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ON THE VOLUME OF TUBULAR NEIGHBORHOODS OF

REAL ALGEBRAIC VARIETIES

MARTIN LOTZ

Abstract. The problem of determining the volume of a tubular neigh-
borhood has a long and rich history. Bounds on the volume of neighbor-
hoods of algebraic sets have turned out to play an important role in the
probabilistic analysis of condition numbers in numerical analysis. We
present a self-contained derivation of bounds on the probability that a
random point, chosen uniformly from a ball, lies within a given distance
of a real algebraic variety of any codimension. The bounds are given in
terms of the degrees of the defining polynomials, and contain as special
case an unpublished result by Ocneanu.

1. Introduction

The purpose of these notes is to derive a bound on the volume of a tubu-
lar neighborhood of a real algebraic variety in terms of the degrees of the
defining polynomials. The problem is stated in probabilistic terms, namely,
as the probability that a random point, uniformly distributed in a ball, falls
within a certain neighborhood of the variety.

Theorem 1.1. Let V be the zero-set of multivariate polynomials f1, . . . , fs
in Rn of degree at most D. Assume V is a complete intersection of dimension
m = n − s. Let x be uniformly distributed in a ball Bn(p, σ) of radius σ
around p ∈ Rn. Then

P{dist(x, V ) ≤ ε} ≤ 4
m∑
i=0

(
n

s+ i

) (
2Dε

σ

)s+i (
1 +

ε

σ

)m−i
.

If the polynomials f1, . . . , fs are homogeneous and p = 0, then

P{dist(x, V ) ≤ ε} ≤ 2

m∑
i=0

(
n

s+ i

) (
2Dε

σ

)s+i
.

The second of the stated equations is commonly attributed to A. Oc-
neanu [9, Theorem 4.3], though a proof has not been published so far and
does not seem available. From the proof of Theorem 1.1 we also get the
following corollary, conjectured by J. Demmel [9, (4.15)].

Corollary 1.1. For compact V and small enough ε we have

P{dist(x, V ) ≤ ε} = voln−s(V ) · εs · nΓ(n/2)

π(n−s)/2sΓ(s/2)
+ o(εs).

Research supported by Leverhulme Trust grant R41617 and a Seggie Brown Fellowship
of the University of Edinburgh.
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Theorem 1.1 can be adapted to a spherical setting without too much
difficulty, thus generalizing the results of [5] to higher codimension, but for
the sake of brevity such a generalization is omitted in these notes.

1.1. History and applications. In 1840, J. Steiner [25] showed that vol-
ume of an ε-neighborhood of a convex body in R3 could be written as a qua-
dratic polynomial in ε. This result has become a staple of integral geometry
and was the starting point of a myriad of generalizations in multiple direc-
tions. One such generalization is a celebrated result by H. Weyl [26], who
showed that for ε small enough, the volume of an ε-neighborhood around
a compact Riemannian submanifold of Rn is given by a polynomial whose
degree is the dimension of the manifold. Weyl’s tube formula became an
important ingredient in Allendoerfer and Weil’s proof of the Gauss-Bonnet
Theorem for hypersurfaces. For more on Weyl’s tube formula and its ram-
ification, see [12]. Bounds on the volume of tubes around real varieties in
terms of degrees have previously been given by R. Wongkew [27], although
without explicit constants. Tube formulae came into the radar of numerical
analysis through the work of S. Smale [24], E. Kostlan [17], J. Renegar [21],
and J. Demmel [9], among others, who were interested in the probabilistic
analysis of condition numbers. It has been observed (see, e.g., [15, 8] and
the references there) that the condition number of many numerical compu-
tation problems can by bounded by the inverse distance to a set of ill-posed
inputs. In particular, if one can describe the set of ill-posed inputs as a
subset of an algebraic variety, then a bound on the relative volume of its
neighborhood in terms of the degree of the variety directly translates into a
result on the probability distribution of condition numbers. The results of
Demmel [9] have been partially extended to the setting of smoothed analysis
on the sphere in [5], by studying tubular neighborhoods of hypersurfaces
intersected with spherical caps. For a comprehensive survey of these ideas
we refer to [4]. Recently, a consequence of the degree bound derived in this
article has been used in the study of embeddings of simplicial complexes
into Euclidean space [13, Prop 3.10]. Other notable fields in which tube for-
mulae have been used extensively include statistics [1] and the probabilistic
analysis of convex optimization [2, 3, 18]. The main purpose of the current
article is to fill a gap in the literature by making available a complete and
rigorous derivation of the real degree bounds used in [9].

