
Performance Analysis of Asynchronous Parallel
Jacobi

Hook, James and Dingle, Nick

2016

MIMS EPrint: 2017.11

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Noname manuscript No.
(will be inserted by the editor)

Performance Analysis of Asynchronous Parallel Jacobi

James Hook · Nicholas Dingle

the date of receipt and acceptance should be inserted later

Abstract The directed acyclic graph (DAG) associated with a parallel al-
gorithm captures the partial order in which separate local computations are
completed and how their outputs are subsequently used in further computa-
tions. Unlike in a synchronous parallel algorithm the DAG associated with an
asynchronous parallel algorithm is not predetermined. Instead it is a product
of the asynchronous timing dynamics of the machine and cannot be known in
advance, as such it is best thought of as a pseudorandom variable.

In this paper we present a formalism for analyzing the performance of asyn-
chronous parallel Jacobi’s method in terms of its DAG. We use this approach to
prove error bounds and bounds on the rate of convergence. The rate of conver-
gence bounds are based on the statistical properties of the DAG and are valid
for systems with a non-negative iteration matrix. We support our theoretical
results with a suit of numerical examples, where we compare the performance
of synchronous and asynchronous parallel Jacobi to certain statistical prop-
erties of the DAGs associated with the computations. We also present some
examples of small matrices with elements of mixed sign, which demonstrate
that determining whether a system will converge under asynchronous iteration
in this more general setting is a far more difficult problem.

Keywords Asynchronous parallel Jacobi’s method · chaotic iterations ·
parallel algorithm performance

School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK.
(james.hook@manchester.ac.uk)

Numerical Algorithms Group Ltd, Oxford Street, Manchester, M1 5AN, UK.
(nick.dingle@nag.co.uk)

2 James Hook, Nicholas Dingle

1 Introduction

Jacobi’s method for solving a linear system of equations iterates an affine map
x 7→ Mx + c. In a distributed memory parallel environment x,M and c can
be broken up into N blocks of rows, so that processor i stores xi, ci and Mi:.
Processor i is then responsible for updating its own block of rows and iterates
the map by

xi 7→Miixi + ci +
∑
j 6=i

Mijxj ,

where the xj are the input from other processors. In order to update its state
processor i must have appropriate input from its neighboring processors.

In the synchronous implementation, a processor cannot finish computing
its update until it receives updates from its neighbors’ previous computations:

for k=1,2,...

x[i](k)=M[ii]*x[i](k-1)+c[i]

wait to receive all x[j](k-1) values

for all inputs j

x[i](k)=x[i](k)+M[i][j]*x[j](k-1)

end

if converged stop

broadcast new state x[i](k)

end

Delays in interprocessor communication give rise to delays and idle time in
the whole computation. Introduced by Chazan and Miranker [6], chaotic or
asynchronous iterations are parallel asynchronous processes in which idle time
is removed by allowing individual processors to begin a new iteration as soon
as their previous one is completed. If the processor requires input from a
neighbor that it has not yet received, then it simply uses the most up-to-date
value from that neighbor that it has available. This means that processors may
use iterate components that are out-of-date and that some processors will be
able to update many more times than others.

In asynchronous parallel Jacobi’s method (APJ), processors successively
update without waiting for communication from their neighbors:

for k=1,2,...

x[i](k)=M[ii]*x[i](k-1)+c[i]

for all inputs j

x[i](k)=x[i](k)+M[i][j]*x[i,j]

end

if converged stop

broadcast new state

end

Here x[i,j] represents processor i’s most recently received update from j.
The idea is that by minimizing idle time the update rate of the individual
processors is increased and that this can improve the rate of convergence.

Performance Analysis of Asynchronous Parallel Jacobi 3

However the possible use of older input data can slow convergence and even
lead to instability.

In [3] the authors implement synchronous and asynchronous parallel Jacobi
using three different programming paradigms (MPI, SHMEM and OpenMP)
and analyze the performance of these implementations using HECToR, the
UK’s national supercomputing service. They found that on large numbers
(thousands) of cores asynchronous parallel Jacobi was approximately 10%
faster than the synchronous method, and that the asynchronous method re-
tained its performance in the presence of defects in the underlying hardware
(a slow-running CPU) while the synchronous implementation did not.

In [7] the authors apply a variant of APJ where processors exchange up-
dates every 5 iterations to the calculation of steady-state probabilities in large
Markov chains. They also combine APJ with a matrix reordering scheme that
minimizes the number of vector elements that need to be broadcast during
each update. The combination of the two approaches is shown to yield better
parallel speedups than an asynchronous Jacobi implementation that uses a
naive matrix-partitioning approach running on the same hardware.

In [3,5,7] the authors study the performance of APJ in terms of time to
converge. In this paper we will make a similar study except that we record a
complete log of all of the iterations and communications that take place in the
implementation. We record all data of the form “at time t processor i updates
for the kth time using the mth value of processor j as an input”.

The composite of all this data is a directed acyclic graph (DAG), whose
vertices are the successively computed values associated with each processor
and whose edges represent use in computation. The DAG contains an edge
from processor j’s mth update to processor i’s kth update if processor i up-
dates for the kth time using the mth value computed by processor j for its
input. The DAG therefore gives us a complete account of the asynchronous
dynamics of the algorithm’s execution. We present upper and lower bounds
on the rate of convergence of APJ that are based on statistical properties of
the DAG, namely the update rate of the slowest processor and the shortest
path growth rate. Note that although we think of the DAG as a pseudoran-
dom variable and study some of its statistical properties, we do not actually
model the DAG as a random variable or use any probability theory in our
analysis. The exact structure of the DAG is determined by the timing of the
different events taking place during the execution of the algorithm and can be
very complicated. If we run the same experiment twice we can not expect to
see exactly the same DAG. However, statistical measures like the ones we use
in our bounds should be nearly identical between repeated runs of the same
experiment. Developing probabilistic models of the parallel computation to
predict these DAG statistics could be an interesting topic for future research.

The textbook of Bertsekas and Tsitsiklis [2] reviews many asynchronous
methods for solving fixed point problems. For example computing the invariant
distribution of a Markov chain. The authors prove a lower bound for the rate
of convergence of this process, which is based on certain assumptions about
the DAG, namely that the update rates are uniform and constant and that

4 James Hook, Nicholas Dingle

communicated data can only arrive up to a fixed number of iterations late.
Their model labels individual communication channels as slow or fast. Data
communicated along fast channels always arrives at most b iterations out-
of-date and data communicated along slow channels at most B. Their lower
bound on the rate of convergence can be thought of as a combination of two
individual bounds, one for the slow component of the process and one for the
fast component. The bounds on the slow/fast components are essentially the
same as our shortest path performance Guarantee bound, except that rather
than being based on the true shortest path growth rate, they are based on
a bound on the shortest path growth rate, which is implied by the rule that
says that slow/fast communicated data is never more than B/b iterations
out-of-date respectively. A more recent review paper by Frommer and Szyld
is available [9], the references of which contain many diverse applications of
asynchronous linear solvers. Unlike the previous literature on asynchronous
methods, we want to compare the rate of convergence of the asynchronous
process to measurable statistics of the DAG, as opposed to parameters of
some idealized model of the DAG, such as the maximum out-of-datedness
parameter used in the bound in [2].

Asynchronous linear system solvers are not limited to Jacobi’s method.
Avron, Druinsky and Gupta [1] propose a shared-memory asynchronous method
for general symmetric positive definite matrices based on the randomized vari-
ant of the Gauss-Seidel iteration. In fact any variant of the Gauss-Seidel iter-
ation will admit the formulation we develop in Section 2. The classical Gauss-
Seidel iteration or over-relaxation methods give rise to an iteration with a
predetermined DAG, whilst randomized Gauss-Seidel iteration gives rise to a
random DAG whose randomness derives from a pseudorandom number gen-
erator rather than the chaotic dynamics of the execution itself (as is the case
in APJ).

Some more general asynchronous parallel iterative algorithms include the
following. Niu et al [15] present Hogwild!, which is an asynchronous stochastic
gradient descent algorithm. Elsener, Koltracht and Neumann present a shared
memory asynchronous implementation of Kaczmarz method for solving lin-
ear equations [8], which more recently has been restudied in the distributed
memory setting by Liu, Wright and Sridhar [13]. Lu and Tang [14] propose an
algorithm for solving systems with symmetric positive definite matrices over
a network of asynchronous agents, whose interactions are controlled by some
(random) external network dynamics. For example the agents could be thought
of as devices in a wireless network which are physically moving around, so that
their network of connectivity is constantly changing. Several of these papers
also provide performance bounds which are based on idealized assumptions
(such as maximum out-of-datedness) about the DAG. It may be possible to
adapt the results we present in Section 3 to these different algorithms, to pro-
vide performance bounds based on statistical properties of the actual DAG
instead.

This paper is organized as follows. In Section 2 we review APJ, introduce
all of our important definitions and prove error bounds for the asynchronous

Performance Analysis of Asynchronous Parallel Jacobi 5

iteration. In Section 3 we prove a sandwich of bounds on the rate of conver-
gence of APJ for systems with non-negative iteration matrix. In section 4 we
make some remarks about the general case (matrices with elements of mixed
sign) and give some simple examples exhibiting interesting behaviors. In Sec-
tion 5 we present a suite of numerical experiments in which we run APJ on a
multicore machine and make a precise log of the DAG during the algorithm’s
execution.

2 Asynchronous Parallel Jacobi

For A ∈ Cn×n and b ∈ Cn Jacobi’s method attempts to solve the linear system
Ax = b by computing the sequence of vectors x(k) k = 0, 1, . . . by

x(k) = Mx(k − 1) + c, M = −D−1(L+ U), c = D−1b, (1)

where D,L and U are the diagonal and strictly lower and upper triangular
parts of A respectively. We call x(k) the kth update and we call M the iteration
matrix. In the synchronous version of Jacobi’s method the sequence of updates
converge to the solution of Ax = b as n→∞ if ρ(M) < 1, where ρ(M) is the
spectral radius of M . The rate of convergence of synchronous Jacobi’s method
is equal to

λ = −α log
(
ρ(M)

)
,

where α is the update rate, that is the average number of updates computed
per second. Thus provided ρ(M) < 1 and α > 0, the synchronous scheme will
converge exponentially quickly as t→∞.

