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Abstract—This study focuses on the performance of two classi-
cal dense linear algebra algorithms, the LU and the QR factoriza-
tions, on multilevel hierarchical platforms. We first introduce a
performance model called Hierarchical Cluster Platform (HCP),
encapsulating the characteristics of such platforms. The focus
is set on reducing the communication requirements of studied
algorithms at each level of the hierarchy. Lower bounds on
communication are therefore extended with respect to the HCP
model. We then introduce multilevel LU and QR algorithms
tailored for those platforms, and provide a detailed performance
analysis. We also provide a set of performance predictions
showing the need for such algorithms on large platforms.
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I. INTRODUCTION

Numerical algorithms and solvers play a crucial role in
scientific computing. They lie at the heart of many applica-
tions and are often key to performance and scalability. Due
to the ubiquity of multicore processors, solvers should be
adapted to better exploit the hierarchical structure of modern
architectures, where the tendency is towards multiple levels
of parallelism. Thus with the increasing complexity of nodes,
it is important to exploit these many levels of parallelism
even within a single compute node. For that reason, classical
algorithms need to be revisited so as to fit modern architectures
that expose parallelism at different levels in the hierarchy.
We believe that such an approach is mandatory in order to
exploit upcoming hierarchical exascale computers at their full
potential.

Studying the communication complexity of linear algebra
operations and designing algorithms that are able to minimize
communication is a topic that has received an important
attention in the recent years. The most advanced approach in
this context assumes one level of parallelism and takes into
account the computation, the volume of communication, and
the number of messages exchanged along the critical path of
a parallel program. In this framework, the main previous theo-
retical result on communication complexity is a result derived
by Hong and Kung in the 80’s providing lower bounds on
the volume of communication of dense matrix multiplication
for sequential machines [1]. This result has been extended
to parallel machines [2], to dense LU and QR factorizations

(under certain assumptions) [3], and then to basically all
direct methods in linear algebra [4]. Given an algorithm that
performs a certain number of floating point operations, and
considering the memory size, the lower bounds on communi-
cation are obtained by using the Loomis-Whitney inequality,
as for example in [2, 4]. While theoretically important, these
lower bounds are derived with respect to a performance model
that supposes a memory hierarchy in the sequential case, and
P processors without memory hierarchy in the parallel case.
Such a model is not sufficient to encapsulate the features of
modern hierarchical architectures.

On the practical side, several algorithms have been intro-
duced recently [5, 6, 7, 8]. Most of them propose to use
multiple reduction trees depending on the hierarchy. How-
ever, the focus is set on reducing the running time without
explicitly taking communication into consideration. In [8],
Dongarra et al. propose a generic algorithm implementing
several optimizations regarding pipelining of computation, and
allowing to select different elimination trees on platforms with
two levels of parallelism. They provide insights on choosing
the appropriate tree, a binary tree being for instance more
suitable for a cluster with many cores, while a flat tree allows
more locality and CPU efficiency. However, neither theoretical
bounds nor cost analysis are provided in these studies.

Moreover, even if cache-oblivious algorithms are natural
good candidates for reducing communication requirements at
every level, they are not good candidates for large parallel
implementations. We thus focus on cache-aware algorithms.

In the first part of this paper we introduce a performance
model that we refer to as the Hierarchical Cluster Platform
(HCP) model. Provided that two supercomputers might have
different communication topologies and different compute
nodes with different memory hierarchies, a detailed perfor-
mance model tailored for one particular supercomputer is
likely to not reflect the architecture of another supercomputer.
Hence the goal of our performance model is to capture the
main characteristics that influence the communication cost
of peta- and exa- scale supercomputers which are based on
multiple levels of parallelism and memory hierarchy. We use
the proposed HCP model to extend the existing lower bounds
on communication for direct linear algebra, to account for the
hierarchical nature of present-day computers. We determine



the minimum amount of communication that is necessary
at every level in the hierarchy, in terms of both number of
messages and volume of communication.

Moreover, to the best of our knowledge, there is currently
no algorithm targeting hierarchical platforms with more than
two levels, nor any lower bound on communications for such
platforms.

In the second part of the paper we introduce two multilevel
algorithms for computing QR and LU factorizations (ML-
CAQR and ML-CALU) that are able to minimize the com-
munication at each level of the hierarchy, while performing
a reasonable amount of extra computations. These recursive
algorithms rely on their corresponding 1-level algorithms
(resp. CAQR and CALU) as their base case. Indeed, CAQR and
CALU are known to attain the communication lower bounds
in terms of both bandwidth and latency with respect to the
simpler one level performance model.

II. BACKGROUND

A. The QR factorization

The QR factorization of an m-by-n matrix is a widely
used algorithm, be it for orthogonalizing a set of vectors or
for solving least squares problems with m equations and n
unknowns. It is known to be an expensive, but very stable
factorization. It is thus crucial to optimize its performance. The
algorithm decomposes a m-by-n matrix A into two matrices
Q and R such that A = QR, where Q is a m-by-m orthogonal
matrix, while the m-by-n matrix R is upper triangular.

The QR factorization is obtained by applying a sequence
of m-by-m unitary orthogonal transformations on the input
matrix A.

An unitary transformation Ui introduces some zeros below
the diagonal in the current updated matrix. The two basic
transformations are Givens rotations and Householder reflec-
tions. A Givens rotation introduces a single zero while a
Householder reflection zeroes out every element below the
diagonal. Using Givens rotations, disjoint pairs of rows can
be processed concurrently. Householder reflections, though
not displaying the same parallelism, are less computationally
expensive.

Tree based algorithms intent to benefit from both methods.
Householder transformations are applied on local domains, or
tiles, before getting eliminated two-by-two in a Givens-like
approach. Communication Avoiding QR (CAQR) [3] belongs
to this category, and organizes the computations so as to match
the lower bounds on communication introduced in [4].

