paths through the calculation graph are far more restricted in their
movement than those through the DAG. This was our reason for using the
calculation graph in theorem 3.4; a similar result could easily be proved for
the DAG but the bound would be less sharp. Using the calculation graph
enables us to exploit the sparsity pattern in the matrix.

Now, since edges corresponding to inter-processor communication tend
to be longer than those corresponding to intra-processor communication,
and since it would take thousands of intra-processor steps for a path to
move across a processor, it follows that the shortest path will be one that
repeatedly crosses back and forth between two adjacent processors.

We call the crossing between two adjacent processors i and i+ 1 the ith
communication channel.

To compute the shortest path growth rate associated with the ith channel
we construct a path backwards through the DAG starting at processor i’s
final update, then to its input from processor i + 1, then to that update’s
input from processor i and so on until we arrive at either processor i or
i+ 1’s initial condition.

The shortest path growth rate associated with channel i is then given by

si =
number of edges in constructed path

execution time in seconds
,

and s∗ = maxi si. This quick heuristic method yields exactly the same
result and identifies the same shortest path as a considerably more expensive
method which considers all possible paths through the calculation graph.

Figure 11 shows the computed values for the update rates and commu-
nication channel shortest path growth rates.

Example 4.1 (Example 2.1) The slowest processor was processor 23 with
an update rate of 7.8 so from theorem 3.3 (the weakest link performance bar-
rier) we have

lim sup
t→∞

log ‖x[t]− x∗‖
t

≥ 7.8 log[ρ(M23,23)],

where ρ(M23,23) is the Perron root of processor 23’s iteration matrix. We
can convert this into a bound on the effective update rate by using

23

0 5 10 15 20 25
0

5

10

15

20

Processor ID

U
p
d

a
te

/E
d

g
e
 R

a
te

 (
s

−
1
)

Processor Update and Shortest Path Growth Rates

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18
Processor Update and Shortest Path Growth Rates

Processor ID

U
p
d

a
te

/E
d

g
e
 R

a
te

 (
s

−
1
)

Figure 11: Left, example 2.1. Right, example 2.2. Processor update rates
(blue) and communication channel shortest path growth rates (red). Effec-
tive update rates of executions in black.

effective update rate =
rate of convergence

log ρ(M)
,

where ρ(M) is the Perron root of the entire iteration matrix. Note that the
rate of convergence is minus the Lyapunov exponent, so that

effective update rate ≤ 7.8
log ρ(M23,23)

log ρ(M)
,

from [7] we have

ρ(M) = 2
2.001 cos(π

20000001), ρ(M23,23) = 2
2.001 cos(π

8340001),

so that the ratio of the logs is very close to 1. The slowest communication
channel was the one between processor 23 and processor 24 with shortest
path growth rate was 6.7, so from theorem 3.4 (shortest path performance
guarantee) we have

lim
t→∞

log ‖x[t]− x∗‖
t

≤ 6.7 log ρ(M),

so that
7.8 ≥ effective update rate ≥ 6.7,

which provides a fairly tight sandwich of bound for the effective update rate
that we originally calculated directly from the execution time to be 7.5.

24

Example 4.2 (Example 2.2) Applying the same bound in the same way
to the execution of example 1.2 we obtain

16.6 ≥ effective update rate ≥ 7.7.

which gives a tight upper bound but poor lower bound on the effective
update rate that we calculated from the execution time to be 16.0.

In both examples the weakest link performance barrier provides a very
good approximation for the effective update rate. We expect that this will
be a fairly common situation. If the typical norm of the communicated
data is very small compared to the norm of the processors’ states then the
rate of convergence ought to be determined by the rate of convergence of
the slowest processor sub-system (in our examples the communicated data
is a single coordinate whereas the state of a processor is many thousands).
What’s more in this low communication scenario there will be submatrices
Mi,i with Perron root very close to that of the whole iteration matrix so
that

log ρ(Mi,i)

log ρ(M)
≈ 1,

which means that we can replace the bound with the approximation

effective update rate ≈ min
i
αi.