In a parallel synchronous implementation of Jacobi’s method the vectors x
and c are partitioned into N blocks of coordinates and the matrix M is parti-
tioned into N ×N block submatrices. We denote these blocks using subscripts
so that xi is the ith block of x coordinates and Mij is the (i, j)th block subma-
trix of M . Processor i is then responsible for the xi and iteratively computes
the sequence of vectors xi(1), xi(2), . . . using

xi(k) =

N∑
j=1

Mijxj(k − 1) + ci. (2)

We call xi(k) the kth update of processor i.

Jacobi’s method is also amenable to an asynchronous parallel implemen-
tation in which newly-computed vector updates are exchanged when they be-
come available rather than by all processors at the end of each iteration. In
APJ processor i iteratively computes the sequence of vectors xi(1), xi(2), . . .
using

xi(k) =

N∑
j=1

Mijxj
(
Ψ(i, j, k)

)
+ ci, (3)

6 James Hook, Nicholas Dingle

where Ψ(i, j, k) = m if processor i uses processor j’s mth update in the com-
putation of its kth update. We call Ψ : {1, . . . , N}2 × N 7→ N the input index.
In an asynchronous algorithm the input index cannot be known a priori so is
best thought of as a pseudorandom variable, which is determined by the exact
timings of the different computations and communications taking place in the
machine during the execution of the algorithm

The directed acyclic graph (DAG) associated with Ψ is the directed graph
with vertices given by the processor updates {xi(k) : i = 1, . . . , N : k =
1, 2, . . . } and with a directed edge from xj(m) to xi(k), whenever Ψ(i, j, k) =
m. This rather general formulation can be used to describe the case of syn-
chronous parallel Jacobi’s method by setting Ψ(i, j, k) = k − 1 for all i, j, k.
This corresponds to a highly regular DAG in which each processor update
receives an input from every processor update of the previous iteration.

Iteration matrices of interest will often be sparse and have a sparse block
structure. If a block submatrix is equal to zero then we can ignore it in our
formulation of the update equations (3) as well as in the recording of Ψ and
the construction of the DAG. So that if Mij = 0 then there will be no direct
communication from processor j to processor i and we therefore do not include
any edges from processor j updates to processor i updates in the DAG.

Let νi(t) record the total number of updates performed by processor i by
time t. The state of the system at time t, denoted x[t], is given by the direct
product of each of the processor’s most recently computed values

x[t] =
(
x1
(
νi(t)

)
, . . . , xN

(
νN (t)

))
.

2.1 Decoupling error and solution

For synchronous Jacobi’s method it is easy to see that the solution can be
decoupled from the error in the update vectors and that the error then evolves
according to a linear (rather than affine) update rule. Let x(∗) be the unique
solution to Ax = b and set x(k) = x(∗) + y(k) then

x(∗) + y(k) = M
(
x(∗) + y(k − 1)

)
+ c

= Mx(∗) + c+My(k − 1)

= x(∗) +My(k − 1),

so that the error vectors y(0), y(1), . . . evolve according to

y(k) = My(k − 1). (4)

If the iteration matrix M has spectral radius less than one, then the error
terms will converge exponentially to zero as k → ∞ and the update vectors
will converge to the solution. Otherwise, if the iteration matrix has spectral

Performance Analysis of Asynchronous Parallel Jacobi 7

radius greater than one then generically1 the errors will grow exponentially
and the update vectors will diverge.

The solution and the error can also be decoupled in asynchronous Jacobi’s
method. As before we set xi(k) = x(∗)i + yi(k). The update rule for processor
i becomes

xi(∗) + yi(k) =

N∑
j=1

Mij

(
xj(∗) + yj

(
Ψ(i, j, k)

))
+ ci

= xi(∗) +

N∑
j=1

Mijyj
(
Ψ(i, j, k)

)
,

so that the error vectors yi(0), yi(1), . . . evolve according to the linear update
rule

yi(k) =

N∑
j=1

Mijyj
(
Ψ(i, j, k)

)
. (5)

If the error vectors converge to zero as k → ∞ then the update vectors will
converge to the solution. Otherwise, if the errors diverge then so too will the
update vectors.

We define the error operator

Ω(Ψ,M, t) : x[0]− x(∗) 7→ x[t]− x(∗), (6)

which maps the initial error x(0) − x(∗) = y(0) to the error at time t, which
is given by

x[t]− x(∗) = y[t] =
(
y1
(
ν1(t)

)
, . . . , yN

(
νN (t)

))
.

To compute y[t] we must compute all of the errors yi(1), . . . , yi
(
νi(t)

)
for each

i = 1, . . . , N , from the initial errors yi(0), i = 1, . . . , N , which can be done
through repeated application of (5).

2.2 Paths through the DAG

Let P (i, j, k) be the set of all paths through the DAG from xj(0) to xi(k), i.e.
from processor j’s initial condition to processor i’s kth update. We represent
paths as sequences of vertices

σ =
(
xi(0)(k0), xi(1)(k1), . . . , xi(`)(k`)

)
,

and we have σ ∈ P (i, j, k) if and only if i(0) = j, k0 = 0, i(`) = i, k` = k and
Ψ
(
i(m), i(m−1), km) = km−1 for m = 1, . . . , `. The first four conditions ensure

1 If the initial error term y(0) lies in an invariant subspace S, such that M restricted to
S has spectral radius less than one then the error vector should converge to zero, although
this behavior may be extremely sensitive to numerical error.

8 James Hook, Nicholas Dingle

that σ starts at xj(0) and ends at xi(k), the fifth condition ensures that each
transition in σ corresponds to an edge in the DAG. For a path σ ∈ P (i, j, k)
we define the length to be the number of transitions L(σ) = ` and the weight
to be the product of the sequence of block submatrices corresponding to those
transitions

W (σ) = Mi(`),i(`−1) × · · · ×Mi(2),i(1) ×Mi(1),i(0).

Theorem 1 The (i, j)th block submatrix of the error operator is the sum of the
weights of all of the paths through the DAG from processor j’s initial condition
to the most recent update of processor i

Ω(Ψ,M, t)ij =
∑

σ∈P
(
i,j,νi(t)

)W (σ).

Proof First we prove by induction that

yi(k) =

N∑
j=1

∑
σ∈P (i,j,k)

W (σ)yj(0), (7)

for all i = 1, . . . , N , k = 1, 2, . . . Assume that the condition is satisfied for
every update that occurs before some time t. Now consider the next update
to occur, xi(k) say. The error at the update is given by

yi(k) =

N∑
r=1

Miryr
(
Ψ(i, r, k)

)
, (8)

where each of the yr
(
Ψ(i, r, k)

)
, r = 1, . . . , N satisfy (7) by the induction

hypothesis.
Let σ ∈ P

(
r, j, Ψ(i, r, k)

)
be a path through the DAG from xj(0) to

xr
(
Ψ(i, r, k)

)
then σ can be extended to create a path from xj(0) to xi(k)

with
σ′ =

(
σ, xi(k)

)
∈ P (i, j, k), W (σ′) = Mi,rW (σ).

Clearly every path through the DAG from an initial condition to xi(k) arises in
this way. Substituting (7) into (8), then identifying terms of the formMi,rW (σ)
as being the weights of extended paths σ′ ∈ P (i, j, k) we obtain

yi(k) =

N∑
r=1

Mi,r

N∑
j=1

∑
σ∈P

(
r,j,Ψ(i,r,k)

)W (σ)yj(0)

=

N∑
j=1

N∑
r=1

∑
σ∈P

(
r,j,Ψ(i,r,k)

)Mi,rW (σ)yj(0)

=

N∑
j=1

∑
σ′∈P (i,j,k)

W (σ′)yj(0).

Performance Analysis of Asynchronous Parallel Jacobi 9

x1(0)

x2(0)

x1(1)

x2(1)

x1(2)

x2(2)

x1(3)

x2(3)

t = t1 t = t2

Fig. 1: Example 1. Sample of DAG.

Finally note that

Ω(Ψ,M, t)ij =
dyi
(
νi(t)

)
dyj(0)

=
∑

σ∈P
(
i,j,νi(t)

)W (σ). �

Example 1 Suppose that we are iterating the map x 7→ Mx + c on a two
processor machine. A sample of a possible input index and corresponding DAG
are displayed in Table 1 and Figure 1.

Table 1: Example 1. Sample of input index Ψ

k Ψ(1, 1, :) Ψ(1, 2, :) Ψ(2, 1, :) Ψ(2, 2, :)
1 0 0 0 0
2 1 0 1 1
3 2 1 3 2

If the initial state in processor 1 is x1(0) and the initial state in processor
2 is x2(0) then processor 1’s first update is given by

x1(1) = M1,1x1(0) +M1,2x2(0) + c1,

processor 2’s first update is given by

x2(1) = M2,1x1(0) +M2,2x2(0) + c2,

processor 1’s second update by

x1(2) = M1,1x1(1) +M1,2x2(0) + c1

= M1,1(M1,1x1(0) +M1,2x2(0) + c1) +M1,2x2(0) + c1,

and so on.

10 James Hook, Nicholas Dingle

The error operator can be computed either by repeated application of (5)
or by summing over all of the paths though the DAG according to Theorem
1. For example

Ω(Ψ,M, t1) =

[
M1,1M1,1 M1,2 +M1,1M1,2

M2,1 M2,2

]
,

and

Ω(Ψ,M, t2) =

M1,1M1,1M1,1 +M1,2M2,1 M1,1M1,2 +M1,1M1,1M1,2

+M1,2M2,2

M2,2M2,2M2,1 +M2,2M2,1M1,1 M2,2M2,2M2,2 +M2,1M1,2M2,2

+M2,1M1,1M1,1M1,1 +M2,1M1,2M2,1 +M2,1M1,1M1,2 +M2,2M2,1M1,2

+M2,1M1,1M1,1M1,2

 .