After min(m,n) transformations, the resulting R factor is
stored in place in the upper triangular part of matrix A while
the matrix Q is assumed to be implicitly stored in the lower
triangular part using the compact Y TY T representation for
Householder reflections [9]. If needed, Q can be retrieved at
the cost of extra computations by computing Q = I−Y TY T .

B. The LU factorization

LU factorization is another cornerstone of many scientific
computations, and is the method of choice for solving most

linear systems. It consists in decomposing a matrix A into a
lower triangular matrix L and an upper triangular matrix U
such that A = LU . However, in general pivoting is required
to ensure numerical stability. The LU decomposition is rather
applied to ΠA, where Π is a permutation matrix.

We note that many pivoting strategies could be used al-
lowing either more efficiency or more numerical stability.
The widely used Gaussian Elimination with Partial Pivoting
(GEPP) introduces a bottleneck in terms of latency cost,
O(n logP ) synchronizations being needed overall, where P
is the number of processors working on the panel and n is the
number of columns of the input matrix. To reduce the amount
of communication, a new parallel pivoting strategy has been
introduced in the context of Communication Avoiding LU
(CALU) [3], referred to as Tournament Pivoting. Each panel
is first distributed over P processors, which perform GEPP
on their local blocks to select b candidate pivot rows. These
P sets of candidate rows are then reduced by using GEPP as
the reduction operator. The final b rows are then moved to the
first positions of the current panel. The different steps of the
reduction are depicted in Figure 1, where we consider a panel
W partitioned over 4 processors and a binary reduction tree.

The next step is to perform a LU factorization without
pivoting on the pivoted panel. Finally, the block row of U
is computed and the trailing matrix is updated. These two last
steps of CALU are performed as in a classic LU factorization.

Π00W00 = L00U00

Π10W10 = L10U10

Π20W20 = L20U20

Π30W30 = L30U30

Π01W01 = L01U01

Π21W21 = L21U21

Π02W02 = L02U02

Π00W00(1 : b, 1 : b)

Π10W10(1 : b, 1 : b)

Π20W20(1 : b, 1 : b)

Π30W30(1 : b, 1 : b)

Π01W01(1 : b, 1 : b)

Π21W21(1 : b, 1 : b)

Π02W02(1 : b, 1 : b)

b selected pivot rows

P0

P1

P2

P3

Fig. 1: Selection of b pivot rows for the panel factorization using
Tournament Pivoting.

We note that Grigori et al. have shown in [10] that CALU
is stable and Tournament Pivoting presents a good trade-off
between parallelism and numerical stability. We use the same
pivoting strategy in our multilevel ML-CALU algorithms (1D
and 2D recursive variants). The main difference lies in the
reduction operator used to select pivot rows.

III. TOWARD A REALISTIC HIERARCHICAL CLUSTER
PLATFORM MODEL (HCP)

The focus of this study is set on hierarchical platforms
running HPC applications and displaying increasingly deeper
hierarchies. Such platforms are composed of two kinds of
hierarchies: (1) a network hierarchy composed of intercon-
nected network nodes, stacked on top of a (2) compute nodes



hierarchy [11]. This compute hierarchy can be composed for
instance of shared memory NUMA multicore nodes.

Moreover, on most modern supercomputers, compute nodes
are often grouped into drawers displaying higher local com-
munication speeds. Such drawers typically belong to the
network hierarchy, which is clearly not only a router hierarchy.

Level i Cni Cni

φi+1

Cni+1Level i+ 1

φi φi

βi+1

βi βi
βi

βi+1 βi+1

Fig. 2: Components of a level i in the HCP model.

The HCP model considers such platforms with l levels of
parallelism, and uses the following assumptions. Level 1 is
the deepest level in the hierarchy, where actual processing
elements are located (for example cores). Each of these
processing elements has its own local memory of size M1.

A compute node of level i+1, denoted as Cni+1 on Figure 2,
is formed by Pi compute nodes of level i (two nodes in
our example). The total number of processing elements of
the entire platform is P =

∏l
i=1 Pi, while the total number

of compute nodes of level i is P ∗
i =

∏l
j=i Pj . We let

Mi = M1 ·
∏i−1
j=1 Pj be the aggregated memory size of a

node of level i > 1.
The network latency αi and the inverse bandwidth βi

apply throughout an entire level i. Moreover, we assume that
generally, the higher in the hierarchy, the more expensive
communication costs.

We also consider a message aggregation capacity φi at each
level of the hierarchy, which determines the actual number of
messages required to send a given amount of data.

We refer to the number of messages sent at level i as Si,
and to the exchanged volume of data as Wi. S̄i = Si ·αi is the
associated latency cost, while W̄i = Wi · βi is the bandwidth
cost. These notations will be used throughout the rest of the
paper.

For the sake of simplicity in both algorithm description and
cost analysis, we assume the Pi compute nodes of level i
to be virtually organized along a 2D grid topology, that is
Pi = Pri ×Pci (note that any topology could be mapped onto
a 2D grid).

We note that the model makes abstraction of the detailed
architecture of a compute node or the interconnection topology
at a given level of the hierarchy. Hence such an approach has
its own limitations, since the predicted performance might not
be accurate. However, while keeping the model tractable, this
model better reflects the actual nature of supercomputers than
the one level model assumed so far, and helps to understand
the communication bottlenecks of common linear algebra
operations.

1) Communicating under the HCP model: We now de-
scribe how communication happens in the HCP model, and
how messages flow through the hierarchy. We assume that if
a compute node of level i communicates, all of its lower level
nodes participate. We denote as counterparts of a compute
node of level i all the nodes of level i lying in remote compute
nodes of level i + 1 and having the same local coordinates.
We therefore have the relation Wi = Wi+1/Pi.