We refer to the situation where this approximations hold for the reasons
outlined above as the weakest link scenario.

The shortest path performance guarantee gave a tight bound for exam-
ple 2.1 but a poor bound for example 2.2. In example 2.1 the poor per-
formance of processor 23 also results in the 23-24 communication channel
being very slow. If one processor is much slower than its neighbour then we
might expect the communication channel growth rate to be roughly equal
to the update rate of the slower processor, as is the case here. This explains
why we get such a tight bound in this case.

In example 2.2 there is a slow communication channel between processors
1 and 2. However this does not have a dramatic affect on the effective update
rate as the size of the communicated data is so small compared with the size
of the processors’ states.

It is possible for an execution to have effective update rate close to the
shortest path performance guarantee without being close to the weakest
link performance barrier. These examples require the iteration matrix to be
unstructured so that the size of the input from each communication channel

25

is comparable to the size of the processor’s state. In this scenario the bound
is particularly sharp if the spectral radius of the iteration matrix is small.

5 Discussion

We have presented upper and lower bounds for the effective update rate
of APJ. Our experimental results agree with out theory and in our exam-
ples, where communication was less important, the weakest link performance
barrier provides a good approximation for the effective update rate. We con-
jecture that this will be a fairly typical scenario even in the general (not just
non-negative) case.

Although our shortest path performance guarantee was less useful as
an approximation than the weakest link performance barrier, it is arguably
the more important result. It is valid in the general case and performance
guarantees are more useful than upper bounds on the rate of convergence.
We conjecture that shortest path performance guarantees should be possible
to prove for a wide variety of asynchronous algorithms.

We also made a detailed study of the DAGs associated with two different
executions of APJ. In our first example the asynchronous execution was
slow compared to the synchronous one. We resolved this by switching to
MPI-1 communication routines and obtained a DAG which better resembled
what one would expect from the theory and, crucially, outperformed the
corresponding synchronous execution.

We would advise caution when assuming that an asynchronous algorithm
will behave in a particular way. One might näıvely assume that the execution
of an asynchronous algorithm can be modelled with i.i.d. interupdate times
with i.i.d. communication delays, but neither of our traces resembled output
from such a simple model.

We certainly did not expect to see the problems with processor 23 in our
first execution and still have not found a satisfactory explanation for the
poor performance of the 1-2 communication channel in our second example.

One avenue for further research would be taking an even more detailed
recording of the execution and log exactly when input data arrives in mem-
ory, when it is checked for, how it is transmitted and so forth. Such an
experiment would require novel instrumentation to avoid introducing an
overhead that interferes with the natural dynamics.

26

References

[1] D. Chazan, W. Miranker, Chaotic relaxation, Linear Algebra and its
Aplications 2 (1969) 199–222.

[2] J. Bull, T. Freeman, Numerical performance of an asynchronous jacobi
iteration, in: Parallel Processing, Vol. 634 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 1992, pp. 361–366.

[3] I. Bethune, J. Bull, N. Dingle, N. Higham, Performance analysis of asyn-
chronous jacobis method implemented in mpi, shmem and openmp, In-
ternational Journal of High Performance Computing Applications.

[4] A. D. H. Avron, A. Gupta, A randomized asynchronous lin-
ear solver with provable convergence rate, arXiv preprint-
arXiv:http://arxiv.org/pdf/1304.6475.pdf.

[5] P. Richtárik, M. Takáč, Lock free randomized first order methods,
manuscript.

[6] J. Lu, Y. Tang, Distributed asynchronous algorithms for solving pos-
itive definite linear equations over dynamic networks, arXiv preprint-
arXiv:http://arxiv.org/pdf/1306.0260.pdf.

[7] R. Gregory, D. Karney, A Collection of Matrices for Testing Computa-
tional Algorithms, Wiley, 1969.

[8] R. Horn, C. Johnson, Matrix analysis, Cambridge University Press.

27