We verify Theorem 1 for the (1, 2) block entry of the error operator at time t2

Ω(Ψ,M, t2)1,2 =
∑

σ∈P (1,2,3)

W (σ)

= W
(
x2(0), x1(2), x1(3)

)
+W

(
x2(0), x1(1), x1(2), x1(3)

)
+W

(
x2(0), x2(1), x1(3)

)
= M1,1M1,2 +M1,1M1,1M1,2 +M1,2M2,2.

2.3 Stopping conditions

The standard stopping condition for parallel synchronous Jacobi’s method is

‖Diiri(k)‖∞ ≤ ε‖b‖, for i = 1, . . . , N, (9)

where ri(k) = xi(k) − xi(k + 1) and where ε > 0 is the required precision.
Suppose that condition (9) is satisfied, then we have

x(k) = Mx(k) + c+ r(k)⇔ Ax(k) = b+Dr(k),

so that
‖x(∗)− x(k)‖
‖x(∗)‖

≤ κ(A)‖Dr(k)‖
‖b‖

≤ εκ(A)
√
n, (10)

where κ(A) is the 2-norm condition number of A, which is equal to the ratio of
A’s largest and smallest singular values. This bound reflects the relationship
between the residual and forwards error which is standard for all numerical
linear systems solvers.

In asynchronous Jacobi’s method each processor checks its local stopping
condition (9) as before. When a processor reaches its sopping condition it
broadcasts this fact up a communication tree to the root processor which is
responsible for checking all of the other processors stopping conditions. When
all of the processors have met their stopping condition the root processor stops

Performance Analysis of Asynchronous Parallel Jacobi 11

iterating itself and broadcasts an instruction back down the tree telling the
other processors to stop. As a result processors will typically continue iterat-
ing for a small number of steps after they have reached their local stopping
condition.

Suppose that the asynchronous iteration is stopped at time t. Recall that
the local iteration number of processor i at time t is denoted νi(t). Then the
final iterates are given by

xi
(
νi(t)

)
=

N∑
j=1

Mijxj

(
Ψ
(
i, j, νi(t)

))
+ ci

=

N∑
j=1

Mij

(
xj
(
νj(t)

)
+ fij

)
+ ci, for i = 1, . . . , N, (11)

where fij = xj

(
Ψ
(
i, j, νi(t)

))
−xj

(
νj(t)

)
is the difference between processor j’s

local state at time t and the value that processor i used for processor j’s state
in its most recent update. Expanding (11) and using Mij = −D−1ii Aij + δijI
gives

xi
(
νi(t)

)
= −

N∑
j=1

D−1ii Aijxj
(
νj(t)

)
+xi

(
νi(t)

)
+

N∑
j=1

Mijfij+ci, for i = 1, . . . , N.

Rearranging using
∑N
j=1Aijxj

(
νj(t)

)
=
(
Ax[t]

)
i

and Diici = bi gives

(Ax[t])i = bi +

N∑
j=1

DiiMijfij , for i = 1, . . . , N.

Therefore the relative forwards error satisfies

‖x[t]− x(∗)‖
‖x(∗)‖

≤
κ(A)

√∑N
i=1 ‖

∑N
j=1DiiMijfij‖2

‖b‖
, (12)

where √√√√ N∑
i=1

‖
N∑
j=1

DiiMijfij‖2 =

√√√√ N∑
i=1

‖
N∑
j=1

DiiMijD
−1
jj Djjfij‖2

≤

√√√√ N∑
i=1

‖
N∑
j=1

|DiiMijD
−1
jj ||Djjfij |‖2. (13)

Now since the asynchronous iteration has stopped each processor must satisfy
its local condition (9). We will make the further assumption that every input
used in every processors’ final iteration comes from an iteration that satisfies
its local stopping condition. That is to say that there have been sufficiently
many additional iterations after the processors first reach their local stopping

12 James Hook, Nicholas Dingle

conditions, that no processor is using an input which was created before its
neighbor reached its own local stopping condition. We have

fij = xj

(
Ψ
(
i, j, νi(t)

))
− xj

(
νj(t)

)
=

νj(t)−1∑
k=Ψ

(
i,j,νi(t)

)xj(k)− xj(k + 1) =

νj(t)−1∑
k=Ψ

(
i,j,νi(t)

) rj(k)

and from the above assumptions we have ‖Djjrj‖∞ ≤ ε‖b‖ for Ψ
(
i, j, νi(t)

)
≤

k ≤ νj(t), so that

‖Djjfij‖∞ = ε‖b‖ ≤ kij , (14)

where kij = νj(t)−Ψ
(
i, j, νi(t)

)
is the difference between processor j’s iteration

number and the iteration number of the value that processor i is using for
processor j’s state. Therefore

|Djjfij | ≤ 1n/N ε‖b‖kmax, for j = 1, . . . , N,

where 1n/N is an n/N -vector of ones and kmax = maxij kij . Substituting into
(13) gives

√√√√ N∑
i=1

‖
N∑
j=1

DiiMijfij‖2 ≤ kmaxε‖b‖

√√√√ N∑
i=1

‖
N∑
j=1

|DiiMijD
−1
jj |1n/N‖2

= ε‖b‖kmax

∥∥|AD−1|1n∥∥ = kmaxε‖b‖
∥∥|AD−1|∥∥∞,2,

which results in the bound

‖x[t]− x(∗)‖
‖x(∗)‖

≤ εκ(A)kmax

∥∥|AD−1|∥∥∞,2, (15)

where
∥∥|AD−1|∥∥∞,2 is the (∞, 2) norm of the absolute value of AD−1. Note

that if A is columnwise diagonal dominant then we have
∥∥|AD−1|∥∥∞,2 ≤ 2

√
n.

In our experiments we find that kmax is never greater than 5, so that our
bound guarantees that the error in the asynchronous solution will be the same
order of magnitude as the error in the synchronous solution. In our experiments
on non-negative matrices we find that the synchronous and asynchronous it-
erations return approximate solutions with near identical residuals and errors.
In fact the addition iterations performed between the processors first meeting
their stopping conditions and then receiving their stopping instruction, result
in the asynchronous iteration returning a solution with slightly smaller error
than the synchronous iteration with the same precision ε.

Performance Analysis of Asynchronous Parallel Jacobi 13

3 Theory for non-negative matrices

If the iteration matrix M is non-negative, i.e. mij ∈ R+ for all i, j = 1, . . . , n,
then we are able to prove exponential convergence (under very mild assump-
tions about the DAG) and provide lower and upper bounds for the rate of
convergence. The necessary and sufficient condition on the problem matrix A
for the iteration matrix M to be non-negative is that every off diagonal non-
zero entry aij must have the opposite sign to the diagonal entry in its row aii.
This condition is satisfied by any graph laplacian matrix and therefore by the
matrix discretization of any PDE system whose dynamics are dominated by a
diffusion term.

The following results will be useful in our analysis.

Lemma 1 (Properties of operator norm) Let

‖A‖ = max
x 6=0

‖Ax‖2
‖x‖2

,

denote the l2 operator norm.

1. If A is a non-negative matrix and B is a submatrix of A then ‖A‖ ≥ ‖B‖.
2. If A and B are non-negative d×d matrices then ‖A+B‖ ≥ max{‖A‖, ‖B‖}.
3. ‖AB‖ ≤ ‖A‖‖B‖.
4. ‖A‖ ≥ ρ(A).
5.

lim
k→∞

log ‖Ak‖
k

= ρ(A),

6. If ρ(A) < 1 then there exists C ∈ R such that 1 ≤ max∞k=0 ‖Ak‖ ≤ C.
7. If ρ(A) > 1 then

lim
k→∞

maxkm=1 log ‖Am‖
k

= ρ(A).

Proof Items 1, 2, 3 and 4 are trivial, item 5 follows by considering the Jordan
form of A [12].
• Item 6. First note that ‖A0‖ = ‖I‖ = 1 so that 1 ≤ max∞k=0 ‖Ak‖. It

follows from item 5 that limk→∞ ‖Ak‖ = 0, so there exists k1 ∈ N, such that
‖Ak‖ < 1 for all k ≥ k1. Therefore max∞k=0 ‖Ak‖ = maxk1k=0 ‖Ak‖. Finally
using item 3 we have

∞
max
k=0
‖Ak‖ ≤ k1

max
k=0
‖A‖k = max{1, ‖A‖k1} = C.

• Item 7. From item 5, there exists kε such that

log ‖Ak‖
k

≤ ρ(A) + ε,

for all k ≥ kε. Therefore

maxkm=1 log ‖Am‖
k

≤ max
{maxkεm=1 log ‖Am‖

k
, ρ(A) + ε

}
.

14 James Hook, Nicholas Dingle

Since ρ(A) > 1, item 4 implies ‖A‖ > 1. From item 3 we have

maxkεm=1 log ‖Am‖
k

≤ maxkεm=1 log ‖A‖m

k
=
kε
k

log ‖A‖.

Finally for all k ≥ kε/ε we have

maxkm=1 log ‖Am‖
k

≤ max
{
ε log ‖A‖, ρ(A) + ε

}
,

taking the limit ε→ 0 we obtain

lim
k→∞

maxkm=1 log ‖Am‖
k

= ρ(A). �

Theorem 2 (Weakest link performance barrier) Suppose that the prob-
lem Ax = b has non-negative Jacobi iteration matrix M , which we iterate
asynchronously with input index Ψ . Let Mii be the block submatrix iterated by
processor i and let νi(t) be the number of times that processor i has updated
by time t. We have the bound

‖Ω(Ψ,M, t)‖ ≥ ‖Mνi(t)
ii ‖, (16)

so that for generic initial condition x(0)

lim sup
t→∞

log ‖x[t]− x(∗)‖
t

≥ max
i
a∗i log

(
ρ(Mii)

)
,

where

a∗i = lim
t→∞

νi(t)

t
,

is processor i’s update rate.

Proof From Theorem 1 we have

Ω(Ψ,M, t)ii =
∑

σ∈P
(
ii,νi(t)

)W (σ).