As an example, let us detail a communication of a volume
of data Wi taking place between two nodes of level i. A total
of P/P ∗

i processing elements of level 1 are involved. Each has
to send a chunk of data W1 = WiP/P

∗
i . Since this amount of

data has to fit in memory, we obviously have ∀i,M1 ≥W1 =
WiP/P

∗
i . These blocks are transmitted to the level above in

the hierarchy, i.e. to level 2. A compute node of level 2 has
to send a volume of data W2 = P1W1. Since the aggregation
capacity at level 2 is φ2, this requires (W2/φ2) messages. The
same holds for any level k such that 1 < k ≤ i, where data is
forwarded by sending(Wk/φk) messages. We therefore have
the following costs:

W̄k =
WiP

∗
k

P∗
i
· βk, S̄k = Wk

φk
· αk =

WiP
∗
k

φkP∗
i
· αk.

This “regular” communication pattern is often encountered
in HPC applications, the main target of the HCP model, and
is simpler than a purely heterogeneous pattern (which could
be encountered in grid environments for instance). Moreover,
this organization allows to aggregate data at the algorithm level
rather than relying on the actual network topology.

2) Network types: We assume three kinds of networks,
depending on their aggregation capacity:

• Fully-pipelined networks, aggregating all incoming mes-
sages into a single message. This case is ensured when-
ever φi ≥ Pi−1Wi−1. Since Mi is the size of the largest
message sent at level i, we assume φi = Mi . We
also assume that all levels below are themselves fully-
pipelined. Therefore, the aggregation capacity becomes
φi = Mi = Pi−1φi−1.

• Aggregating networks, aggregating data up to volume of
φi < Mi before sending a message.

• Forward networks, where messages coming from lower
levels are simply forwarded. For a given level i, it is
required that φi = φi−1: when each sub-node from level
i − 1 sends Si−1 messages, the number of forwarded
messages is S̄i = Pi−1S̄i−1.

Based on the two extreme cases, we assume the aggregation
capacity φi to satisfy φi−1 ≤ φi ≤ Pi−1φi−1.

3) An example of hierarchical platform modeled by HCP:
Consider a distributed memory platform composed of D

drawers having N compute nodes apiece. Let each node be a
NUMA shared memory machine, with P processors. Within
a node, each socket is connected to a local memory bank of
size M , thus leading to a total shared memory of size M ×P
per node.

Within a drawer, nodes are interconnected with high speed
interconnect such as fiber optics, whereas drawers are con-
nected with more classical copper links. Let inter-drawer



communication bandwidth and latency respectively be Winter
and Sinter. Let intra-drawer communications have a bandwidth
Wd and a latency Sd. For intra-node communications, we
let Wmem (resp. Smem) be the bandwidth (resp. latency) to
exchange data with memory.

We model this platform in HCP using three levels, with the
following characteristics:

# Comp. nodes Bandwidth Latency Memory Agg. capacity
P1 = P W1 = Wmem S1 = Smem M1 = M φ1 = M
P2 = N W2 = Wd S2 = Sd M2 = P1M1 φ2 = M · P1

P3 = D W3 = Winter S3 = Sinter M3 = P2M2 φ3 ≤M · P2

The aggregation capacities are chosen as follows: (1) On
such hierarchical platform, a processor is able to transfer,
in one message, its entire local bank of memory to another
processor within the same compute node. This is ensured by
setting φ1 to M . (2) A compute node can transfer its entire
shared memory to a remote node in the same drawer in a single
message. The aggregation capacity is therefore chosen as
φ2 = MP1. (3) Finally, at the topmost level, the interconnect
generally does not allow for sending the global volume of
data coming from all drawers using a single message. The
aggregation capacity is thus chosen as φ3 ≤MP2.

HCP allows to model typical HPC platforms, giving com-
munication details at each level of the hierarchy. The switch
from a shared memory to a distributed memory environment
is handled through the choice of the aggregation capacities.

4) Lower bounds on communication: We now introduce
lower bounds on communication at every level of the hierar-
chy.

Lower bounds on communication have been generalized
in [4] for direct methods of linear algebra algorithms which
can be expressed as three nested loops. We refine these lower
bounds under our hierarchical model. For matrix product-like
problems, at least one copy of the input matrix has to be stored
in memory: a compute node of level i thus needs a memory
of Mi = Ω(n2/P ∗

i ). Furthermore, the lower bound on latency
depends on the aggregation capacity φi of the considered level
i, where a volume W̄i needs to be sent in messages of size
φi. Hence the lower bounds on communication at level i:

W̄i ≥ Ω

(
#flops
√
memory

)
= Ω

(
n2√
P ∗
i

· βi

)
(1)

S̄i ≥ Ω

(
W̄i

φi
· αi
)

= Ω

(
n2

φi
√
P ∗
i

· αi

)
(2)

Note that, for simplicity, we expressed the bound on latency
with respect to φi for all level i. Since we consider φ1 = M1,
the lower bound on latency for level 1 can also be expressed
as S̄1 = Ω

(√
P
)
.

IV. MULTILEVEL ALGORITHMS

In this section, we introduce ML-CAQR and ML-CALU,
two multilevel algorithms for computing the QR and the LU
factorizations of a dense matrix A. These multilevel algorithms
heavily rely on their respective 1-level communication optimal

A

R

Y

(a) Single domain

A1

A2

A3

R1
Y1

R2
Y2

R3
Y3

R1
Y1

R3,2

Y2

Y3,2
Y3

R
Y1

Y2,1
Y2

Y3,2
Y3

(b) Tree-based elimination

Fig. 3: Structure of the Householder reflectors

algorithms, CAQR and CALU, and can be seen as a recursive
version of these algorithms. ML-CAQR and ML-CALU recur-
sive layout naturally allows for local elimination trees adapted
to fit hierarchical platforms, thus reducing the communication
needs at each level of the hierarchy.