1.2. Main ideas. The proof of Theorem 1.1 is based on three main ingre-
dients: Weyl’s tube formula, an integral-geometric kinematic formula, and
Bézout-type bounds on the degree of Gauss maps. In what follows, let V
be a complete intersection of dimension m = n− s. First, based on Weyl’s
tube formula, a bound is derived in terms of integrals of absolute curvature:

voln T (V, ε) ≤ εs
m∑
i=0

1

s+ i
|Ki|(V ) εi.

The highest order term |Km|(V ) is intimately related to the generalized
Gauss map of V , and can in fact be expressed in terms of the degree of this
map. Using standard Bézout-type arguments it is possible to bound the
degree of the Gauss map in terms of the degrees of the defining polynomials.
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The lower-order invariants |Ki|(V ) can then be related to the highest order
invariants |Ki|(V ∩ L) of an intersection with a random linear subspace by
means of Crofton’s Formula from integral geometry:

|Ki|(V ) ≤ 2

[
n

s+ i

] ∫
L∈Ens+i

|Ki|(V ∩ L) dλns+i.

where Es+i denotes the space of (s+ i)-dimensional subspaces with suitable
measure. One can the apply the degree bounds in lower dimension. Obvi-
ously, some care has to be taken when implementing these ideas in detail.

1.3. Outline. Section 2 gives a review of the necessary concepts of Rie-
mannian geometry in Euclidean space. In Section 3, Weyl’s tube formula
and results from integral geometry are presented in a slightly generalized
form to suit our purposes. At the beginning of Section 4, the tube formula
is reformulated in terms of the degrees of a generalized Gauss map. Up to
this point, everything is based on compact Riemannian manifolds. Systems
of polynomial equations enter when bounding the degrees of the generalized
Gauss map, leading to the proof of Theorem 1.1. The appendix is devoted
to a complete proof of Weyl’s tube formula in Euclidean space.

1.4. Notation and terminology. We write Bn(p, σ) for the solid closed
ball in Rn with center p and radius σ > 0, and Sn−1(p, σ) for its boundary,
and set Sn−1 := Sn−1(0, 1) and Bn := Bn(0, 1). We write voln M for the n-
dimensional Lebesgue-measure of a measurable set M ⊆ Rn, and often drop
the subscript an simply write vol M . For an m-dimensional Riemannian
manifold M , when we write volm M = vol M we mean

∫
M ωM , with ωM

the volume form associated to the Riemannian structure (see Section 2.1.1).
Whenever we say manifold, we mean smooth manifold.

Throughout this paper we denote by On−1 := 2πn/2/Γ
(
n
2

)
the (n − 1)-

dimensional volume of the unit sphere Sn−1 in Rn, and ωn := On−1/n the
n-dimensional volume of the solid unit ball in Rn. The flag coefficients are
defined as

(1)

[
n
k

]
:=

(
n
k

)
ωn

ωk ωn−k

for n ≥ 0 and k ≥ 0. They appear naturally in the study of invariant
measures on Grassmannians [16].

2. Preliminaries

We assume familiarity with the basic notions of Riemannian geometry,
as described for example in [10]. The purpose of most of this section is to
introduce notation and terminology.

2.1. Riemannian manifolds in Rn. Given a Riemannian manifold M of
dimension m, we denote by TM its tangent bundle, by C(M) the ring of
smooth functions on M , and by X (M) the C(M)-module of tangent vector
fields on M . For p ∈ M we write TpM for the tangent space at p. If
v ∈ TpRn and f ∈ C(Rn), then v(f) denotes the directional derivative of f
in direction v at p.



4 MARTIN LOTZ

In this article we are only concerned with submanifolds M of Euclidean
space Rn. As such, each TpM can be identified with a subspace of TpRn ∼= Rn
in the obvious manner. Let NM := {(p, v) ∈ TRn | p ∈ M, v ⊥ TpM} be
the normal bundle to M in Rn and denote by NpM the fiber of NM over
p ∈M , i.e., the normal space to M at p in Rn.