Recall that P
(
ii, νi(t)

)
is the set of all paths through the DAG from processor

i’s initial condition to its most recent update. One such path is given by

σ =
(
xi(0), xi(1), . . . , xi

(
νi(t)

))
,

which has weight W (σ) = M
νi(t)
ii . Therefore since all of the path weights are

non-negative matrices, by Lemma 1 items 1 and 2, we have

‖Ω(Ψ,M, t)‖ ≥ ‖Ω(Ψ,M, t)ii‖ ≥ ‖Mνi(t)
ii ‖.

For the second result we need to take the SVD of the error operator

USV > = Ω(Ψ,M, t),

Performance Analysis of Asynchronous Parallel Jacobi 15

where U, S, V are parametrized by Ψ,M, t and the diagonal entries of S are
ordered in decreasing modulus. Now

x[t]− x(∗) = Ω(Ψ,M, t)
(
x[0]− x(∗)

)
= U1S(1, 1)〈x[0]− x(∗), V1〉+ terms perpendicular to U1,

and using the fact that S(1, 1) = ‖Ω(Ψ,M, t)‖ ≥ ‖Mνi(t)
ii ‖, we have

‖x[t]− x(∗)‖ ≥ ‖U1S(1, 1)〈x(0)− x(∗), V1〉‖ ≥ ‖Mνi(t)
ii ‖ |〈x(0)− x(∗), V1〉|.

Since the SVD of the error operator is a function of t we need to be a bit
careful here. To make the time-dependence explicit we now include the pa-
rameterization in the notation V1(t). Consider the set

K = {x ∈ Cn : lim
t→∞
〈x, V1(t)〉 = 0},

clearly this set forms a subspace of Cn. Suppose thatK = Cn, then limt→∞ V1(t) =
0, which is a contradiction since ‖V1(t)‖ = 1 for all t. Therefore K is a proper
subspace and for a generic initial condition x(0), x(0) − x∗ will not lie in K
and there will exist ε > 0 such that

lim sup
t→∞

|〈x(0)− x(∗), V1(t)〉| ≥ ε.

So, by Lemma 1 item 5, we have

lim sup
t→∞

log ‖x[t]− x(∗)‖
t

≥ lim sup
t→∞

log ‖Mνi(t)
ii ‖+ log ε

t
= lim
t→∞

νi(t)

t
log ρ(Mii).

The final result follows by taking the maximum over all of the processors,
i.e. the maximum over i. �

Theorem 2 shows that the performance of APJ is always held back by its
slowest sub-system. In our next result we show that there is a limit to how
poorly APJ can perform, which is determined by the length of the shortest
path through the DAG.

Recall that for a path σ through the DAG we define the length L(σ) to be
the number of transitions in σ. The length of the shortest path from an initial
condition to a current update is then given by

s(t) = min{L(σ) : σ ∈ ∪i,j=1,...,NP
(
i, j, νi(t)

)
},

and the length of the longest path by

l(t) = max{L(σ) : σ ∈ ∪i,j=1,...,NP
(
i, j, νi(t)

)
}.

The shortest path growth rate s∗ and longest path grow rate l∗ are defined by

s∗ = lim
t→∞

s(t)

t
, l∗ = lim

t→∞

l(t)

t
.

16 James Hook, Nicholas Dingle

In our analysis we will assume that there exists b, B ∈ R with 0 < t/B ≤
s(t) ≤ l(t) ≤ t/b < ∞. These bounds could be obtained by first bounding
the maximum and minimum length of time between a vector update being
used in a computation and it originally being created. Provided this time is
bounded above by some B ∈ R, i.e. provided no communication channel shuts
down indefinitely, then we will have 0 < t/B ≤ s(t). Likewise so long as this
time can be bounded below by some b ∈ R with b > 0, i.e. provided instant
communication and computation is not possible, then we will have l(t) < t/b.
Note that we are not using the exact values of b, B in our bounds, we just need
to assume that they exist.

Theorem 3 (Shortest path performance guarantee) Suppose that the
problem Ax = b has non-negative Jacobi iteration matrix M , which we iterate
asynchronously with input index Ψ then

‖Ω(Ψ,M, t)‖ ≤ ‖
l(t)∑

k=s(t)

Mk‖.

If ρ(M) < 1 we have

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ s∗ log[ρ(M)].

Otherwise, if ρ(M) > 1 then we have

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ l∗ log[ρ(M)].

Proof For a sequence ς ∈ {1, . . . , N}`+1 let

W (ς) = Mς(`),ς(`−1) × · · · ×Mς(1),ς(0).

Now let S(i, j, `) = {ς ∈ {1, . . . , N}`+1 : ς(0) = j, ς(`) = i} be the set of
sequences of length `+ 1 that start with j and end with i. It is easy to prove
that the block submatrices of Mk are given by[

Mk
]
ij

=
∑

ς∈S(i,j,k)

W (ς).

and therefore that l(t)∑
k=s(t)

Mk

ij

=
∑

ς∈∪l(t)
k=s(t)

S(i,j,k)

W (ς). (17)

From Theorem 1 we have

Ω(Ψ,M, t)ij =
∑

σ∈P
(
i,j,νi(t)

)W (σ), (18)

Performance Analysis of Asynchronous Parallel Jacobi 17

where this sum is taken over all paths through the DAG starting at xj(0)
and ending at xi

(
νi(t)

)
. Any such path σ ∈ P

(
i, j, νi(t)

)
can be mapped to a

unique sequence ς ∈ ∪l(t)k=s(t)S(i, j, k), with the same weight W (ς) = W (σ), by
setting

ς(m) = Π
(
σ(m)

)
, for m = 0, . . . , L(σ),

where Π
(
xi(k)

)
= i, for i = 1, . . . , N , k = 1, 2, . . . Therefore the terms

summed over in (18) form a subset of those summed over in (17), so by non-
negativity we have

‖Ω(Ψ,M, t)‖ ≤ ‖
l(t)∑

k=s(t)

Mk‖. (19)

For the second result take

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ lim
t→∞

log ‖Ω(Ψ,M, t)‖
t

+
log ‖x[0]− x(∗)‖

t
.

The second term in the RHS converges to zero and the first term can be
bounded using (19)

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ lim
t→∞

log ‖
∑l(t)
k=s(t)M

k‖
t

≤ lim
t→∞

log
(
l(t)− s(t) + 1

)
t

+
log max

l(t)
k=s(t) ‖M

k‖
t

,

the first term in the RHS converges to zero since 0 < s(t) ≤ l(t) and since we
have assumed that l(t) grows linearly in t.

For ρ(M) < 1, from Lemma 1 item 3, we have

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ lim
t→∞

log max
l(t)
k=s(t) ‖M

k‖
t

≤ lim
t→∞

log ‖Ms(t)‖
t

+
log max

l(t)−s(t)
k=0 ‖Mk‖
t

.

From Lemma 1 item 6, the second term in the RHS converges to zero. From
Lemma 1 item 5 we have

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ lim
t→∞

log ‖Ms(t)‖
t

= lim
t→∞

s(t)

t
log
(
ρ(M)

)
= s∗ log

(
ρ(M)

)
.

For ρ(M) > 1 we have

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ lim
t→∞

log max
l(t)
k=s(t) ‖M

k‖
t

= lim
t→∞

l(t)

t
lim
k→∞

log maxkm=1 ‖Mm‖
k

.

From Lemma 1 item 7, we have

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ l∗ log
(
ρ(M)

)
. �

18 James Hook, Nicholas Dingle

Corollary 1 Suppose that the problem Ax = b has (not necessarily non-
negative) Jacobi iteration matrix M with ρ(|M |) < 1, where |M | is the com-
ponentwise absolute value of M . Take everything else as in the statement of
theorem 3. We have the bound

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ s∗ log
(
ρ(|M |)

)
.

Proof This follows by considering the two different error operators Ω(Ψ,M, t),
and Ω(Ψ, |M |, t). Each is a sum over paths through the same DAG, but the
sum in Ω(Ψ, |M |, t) is taken over the absolute value of the terms in the sum
of Ω(Ψ,M, t), so that

lim
t→∞

log ‖x[t]− x(∗)‖
t

≤ lim
t→∞

log ‖Ω(Ψ,M, t)‖
t

≤ lim
t→∞

log ‖Ω(Ψ, |M |, t)‖
t

≤ s∗ log
(
ρ(|M |)

)
. �

Corollary 1 guarantees APJ exponential convergence provided no commu-
nication channel shuts down indefinitely and provided ρ(|M |) < 1. The second
condition is guaranteed if the problem matrix A is row-wise diagonal domi-
nant. Of course ρ(|M |) < 1 is not a necessary condition for convergence. For
example there are many matrices for which ρ(M) < 1 but ρ(|M |) > 1, in which
case the synchronous iteration is stable but the condition is not satisfied. As
we will discuss a little more in the next Section, proving general convergence
results that are valid for any DAG is extremely difficult.

4 General case

In the general case, when the iteration matrix M is not necessarily real or
non-negative, the situation is considerably more difficult. Theorem 2 (weak-
est link performance barrier) does not apply and Theorem 3 (shortest path
performance guarantee) will only prove convergence if ρ(|M |) < 1.

In this section we will give simple examples of iteration matrices that are
stable under synchronous iteration but unstable under asynchronous itera-
tion and vice versa. Of course the stability of an asynchronous iteration will
depend strongly on the precise properties of the DAG so that our example
of a matrix which is stable under synchronous iteration but unstable under
asynchronous iteration can not possibly be unstable for any DAG, as the syn-
chronous iteration itself can be represented with a DAG. Instead we will give
a simple random model for generating an asynchronous DAG and show that
with overwhelming probability the resulting asynchronous iteration will have
the prescribed stability properties.

We do this by examining the Lyapunov exponents of the asynchronous sys-
tems. The theory for Lyapuov exponents is mostly focused towards analyzing
the stability properties of invariant sets to non-linear dynamical systems and

Performance Analysis of Asynchronous Parallel Jacobi 19

as such the important results are usually stated in these terms, for example
see the text book [17]. However the problem of determining the Lyapunov ex-
ponent of a set of matrices has received some attention, see for example the
papers [10,11,16] and the references therein.