A. Multilevel QR factorization

ML-CAQR is a dense QR factorization algorithm targeting
large scale hierarchical platforms. The focus is set on keeping
the communication requirements as low as possible at every
level of the hierarchy, like CAQR on platforms with one level
of parallelism.

ML-CAQR, given in Algorithm 1, uses a recursive tree-
based elimination scheme based on Householder reflections.
As a tree-based algorithm, ML-CAQR stores the Householder
reflectors in the lower triangular part of matrix A using a tree
structure as in [3]. A small example is depicted on Figure 3,
where a panel of matrix A is first split into three domains
which are independently factored, then eliminated two by
two. The resulting Householder reflectors should be applied
following the same order to reflect the update or this panel.

At the topmost level of the hierarchy, ML-CAQR factors the
entire input matrix A panel by panel. A panel is processed in
multiple elimination steps following a tree-based approach.
At the leaves of the tree, rectangular blocks are factored.
The obtained R factors are then grouped two-by-two and
eliminated in a sequence of elimination of size 2bl-by-bl. Each
factorization or elimination corresponds to a recursive call to
ML-CAQR on the next lower level. After panel factorization,
Householder reflectors are sent to remote compute nodes so
as to update the trailing matrix using two recursive routines:
ML-Fact and ML-Elim.

More formally, for each recursion level r, let br be the block
size, m(r)

s be the panel row count at step s, and n
(r)
s be the

number of columns in the trailing matrix. At the topmost level
l, we have m(l)

s = (m− (s− 1)bl) and n(l)s = (n− sbl).
For each panel of size br, ML-CAQR proceeds as follows:

1) The panel is factored by using a reduction operation,
where ML-CAQR is the reduction operator. With a binary
tree, it processes as follows:
a) First, the panel is divided into Prr subdomains of size
m

(r)
s /Prr -by-br, which are recursively factored with

ML-CAQR at level r − 1. At the deepest level, CAQR
is called.

b) The resulting br-by-br R factors are eliminated two-
by-two by ML-CAQR at level r − 1, requiring logPrr
steps along the critical path.



Algorithm 1: ML-CAQR(A,m, n, r, P)

Input: Matrix A, m is the row-dimension of A, n is the number of
columns, r is the level of recursion, P is the current compute
node

Output: Factored matrix with R in the upper triangular part and the
Householder reflectors Y in the lower triangular part

if r = 1 then
Call CAQR(A,m, n, b1, P)

else
for kk ← 1 to n, with step of br do

for Compute nodes p← 1 to Prr in parallel do
hp ← (m− kk − br)/Prr

panel← A(kk + (p− 1)hp : kk + p · hp, kk : kk + 1)

Call ML-CAQR(panel, hp, br, r − 1, p)

for j ← 1 to logPrr do
Nodes (psource,ptarget) used to perform the elimination.
Send local br-by-br to the remote node ptarget
Stack two br-by-br upper triangular matrices in RR
Call ML-CAQR(RR, 2br, br, r − 1, psource)

Call ML-CAQR(RR, 2br, br, r − 1, ptarget)

for Compute nodes p← 1 to Prr in parallel do
Broadcast Householder vectors along processor row
for Compute node rp← 2 to Pcr on same row than p

do
Call ML-Fact(r − 1, rp)

for j ← 1 to logPrr do
Nodes (psource,ptarget) used to perform the elimination.
for Nodes rp← 2 to Pcr on same row than psource
in parallel do

Remote node rptarget is on same row than ptarget and
same column than rp
rp sends its local C to rptarget
Call ML-Elim(r − 1, rp)

Call ML-Elim(r − 1, rptarget)

2) The current trailing matrix is then updated:
a) Householder reflectors in lower trapezoidal part of the

panel have to be broadcasted along processor rows.
b) Updates corresponding to factorizations at the leaves

of the tree are applied using the ML-Fact routine.
ML-Fact broadcasts Prr blocks of Householder reflec-
tors of size m(r)

s /Prr -by-br from the column of nodes
holding the current panel along rows of compute nodes.
At the deepest level, the update corresponding to a leaf
is applied as in CAQR (see [12]).

c) The updates due to the eliminations of the intermediate
R factors are then applied to the trailing matrix using
the ML-Elim procedure. Blocks of size br-by-n(r)s /Pcr
are exchanged within a pair of compute nodes. At the
lowest level, a partial update is locally computed be-
fore being independently applied onto each processing
elements (similarly to CAQR).

B. Multilevel LU factorizations

Here we present two variants of a multilevel algorithm
for computing the LU factorization of a dense matrix, ML-
CALU. Both algorithms are recursive. The first variant, 1D-

ML-CALU, follows a uni-dimensional approach where the
recursion is applied to the entire panel at each recursive
call. The second variant, 2D-ML-CALU, processes a panel by
multiple recursive calls on sub-blocks of the panel followed
by a “reduction” phase similar to that of ML-CAQR. The base
case of both recursive variants is CALU [10], which uses
tournament pivoting to select pivot rows.