Let Y ∈ X (Rn) be a smooth vector field. For v ∈ TpRn denote by ∇vY :=
v(Y ) the covariant derivative of Y along v at p. The covariant derivative
satisfies v(〈Y,Z〉) = 〈∇vY, Z〉+〈Y,∇vZ〉. In particular, for orthogonal fields
Y and Z we have 〈∇vY, Z〉 = −〈Y,∇vZ〉. For v ∈ NpM and X,Y ∈ X (M),
the second fundamental form Sv(X,Y ) of X and Y along v is the symmetric,
bilinear map TpM × TpM → R defined by

Sv(X,Y ) := 〈∇X(p)Y, v〉,
where we assume the vector fields X,Y to be extended to a neighborhood
of M in Rn for this definition to make sense. Given a normal vector field
Z on M we have SZ(p)(X,Y ) = −〈Y,∇X(p)Z〉 (since X,Y are orthogonal
to Z). Given an orthonormal frame field (E1, . . . , Em) on U ⊂ M , we will
on occasion use the matrix S(Z) with entries in C(M) that represents this
bilinear form with respect to that frame field. Its values at p ∈ U are given
by the entries

(2) Sij(Z)(p) = SZ(p)(Ei, Ej) = 〈∇Ei(p)Ej , Z〉 = −〈Ej ,∇Ei(p)Z〉.

Note that we can also talk about S(v) for fixed v ∈ NpM . Then we have
S(v) = S(Z)(p) for any normal vector field such that Z(p) = v.

2.1.1. A note on integration and orientation. Given a Riemannian manifold
M ⊆ Rn, we denote by ωM the natural volume form on M associated to the
Riemannian metric. Thus if U ⊆M is an oriented coordinate neighborhood
and x1, . . . , xm : U → Rm are orthonormal coordinates (so that the tangent
vectors ∂/∂x1, . . . , ∂/∂xm form a positively oriented, orthonormal basis at
each p ∈ U), then ωM = dx1 ∧ · · · ∧ dxm on U . All volume forms are
densities (unsigned forms), though we will occasionally locally represent
them as differential forms in an oriented coordinate neighborhood U ⊆ M
without always stating this explicitly. Given a map f from a manifold of
the same dimension to M , f∗ωM denotes the pull-back volume form.

2.1.2. Curvature Invariants. In this section we introduce the curvature in-
variants K0(M), . . . ,Km(M) associated to a compact Riemannian manifold
M in terms of the second fundamental form. These invariants are key com-
ponents in Weyl’s formula (Section 3.1) for the volume of tubes around M .

Let M be an m-dimensional compact Riemannian manifold, U ′ ⊆ Rn
open and U = U ′ ∩M . Let (E1, . . . , En) be an orthonormal frame field on
U ′, such that E1(p), . . . , Em(p) form an oriented basis of TpM for all p ∈ U .
For v ∈ NpM let S(v) denote the m×m matrix of the second fundamental
form at p along v with respect to the frame field, as defined in (2).

For 0 ≤ i ≤ m let ψi : NpM → R be the homogeneous polynomial of
degree i defined by

det(Id− tS(v)) =
m∑
i=0

tiψi(v).
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Note that the ψi(v) are, up to sign, the coefficients of the characteristic
polynomial of S(v). More precisely, we have

ψi(v) = (−1)iσi(κ1(v), . . . , κm(v)),

where the κi(v) are the eigenvalues of S(v), i.e., the principal curvatures, and
σi denotes the i-th elementary symmetric function. In particular, ψm(v) =
(−1)m detS(v). These quantities are, up to orientation, independent of the
particular orthonormal frame used to define the matrix S(v).

For p ∈M , set S(NpM) := {v ∈ NpM | ‖v‖ = 1} and denote by S(NM)
the corresponding normal sphere bundle. At a point p ∈M define

Ii(p) =

∫
v∈S(NpM)

ψi(v) ωS(NpM).

The Ii(p) are polynomial invariants of the second fundamental form in the
sense of [14]. If v =

∑s
j=1 u

jEm+j(p), s = n−m, then the Ii(p) are integrals

over all u ∈ Ss−1 of homogeneous polynomials of degree i in u1, . . . , us. From
this it follows that Ii(p) = 0 for i odd.

The integrals of curvature are defined as

(3) Ki(M) :=

∫
M
Ii(p) ωM =

∫
S(NM)

ψi(v) ωS(NM).

It is easy to see that K0(M) = Os−1volm M . Less trivial is the fact that
Km(M) = On−1 χ(M), where χ(M) is the Euler characteristic of M . This
is a consequence of the generalized Gauss-Bonnet Theorem (see [12] for a
discussion of this result and its relation to Weyl’s tube formula).

The integrals of absolute curvature, suggested by Peter Bürgisser [5], are
defined as

(4) |Ki|(M) :=

∫
S(NM)

|ψi(v)| ωS(NM).

These are important for extending Weyl’s tube formula to and inequality
for the volume of ε-tubes for arbitrary ε. Clearly, the definition is also valid
for an open subset U ⊂M , or an open subset of M\∂M if M is a compact
Riemannian manifold with boundary.