Let {M(1), . . . ,M(N)} ⊂ Cn×n be a finite set of matrices and let α ∈
{1, . . . , N}N be a random variable such that α1, α2, . . . are independent and
identically distributed with P{αk = m} = 1/N for all k ∈ N, m ∈ {1, . . . , N}.
The multiplicative ergodic Theorem ([10], Theorem 2) states that there exists
λ ∈ R such that for all ε > 0

lim
k→∞

P{| log ‖M(αk)× · · · ×M(α1)‖
k

− λ| ≤ ε} = 1. (20)

We call λ the Lyapunov exponent. The multiplicative ergodic theorem tells
us that, with overwhelming probability, the growth rate of the norm of the
product that we observe from a sufficiently long randomly generated sequence
will converge to the Lyapunov exponent. We say that the following holds
almost surely, since it is true for a measure one set of sequences

lim
k→∞

log ‖M(αk)× · · · ×M(α1)‖
k

= λ. (21)

To approximate the spectral radius numerically we evaluate the above quantity
for a large but finite value of k, obtaining the sequence α1, . . . , αk from a
random number generator.

A related quantity is the joint spectral radius, which is defined by

ρ = lim
k→∞

max
α∈{1,...,N}k

‖M(αk)× · · · ×M(α1)‖1/k. (22)

The multiplicative ergodic theorem tells us that for almost all sequences α we
will observe the same growth rate of the product. The spectral radius instead
tells us about the most extreme growth rate that is possible. We always have
log(ρ) ≥ λ and typically we have log(ρ) > λ. In examples where log(ρ) > λ,
the set of sequences whose growth rates attain the joint spectral radius form
a set of measure zero. See the special issue journal on the subject [4].

We can think of the product of a random sequence of matrices as an asyn-
chronous iteration. ForM ∈ Cn×n define the set of matrices {M(1), . . . ,M(N)}
by their block structure

M(m)ij =

Mij if i = m,

I if i = j 6= m,

0 otherwise.

Now suppose that we have N processors that each update with inde-
pendent, mean-1, exponentially distributed inter-update times. The sequence
α ∈ {1, . . . , N}N in which the processors update then has the distribution
described previously. Suppose further that whenever a processor updates it

20 James Hook, Nicholas Dingle

uses the most recently computed values from its neighbors’ states. With these
assumptions the DAG is completely determined by the update sequence α and
the error operator is given by

Ω(Ψ,M, t) = M(αν(t))× · · · ×M(α1), (23)

where ν(t) is the total number of processor updates to have occurred by time
t. The rate of convergence of this asynchronous iteration is given by

− lim
t→∞

log ‖Ω(Ψ,M, t)‖
t

= − lim
t→∞

ν(t)λ

t
= −Nλ

where λ is the Lyapunov exponent of {M(1), . . . ,M(N)}.
The fair synchronous comparison with this rate of convergence is given

by − log
(
ρ(M)

)
, since this assumes an average update rate of 1 for the syn-

chronous iteration.

Example 2 For θ ∈ R+ let

M =

[
−θ θ
θ −θ

]
, M(1) =

[
−θ θ
0 1

]
, M(2) =

[
1 0
θ −θ

]
.

The rate of convergence of the synchronous iteration is given by

− log ρ(M) = − log(2)− log(θ),

so that the synchronous iteration is stable for θ < 1/2 and unstable for θ > 1/2.
We compute the asynchronous rate of convergence for different values of θ

via Monte Carlo simulation. To do this we randomly sample the entries in α
and form a long product (23), which we repeatedly normalize, keeping track
of the sum of the logs of the normalizing factors, which we use to compute
the rate of convergence. See Figure 2 (a). We also plot the shortest path
lower bound from Corollary 1. For this bound we need the growth rates of the
the shortest/longest paths through the DAG. By considering the modeling
assumptions we calculate these exactly to be s∗ = 2/3 and l∗ = 2.

The numerical experiments show that the asynchronous iteration is stable
for θ < 1 and unstable for θ > 1. It is possible to prove that the asynchronous
iteration does not diverge for θ = 1, however, instead of converging to zero
the sequence of matrix norms behaves like a recurrent random walk. Here
we will only prove that the asynchronous iteration is stable for θ = 1/

√
2,

which provides an examples of a matrix which is unstable under synchronous
iteration but stable under asynchronous iteration.

There are 8 different products of M(1) and M(2) of length 3: P (1) =
M(1)M(1)M(2), P (2) = M(1)M(1)M(2), ... , P (8) = M(2)M(2)M(2). For
any sequence α ∈ {1, 2}N there exists a sequence β ∈ {1, . . . , 8}N such that

M(α3k)× · · · ×M(α1) = P (βk)× · · · × P (β1), for all k ≥ 0.

Performance Analysis of Asynchronous Parallel Jacobi 21

Using Lemma 1 item 3 we have

‖M(α3k)× · · · ×M(α1)‖ ≤
k∏

m=1

‖P (βm)‖ (24)

=

8∏
`=1

‖P (`)‖#(`,β,k), (25)

where #(`, β, k) is the number of times that the symbol ` appears in the first
k terms of the sequence β. Since each possible term in α appears with equal
probability, the different possible terms in β also appear with equal probability
and for all ε > 0

lim
k→∞

P{|#(`, β, k)

k
− 1

8
| ≤ ε} = 1.

Applying the bound (24) to equation (21) gives, for almost all sequences β ∈
{1, . . . , 8}N

λ ≤ lim
k→∞

log
(∏8

`=1 ‖P (`)‖#(`,β,k)
)

k
(26)

=

8∑
`=1

log ‖P (`)‖ lim
k→∞

#(`, β, k)

k
(27)

=

8∑
`=1

log ‖P (`)‖1

8
. (28)

This bound guarantees that the asynchronous iteration is stable whenever
p < 1, where

r =

8∏
`=1

‖P (`)‖.

Using Wolfram Mathematica we calculated the quantity r exactly for θ = 1/
√

2

r = 1/64
(

10− 3
√

2 +

√
110− 60

√
2
)(

10− 5
√

2 +

√
2(71− 50

√
2)
)
.

Using elementary techniques it is simple to prove that this expression is less
than 1. The numerical value is approximately 0.621.

Example 3 For θ ∈ R+ let

M =

[
θ −θ
θ −θ

]
, M(1) =

[
θ −θ
0 1

]
, M(2) =

[
1 0
θ −θ

]
.

The rate of convergence of the synchronous iteration is given by

− log ρ(M) =∞,

22 James Hook, Nicholas Dingle

(a) Example 2 (b) Example 3

Fig. 2

so that the synchronous iteration is stable for all values of θ ∈ R. Since M2 = 0
so the synchronous iteration always converges after two updates.

The asynchronous iteration will not converge in finite time for any initial
condition since both of the asynchronous iteration matrices are non-singular.
See Figure 2 (b). Whilst we cannot detect the exact value of θ at which the
asynchronous iteration switches from being stable to being unstable, we can
easily prove that for θ > 1 the asynchronous iteration is unstable, which
provides a range of examples of matrices which are stable under synchronous
iteration but unstable under asynchronous iteration.

For any 2× 2 matrix M we have

|det(M)| ≤ ρ(M)2 ≤ ‖M‖2,

The determinants of the asynchronous iteration matrices satisfy

|det
(
M(1)

)
| = |det

(
M(2)

)
| = θ.

So that for θ > 1 we have, for almost all sequences α

λ = lim
n→∞

log ‖M(αn)× · · · ×M(α1)‖
n

≥ lim
n→∞

log ρ
(
M(αn)× · · · ×M(α1)

)
n

≥ lim
n→∞

log det
(
M(αn)× · · · ×M(α1)

)
2n

=
1

2
log θ > 0.

5 Numerical Experiments

In this section we report the results of our numerical experiments. We ran-
domly generate a number of different test problems which we then solve using

Performance Analysis of Asynchronous Parallel Jacobi 23

both synchronous and asynchronous Jacobi’s method. For each Jacobi solve we
make a precise recording of the DAG associated with the computation. We are
then able to compare the performance of the synchronous and asynchronous
algorithms to various statistical properties of the DAGs including the bounds
that we proved in Section 3.

Our numerical experiments were carried out using the Balena High Perfor-
mance Computing facility at the University of Bath. Balena has 3,072 general
purpose Intel “IvyBridge” cores and over 18 TiB of main memory. The entire
system is connected by Intel TrueScale Infiniband at 40Gb/sec. When solving
the linear system Ax = b using synchronous or asynchronous Jacobi’s method
the iteration matrix M and vectors x and c are partitioned such that each
processor stores m rows of M and the corresponding m entries of x and c.
When processor i forms the matrix-vector product in (1), some of the vec-
tor elements required will be stored locally on processor i and some will be
stored (and updated) on other remote processors; these latter elements are
communicated during the update phase. In constructing the problems for our
experiments on 2 computational nodes, we generate the problem matrix A in
such a way that for each given processor, d1 of the remote processors will be
found on the same computational node and d2 will be on the other node.

We generate a range of test problems as follows. The problem matrix A is
defined in terms of its 32 × 32 submatrices (Aij ∈ Cm×m)32i,j=1, where m =
100, 000 is the number of rows per processor. We define the interprocessor
connectivity matrix C ∈ {0, 1}32×32 by

C =

[
Md1+1 Md2

Md2 Md1+1

]
,

where Md is the 32× 32 matrix with entires given by

[Md]ij =

{
1 if 0 ≤ j − i ≤ d (mod 16)
0 otherwise.

The block submatrix Aij is non-zero, and hence processor i receives input from
processor j, if and only if cij = 1. We call d1 + d2 the number of processor
neighbors.

Each row of A is given exactly 10 non-zero, off-diagonal entries. Five of
these entries are equal to v1 = 1 and are placed uniformly at random inside
the diagonal block. The remaining five entries are equal to v2, which is varied
between test problems, and are placed uniformly at random in the off diagonal
blocks that are allowed by the interprocessor connectivity matrix. We call v2
the coupling strength. The diagonal entries of A are all set to vd = −δ(5+5v2),
where δ = 1.005 determines the degree of diagonal dominance.