Algorithm 2: 1D-ML-CALU (A, m, n, r, P)
Input: m× n matrix A, the recursion level r, block size br , the total

number of compute nodes P =
∏l

i=1 Pi = Pr × Pc

Output: Factored matrix such that A = LU
if r = 1 then

[Π1, L1, U1]← CALU(A, b1, Pr × Pc1 )

else
M ← m/br, N = n/br
for K ← 1 to N do

[ΠKK , LK:M,K , UKK ]←
1D-ML-CALU(AK:M,K , r − 1, br−1, Pr ×

∏r−1
i=1 Pci )

Apply permutation and compute block row of U
AK:M,: ← ΠKKAK:M,:

for each compute node owning a block AK,J , J ← K + 1
to N in parallel do

Call multilevel dtrsm using Pcr ×
∏r−1

i=1 Pi compute
nodes of level 1

UK,J ← L−1
KKAK,J

Update the trailing submatrix
for each compute node owning a trailing block AI,J ,
I, J ← K + 1 to M,N in parallel do

Call multilevel dgemm using Pr ×
∏r

i=1 Pci compute
node of level 1
AI,J ← AI,J − LI,KUK,J

Algorithm 2 describes 1D-ML-CALU variant. At each re-
cursion level r the algorithm proceeds as follows: (1) 1D-ML-
CALU is recursively applied to a smaller panel of br columns.
We note that only the number of compute nodes along the
columns is varying. (2) Once a panel is factored, a block of
rows of U is computed by Pcr×P ∗

rr compute nodes of level r.
(3) The trailing matrix is finally updated after a broadcast of
the block column of L along rows of the process grid and the
block row of U along columns of the process grid. The matrix-
matrix operations are performed using a multilevel matrix
product algorithm, ML-Cannon, which is based on the optimal
Cannon algorithm. For more details, we refer the interested
readerto the related research report [13].

At the deepest level of recursion, panels of size m × b1
are factored by CALU using Pr processing elements of level
1. Gaussian elimination with partial pivoting is first applied
to blocks of size (m/Pr)-by-b1, located at the leaves of the
reduction tree. These candidate pivot rows are then combined
using tournament pivoting, which involves communications at
every level in the hierarchy.

In terms of numerical stability, 1D-ML-CALU is equivalent
to performing CALU on a matrix of size m×n, using a block
size b1 and a grid of processors P = Pr × Pc .

The 2D-ML-CALU algorithm was first introduced in [14]



and analyzed for two levels of parallelism. Here we extend the
analysis to more levels of parallelism. Algorithm 3 describes
in details the different steps of 2D-ML-CALU. It proceeds as
follows: (1) the panel is recursively factored with 2D-ML-
CALU with a block size corresponding to the next level in
the hierarchy. Note that at the deepest level of recursion,
2D-ML-CALU calls CALU. (2) The selected sets of pivot
candidates are merged two-by-two along the reduction tree,
where the reduction operator is 2D-ML-CALU. At the end of
this preprocessing step, the final set of pivot rows is selected
and each node working on the panel has the pivot information
and the diagonal block of U . (3) The computed permutation is
then applied to the input matrix, the block column of L and the
block row of U are computed. (4) Finally, after the broadcast
of L and U to appropriate nodes, as in 1D-ML-CALU, the
trailing matrix is updated with ML-Cannon.

Update

C
A

L
U

at
leaves

C
A

L
U

first
reduction

C
A

L
U

second
reduction

Fig. 4: Factorization of a panel with 2D-ML-CALU a machine with
two levels of parallelism.

Figure 4 illustrates the panel factorization for 2D-ML-CALU
running on a machine with two levels of parallelism, that is
each compute node has several cores. We consider P2 nodes (3
are presented in the figure), each having P1 cores (P1 = 6 in
the figure). There are two kinds of communication: the com-
munication between the different nodes, which corresponds to
the topmost reduction tree and the synchronization between
the different cores inside a node, which corresponds to the
internal reduction trees. Hence the figure presents two levels of
reduction. The topmost reduction tree allows compute nodes
to synchronize and perform inter-node communication. The
deepest reduction trees represent the communication inside
each compute node.

V. PERFORMANCE MODELS

In this section, we provide cost analysis of both ML-CAQR
and ML-CALU algorithms with respect to the the HCP model.
In each multilevel algorithm, two types of communication

Algorithm 3: 2D-ML-CALU (A, m, n, r, P)
Input: m× n matrix A, level of parallelism r in the hierarchy, block

size br , number of nodes Pr = Prr × Pcr

Output: Factored matrix such that A = LU

if r = 1 then
Call CALU(A,m, n, b1, P)

else
for k ← 1 to n/br do

mp ← (m− (k − 1)br)/Prr

np ← (n− (k − 1)br)/Pcr

Factor leaves of the panel
for Processor p← 1 to Prr in parallel do

leaf← A((k − 1) · br + (p− 1)mp + 1 :

(k − 1) · br + p ·mp, (k − 1) · br + 1 : k · br)
Call 2D-ML-CALU(leaf,mp, br, r − 1, Pr−1)

Reduction steps
for j ← 1 to logPrr do

Stack two br-by-br sets of candidate pivot rows in B

Call 2D-ML-CALU(B, 2br, br, r − 1, Pr−1)

Compute block column of L
for Processor p← 1 to Prr in parallel do

Compute Lp,k ← L(k · br + (p− 1)mp + 1 :
k · br + p ·mp, (k − 1) · br + 1 : k · br)

Apply all row permutations
for Processor p← 1 to Prr in parallel do

Broadcast pivot information along the rows of the
process grid
All to all reduce operation using Pr processors of level r
Swap rows at left and right

Broadcast right diagonal block of Lk,k along rows of the
process grid
Compute block row of U
for Processor p← 1 to Pcr in parallel do

Compute Uk,p ← U((k − 1) · br + 1 :

k · br, k · br + (p− 1)np + 1 : k · br + p · np)

Update trailing matrix
for Processor p← 1 to Pcr in parallel do

Broadcast Uk,p along the columns of the process grid

for Processor p← 1 to Prr in parallel do
Broadcast Lp,k along the rows of the process grid

for Processor p← 1 to Pr in parallel do
A(k · br + (p− 1)mp + 1 :

k · br +p ·mp, k · br +(p−1)np +1 : k · br +p ·np)←
A(k · br + (p− 1)mp + 1 : k · br + p ·mp, k · br +
(p− 1)np + 1 : k · br + p · np)− Lp,k · Uk,p

Using ML-Cannon with Pr nodes at level r

primitives are used, namely point-to-point and broadcast oper-
ations. To simplify the analysis, we define two recursive costs
corresponding to these communication patterns.