2.1.3. The degree. Let f : M → P by a smooth map of compact Riemannian
manifolds. By Sard’s Theorem [20, §2] almost all q ∈ P are regular values.
The preimage f−1(q) is either empty or a finite set with locally constant
cardinality [20] as q varies among regular values.

For measurable h : P → R we have

(5)

∫
p∈M

h ◦ f(p) f∗ωP =

∫
q∈P

h(q) #f−1(q) ωP ,

where #f−1(q) denotes the cardinality of the preimage of q. Recall (Sec-
tion 2.1.1) that we are dealing with unsigned forms, i.e., f∗ωP = | det(Dϕ)|ωm,
otherwise we would have to count the points in the fiber with signs.

We define the maximum degree of f to be the maximum cardinality of
the preimage of a regular value under f :

mdeg f := max
q∈regP

#f−1(q).
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With this definition we have

(6)

∫
M

f∗ωP ≤ mdeg f

∫
P
ωP .

This notion of degree differs from the usual one from differential topology
(see [20, §5]), which takes into account orientation.

2.1.4. Transversality. The intersection of two manifolds M and P in Rn
of dimension m, ` with m + ` ≥ n is called transversal at p ∈ M ∩ P , if
dimTpM ∩ TpP = m + ` − n. The intersection is called transversal if it is
transversal at every p ∈M ∩P . In that case, M ∩P is a smooth (m+`−n)-
dimensional manifold.

Recall that Bn(p, σ) denotes the closed ball of radius σ around p in Rn,
and Sn−1(p, σ) = ∂Bn(p, σ) is its boundary. The following lemma is a
standard application of Sard’s Lemma, the proof is omitted. By “almost
all” we mean “up to a set of measure zero”.

Lemma 2.1. Let M be a Riemannian manifold. For almost all σ > 0
the intersection Bn(p, σ) ∩M is a Riemannian manifold with boundary. In
particular, Sn−1(p, σ)∩M is a smooth Riemannian manifold of codimension
one in M .

3. Geometry of tubes and integral geometry

3.1. Weyl’s tube formula. References for the content of this section are [26,
12]. Let M ⊆ Rn be a Riemannian submanifold of dimension m < n, possi-
bly with boundary, and denote by s := n−m the codimension of M in Rn.
The (closed) tube of radius ε around M in Rn is defined to be the set

(7) T (M, ε) :=

{
p ∈ Rn

∣∣∣∣ ∃ line of length ≤ ε from p
meeting M orthogonally

}
.

For compact manifolds this coincides with the ε-neighborhood of M in Rn,
though in general this need not be the case.
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Figure 1. Tube around and open [left] and closed [right] interval.

In his influential paper [26], Weyl derived the expression

vol T (M, ε) = Os−1 εs
m∑
i=0
i even

(i− 1)(i− 3) · · · 1
(s+ i)(s+ i− 2) · · · s

µi(M) εi

for the volume of a tube of radius ε around M , provided ε is small enough.
The µi(M) are the curvature invariants of M . The deeper part of Weyl’s
work consists of showing that these invariants are intrinsic, that is, they only
depend on the curvature tensor of M and not on the particular embedding
of M in Rn. We will not need this feature here, however, and will be happy
with expressing these invariants in terms of the second fundamental form.
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The µi(M) are just a different normalization of the invariants Ki(M)
introduced in Section 2.1.2, namely

(8) Ki(M) = Os−1
(i− 1)(i− 3) · · · 1

(s+ i− 2)(s+ i− 4) · · · s
µi(M).

for i even. Note that Corollary 1.1 follows immediately from the Weyl’s
tube formula, using that K0(M) = Os−1volm M .

Note that the Ki(M) are no longer independent of the embedding, since
the codimension enters the formula.

We will need a slight variation of Weyl’s tube formula that works for
arbitrary ε.

Theorem 3.1. Let M ⊆ Rn be an oriented, compact, m-dimensional Rie-
mannian manifold, possibly with boundary, and assume s := n−m > 0. Let
U ⊆M\∂M be an open subset of M . Then for all ε > 0 we have

(9) vol T (U, ε) ≤ εs
m∑
i=0

1

s+ i
|Ki|(U) εi.

The proof, given in the appendix, is along the lines of [26, 12].

Example 3.1. Let M = Sm be the m-dimensional unit sphere in Rn. Along
the lines of the proof of the tube formula 3.1 we can derive

vol T (Sm, ε) = 2 ωm+1 ε
s
m∑
i=0

ωs+i
ωi+1

(
m+ 1
i+ 1

)
εi.

for small ε (recall from Section 1.4 the definition of ωn and On). From this
we get

Ki(S
m) =

2OmOs+i−1
Oi

(
m
i

)
for i even. Note that K0(S

m) = OmOn−m−1 and that Km(Sm) = 2On−1
for m even and Km(Sm) = 0 for m odd, in accordance with the Euler
characteristic for spheres. Some special cases for the volume of tubes:

(1) Setting m = n− 1 we get vol T (Sn−1, ε) = ωn [(1 + ε)n − (1− ε)n],
as was to be expected.