We generate a total of 28 different test problems over a range of parameters.
See Tables 2 and 3. The letter part of the matrix ID refers to the number
of processor neighbors and the number part refers to the coupling strength.
Table 3 also records the spectral radius of the iteration matrix, ρ(M) and the
spectral radius of a diagonal block submatrix ρ(Mii), note that this is the

24 James Hook, Nicholas Dingle

Table 2: matrix parameteres

Matrix ID Letter d1 d2
a 1 1
b 3 2
c 5 5
d 10 10

Table 3: matrix parameteres and spectra

Matrix ID Number v2 vd ρ(M) ρ(Mii) log(ρ(M))/ log(ρ(Mii))
1 10 -55.27 0.9950 0.0904 0.0020
2 1 -10.04 0.9950 0.4975 0.0071
3 0.1 -5.527 0.9950 0.9045 0.0497
4 10 -55.27 0.9950 0.9851 0.3338
5 0.0001 -5.025 0.9950 0.9940 0.8330
6 1e-05 -5.025 0.9950 0.9949 0.9803
7 1e-06 -5.025 0.9950 0.9950 0.9979

same for all i = 1, . . . , N . Observe that for the weakly coupled problems, with
smaller values of v2, the spectral radius of the diagonal block submatrix is
very close to that of the full matrix.

For each test matrix A we solve the system Ax = b using both synchronous
and asynchronous parallel Jacobi’s method. We set b = Ax(∗) where x(∗)i =
sin(2πi/m) for i = 1, . . . , n and use the initial guess xi = 1 for i = 1, . . . , n. We
also use the termination conditions described in Section 2.2 with ε = 1e−12.

We instrument the algorithms to record the DAG during the course of the
computation. When a processor i broadcasts its kth update it adds a header to
that data including the time at which it was produced as well as the iteration
number k. Then if processor j receives this data and uses it in its `th iteration,
say, processor j will record a log that it used processor i’s kth update on its `th
iteration as well as recoding the time that that data was created by processor
i and the time that its own computation was completed. At the end of the
computation this data can be aggregated to completely reconstruct the DAG
of the computation.

5.1 Synchronous iteration

For the synchronous variant we record the total number of iterations needed
for convergence, the final residual, the final error and the total time taken
in seconds. We also calculate the update rate in updates per second and the
observed rate of convergence which is calculated by

obs’ rate of conv’ =
log
(

2-norm of error in initial condition
2-norm of final error

)
time taken

,

Performance Analysis of Asynchronous Parallel Jacobi 25

Table 4: sync performance

Matrix ID its’ res’ (log 10) error (log 10) time up’ rate obs’ rate of conv’
a1 2994 -3.793 -3.232 53.70 55.74 0.1223
a2 3113 -4.791 -3.490 57.14 54.47 0.1195
a3 3432 -5.742 -4.181 61.80 55.53 0.1217
a4 3595 -6.132 -4.534 65.63 54.76 0.1199
a5 3608 -6.164 -4.562 64.42 56.00 0.1226
a6 3708 -6.333 -4.733 67.27 55.11 0.1200
a7 3737 -6.361 -4.759 66.96 55.80 0.1209
b1 3013 -3.834 -3.273 63.76 47.25 0.1037
b2 3132 -4.832 -3.531 66.63 47.00 0.1031
b3 3447 -5.774 -4.213 73.06 47.17 0.1033
b4 3596 -6.134 -4.536 75.38 47.70 0.1044
b5 3612 -6.172 -4.571 75.78 47.66 0.1043
b6 3713 -6.338 -4.738 79.47 46.72 0.1016
b7 3737 -6.360 -4.758 79.54 46.98 0.1018
c1 2993 -3.791 -3.230 71.69 41.74 0.0916
c2 3112 -4.789 -3.488 74.92 41.53 0.0911
c3 3430 -5.737 -4.177 82.74 41.45 0.0908
c4 3595 -6.132 -4.534 85.91 41.84 0.0916
c5 3607 -6.161 -4.560 87.56 41.19 0.0902
c6 3707 -6.331 -4.731 89.52 41.40 0.0901
c7 3737 -6.361 -4.759 88.59 42.17 0.0914
d1 2994 -3.793 -3.232 75.44 39.68 0.0871
d2 3113 -4.791 -3.490 79.04 39.38 0.0864
d3 3431 -5.739 -4.179 86.72 39.56 0.0867
d4 3595 -6.132 -4.534 91.32 39.36 0.0862
d5 3608 -6.163 -4.562 91.94 39.24 0.0859
d6 3708 -6.333 -4.733 96.44 38.44 0.0837
d7 3737 -6.361 -4.759 95.34 39.19 0.0849

where the initial error is given by

√∑n
i=1

(
sin(2πi/m)− 1

)2
= 2190. See

Table 4.

5.2 Asynchronous iteration

During asynchronous iteration some processors will update more than others.
Figure 3 (a) shows the update rates of all of the different processors recorded
during the asynchronous iteration on problem C1. Note that all of the asyn-
chronous processors update faster than the synchronous rate, but that there
is quite a lot of variation and two processors, one from each core, have sig-
nificantly slower rates than the rest of the group. This distribution of update
rates is characteristic of all of the other test problems.

For the asynchronous iteration we record the mean number of individual
processor iterations needed for convergence, the final residual, the final error
and the total time taken in seconds. We calculate the mean update rate in
updates per second and the observed rate of convergence.

We also record the mean iteration delay, which is defined as follows. If pro-
cessor i uses processor j’s kth update on its `th iteration and at the moment

26 James Hook, Nicholas Dingle

(a) Asynchronous processor update rates, syn-
chronous update rate marked with horizontal
line.

(b) Mean iteration delay of inputs to processor 0.

Fig. 3: Processor update rates and mean iteration delay for inputs to processor
0 for for problem C1.

that that computation is finished processor j has performed k+m iterations,
then the iteration delay of the communication is equal to m. In the syn-
chronous iteration every communication has iteration delay exactly equal to
one. Figure 3 (b) shows the mean iteration delay of communications to pro-
cessor number 0 during the asynchronous iteration on problem C1. Commu-
nications from processors on the same core have mean iteration delay roughly
equal to one but delays from processors on the neighboring core are larger.
For each problem we record the average iteration delay over all channels, the
maximum iteration delay over all channels and the maximum iteration delay
over all channels for the final ten iterations. See Table 8.

5.3 Comparison

To make a direct comparison between the performance of the synchronous
and asynchronous solvers we record the following quantities. Boost measures
the increase in mean update rate obtained by switching from synchronous to
asynchronous iteration. Effectiveness is the average rate of convergence per
processor update. It can be calculated by

effectiveness =
rate of convergence

update rate
.

We also record the effectiveness ratio which is the asynchronous effective-
ness divided by the synchronous effectiveness. Speedup measures the improve-
ment in rate of convergence obtained by switching from synchronous to asyn-
chronous iteration. See Table 6 and Figure 4 (a,b,c).

For the synchronous iteration the update rate depends only on the number
of processor neighbors and not on the coupling strength. The synchronous

Performance Analysis of Asynchronous Parallel Jacobi 27

Table 5: async performance

Matrix ID mean its’ res’ (log 10) error (log 10) time mean up’ rate obs’ rate of conv’
a1 5089 -3.793 -3.489 68.10 74.72 0.1002
a2 4359 -4.791 -3.689 58.23 74.85 0.1207
a3 3719 -5.742 -4.283 49.67 74.86 0.1534
a4 3716 -6.132 -4.686 49.53 75.01 0.1620
a5 4186 -6.164 -5.183 55.99 74.75 0.1522
a6 4273 -6.333 -5.295 57.83 73.88 0.1493
a7 4660 -6.361 -5.316 62.00 75.15 0.1396
b1 5161 -3.834 -3.617 80.32 64.24 0.0866
b2 4340 -4.832 -3.765 67.77 64.03 0.1048
b3 3758 -5.774 -4.371 58.55 64.18 0.1317
b4 3772 -6.134 -4.788 57.85 65.19 0.1405
b5 4065 -6.172 -5.163 62.21 65.34 0.1366
b6 4501 -6.338 -5.307 70.40 63.92 0.1228
b7 4604 -6.360 -5.305 71.62 64.27 0.1207
c1 5557 -3.791 -3.626 87.72 63.34 0.0794
c2 4462 -4.789 -3.712 69.89 63.83 0.1009
c3 3777 -5.737 -4.348 59.20 63.79 0.1298
c4 3716 -6.132 -4.693 58.08 63.97 0.1383
c5 4013 -6.161 -5.121 62.84 63.85 0.1346
c6 4039 -6.331 -5.236 63.04 64.06 0.1360
c7 4087 -6.361 -5.213 63.41 64.44 0.1348
d1 5132 -3.793 -3.629 83.98 61.10 0.0829
d2 4351 -4.791 -3.753 71.14 61.16 0.0997
d3 3724 -5.739 -4.323 60.78 61.26 0.1260
d4 3715 -6.132 -4.696 61.02 60.87 0.1316
d5 3859 -6.163 -4.956 63.37 60.89 0.1309
d6 3894 -6.333 -5.070 64.77 60.11 0.1298
d7 4205 -6.361 -5.307 69.57 60.43 0.1242

effectiveness is constant for all of the tests and is approximately equal to
log
(
ρ(M)

)
= 2.166e−3. The rate of convergence of the synchronous iteration

is therefore determined wholly by the update rate, which decreases with the
number of processor connections.

For the asynchronous iteration the update rate also depends mainly on
the number of processor neighbors, although there is slightly more variance
between runs with the same number of neighbors. A synchronous system with
more inter-processor connections will naturally spend more idle time waiting
for fresh inputs. Thus we expect that boost increases with the number of
processor neighbors. Figure 4 (a) shows that the problems divide into two
groups. Problems with 2 or 5 processor neighbors (ID letters a and b) have
a boost of around 1.35 and problems with 10 or 20 processor neighbors (ID
letters c and d) have a boost of around 1.55.