In a point-to-point communication, a volume D is transfered
between two compute nodes of level r. All compute nodes
from level 1 to level r − 1 below those two nodes of level
r are involved, sending their local data to their respective
counterparts in the remote node of level r. The associated
communication costs are therefore:

WP2P(1 . . . r,D) =
∑r
k=1

D·P∗
r

P∗
k
βk,



SP2P(1 . . . r,D) = α1 +
∑r
k=2

D·P∗
r

φkP∗
k
αk.

A broadcast operation between Pcr compute nodes of level
r is very similar to point to point communication. However
at every level, a participating node broadcasts its data to Pcr
counterparts. A broadcast can thus be seen as logPcr point-
to-point communications.

A. ML-CAQR

We now review the global computation and communication
costs of ML-CAQR. At each recursion level r, the current panel
is factored by doing Prr parallel calls to ML-CAQR. Then, the
resulting R factors are eliminated through logPrr successive
factorizations of 2br-by-br matrices formed by stacking up
two upper triangular R factors. Once a panel is factored,
the trailing matrix is updated. However, as the Householder
reflectors are stored in a tree structure, the updates must be
done in the same order as during panel factorizations. These
operations are recursively performed using ML-Fact for the
leaves and ML-Elim for higher levels in the tree.

The global recursive cost of ML-CAQR is composed of
several contributions. We let:

• TCAQR (m,n, b, P ) be the cost of factoring a matrix of
size m-by-n with CAQR using P processors and a block
size b.

• TML-CAQR (m,n, b, P ) be the cost of ML-CAQR on a m-
by-n matrix using P processors and a block size b.

• TML-Fact (m,n, b, P ) be the cost of updating the trailing
matrix to reflect factorizations at the leaves of the elimi-
nation trees.

• Finally, TML-Elim (m,n, b, P ) be the cost of applying up-
dates corresponding to higher levels in the trees.

In terms of communication, ML-Fact consists in broadcast-
ing Householder reflectors along process rows, while ML-
Elim corresponds to logPrr point to point communications of
trailing matrix blocks between pairs of nodes within a process
column. Using these notations, the cost TML-CAQR (m,n, br, Pr)
of ML-CAQR can be expressed as,

∑n/br
s=1

[
TML-CAQR

(
m−(s−1)br

Prr
, br, br−1, Pr−1

)
+ logPrr · TP2P(1 . . . r,

b2r
2 )

+ logPrr · TML-CAQR (2br, br, br−1, Pr−1)

+ TML-Fact

(
m−(s−1)br

Prr
, n−sbrPcr

, br−1, Pr−1

)
+ logPrr · TML-Elim

(
2br,

n−sbr
Pcr

, br−1, Pr−1

)]
if r > 1

TCAQR (m,n, b1, P1) if r = 1

(3)

ML-CAQR uses successive elimination trees at each recur-
sion level r, each of which are traversed in logPrr steps.
Moreover, successive trees from level l down to level r come
from different recursive calls: they are inherently sequential-
ized. Thus, the total number of calls at a given recursion level
r can be upper-bounded by Nr = 2l−r

∏l
j=r logPrj .

An upper bound on the global cost of ML-CAQR can
be expressed in terms of number of calls at each level of
recursion, broken down between calls performed on leaves or
higher level in the trees.

Assuming that for each level k, we have Prk = Pck =
√
Pk,

and that block sizes are chosen to make the additional costs
lower order terms, that is bk = O(n/(

√
P ∗
k ·
∏l
j=k log2 Pj)),

the cost of ML-CAQR becomes:

F̄ML-CAQR (n, n) ≤ 4n3

P
γ +O

(
l · n3

P
∏l
j=1 logPj

)
γ (4)

W̄ML-CAQR (n, n) ≤ n2√
P

l · logP1 + 4l ·
l∏

j=1

logPj + logPl

β1 (5)

+

l−1∑
k=2

(l − k) · n2√
(P ∗
k )

(
1 +

2
∏l
j=k logPj√
Pl

)
βk +

n2 · logPl√
P ∗
l

βl

+O

(
l · n2√
P logPl

· β1 +

l−1∑
k=2

(l − k) · n2√
P ∗
k logPl

· βk +
n2√

P ∗
l logPl

· βl

)

S̄ML-CAQR (n, n) ≤ l ·
√
P ·

l∏
j=1

log3 Pjα1 +

l−1∑
k=2

n2 · (l − k) logPk

φk
√
P ∗
k

αk (6)

+
n2 · logPl

φl
√
Pl

(
1 +

1∏l−1
2

√
Pj

)
αl

+O

√P · l∏
j=1

log2 Pjα1 +

l−1∑
k=2

(l − k) · n2

φk
√
P ∗
k logPl

αk +
n2

φl
√
Pl logPl

αl


Though the recursive nature of ML-CAQR leads to at least

three times more computations than the optimal algorithm,
which is similar to other recursive approaches [15], it allows
to reach the lower bounds on communications at all levels of
the hierarchy up to polylogarithmic factors. Indeed, chosing
appropriate block sizes makes most of the extra computational
costs lower order terms while maintaining the optimality in
terms of communication. We refer the interested reader to the
related research report [13] for more details on these costs.