(2) For m = 0 we have vol T (S0, ε) = 2 εn ωn.
(3) Form = 1, n = 2 we get the volume of the torus vol T (S1, ε) = 2π2ε2.

3.2. Integral geometry. In order to obtain upper bounds for the integrals
of absolute curvature |Ki|(M), we will first derive bounds for |Km|(M) using
the generalized Gauss map, and the case where 0 ≤ i < m is then handled
by relating the i-th curvature invariants Ki(M) to the curvature invariants
Ki(M ∩ L) of the intersection of M with a random affine space of dimen-
sion s + i. Formulae relating invariant measures of a set to its intersection
with random affine spaces are known by the name of Crofton formulae and
play a central role in integral geometry. For an introduction to integral
geometry and geometric probability we refer to [16, 23]. The version of
Crofton’s formula involving Weyl’s curvature invariants is due to Chern [7]
and Federer [11], see also [22, 15.95b].

Let Enk be the set of k-dimensional affine spaces in Rn and G(n, k) the
Grassmannian of k-dimensional linear subspaces of Rn. We can identify
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Enk with the subset of those (V, p) ∈ G(n, k) × Rn such that p ⊥ V , the
one-to-one correspondence s being given by s(V, p) = p+V [16, Chapter 6].

Let νnk denote the O(n)-invariant measure on G(n, k) induced by the
identification G(n, k) = O(n)/O(k)×O(n− k), normalized such that

νnk (G(n, k)) =
On−1 · · · On−k
Ok−1 · · · O0

,

see also [6, 3.2] for a discussion. The product measure νnk × ωRn gives rise

to an invariant measure λ
n
k on Enk , defined by∫

V ∈G(n,k)

(∫
p∈V ⊥

f ◦ s(V, p) ωV ⊥
)
dνnk =

∫
L∈Enk

f(L) dλ
n
k .

for a measurable function f on Enk . In particular, setting

f = 1Bn(p,σ) =

{
1 L ∩Bn(p, σ) 6= ∅
0 else

we get

λ
n
k({L ∈ Enk | L ∩Bn(p, σ) 6= ∅}) =

∫
L∈Enk

f(L) dλ
n
k

=

∫
V ∈G(n,k)

(∫
p∈V ⊥

1Bn(p,σ) ωV ⊥

)
dνnk

= ωn−kσ
n−kνnk (G(n, k)).

In the following we use the renormalized measure λnk = νnk (G(n, k))−1 λ
n
k ,

so that

λnk({L ∈ Enk | L ∩Bn 6= ∅}) = ωn−k.

The following theorem is merely a reformulation of [22, 15.95b] with a
different normalization of the measure, and after simplifying the constants.
Note also that with the parameters chosen here, it makes no difference
whether we formulate this theorem with µi(M) or with Ki(M), since M ∩L
has generically the same codimension s in L as M in Rn. Recall the defini-
tion (1) of the flag coefficients in Section 1.4.

Theorem 3.2. (Crofton’s Theorem)

(10) Ki(M) =

[
n

s+ i

] ∫
L∈Ens+i

Ki(M ∩ L) dλns+i.

Crofton’s Theorem leads to a bound on integrals of absolute curvature.

Theorem 3.3. Let M be a compact Riemannian submanifold of Rn of di-
mension m < n, and let i ≤ m. Then

(11) |Ki|(M) ≤ 2

[
n

s+ i

] ∫
L∈Ens+i

|Ki|(M ∩ L) dλns+i.

Proof. Let M+ and M− denote the parts of M on which Ii(p) is positive
and negative, respectively. Then |Ki|(M) = |Ki(M+)|+ |Ki(M−)|. 2
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4. Degree bounds

4.1. Degree of the Gauss map. In this section we interpret the expected
value of the highest curvature invariant as the degree of a generalized Gauss
map. Let S(NM) denote the normal sphere bundle over M . Note that
S(NM) has codimension one in Rn.

Definition 4.1. Let M ⊆ Rn be a compact m-dimensional Riemannian
manifold. The generalized Gauss map of M is defined as

γ : S(NM)→ Sn−1, (p, v) 7→ v.