Unlike synchronous effectiveness, asynchronous effectiveness is not con-
stant and varies with coupling strength as well as the number of processor
neighbors. Since the synchronous effectiveness is constant the asynchronous
effectiveness and effectiveness ratio are directly proportional. Processors in
the asynchronous iteration can use out-of-date data from their neighbors. So

28 James Hook, Nicholas Dingle

(a) Boost (b) Effectiveness ratio

(c) Speedup (d) Weakness

Fig. 4

we expect that the asynchronous iteration will be less effective for strongly cou-
pled problems, where the communicated data has a greater weight. Figure 4
(b) shows that the effectiveness ratio is smallest for strongly coupled problems
and increases to nearly 1 at a coupling strength of 0.01. For weakly coupled
problems the effectiveness ratio drops off slightly, more so for the systems with
fewer processor neighbors. This dip can be explained using the weakest link
performance barrier (Theorem 2).

Speedup is equal to boost times the effectiveness ratio. Figure 4 (c) shows
that speedup follows a similar pattern to the effectiveness ratio, except that
the larger boost value for problems with 10 or 20 processor neighbors (ID
letters c and d) means that these problems also have a larger speedup. All
problems with a coupling strength of 1 or less have a speedup of greater than
one, meaning that the asynchronous iteration converges faster.

Performance Analysis of Asynchronous Parallel Jacobi 29

Table 6: performance comparison

(e-3)
Matrix ID boost sync’ effect’ async’ effect’ effect’ ratio speedup

a1 1.340 2.195 1.342 0.611 0.819
a2 1.374 2.194 1.612 0.734 1.009
a3 1.348 2.191 2.050 0.935 1.260
a4 1.369 2.190 2.160 0.986 1.350
a5 1.334 2.190 2.036 0.929 1.240
a6 1.340 2.177 2.021 0.928 1.244
a7 1.346 2.167 1.857 0.857 1.154
b1 1.359 2.195 1.348 0.614 0.835
b2 1.362 2.194 1.637 0.746 1.016
b3 1.360 2.191 2.052 0.936 1.273
b4 1.366 2.190 2.155 0.983 1.344
b5 1.370 2.190 2.091 0.955 1.309
b6 1.368 2.175 1.921 0.883 1.208
b7 1.368 2.167 1.877 0.866 1.185
c1 1.517 2.195 1.253 0.571 0.866
c2 1.536 2.194 1.580 0.720 1.107
c3 1.538 2.191 2.035 0.928 1.429
c4 1.528 2.190 2.162 0.987 1.508
c5 1.550 2.190 2.108 0.962 1.492
c6 1.547 2.177 2.123 0.975 1.508
c7 1.527 2.167 2.092 0.965 1.475
d1 1.539 2.195 1.358 0.618 0.952
d2 1.552 2.194 1.630 0.742 1.153
d3 1.548 2.191 2.058 0.939 1.454
d4 1.546 2.190 2.163 0.987 1.527
d5 1.551 2.190 2.150 0.981 1.523
d6 1.563 2.177 2.159 0.991 1.551
d7 1.542 2.167 2.056 0.948 1.463

5.4 Weakest link upper bound

Theorem 2 gives an upper bound on the asymptotic rate of convergence of the
asynchronous iteration. This bound can be calculated by

asy’ rate of conv’ ≤ −
(
update rate of slowest processor

)
× log

(
ρ(Mii)

)
.

See Table 7. Note that there are several problems for which the weakest link
upper bound (WLUB) is less than the observed rate of convergence. This is
due to the fact that we are measuring the rate of convergence over a finite
length of time and as such we only have an approximate upper bound. If we
take the first part of Theorem 2, equation (16), take logs and divide by time
we obtain

− log ‖Ω(Ψ,M, t)‖
t

≤ −
(
update rate of slowest processor

)
× log

(
ρ(Mii)

)
.

where ‖Ω(Ψ,M, t)‖ is the operator 2-norm of the error operator. The quantity
on the LHS is therefore the smallest possible rate of convergence that we could
observe from any initial condition. Just like in a synchronous iteration, some

30 James Hook, Nicholas Dingle

modes of error decay much faster than others during asynchronous iteration
and a typical initial condition will include a combination of different error
modes. The fast decaying modes decay in a small number of iterations and
the slow decaying modes determine the asymptotic rate of convergence. The
mismatch between the asymptotic rate of convergence and the observed rate
comes from the presence of fast decaying modes in the initial error. One heuris-
tic way to improve the weakest link approximate upper bound is to assume
that the slow decaying mode of the asynchronous iteration is given by the
Perron eigenvector of the diagonal block associated with the slowest updating
processor and that this slow mode dominates the observed rate of convergence.
This gives the following relationship between observed and asymptotic rates
of convergence, which we use to compute the second weakest link approximate
upper bound given in Table 7.

obs’ rate of conv’ = asy’ rate of conv’ +
log
√

32

time taken
. (29)

This adjusted bound (WLUB II) is still less than the observed rate of con-
vergence for two problems, but it is only a small overshoot compared to the
unadjusted bound.

Figure 5 (a,b,c,d) shows that the adjusted weakest link upper bounds give
a good approximation to the rate of convergence for weakly coupled problems.
For strongly coupled problems the factor − log

(
ρ(Mii)

)
grows very quickly

and the upper bounds blow up. This can also be seen in Table 3.
The dip in speedup shown in Figure 4 (c) can now be explained. For very

weakly coupled problems the processor iterations are effectively independent
from one another and the convergence to solution is held up by the slowest
processor(s), which as shown in Figure 3 (a) typically update quite a lot slower
than the average rate. For larger values of coupling strength work is effectively
shared between the processors and the much smaller local eigenvalue ρ(Mii),
means that one or two slow processors will not harm the overall rate of conver-
gence. We define the weakness of an asynchronous iteration to be the update
rate of the slowest processor divided by the mean update rate. This is plotted
in Figure 4 (d). That the problems with fewer processor neighbors (ID let-
ters a and b) have a bigger dip in effectiveness for weak coupling follows from
the fact that these problems also have lower values of weakness. Variation in
weakness has less effect on the asynchronous effectiveness for more strongly
coupled problems because for these problems the update rate of the slowest
processor is less important.

5.5 Shortest path lower bounds

Theorem 3 gives a lower bound on the rate of convergence. Like the weakest
link bound the shortest path bound is a bound on the asymptotic rate of con-
vergence. But since the observed rate of convergence is always greater than the
asymptotic rate, the shortest path bound on the observed rate of convergence

Performance Analysis of Asynchronous Parallel Jacobi 31

(a) ID letter a (b) ID letter b

(c) ID letter c (d) ID letter d

Fig. 5

is still valid. We should not use heuristic (29) here as it is only valid for weakly
coupled problems and we want to apply the shortest path lower bound to all
of our problems include the strongly coupled ones.

To compute the length of the shortest path through the DAG we assign
each processor update a depth. Initial conditions are given a depth of zero.
We then set the depth of subsequent updates to be one plus the minimum
of the depths of their inputs. Thus the depth of an update is equal to the
length of the shortest path through the DAG from an initial condition to that
update. The shortest path length of the DAG is then equal to the minimum
depth of a final update. The shortest path growth rate is equal to the shortest
path length divided by the time taken to converge and the shortest path lower
bound (SPLB) is given by

asy’ rate of conv’ ≥ −
(
shortest path growth rate

)
× log

(
ρ(M)

)
.

Figure 5 (a,b,c,d) shows that the shortest path bound gives a good estimate
for the rate of convergence for strongly coupled systems.

32 James Hook, Nicholas Dingle

Table 7: weakest link bounds

Matrix ID min its’ min up’ rate obs’ rate of conv’ WLAUB WLAUB II
a1 4023 59.07 0.100 61.64 61.65
a2 3543 60.84 0.120 18.44 18.45
a3 3057 61.53 0.153 2.680 2.695
a4 2956 59.67 0.162 0.387 0.402
a5 3375 60.27 0.152 0.156 0.170
a6 3640 62.93 0.149 0.139 0.152
a7 3656 58.96 0.139 0.127 0.140
b1 4127 51.37 0.086 53.61 53.62
b2 3137 46.28 0.104 14.03 14.04
b3 3084 52.67 0.131 2.294 2.307
b4 2969 51.31 0.140 0.332 0.345
b5 3367 54.12 0.136 0.140 0.152
b6 3376 47.94 0.122 0.105 0.116
b7 3517 49.10 0.120 0.106 0.117
c1 4579 52.19 0.079 54.47 54.47
c2 3324 47.55 0.100 14.41 14.43
c3 2996 50.60 0.129 2.204 2.216
c4 3404 58.59 0.138 0.380 0.393
c5 3318 52.79 0.134 0.137 0.149
c6 3623 57.46 0.136 0.126 0.138
c7 3732 58.85 0.134 0.127 0.139
d1 4420 52.62 0.082 54.91 54.92
d2 3882 54.56 0.099 16.54 16.55
d3 3099 50.98 0.126 2.220 2.233
d4 3073 50.35 0.131 0.326 0.339
d5 3296 52.00 0.130 0.135 0.147
d6 3650 49.78 0.118 0.109 0.120
d7 3626 54.76 0.129 0.118 0.130

5.6 Error analysis

The error bounds we presented in Section 2.3 are in terms of the matrix condi-
tion number κ(A), which we cannot know exactly for our randomly generated
problem matrices. One way to estimate this quantity is to take the ratio of
the forwards error to the residual error. This results in consistent estimates
between the synchronous and asynchronous approximate solutions. However,
since it is a little circular applying our error bounds using such a condition
number estimate, we instead examine the residual error. The synchronous error
bound (10) becomes

sync’ residual error ≤ ε
√
n‖b‖,

and the asynchronous error bound (15) becomes

async’ residual error ≤ 2εkmax

√
n‖b‖.