B. 2D-ML-CALU

In this section we only detail the cost of 2D-ML-CALU with
respect to the HCP model. Thus, for simplicity, we refer to it
as ML-CALU throughout the rest of the paper. Using the same
reasoning than for ML-CAQR, for a square n-by-n matrix and
using l levels of recursion (l ≥ 2), the cost of ML-CALU is:

F̄ML-CALU (n, n) ≤
[

2n3

3P
+

n3

P log2 Pl
+
n3

P

(3

8

)l−2( 5

16
l − 53

128

)]
γ (7)

+O

(
n2√
P

)
γ

W̄ML-CALU (n, n) ≤

 n2

2
√
P

logP1

l∏
j=2

(1 +
1

2
logPj)

β1 (8)

+

l∑
k=1

[ n2√
P ∗
k

(8

3
log2 Pl(1 +

l − k√
Pk

))

l∏
j=3

(1 +
1

2
logPj)

)]
βk.

+

l∑
k=1

[ n2√
P ∗
k

( (l − 2)

8
(1 +

l

4
)

l∏
j=3

(1 +
1

2
logPj)

)]
βk.

S̄ML-CALU (n, n) ≤

 n2

2
√
P

logP1

l∏
j=2

(1 +
1

2
logPj)

α1 (9)

+

l∑
k=1

[ n2

φk
√
P ∗
k

(8

3
log2 Pl(1 +

l − k√
Pk

))

l∏
j=3

(1 +
1

2
logPj)

)]
αk

+

l∑
k=1

[ n2

φk
√
P ∗
k

( (l − 2)

8
(1 +

l

4
)

l∏
j=3

(1 +
1

2
logPj)

)]
αk

Equation 7 shows that ML-CALU performs more floating-
point operations than CALU. This is because of the recursive
calls during the panel factorization. Note that certain assump-
tions should be done regarding the hierarchical structure of



the computational system in order to keep the extra flops as a
low order term, and therefore asymptotically reach the lower
bounds on computation. More details on these costs could be
found in [16, section 5.4].

In terms of communication ML-CALU attains the lower
bounds derived in section III modulo a factor that depends
on l2

∏l
j=2 logPj at each level of the hierarchy. We do not

give the detailed cost of 1D-ML-CALU here. However we
would like to point out that it attains the lower bounds derived
under the HCP model in terms of bandwidth at each level of
parallelism. In terms of latency the lower bound is only met
at the deepest level of parallelism.

VI. EXPERIMENTAL RESULTS

A. Numerical stability of ML-CALU

Since ML-CALU is based on recursive calls, its stability
can be different from that of CALU. Our experiments show
that up to three levels of parallelism ML-CALU exhibits a
good stability, however further investigation is required if more
than three levels of parallelism are used. We study both the
stability of the LU decomposition and of the linear solver, in
terms of growth factor and three different backward errors: the
normwise backward error, the componentwise backward error,
and the relative error ‖PA− LU‖/‖A‖.

Figure 5 displays the values of the ratios of 3-level ML-
CALU’s growth factor and backward errors to those of GEPP
for 36 special matrices [10]. The tested matrices are of size
8192, using the following parameters: Pr3 = 16, b3 = 64,
Pr2 = 4, b2 = 32, Pr1 = 4, and b1 = 8. We can see that nearly
all ratios are between 0.002 and 2.4 for all tested matrices. For
the growth factors, the ratio is of order 1 in 69% of the cases.
For the relative errors, the ratio is of order 1 in 47% of the
cases. Using different number of nodes and size of blocks we
obtain similar results.

We recall that ML-CALU uses tournament pivoting to select
pivots at each level of recursion, which does not ensure that
the element of maximum magnitude in the column is used
as pivot, neither at a single level of the hierarchy nor at
each step of the LU factorization, that is globally for the
panel. For that reason we consider a threshold τk, defined
as the quotient of the pivot used at step k divided by the
maximum value in column k. We observe that in practice the
pivots used by recursive tournament pivoting are close to the
elements of maximum magnitude in the respective columns.
For example, for a binary tree based ML-CALU on 3 levels,
the selected pivot rows are equal to the elements of maximum
magnitude in 63% of the cases, and for the rest of the cases
the minimum threshold τmin is larger than 0.30. We should
note that regarding the matrix size and the number of compute
nodes used in these experiments we can not derive general
conclusions with respect to exascale platforms. However the
previous experiments give us an insight on the numerical
stability of the algorithm.

B. Performance predictions

Multilevel communication avoiding algorithms are tailored
for large scale platforms displaying a significant gap between
processing power and communication speed. The upcoming
Exascale is a natural target for these algorithms.

We present performance predictions on a sample exascale
platform. Current petascale platforms already display a hi-
erarchical nature which strongly impacts the performance of
parallel applications. Exascale will dramatically amplify this
trend. We plan here to provide an insight on what could be
observed on such platforms.

Level Type # Bandwidth Latency
1 2x 6-cores Opterons 12 19.8 GB/s 1× 10−9s
2 Hopper nodes 2 10.4 GB/s 1× 10−6s
3 Gemini ASICS 9350 3.5 GB/s 1.5× 10−6s

TABLE I: Characteristics of NERSC Hopper.

As exascale platforms are not available yet, we base our
sample exascale platform on the characteristics of the NERSC
Hopper [17, 18] petascale platform. It is composed of Com-
pute Nodes, each with two hexacore AMD Opteron Magny-
cours 2.1GHz processors offering a peak performance of 8.4
GFlop/s, with 32 GB of memory. Nodes are connected in pairs
to Gemini ASICs, which are interconnected through the Gemini
network [19, 20]. Detailed parameters of the Hopper platform
are presented in Table I.

Level Type # Bandwidth Latency (formula) Latency (adjusted)
1 Multi-cores 1024 300 GB/s 1× 10−10s 1× 10−9s
2 Nodes 32 150 GB/s 1× 10−7s 1.2× 10−7s
3 Interconnects 32768 50 GB/s 1.5× 10−7s 1× 10−6s

TABLE II: Characteristics of a sample exascale platform.

