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The resilience of future power systems are being challenged in three fronts: (i)
decarbonising energy supply will alter supply mix; (ii) shift of previous non-electric
demand onto the energy network will require the system to work at higher capacity;
and (iii) expected changes in climate will alter demand and performance of electrical
network components. This thesis quantitatively assesses the impact of future climate
change on the resilience of a power system, in secure and hazardous conditions. This
is done through the use of reliability indices and probabilistic security assessment.
Dynamical thermal ratings of circuits are used throughout this thesis given their po-
tential for increased capacity over the standard static ratings. The first finding is that
the predicted future climate scenarios will result in components with lower thermal
ratings then if used currently. Due to this, it is found that the reliability of the system
decreases under further climate scenarios. In order to keep a satisfactory level of reli-
ability in the system, a method of temporary overloaded circuits is introduced which
doesn’t result in a higher risk of component failure. The temporary overload method
allows for the rating constraint to be violated provided the temperature constraint
isn’t. Applying this to the system, and assessing the results under various climate
scenarios, it is found that the method is beneficial in terms of economical cost and
system reliability. When applied to hazardous conditions, it is found the method has
a higher potential to strengthen the reliability of the system in comparison to when
used on the ‘safe’ system.

An approach is taken to aid the system operator in decision making under uncertain
conditions. A scenario is devised in which an operator wants to plan the power dispatch
for a future time period. This is done through the use of stochastic optimisation, where
the uncertainty is encapsulated by the conductor ratings which are calculated using
dynamical thermal ratings in which the weather parameters are stochastic. This is
developed for a one and two period model, in which the two period model has the
first and second period coupled through the addition of a ramp rate constraint in the
optimisation. System adequacy indices and probabilistic security indices are added as
constraints so the system operator can control the reliability of his system.
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Chapter 1

Introduction

1.1 Project Information

The research completed for this thesis was for part of a multi-disciplinary project

between the University of Manchester and Newcastle University and comprised of

members from the School of Electrical and Electronic Engineering (Manchester), the

School of Mathematics (Manchester), the Tyndall Centre for Climate Change Research

(Manchester) and the School of Civil Engineering and Geosciences (Newcastle) and

was funded by the EPRSC and National Grid. The aim of the project is to examine the

future of the resilience of Great Britain’s electrical energy network [1]. It is believed

that the following will be the main obstacles that will need to be examined:

• Policies aimed at reducing GHG emissions through decarbonising energy supply

will alter the existing supply mix.

• Decarbonising of the energy system will involve considerable shift of previously

non-electric energy demand onto the electricity network with accompanying

changes in how much electricity is needed and when it is needed.

• The expected mean changes in climate will alter the electricity demand and

performance of electricity infrastructure, and increased severity and frequency

of extreme weather events will impact on the electrical network and distribution

systems.

To deal with these challenges, the RESNET project has came up with the following

work packages (WP):

13



CHAPTER 1. INTRODUCTION 14

1) Spatial scenarios of future climate: WP1 will produce future climate scenar-

ios for three key weather variables: temperature, rainfall and wind, where changes

in average characteristics can impact on the operational resilience of the network

and changes in extremes can impact the infrastructural resilience of the network.

2) Electricity demand and supply scenarios: WP2 will develop electricity de-

mand and supply scenarios, consistent both with the climate change impact

scenarios from WP1 and levels of decarbonisation required to meet policy tar-

gets.

3) Network performance analysis: WP3 will couple the hazard model from WP1

with demand and supply scenarios from WP2 with a dynamic, spatially explicit,

power systems simulation model.

4) Quantified analysis of resilience and the effectiveness of adaptation: WP4

will use the model to quantify the potential impacts of future climate upon the

day to day resilience and resilience to extreme events of the overall GB electricity

transmission system and case study distribution networks, and to test the effec-

tiveness of a wide range of adaptation options for improving the overall resilience

of the energy system.

5) Social responses to adaptation measures: WP5 will assess the impact of the

future vulnerability of the network upon organisations and households, taking

into account climate change impacts, and consider how these may adapt.

This thesis was part of the work for WP4.

1.2 Background

The study of energy networks is a highly researched area due to our reliance on elec-

tricity, and other forms of energy, both commercially and residentially. Given the focus

of this project the energy network we will focus on is the electrical energy network,

also known as a power system. A power system is a network of electrical components

used to supply, transmit and use electrical power. The basic function of a power sys-

tem is to provide electric energy to its customers at the lowest possible cost and at an
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acceptable risk level [2]. As users of electricity we each make up part of that power

system and as such we have a reliance on the other sections of the power system to

provide us with energy. On the other side of the network energy suppliers also have

a reliance on the system as they require their power to be transported to the user

when demanded. A resilient network is defined as a network which has the ability to

provide and maintain an acceptable level of service in the face of faults and challenges

to normal operation [3]. Due to our reliance on energy, and the cost associated with

blackouts, it is beneficial, if not necessary, for a power system to be a resilient network.