The generalized Gauss map on a compact manifold can be shown to be
surjective. Note that for almost all w ∈ Sn−1, the map h(p, v) = 〈v, w〉 is
a Morse function with non-degenerate critical points those (p, v) such that
v = w.

Recall now the definition (6) of the degree of a map.

Lemma 4.1. Let M ⊆ Rn be a compact Riemannian manifold of dimension
m. Then

(12) |Km|(M) =

∫
v∈Sn−1

#γ−1(v) ωSn−1 ≤ On−1 mdeg γ.

Proof. We need to show that

(13) γ∗ωSn−1 = |detS(v)| ωS(NM)

on M . Once this is shown, the claim of the lemma follows from the definition
of the |Ki| (3), namely,

|Km|(M) =

∫
(p,u)∈S(NM)

| detS(u)| ωS(NM).

Let x1, . . . , xm : U → Rm be orthonormal coordinates on an open set
U ⊂M . Let (E1, . . . , En) be an orthonormal frame field defined in a neigh-
borhood of U in Rn, such that on U we have Ei = ∂/∂xi for 1 ≤ i ≤ m.
The frame field E1, . . . , En gives a local trivialization of the sphere bundle

U × Ss−1 → S(NM)

(p, u) 7→

(
p,

s∑
i=1

uiEm+i

)
.

An orthonormal coordinate system y1, . . . , ys−1 for Ss−1 thus gives rise to
orthonormal coordinates x1, . . . , xm, y1, . . . , ys−1 on S(NM). With ωM =
dx1 ∧ · · · ∧ dxm and dy = dy1 ∧ · · · ∧ dys−1 we have

(14) ωS(NM) = ωM ∧ dy.

Similarly we have ωSn−1 = E∗1 ∧ · · · ∧E∗m ∧ dy1 ∧ · · · ∧ dys−1. Let φ be such
that γ∗ωSn−1 = φ(p, v) ωS(NM) as differential form. Then

φ(p, v) = γ∗ωSn−1

(
∂

∂x1
, . . . ,

∂

∂xm
,
∂

∂y1
, . . . ,

∂

∂ys−1

)
= ωSn−1

(
γ∗

∂

∂x1
, . . . , γ∗

∂

∂xm
, γ∗

∂

∂y1
, . . . , γ∗

∂

∂ys−1

)
.
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Note that

γ∗
∂

∂xi
=

s∑
`=1

u`
∂

∂xi
Em+`(p), γ∗

∂

∂yj
=

s∑
`=1

∂

∂yj
u` Em+`(p),

from which we obtain

φ(p, v) = ωM

(
∂

∂x1
γ, . . . ,

∂

∂xm
γ

)
· dy

(
∂

∂y1
γ, . . . ,

∂

∂ys−1
γ

)
.

A direct calculation shows that

〈 ∂
∂xi

γ,Ej〉 = −Sij(v).

From this it follows that

ωM

(
∂

∂x1
γ, . . . ,

∂

∂xm
γ

)
= (−1)m detS(v).

Clearly

dy

(
∂

∂y1
γ, . . . ,

∂

∂ys−1
γ

)
= 1

from which the claim follows for M without boundary. 2

The statement of Lemma (4.1) also holds if M is replaced by an open
subset U ⊂ M\∂M , for a compact manifold with boundary M . We omit
the details.

For an affine subspace L ∈ Ens+i in general position, the intersection M∩L
is either empty or an i-dimensional submanifold of L ∼= Rs+i. In the latter
case we can define the degree of M with respect to L as the degree of the
Gauss map of M ∩ L in L, that is,

mdeg(M ;L) := mdeg γ|M∩L ≤ max
v∈Ss+i−1

#γ|−1M∩L(v).

Define the i-th degree mdegi(M) of M to be the maximum of mdeg(M ;L)
over all L ∈ Ens+i that intersect M :

mdegi(M) := sup
L∈Ens+i

mdeg(M ;L).

Before dealing with polynomial equations, we give a bound of the volume
of an ε-tube around M by a function of the i-th degrees of M and of ε.

Theorem 4.1. Let M be a Riemannian manifold of dimension m in Rn
and set s = n −m. Assume M is contained in a ball Bn(p, σ) of radius σ.
Then for ε > 0 we have

vol T (M, ε) ≤ 2ωn ε
s

m∑
i=0

(
n

s+ i

)
mdegi(M) σm−iεi,

with equality for ε small enough.

Proof. In light of the tube formula, Theorem 3.1, we aim to bound the
integrals of absolute curvature |Ki| of M . By the Crofton’s formula (11)
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and the degree bound, Lemma 4.1, we have

1

s+ i
|Ki|(M) ≤ 2

s+ i

[
n

s+ i

] ∫
L∈Ens+i

|Ki|(M ∩ L)dλns+i

≤ 2ωn

(s+ i)ωs+iωm−i

(
n

s+ i

)
Os+i−1

∫
L∈Ens+i

mdeg(M ;L)dλns+i.