Our target platform is obtained by increasing the number
of nodes at all 3 levels, leading to a total of 1M nodes. The
amount of memory per processing element is kept constant at
1.3 GB. Moreover, exascale platforms are likely to be available
around year 2018. Therefore, latencies and bandwidths are
derived using an average 15% decrease per year for the latency
and a 26% increase for the bandwidth [20, 19].

However, doing so might conduct to latencies so low that
electrical signals would have to travel faster than the speed of
light in vacuum. This is of course impossible. Therefore, to
alleviate this problem, we assume that electrical signal travels
at 10% of the speed of light in copper, against 90% in fiber
optics. We consider the links within a multicore processor to be
made out of copper (at level 1) and the die to be at most 3cm-
by-3cm. The links between a group of nodes (i.e. at level 2)
are assumed to be based on fiber optics while the interconnect
at the last level are assumed to be copper links. Finally, we
assume the global supercomputer footprint to be 30m-by-30m.
These parameters are detailed in Table II.

We model the platform with respect to the HCP model, and
use it to estimate the running times of our algorithms.

We note that in order to assess the performance of multilevel
algorithms, costs of state-of-the-art 1-level communication
avoiding algorithms need to be expressed with respect to the
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Fig. 5: Ratios of 3-level CALU’s growth factor and backward errors to GEPP’s.

HCP model. To this end, we assume (1) each communication
to go through the entire hierarchy: two communicating nodes
thus belong to two distant nodes of level l, hence a bandwidth
βl. (2) Bandwidth is shared among parallel communications.

We evaluate the performance of the ML-CAQR and ML-
CALU algorithms as well as their corresponding 1-level rou-
tines on a square matrix of size n×n, distributed over a square
2D grid of Pk processors at each level k of the hierarchy,
Pk =

√
Pk×

√
Pk. In the following, we assume all levels to be

fully-pipelined. Similar results are obtained regarding forward
hierarchies, which is explained by the fact that realistic test
cases are not latency bound, but are mostly impacted by their
bandwidth cost.
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Fig. 6: Prediction of communication for 1-level CAQR to computa-
tion ratio on an exascale platform.

The larger the platform is, the more expensive the communi-
cations become. This trend can be illustrated by observing the
communication to computation ratio, or CCR of an algorithm.

On Figures 6 and 7, we plot the CCR of both CAQR and ML-
CAQR on the exascale platform. The shaded areas correspond
to unrealistic cases where there are more processing elements
than matrix elements and should not be considered. As the
number of processing elements increases, cost of CAQR (on
Figure 6) is dominated by communications. Our multilevel
approach alleviates this trend, and ML-CAQR (on Figure 7)
allows to maintain a good computational density, especially
when the number of levels involved is large. Note that for
l = 1, ML-CAQR and CAQR are equivalent.

However, as ML-CAQR performs more computations than

5 10 15 20 25 30

0

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

Log2(Number of nodes)

L
og

2
(N

)
(p

ro
bl

em
si

ze
)

< 0.1

0.1

0.2

0.3

0.4
0.5 0.6

5 10 15 20 25 30

0

5

10

15

20

25

30 l = 3l = 2l = 1

Fig. 7: Prediction of communication for ML-CAQR to computation
ratio on an exascale platform.
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Fig. 8: Speedup of ML-CAQR vs. 1-level CAQR

CAQR, we compare the expected running times of both
algorithms. Here, we denote by running time the sum of
computational and communication costs. We thus assume no
overlap between computations and communications, which is
generally hard to achieve at such an extreme scale. The ratio
of the ML-CAQR running time over CAQR is depicted on
Figure 8. ML-CAQR clearly outperforms CAQR when using
the entire platform, despite its higher computational costs. As
a matter of a fact in this regime, the running time is dominated



by the bandwidth cost, and ML-CAQR significantly reduces it
at all levels.
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Fig. 9: Speedup of ML-CALU vs. 1-level CALU

The same observations can be made on the CCR of CALU
and ML-CALU, we will therefore not present the details here.

Regarding the running times ratio, depicted on Figure 9, we
can also conclude that ML-CALU is able to keep communica-
tion costs significantly lower than CALU, leading to significant
performance improvements.

Altogether, our performance predictions validate our multi-
level approach for large scale hierarchical platforms that will
arise with the Exascale. Indeed, by taking communication into
consideration at all levels, ML-CAQR and ML-CALU deliver
a high level of performance at scales where performance is
hindered by communication costs even with 1-level commu-
nication avoiding algorithms.

VII. CONCLUSION

In this paper we have introduced two algorithms, ML-CAQR
and ML-CALU, that minimize communication over multiple
levels of parallelism at the cost of performing redundant
computation. The complexity analysis is performed within
HCP, a model that takes into account the communication cost
at each level of a hierarchical platform. The multilevel QR
algorithm has similar stability properties to classic algorithms.
Two variants of the multilevel LU factorization are discussed.
A first variant, based on a uni-dimensional recursive approach,
has the same stability as CALU. However, while it minimizes
bandwidth over multiple levels of parallelism, it allows to min-
imize latency only over one level of parallelism. The second
variant which uses a two-dimensional recursive approach, is
shown to be stable in practice, and reduces both bandwidth
and latency over multiple levels of parallelism.

Our performance predictions on a model exascale platform
show that for strong scaling, the multilevel algorithms lead
to important speedups compared to algorithms minimizing
communication over only one level of parallelism.

Moreover, in most of the cases, minimizing bandwidth is
the key factor for improving scalability, and hence the 1D-
ML-CALU is also an appropriate choice for an efficient LU
factorization while ensuring a good numerical stability in
practice.
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