Since the energy sector became unregulated companies have to compete against

each other for market share. While in competition they want to provide the consumer

with a low price which still deems the company profitable. To provide a low cost for

the consumer they must achieve a low operating cost for themselves. To minimise

costs, competitors could minimise the amount invested into power system components

and maintenance. However, this would result in a very unreliable power system. On

the handy hand, if a power system is over invested, and over secure, money is being

spent that necessarily need not be [4].

Reliability has a very wide range of meanings and cannot be associated to a specific

definition. As such, we will use the term in a general sense, to indicate the overall

ability of the system to perform its task [5].

It is predicted that in the future people will rely more on electrical energy than at

current times [6]. This is partly due to the depletion of fossil fuels. Appliances that

rely on fossil fuels such as heating and vehicles are being replaced by electrical heating

and electric vehicles (EV). To cope with this increased demand measures should be

taken to increase the capacity of the power system. One method would be to purchase

new components. However, this method is quite expensive. Another method that is

popular in current research is using dynamical thermal ratings. The term dynamical

thermal rating (DTR) is defined as using real time or forecasted meteorological weather

conditions to, when favourable, allow more current to pass through a conductor than

is previously stated by the static rating [7]. It has been shown that this method can

be more efficient and less expensive than other methods examined [8]. As such, we

will include dynamical thermal ratings in our modelling throughout this thesis.

As mentioned above, it is expected that energy demand will increase in the future.
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This is generally accepted but to what extent is still in debate, and is currently being

examined by WP2. The future of climatic conditions, coupled with using dynamical

thermal ratings, and the future of demand results in a lot of uncertainty for future

power system modelling. Real Option Analysis is defined as decision making under

uncertainty [9]. To help us make decisions in these uncertain conditions we shall use

quantitative methods.

1.3 Power Systems

As mentioned above, the primary function of an electrical power system is to provide

electrical energy to its customers as economically as possibly and with an acceptable

degree of continuity and quality. Modern society has come to expect that the supply

of electricity is continuous. However, this is not possible due to the random faults of

components in the power system.

A power system is divided into three function zones [10]. The functional zones

consist of:

1. Generation Facilities.

2. Transmission Facilities.

3. Distribution Facilities.

and can be seen in figure 1.1(a). Generation facilities consist of the generating units in

a power system. Transmission facilities consist of the high voltage, long distance, bulk

transmission components. Distribution facilities consist of the lower voltage transmis-

sion lines, along with the consumer load points. This division occurs because utilities

usually divide the power system into these subgroups for the purpose of organisation,

planning, operation and analysis.

In system analysis, it is also possible to combine the functional zones into hier-

archical levels, shown in figure 1.1(b). Hierarchical levels include the function zone

above it. This means that system analysis on the transmission facilities includes sys-

tem analysis on the generation facilities, and system analysis on the distribution zone

includes system analysis all three function zones. The basis of this project is to focus

on modelling the transmission network of Great Britain’s electrical system. We will
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(a) Functional Zone Diagram. (b) Hierarchical Level Diagram.

Figure 1.1: Figure 1.1(a) is the function zone diagram. Figure 1.1(b) is the hierarchical
level diagram.

therefore focus on hierarchy level two while assuming adequate generation is continu-

ously available. This is a common assumption made when assessing the transmission

network [5].

1.3.1 Optimal Power Flow

The objective of the power system is to transport the required power from the gener-

ators to the load points, through the transmission circuits. This is defined as a power

flow [11].

The classical optimal power flow is a power flow problem in which certain con-

trollable variables are to be adjusted to minimise an objective function, such as cost

of power or power losses, while satisfying physical and operating limits on various

controls, dependent variables and functions of variables [12].
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An Alternating Current (AC) optimal power flow is defined as:

min
P g

NB∑
i=1

fi(Pgi)

subject to

Pi =
N∑
j=1

|Vi||Vj|(Gij cos(δi − δj)+ Bij sin(δi − δj))

Qi =
N∑
j=1

|Vi||Vj|(Gij sin(δi − δj)− Bij cos(δi − δj))

Pgi,min ≤ Pgi ≤ Pgi,max

Qgi,min ≤ Qgi ≤ Qgi,max

Vi,min ≤ Vi ≤ Vi,max

|Fij| ≤ Fij,max

(1.1)

where NB is the number of buses in the system. P g is the set of generator power

outputs with Pgi ∈ R+ is the power generated from generator i ∈ {1, . . . , NB} with

R+ := [0,∞). The function fi : R+ → R is the cost function for generator i. This

function in practice takes the form of either a continuous polynomial of varying degree

or a linear piecewise function. Pi ∈ R is the real power injection with Pi = Pgi−Pdi ∀i ∈