Since M ⊂ Bp(p, σ), we only need to worry about those L that intersect
this ball. By our normalization,

λns+i({L ∈ Ens+i | L ∩Bn(p, σ) 6= ∅}) = σm−iωm−i,

and we can bound the right-most integral above as∫
L∈Ens+i

mdeg(M ;L)dλns+i ≤ σm−iωm−i ·mdegi(M).

Plugging these bounds into the tube formula (9) and simplifying the con-
stants, the claim follows. 2

4.2. Complete intersections. Let f1, . . . , fs ∈ R[X1, . . . , Xn] be polyno-
mials such that their common zero set V is a complete intersection, i.e.,
for every p ∈ V the gradients ∇f1, . . . ,∇fs are linearly independent. The
gradients determine an orientation of V .

Lemma 4.2. Let V be a complete intersection defined as the zero-set of poly-
nomials f1, . . . , fs of degree at most D. Then the degree of the generalized
Gauss map γ : S(NV )→ Sn−1 is bounded by

mdeg γ ≤ (2D)n.

Proof. We assume V is compact, the general case can be handled with
some care. Let f =

∑s
i=1 f

2
i , so that in particular, Z(f) = Z(f1, . . . , fs).

Let δ > 0 be such that δ is a regular value of f : Rn → R and set fδ =
f − δ. Then Vδ = Z(fδ) is a hypersurface with associated Gauss map
γδ(x) = ∇fδ(x)/‖∇fδ(x)‖. By a standard argument using Bézout’s Theo-
rem (c.f., [19]), the degree of γδ is bounded by (2D)n. We next argue that
this bound also applies to the cardinality of γ−1(v).

In fact, we can find a regular value of f , δ > 0, such that for all (pi, vi) ∈
γ−1(v) and disjoint some neighborhoods Ui of pi in Rn, there exist qi ∈ Ui
such that f(qi) = δ and γδ(qi) = v. It follows that the number of points in
the preimage γ−1(v) is also bounded by (2D)n. 2

Now everything is in place for the proof of the main bound.

Proof of Theorem 1.1. Set M ′ := V ∩ Bn(p, σ + ε). For almost all σ,
M ′ will be a smooth compact Riemannian manifold with smooth (m − 1)-
dimensional boundary ∂M ′ (Lemma 2.1). Moreover,

T (V, ε) ∩Bn(p, σ) ⊆ T (M ′\∂M ′, ε) ∪ T (∂M ′, ε).

Note that this inclusion does not hold if we had defined M ′ by intersecting
V with Bn(p, σ), as V need not intersect that ball at all. We can then apply
Theorem 4.1 to M ′\∂M ′ and to ∂M ′.
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Since mdegi(M
′\∂M ′) ≤ mdegi(V ), it remains to bound mdegi(V ). To

bound the degree of V ∩ L, after a change of coordinates we can assume
that L is given by xs+i+1 = 0, . . . , xn = 0. The fi can therefore be seen as
polynomials in s + i variables, denoted by x. The claim now follows from
Lemma 4.2.

The boundary ∂M ′ is defined by the same set of polynomials f1, . . . , fs as
V , with the additional constraint of lying on the sphere

∑
i x

2
i = (σ+ε)2. We

can therefore apply the same degree bounds, with the exponents increased
by one, to this set.

Note that if V is homogeneous, we can define M ′ by intersecting with
Bn(p, σ) rather than Bn(p, σ + ε). We also have T (V, ε) ∩ Bn(p, σ) ⊆
T (M ′\∂M ′, ε), which accounts for the factor of 2 instead of 4 and the simpler
form in the second equation in Theorem 1.1.

Dividing the resulting expressions by vol Bn(p, σ) = ωnσ
n gives the de-

sired bounds. 2

Appendix

In this appendix we give a proof of the tube formula Theorem 3.1.

Proof of Theorem 3.1. We prove the first inequality and point out on
the way how the equality for small ε is obtained. We restrict to compact
manifolds without boundary M , extending the argument the slightly more
general case in the statement of the theorem causes no problem.