Recall that we use the threshold ε = 1e−12. We use the final iteration delay
data from Table 8 for kmax. Table 9 shows that the residual errors in the
asynchronous solution are consistently slightly smaller than in the synchronous

Performance Analysis of Asynchronous Parallel Jacobi 33

Table 8: short path lower bounds

iteration delay shortest path
Matrix ID mean max final length rate obs’ rate of conv’ SPLB

a1 1.168 24 3 2413 35.43 0.100 0.076
a2 1.180 11 3 1922 33.00 0.120 0.071
a3 1.178 5 3 1597 32.14 0.153 0.069
a4 1.172 15 3 1679 33.89 0.162 0.073
a5 1.176 13 3 1881 33.59 0.152 0.072
a6 1.151 8 3 2014 34.82 0.149 0.075
a7 1.181 5 3 2199 35.46 0.139 0.076
b1 1.134 17 3 2081 25.90 0.086 0.056
b2 1.114 5 3 1820 26.85 0.104 0.058
b3 1.132 5 3 1424 24.32 0.131 0.052
b4 1.129 10 4 1622 28.03 0.140 0.060
b5 1.116 8 3 1953 31.39 0.136 0.067
b6 1.114 4 3 2036 28.91 0.122 0.062
b7 1.133 5 4 2032 28.36 0.120 0.061
c1 1.276 7 4 1770 20.17 0.079 0.043
c2 1.228 8 4 1472 21.06 0.100 0.045
c3 1.270 9 4 1203 20.31 0.129 0.044
c4 1.267 8 4 1243 21.39 0.138 0.046
c5 1.242 7 4 1463 23.27 0.134 0.050
c6 1.301 7 4 1305 20.69 0.136 0.044
c7 1.282 9 4 1343 21.17 0.134 0.045
d1 1.132 6 4 1809 21.53 0.082 0.046
d2 1.145 6 5 1478 20.77 0.099 0.045
d3 1.147 5 3 1251 20.58 0.126 0.044
d4 1.124 5 4 1313 21.51 0.131 0.046
d5 1.110 6 4 1430 22.56 0.130 0.048
d6 1.122 6 4 1427 22.03 0.129 0.047
d7 1.144 8 4 1522 21.87 0.124 0.047

case. We believe that this is due to additional iterations being performed
during the delay between each processor reaching its local stopping condition
and the termination command being generated and reaching them.

Conclusion

We introduced a formalism for describing the behavior of APJ in terms of its
DAG. Using this approach we proved error bounds and showed how the rate
of convergence can be linked to statistical properties of the DAG, namely the
update rate of the slowest processor and the shortest path growth rate. In our
numerical experiments we found that the asynchronous method outperformed
the synchronous method on all moderately and weakly coupled problems and
that this improvement was greatest for problems with more inter-processor
connections. For the strongly coupled problems the rate of convergence of
APJ was close to our shortest path performance performance guarantee and
for the weakly coupled problems it was close to our weakest link performance
barrier. Focusing on the weakly coupled problems where APJ performed well,

34 James Hook, Nicholas Dingle

Table 9: Residual errors and bounds

κ(A) est’ (log 10)
Matrix ID sync’ async’ ‖b‖ sync’ res’ bound async’ res’ bound

a1 3.636 3.356 4.954 -3.793 -3.793 -4.015 -3.014
a2 20.00 18.60 3.956 -4.791 -4.791 -4.959 -4.012
a3 36.36 36.14 3.007 -5.742 -5.740 -5.841 -4.962
a4 39.60 39.39 2.616 -6.132 -6.130 -6.282 -5.352
a5 39.95 37.91 2.598 -6.164 -6.149 -6.762 -5.371
a6 39.84 39.36 2.597 -6.333 -6.150 -6.891 -5.372
a7 39.97 39.92 2.596 -6.361 -6.150 -6.917 -5.372
b1 3.636 3.251 4.914 -3.834 -3.833 -4.129 -3.055
b2 19.99 18.94 3.916 -4.832 -4.831 -5.043 -4.052
b3 36.36 36.15 2.974 -5.774 -5.773 -5.929 -4.994
b4 39.60 39.17 2.613 -6.134 -6.133 -6.381 -5.230
b5 39.95 37.21 2.597 -6.172 -6.149 -6.734 -5.371
b6 39.85 39.24 2.597 -6.338 -6.150 -6.901 -5.372
b7 39.97 39.92 2.597 -6.360 -6.150 -6.906 -5.247
c1 3.636 3.152 4.958 -3.791 -3.789 -4.124 -2.886
c2 20.00 18.73 3.960 -4.789 -4.787 -4.985 -3.884
c3 36.36 36.05 3.010 -5.737 -5.737 -5.904 -4.834
c4 39.60 39.45 2.616 -6.132 -6.130 -6.289 -5.227
c5 39.95 37.08 2.597 -6.161 -6.149 -6.690 -5.246
c6 39.84 39.51 2.597 -6.331 -6.150 -6.832 -5.247
c7 39.97 39.93 2.597 -6.361 -6.150 -6.814 -5.247
d1 3.636 3.095 4.955 -3.793 -3.791 -4.120 -2.888
d2 19.99 18.71 3.957 -4.791 -4.789 -5.025 -3.789
d3 36.36 36.15 3.008 -5.739 -5.739 -5.881 -4.960
d4 39.60 39.43 2.616 -6.132 -6.130 -6.292 -5.227
d5 39.95 39.21 2.598 -6.163 -6.149 -6.550 -5.246
d6 39.84 39.70 2.597 -6.333 -6.150 -6.668 -5.247
d7 39.97 39.93 2.596 -6.361 -6.150 -6.908 -5.247

our weakest link bound should inform the design of asynchronous linear solvers
in two ways.

1. Load balancing. To maximize the rate of convergence of the slowest sub-
system it is necessary to balance the workload between the different processors.
If the diagonal block submatrices are all roughly the same, so that ρ(Mii) is
approximately constant for i = 1, . . . , N , then this reduces to balancing the
workload so that the different processors have, as closely as possible, the same
update rate. If ρ(Mii) varies widely then workload should be balanced to try to
increase the update rate of the processors that iterate diagonal block subma-
trices with larger spectral radii, at the expense of the update rate of processors
that iterate diagonal block submatrices with smaller spectral radii.

2. Communication can be skipped. In the domain of problems where the
weakest link performance barrier determines the performance we can reduce
the frequency with which processors broadcast their new states without harm-
ing the rate of convergence. By only broadcasting its state every ten iterations,
say, the update rate of a processor can be increased, which will improve the
rate of convergence. Allowing different rates of broadcast between different

Performance Analysis of Asynchronous Parallel Jacobi 35

processors could be one approach to load balancing. This would effectively
increase the update rate whilst decreasing the shortest path rate.

Acknowledgements

The first author was supported by Engineering and Physical Sciences Re-
search Council (EPSRC) grant EP/I005293 “Nonlinear Eigenvalue Problems:
Theory and Numerics”. The second author was supported by EPSRC grant
EP/I006702/1 “Novel Asynchronous Algorithms and Software for Large Sparse
Systems”. This research made use of the Balena High Performance Computing
(HPC) Service at the University of Bath.

References

1. H. Avron, A. Druinsky, and A. Gupta. Revisiting asynchronous linear solvers: Provable
convergence rate through randomization. In Proceedings of the 2014 IEEE 28th Inter-
national Parallel and Distributed Processing Symposium, IPDPS ’14, pages 198–207,
2014.

2. D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

3. I. Bethune, J.M. Bull, N.J. Dingle, and N.J. Higham. Performance analysis of asyn-
chronous Jacobi’s method implemented in MPI, SHMEM and OpenMP. IJHPCA,
28(1):97–111, 2014.

4. V.D. Blondel, M. Karow, V. Protassov, and F. R. Wirth. Special issue on the joint
spectral radius: Theory, methods and applications. Linear Algebra and its Applica-
tions, 428(10), 2008. Special Issue on the Joint Spectral Radius: Theory, Methods and
Applications.

5. J.M. Bull and T.L. Freeman. Numerical performance of an asynchronous Jacobi itera-
tion. In Parallel Processing, volume 634 of Lecture Notes in Computer Science, pages
361–366. Springer Berlin Heidelberg, 1992.

6. D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Aplications,
2:199–222, 1969.

7. N.J. Dingle and W.J. Knottenbelt. Distributed solution of large markov models us-
ing asynchronous iterations and graph partitioning. In Proceedings of the 18th UK
Performance Engineering Workshop, pages 27–34, 2002.

8. L. Elsner, I. Koltracht, and M. Neumann. On the convergence of asynchronous paracon-
tractions with application to tomographic reconstruction from incomplete data. Linear
Algebra and its Applications, 130:65 – 82, 1990.

9. A. Frommer and D.B. Szyld. On asynchronous iterations. Journal of Computational
and Applied Mathematics, 123(12):201 – 216, 2000.

10. H. Furstenberg and H. Kesten. Products of random matrices. Ann. Math. Statist.,
31(2):457–469, 06 1960.

11. R. Gharavi and V. Anantharam. An upper bound for the largest lyapunov exponent of a
markovian product of nonnegative matrices. Theoretical Computer Science, 332(1):543
– 557, 2005.

12. R. Horn and C. Johnson. Matrix analysis. Cambridge University Press, 1990.
13. S. Sridhar J. Liu, Stephen J. Wright. An asynchronous parallel randomized Kaczmarz

algorithm. arXiv:1401.4780, 2014.
14. J. Lu and Y. Tang. Distributed asynchronous algorithms for solving positive definite

linear equations over dynamic networks. arXiv:1306.0260, 2013.
15. F. Niu, B. Recht, C. R, and S.J. Wright. Hogwild: A lock-free approach to parallelizing

stochastic gradient descent. In NIPS, 2011.

36 James Hook, Nicholas Dingle

16. J. N. Tsitsiklis and V. D. Blondel. The lyapunov exponent and joint spectral radius
of pairs of matrices are hard—when not impossible—to compute and to approximate.
Mathematics of Control, Signals and Systems, 10(1):31–40, 1997.

17. P. Walters. An introduction to ergodic theory. Graduate texts in mathematics. Springer,
New York, Berlin, Heidelberg, 1982.