{1, . . . , NB}, where Pdi ∈ R+ is the demand at bus i. Qi ∈ R is the reactive power

injection with Qi = Qgi−Qdi, where Qgi ∈ R+ is the reactive power output of generator

at bus i and Qdi ∈ R+ is the reactive power demanded at bus i. Vi ∈ R+ is the voltage

at bus i. Gij ∈ R+ is the conductance of the circuit between bus i and bus j. Bij ∈ R+

is the susceptance of the circuit between bus i and bus j. δi ∈ [0, π] is the voltage

angle at bus i. Pgi,min ∈ R+ and Pgi,max ∈ R+ are the minimum and maximum real

output power of generator i. Qgi,min ∈ R+ and Qgi,max ∈ R+ are the minimum and

maximum reactive output power of generator i. Vi,min ∈ R+ and Vi,max ∈ R+ are the

minimum and maximum voltage at bus i. Fij ∈ R is the power flow between bus i and

bus j. Fij,max ∈ R+ is the maximum safe amount of power that can flow through the

circuit connecting bus i to bus j. This is also known as the circuit rating. A derivation

of (1.1) has been included in appendix B.1.

(1.1) is a non-linear optimisation problem. We want to minimise the sum of the fi :

R+ → R for Pgi ∈ R+ for i ∈ {1, . . . , NB}. The equality constraints in (1.1) are non-

linear and the cost function fi : R+ → R is generally linear or linear piecewise but can

be non-linear also. The inequality constraints consist of Pgi ∈ [Pgi,min, Pgi,max], Qgi ∈
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[Qgi,min, Qgi,max], Vi ∈ [Vi,min, Vi,max] and Fij ∈ [−Fij,max, Fij,max].

(1.1) is usually solved using iterative methods such as the Newton-Raphson method

or Gauss-Seidel method. Power systems can comprise of thousands of buses and cir-

cuits and for these (1.1) can be computationally expensive. For this reason linear

approximations of (1.1) have been developed which we will discuss further in the

thesis, see section 2.2.1.

1.3.2 Per-Unit Systems

Power transmission lines are operated at voltage levels where the kilovolt (kV) is the

most convenient unit to use. For large transmissions of power, the units kilowatt (kW),

megawatt (MW) or gigawatt (GW) are used. It is easier to express these units, as well

as amperes and ohms, as a percent, or “per-unit” of a base or reference value specified

for each parameter. The per-unit (p.u.) value of any quantity is defined as the ratio

of the quantity to its base expressed as a decimal [13]. For example, consider a base

voltage of 400kV, then the voltages 380, 400 and 420kV become 0.95, 1.0 and 1.05

per-unit respectively. Through-out this thesis we will express voltage and power in

per-unit, with the base units being 400kV and 400MW respectively.

1.4 Dynamical Thermal Ratings

As mentioned before, one of the constraints in the optimal power flow, (1.1), is the

branch flow constraint:

|Fij| ≤ Fij,max (1.2)

with Fij,max as the circuit rating. A circuit rating is the maximum amount of power

that can safely flow through the circuit at a given time.

1.4.1 Static Ratings

Currently the National Grid use static ratings [14]. These consists of three ratings

for each seasonal period, with spring and autumn sharing the same ratings. The

ratings which are specified for each season are the normal (pre-fault), and long term

emergency and short term emergency (post-fault). The normal rating is the maximum
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safe amount of power which can continuously flow through the circuit. This is specified

at 84% of the long term emergency. The long term emergency rating is normally used

for 6-24 hours after a fault. The short term rating can be used for time spans of less

than an hour depending on the specific conductor, and can be set at 10% above the

long term rating.

These ratings are calculated using a very conservative method [15]. This is done

to obtain a low probability of faulting via voltage overload or thermally overheating.

When a component overheats it can sag and this could result in flashover with trees

or similar objects and would cause a fault. If a component sags too low it wouldn’t

meet the necessary minimum clearance condition and would have to be switched off

by the system operator. Overheating can also lead to annealing which over time can

damage the conductor to a state of beyond repair which would result in a very high

replacement cost. Using this conservative method results in having a power system

which is on average under utilised and as a result not economical to its full potential.

In [8] the authors examine introducing using dynamical thermal ratings against

other reinforcement alternatives. The motivation behind this paper was the result of

[6] which found that an increase in the UK’s electricity network capacity was needed

in order to meet government regulations. The results concluded that introducing

dynamical thermal ratings would have the greatest increase in the capacity of the

network, more than doubling that of the static network. It was also the lowest costing

solution, with line re-tensions and line replacements as the other options. The weather

data the authors used to calculate the ratings was estimated from UK weather data

from Valley, Wales.