Consider the surjective map

f : S(NM)× [0, ε]→ T (M, ε) ⊆ Rn

(p, v, t) 7→ p+ tv

of compact manifolds. For (p, v) ∈ S(NM) the critical radius is defined as

ρM (p, v) = sup{t | dist(p+ tv,M) = t},

and set ρM = inf(p,v)∈S(NM)ρM (p, v). The map f is injective if ε ≤ ρM .
By Sard’s Theorem the set of critical values of f has Lebesgue measure

zero and the fibers of f at regular values are finite and locally constant [20,
§1]. Given the natural volume form ωRn on Rn we thus have, by (5),

(15) vol T (M, ε) ≤
∫
p∈T (M,ε)

#f−1(p) ωRn =

∫
S(NM)×(0,ε)

f∗ωRn ,

with equality if ε ≤ ρM . Recall that we are dealing with unsigned forms.
The problem reduces to evaluating the right-hand side. We claim that

(16) f∗ωRn = ts−1|det(Id− tS(v)) ωS(NM) ∧ dt|.
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Assuming this to hold for the moment, the claimed inequality for the volume
of tubes follows by integrating

∫
S(NM)×(0,ε)

f∗ωRn =

∫
S(NM)

(∫ ε

0
ts−1|det(Id− tS(v))| dt

)
ωS(NM)

≤
∫
S(NM)

(∫ ε

0
ts−1

m∑
i=0

ti|ψi(v)| dt

)
ωS(NM)

=
m∑
i=0

(∫ ε

0
ts−1+i dt

)(∫
S(NM)

|ψi(v)| ωS(NM)

)

=
m∑
i=0

1

s+ i
εs+i |Ki|(M).

It therefore remains to prove (16). Note that is ε < ρM , then the map
f is injective and, with the right choice of orientation, the determinant
det(Id− tS(v)) is always positive. We can therefore omit the absolute value
and obtain an equality with the integrals of curvature.

Let (x1, . . . , xm) : U → Rm be orthonormal coordinates on U = U ′ ∩M .
Let (E1, . . . , En) be an orthonormal frame field on U ′ such that Ei := ∂

∂xi
on

U ⊆M for 1 ≤ i ≤ m. Set ωM := E∗1 ∧ · · · ∧E∗m and ωN := E∗m+1 ∧ · · · ∧E∗n
(E∗i denoting the dual of Ei). We then have ωRn = ωM ∧ ωN , and for the
restriction to M , ωM |TM = dx1 ∧ · · · ∧ dxm.

The frame field also gives a local trivialization of the sphere bundle

U × Ss−1 → S(NM)

(p, u) 7→

(
p,

s∑
i=1

uiEm+i(p)

)
.

An orthonormal coordinate system y1, . . . , ys−1 for Ss−1 then gives rise to
orthonormal coordinates (x1, . . . , xm, y1, . . . , ys−1, t) on S(NM)×(0, ε). Set-
ting dx = dx1 ∧ · · · ∧ dxm and dy = dy1 ∧ · · · ∧ dys−1 we have

(17) ωS(NM) ∧ dt = dx ∧ dy ∧ dt.

Let φ(p, v, t) be such that f∗ωRn = φ(p, v, t) ωS(NM)∧dt as differential form.
By Equation (17) we obtain

φ(p, v, t) = f∗ωRn

(
∂

∂x1
, . . . ,

∂

∂xm
,
∂

∂y1
, . . . ,

∂

∂ys−1
,
∂

∂t

)
= ωRn

(
f∗

∂

∂x1
, . . . , f∗

∂

∂xm
, f∗

∂

∂y1
, . . . , f∗

∂

∂ys−1
, f∗

∂

∂t

)
.
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We next observe that, using the definition of f ,

f∗
∂

∂xi
=

∂

∂xi
p+ t

s∑
`=1

u`
∂

∂xi
Em+`(p),

f∗
∂

∂yj
= t

s∑
`=1

∂

∂yj
u` Em+`(p),

f∗
∂

∂t
= v.

In particular, f∗(TvS
s−1 × TtR) ⊆ NpM = (TpM)⊥, so that

φ(p, v, t) = ωM

(
∂

∂x1
f, . . . ,

∂

∂xm
f

)
· ωN

(
∂

∂y1
f, . . . ,

∂

∂ys−1
f,
∂

∂t
f

)
.

A straight-forward calculation shows that〈
∂

∂xi
f,Ej

〉
=

〈
Ei + t

∂

∂xi
Z,Ej

〉
= δij − tSij(v),

where Z is a normal vector field with Z(p) = v. From this it follows that

ωM

(
∂

∂x1
f, . . . ,

∂

∂xm
f

)
= det(Id− tS(v)).

Similarly one obtains

ωN

(
∂

∂y1
f, . . . ,

∂

∂ys−1
f,
∂

∂t
f

)
= ts−1.

This completes the proof of the claimed inequality. 2
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