In [16] the authors examine temporarily overloading the conductor rating by exam-

ining its temperature constraint rather than its current constraint. A current violation

may not necessarily result in a temperature violation due to the time lag of the con-

ductor’s temperature, as defined by the thermal time constant. The authors examine

this method for a static rating and how the component could be better utilised from

an engineering perspective, rather than an economical perspective. In section 2.3.3

we implement this method to a power system using dynamical thermal ratings and

examine the potential economical and reliability benefits of using the method in a

future power system.
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1.4.2 Calculating Dynamical Thermal Ratings

The equation governing overhead line temperature is the steady state heat balance

equation [17]:

Qc(θa, θc,Ws, φ) +Qr(θa, θc) = Qs + I2R(θc) (1.3)

Qc : R×R×R+× [0, π]→ R is forced convection, Qr : R×R→ R is the radiated

heat loss, Qs is the solar heat gain and I2R(θc) is the heat gained from the current

flow.

Qc : R× R× R+ × [0, π]→ R is the loss of heat due to the wind and the ambient

air temperature. This function is dependent on the wind speed (Ws), the angle at

which the wind meets the conductor (φ), and the difference between the conductor

temperature (θc) and ambient air temperature (θa). It is calculated as:

Qcl(θa, θc,Ws, φ) =

[
1.01 + 0.0372

(
DρfWs

µf

)0.52]
kfKangle(θc − θa)

Qch(θa, θc,Ws, φ) =

[
0.0119

(
DρfWs

µf

)0.6

kfKangle(θc − θa)
]

Qcn(θa, θc) = 0.0205ρ0.5f D0.75(θc − θa)

Qc(θa, θc,Ws, φ) = max(Qcl, Qch, Qcn)

(1.4)

where Qcl : R×R×R+× [0, π]→ R is used during low wind speeds, normally less than

1.5m/s, and Qch : R× R× R+ × [0, π] → R is used for wind speeds higher than this.

Qcn : R×R→ R+ is used in zero wind speed conditions and is the natural convection.

D is the diameter of the conductor, ρf is the density of air, µf is the dynamic viscosity

of air, kf is the thermal conductivity of air, Kangle is the wind direction factor.

Qr : R×R→ R is the radiated heat loss due to the difference between the conductor

and ambient temperature.

Qr(θa, θc) = 0.0178Dε

[(
θc + 273

100

)4

−
(
θa + 273

100

)4]
(1.5)

where ε is the emissivity of the conductor.

Qs is the solar heat gain which is due to radiation from the sun and is defined as:

Qs = αQseA sin
(

arccos[cos(Hc)cos(Zc − Zl)]
)

(1.6)
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where α is the solar absorbability of the conductor, Qse is the total solar and sky radi-

ated heat flux rate elevation corrected, A is the area of conductor per unit length, Hc

is the altitude of the sun, Zc and Zl is the azimuth of the sun and the line respectively.

I2R(θc) is the heat gained from the current I passing through the wire, known as

the joule heating effect. R : R→ R is the resistance which varies with the conductor

temperature.

R(θc) = R(θs)(1 + β(θc − θs))

where θs is a temperature in which R(θs) is known, usually specified by the manu-

facturer of the component and β is the temperature coefficient of resistance and is

specified for each type of material (i.e. copper, aluminium etc).

We can now calculate the ratings of a conductor using (1.3). Every conductor has

a maximum safe operator temperature. This would be specified by the manufacturer

and is based on the chemical composition of the conductor’s alloy. Knowing this value,

denoted θc,max, we can calculate Qc(θa, θc,max,Ws, φ), Qr(θa, θc,max) and R(θc,max). We

can then find Imax by rearranging (1.3) as:

Imax =
(Qc(θa, θc,max,Ws, φ) +Qr(θa, θc,max)−Qs

I2R(θc,max)

) 1
2
. (1.7)

Imax corresponds to the normal rating of the conductor which is safe to be used con-

tinuously. Since this is the normal rating, which is 84% of the maximum, we shall

denote it IN , rather than Imax.

1.4.3 Previous Research in Dynamical Thermal Ratings

Most of the current literature is focused primarily on examining the dynamical thermal

ratings of overhead lines, known as dynamical thermal line ratings (DTLR). Overhead

line temperatures are highly impacted by the current weather conditions. This is pri-

marily due to the wind speed and the surrounding air temperature [17]. Although the

majority of the work concentrates on overhead lines, a smaller proportion of literature

is available on the use of dynamical thermal ratings on other circuit components such

as cables and transformers, see for example [18]. For the rest of this thesis we will

concentrate only on the dynamical thermal line ratings of overhead lines so this is

implied when using the term dynamical thermal ratings.
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When considering dynamical thermal ratings we must make a realisation about

the design and operation of a power system. Design and operation require two very

different perspectives. The designer is concerned on economic optimisation while using

averages and expectations of risks and frequencies, of say, a non 100% operational

power system. To minimise risks and frequencies he uses static ratings which are quite

conservative. The designer is not concerned about the normal conductor conditions

but rather the ‘worst case’, very infrequent occurrences. The operator on the other

hand works in real time. He would like to take advantage of the under utilisation that

exists in the system due to the use of static ratings. Therefore, to satisfy both parties,

methods must be developed that allow the operator to utilise the highest allowable

amount of efficiency in the system, while keeping the operational resilience of the

system. From a system operators point of view, forecast ratings would be much more

beneficial as it would give the system operator time in advance to plan the optimal

dispatch and transportation of power in the system.

Real Time Ratings

The following examine using real time weather conditions to calculate dynamical ther-

mal ratings. [19] investigates the critical spans of overhead lines using overhead line

temperature measurement apparatus and weather stations located at various distances

from the components. Critical spans are defined as the hottest spots in the transmis-

sion system and as such these points are used to calculate the circuit ratings. Com-

paring the results from both measurements, it was found that weather-based ratings

were within 7◦C of the measured conductor temperatures 90% of the time when the

weather stations were in the immediate vicinity of the test span. However, it was

shown that this error increased to 17◦C if the measurements were made 1 mile away.

In [20] the authors compare weather calculated dynamical thermal ratings with

tension-based line ratings. Tension based line ratings are approximated from the con-

ductor sag while the weather calculated line ratings are calculated using weather data

read from nearby stations. He concludes that in some instances weather calculated

ratings are more accurate while in other instance tension based ratings are more ac-

curate.

In [18] the authors develop their method in [20] by applying dynamical thermal
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ratings to various components of the circuits rather than just overhead lines. They

develop a software which will output the rating of the entire circuit which comprises

of various components.

In [21] the authors develop the methods used in [20] by proposing a more accurate

method of measurement. The authors propose a method of using GPS to calculate

conductor sag and from this the rating can be calculated. Using the rating they

calculate the errors associated with using weather based dynamical thermal ratings.

From this they conclude that extremely accurate weather variables are needed as a

wind speed error of 0.3m/s can yield a 37% inaccuracy in conductor ratings. Finally,

[22] estimates real time environmental conditions from measured conditions. They do

this by interpolating the measured weather variables to points on the line away from

the measurement apparatus. They do this by using the inverse distance interpolation

technique together with two meteorological stations at the end of the monitoring line.

The inverse distance interpolation technique is defined as:

Zk =

∑
i
Zi
dik∑

i
1
dik

(1.8)

where Zk represents the unknown environment, Zi represents the known environment

dik represents the distance between locations i and k. The authors concluded that this

technique had potential to provide more accurate results than other standard models

and were in the process of testing a real time experiment on an actually power system.

Forecasted Ratings

In [23] the authors use sampled weather forecasts to calculate dynamical thermal

ratings and assess the accuracy of them. They do this by first predicting the accuracy of

the forecasts by using previous forecast data against real time data. They calculate the

minimum, maximum, average and standard deviation for each 6 hour time step of the

rating forecast. The first results they find are that as time from the reference increases

so too does the error of the forecast ratings. They also find that at one point, 18:00hr,

which coincides with the highest daily demand, the forecasted minimum thermal rating

is below the static rating. Using this forecast the system operator can evaluate the

probability of the thermal rating being lower than the static and make control decisions

regarding the dispatch of power as to avoid load curtailment. Load curtailment is the
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failure of the supplier to meet the full power demands of the consumer.

In [24] the authors use affine arithmetic to obtain bounds for parameters and

functions and using these calculate the forecasted dynamical thermal ratings. Affine

arithmetic is a development of interval arithmetic but keeps track of the correlations

between the input and computed quantities. For an unknown quantity x, its affine

arithmetic value x̂ is represented as:

x̂ = x0 + x1τ1 + x2τ2 + · · ·+ xnτn (1.9)

where x0 is the central value and the xi’s represent partial deviations. The symbols τi

are call the noise symbols and take a value in the interval [−1, 1]. Each τi stands for

an independent source of uncertainty in the quantity xi. For example, consider the

parameter that represents the emissivity of the conductor, ε, in (1.5). This parameter

takes a value between 0.23 (new conductor) and 0.98 (old conductor), depending on

conductor surfaces, aging and pollutant emission levels [17]. We can write this in affine

arithmetic as:

ε̂ = ε0 + τageεage + τpolεpol. (1.10)

Here τage and τpol range in value between [−1, 1] and stand for the uncertainty in

the quantity ε̂. The authors use this method on the uncertain parameters used in

calculating (1.7) and from this calculates a minimum and maximum bound for the

ratings. They use extrapolated climate data to calculate minimum and maximum

forecasted thermal ratings using affine arithmetic and compares these results to that

of interval arithmetic and Monte Carlo simulation. It is found the affine arithmetic is

less conservative than using interval arithmetic and less of a computational task than

Monte Carlo simulations, given the number of simulations needed to obtain accurate

results.

Adaptations and Applications

Adaptations to that of (1.3) have also been developed. In [25] the authors expand the

mathematical heat balance equation for modelling conductor temperatures, (1.3), by

including the cooling effective of snow and rain. The authors conclude that precipita-

tion does have a significant cooling effect and thus increased ratings with its presence.

However, a real world test is necessary to verify this conclusion.
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[26] is a study of the effect of wind on the cooling of overhead lines and thus the

increase of ratings, in comparison to the wind generation obtained from wind turbines

using the same wind data. This study is particularly relevant for overhead lines that

connect wind turbines to the grid. These are normally located in windy coastal areas

so the variation in the ratings would be large and would fluctuate quite rapidly. It was

shown that the overhead lines using dynamical ratings can be significantly overloaded,

in excess of 70% of their static rating, by the wind power generated from the same

wind. Therefore, the inclusion of dynamical thermal ratings in a power system is

highly beneficial.

In [27] the authors do statistical analysis of weather data at 10 different locations

to calculate the probability of a conductor rating overheating using the steady state

heat equations, (1.3), with the parameters calculated using ieee conductor standard

values, as defined in [17]. Given the percent of overheating that occurs, they make a

correction for wind speed bias and reassess the ratings using the weather data under

this correction, while keeping the probability of overheating fixed to the value found

previously. The bias correction they make is that of the anemometer to detect low

wind speed thus giving reading of zero wind speeds when it is in fact not the case.

1.5 Power Systems Reliability/Risk

The words risk and reliability often have various meanings and considerable overlap.

Previously we defined reliability, from a power systems perspective, as the ability of

the system to performs its task. It can be assumed that risk and reliability have

identical implications [2]. Higher risk means lower reliability and vice versa. The

probabilistic behaviour found in power systems is the root origin of risk. Random

outages of system components are outside the control of the power systems operator.

Forecasted dynamical thermal ratings are calculated on the basis of predicted weather

values which have no certainty of occurrence. This is just to name a few and is not an

exhaustive list.

To manage risk we must perform at least the following three tasks:

1. Perform quantitative risk evaluation.

2. Determine measures to reduce risk.
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3. Justify an acceptable risk level.

In this thesis quantitative methods are used to examine risk and methods of reducing

risk are developed. Justifying an acceptable risk level is outside the scope of this thesis

and is part of the work being done by WP5 at time of writing.

System reliability can be divided into the two basic aspects of system adequacy

and system security [28]:

System Adequacy: relates to the existence of sufficient facilities within the system

to satisfy consumer demand while satisfying operational constraints.

System Security: relates to the ability of the system to respond to disturbances,

planned or unplanned, arising within a system.

1.5.1 System Adequacy

To perform system adequacy assessment indices have been developed which help quan-

tify the reliability of the system [29]. Hierarchy level two’s indices include:

1. PLC - Probability of Load Curtailment:

PLC =
∑
i∈S

pi1{li<L} (1.11)

where pi is the probability of being in system state i and S is the set of all

system states. A system state depends on a combination of the state of each

component. A simple component state is either up or down. If up, when using

dynamical thermal ratings, we must include at what rating it is working. 1li<L

is the indicator function and is defined as:

1li<L =

1 if li < L

0 if otherwise

. (1.12)

L is the demand in the system and li is the demand supplied in system state i.

2. EDLC - Expected Duration of Load Curtailment (hr/yr):

EDLC = PLC × 8760 (1.13)

given there are 8760 hours in a year.
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3. EDNS - Expected Demand Not Supplied (MW):

EDNS =
∑
i∈S

Cipi1{li<L} (1.14)

where Ci is the load curtailed in system i.

This list is not exhaustive. For a full list see [29].

1.5.2 System Security

A measurement of system security is typically to do N −m security assessment [30],

where N is the set of components in the system that we are examining. For example

N may be the set of transmission circuits in the systems. This is a deterministic

security constraint which tests the operation of a power system under fault scenarios by

removing m components simultaneously, running an optimal power flow and repeating

for every combination of m components in the system. The most common test is a

single fault scenario N − 1. This involves rerunning an optimal power flow, with a

different component removed in each run, and testing that a solution is still available in

each run which satisfies the constraints. This method is called the security constrained

optimal power flow.

The classical optimal power flow, (1.1), can be wrote in compact form as:

min
u0

f
0
(u0)

subject to

g
0
(x0, u0) = 0

h0(x0, u0) ≥ 0

(1.15)

with f
0

as the vector of cost functions with element i corresponding to f : R+ → R in

(1.1). u0 are the control variables such that u0,i corresponds to Pgi ∈ [Pgi,min, Pgi,max].

x0 as the state variables corresponding to Vi, δi, Qgi for all i as described for (1.1). g
0

are the power flow equality constraints such that

g0,1 = Pi −
N∑
j=1

|Vi||Vj|(Gij cos(δi − δj) +Bij sin(δi − δj)) = 0

g0,2 = Qi −
N∑
j=1

|Vi||Vj|(Gij sin(δi − δj)−Bij cos(δi − δj)) = .
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h0 ≥ 0 are the inequality constraints corresponding to

Pgi,min ≤ Pgi ≤ Pgi,max

Qgi,min ≤ Qgi ≤ Qgi,max

Vi,min ≤ Vi ≤ Vi,max

|Fij| ≤ Fij,max

These are all in the pre-fault state, denoted by subscript 0. Security constrained

optimal power flow (SCOPF) is denoted by:

min
uk

f0(uk)

subject to

g
k
(xk, uk) = 0 k = 0, 1, . . . , Nc

hk(xk, uk) ≥ 0 k = 0, 1, . . . , Nc

(1.16)

where the variables are the same as described above for the classical OPF but, for

subscript k > 0, are in the post-fault state meaning that the parameters and functions

with subscript i = k are omitted. Nc is the number of fault cases to be examined. If

a system had N circuits, and we wanted to perform N − 1 security, then Nc = N ,

assuming a circuit is a single component.

One criticism of this method is that it is time consuming. Assume the running

time, T , of (1.15) is proportional to the square of the number of circuits, N , in the

system, with proportionality constant one, i.e. T = N2. If running a SCOPF, we must

deal with the original N constraints and another set of N constraints for every fault.

The total number of constraints for the SCOPF problem is N + NcN = (Nc + 1)N .

Under our assumption for running time this translates to (Nc+1)2T . This means that

the running time for SCOPF is (Nc+ 1)2 times larger than the running time of a basic

optimal power flow. Another criticism is that N − 1 security treats the probability of

occurrence for all scenarios as equal.

Given the above criticisms, and the occurrence of severe power outages, such as

that of Auckland, New Zealand which had an estimated cost of $600 million, or the

blackout of North America which brought 50 million people to darkness and had an

estimated cost of $6 billion, N − 1 security has been questioned. At the same time

it is recognised that no utility can financially justify N − 2 or N − 3 security. For

these reasons, research has turned towards developing probabilistic system security

methods.
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Probabilistic System Security

In [4] the authors discuss a method that use indices as a security measure, rather than

using deterministic N − 1 security. They argue that deterministic methods measure

performance such as circuit ratings and voltage magnitudes but these reflect severity

and not likelihood. Adequacy indices such as probability of load curtailment reflect

likelihood, not severity. They argue indices should not only measure probability but

also consequence. This consequence takes the form of a monetary value.

In [31] the authors created a security index for the thermal overload of independent

conductors. They defined this index as:

Risk(I) =

∫
θc>θmax

P (θc|I)×
(
Imsag(θc|I) + Imannealing(θc|I)

)
dθc (1.17)

calling it their “risk” index. P (θc|I) is the probability of the conductor having the

temperature θc, given the current temperature is I. This probability is calculated

using the ambient weather conditions and is defined as:

P (θc|I) =
∑
z

P (z) ∀z ∈ {z : θ(z, I) = θc}

where z are the weather conditions, P (z) is the probability that the weather conditions

z occur and θ(z, I) is calculated using the steady state heat equation (1.3). Im(·) is the

impact, which can come from sag or annealing and is denoted by a subscript in each

case. This holds a monetary value. θc is the conductor temperature and θsafe is the

maximum safe operating temperature. I is the current flow through the conductor.

They use the equal risk criteria which is setting the risk level equal to the implicity

acceptable static risk level. This insures that the overloaded ratings are as safe as

the deterministic static ratings. Using the equal risk criteria, (1.7) and (1.17) they

obtain ratings that are higher than those of static ratings while having the same level

of reliability.

In [32] the authors test the security in stochastic optimal power flows, using the

index developed in [31], and another voltage constraint security index developed in

[33]. We only mention the voltage constraint and do not go into detail as in subsequent

chapters we will be linearising the AC optimal power flow to a DC optimal power flow.

One linearisation assumption we make is regarding the voltage. This assumption allows

us to neglect the voltage constraint. This is focused more in chapter 2.
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For the stochastic system they assumed all bus loads, branch flows and bus voltage

magnitudes were normally distributed, as these assumptions were already shown to be

reasonably accurate [34]. They calculated the expected value of (1.17) for each branch,

ij, over the normally distributed branch flows, where ij is the branch connecting bus

i to bus j. They did the same for the voltage constraint developed in [33] but finding

the expectation over the normally distributed bus voltages. The two expectations were

denoted RiskCij(Iij ) and RiskVk(Vk) respectively. RiskCij(Iij ) is calculated as:

RiskCij(Iij ) =

∫ ∞
−∞

P (Iij)×Risk(Iij). (1.18)

The same method was used to calculate RiskVj(Vj ). The authors developed an

adapted optimal power flow using RiskCij(Iij ) and RiskVj(Vj ) as either constraints,

or as weighted parameters in the objective function.

Adding RiskCij(Iij ) and RiskVk(Vk) as constraints, (1.1) becomes:

min
P g

NB∑
i=1

fi(Pgi)

subject to

Pk =
N∑
j=1

|Vk||Vj|(Gkj cos(δk − δj)+ Bkj sin(δk − δj))

Qk =
N∑
j=1

|Vk||Vj|(Gkj sin(δk − δj)− Bkj cos(δk − δj))

Pgi,min ≤ Pgi ≤ Pgi,max

Qgi,min ≤ Qgi ≤ Qgi,max

RiskCij(Iij ) ≤ RiskC0

RiskVk(Vk) ≤ RiskV0

(1.19)

where RiskC0 and RiskV0 are the assumed maximum risk values tolerated by the

system operator, RiskCij : R+ → R is the current overload risk function and RiskVj :

R+ → R is the voltage overload risk function. All other functions and arguments in

(1.19) are the same as that defined in (1.1). Another method was to sum the last two

constraints and make one maximum risk tolerance value:

RiskCij(Iij ) +RiskVj(Vj ) ≤ RiskCV0.

When including in the objective function, the objective function becomes:

min
P g

ω1

NB∑
i=1

fi(Pgi) + ω2(
∑
ij∈Nc

RiskCij(Iij ) +
∑
k∈NB

RiskVk(Vk)) (1.20)
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where ω1 and ω2 are weighting coefficients, Nc is the set of circuits and NB is the set

of buses. This is further developed in [35] by running a security constrained optimal

power flow, (1.16) with (1.20) as the objective function. It is found that this method

is cheaper than running the classical security constrained optimal power flow and risk

based optimal power flow while more expensive than running the classical optimal

power flow. However, the extra expense results in a more secure system.

Other methods of probabilistic system security involve using Monte Carlo methods

to simulate random outages. A component is generally consider to have two states [29].

A random fault is generated from an exponential distribution with constant hazard

rate η. If the fault is in a down state a repair time is generated using constant repair

rate µ .

These methods have been developed in various forms when considering probabilis-

tic security assessment. One such method is the development of a weather dependent

hazard rate [36]. The authors suggest five weather conditions: 1) normal; 2) thunder-

storm; 3) freezing rain/wet snow; 4) high winds; and 5) dry spell followed by fog. The

average failure is then adjusted by a weighting factor to obtain a weather dependent

hazard rate. In [37] the author introduces a time-varying hazard rate known as the

“bathtub curve” which comprises of three stages: an early “infant mortality” stage, a

“random” constant hazard rate and an increasing “aging” hazard rate.

The classical optimal power flow has been developed to account for stochasticity in

the system. In [36] the authors examine the expected cost of unplanned outages, which

they define as the value of security. This method is further developed in [38]. The

authors develop an adaptation of the classical optimal power flow called the optimal

probabilistic security problem. The objective function is to minimise the expected

social cost which is defined as the sum of the expected operating costs, which is

effectively the classical optimal power flow, and the expected interruption cost which

is a calculated in the same way as the value of security. The constraints in this

optimisation are the same as that in (1.1).
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1.6 Summary

It has been shown in [8] that dynamical thermal ratings has the greatest potential for

future power systems modelling as it can provide over a 120% gain in energy transfer

capacity, in comparison to the static rating, at the cheapest installation cost over other

alternatives. The benefit of using forecasted ratings to aid the reliability in system

operations has been shown in [23]. The system operator can use the forecasted ratings

to redispatch power or curtail power if needed in order to avoid a cascading fault.

To aid with the expected increase in electricity demand, and the potential benefit

that using dynamical thermal ratings has to the system operator, dynamical thermal

ratings will be used throughout this thesis when modelling system resilience.

Previously power system reliability modelling used deterministic methods which

modelled all scenarios equally and did not account for probability of the scenario

occurring. This method has a high level of reliability but also incurs relatively high

investment and operational costs [4]. As the power system has shifted from a regulated

system to a competitive market environment, probabilistic methods are needed to

account for the uncertainty that has become present in the system. Uncertain future

climate scenarios, coupled with an expected increase in demand on the system and

pressure to utilise more renewable energy, which itself is stochastic, makes the use of

probabilistic methods in system reliability assessment appealing.

In chapter 2 we examine the effect of the proposed climate models on the resilience

of a power system by performing quantitative risk assessment under various climate

and fault scenarios. This is done through the use of adequacy indices as well as

economically, through the optimal power flow solution and value of security index.

Dynamical thermal ratings are utilised given their appeal in the industry. We shall

examine the system security from a probabilistic measure by generating random faults

using a time-dependent hazard rate, as in [37], coupled with a three state transition

model, which is a development of the two state model by considering the probability of

being in a derated state [5]. A method of reducing risk is then devised by implementing

the method used in [16] to examine how using temporary overloading of components,

which doesn’t violate the temperature constraint, can benefit the operational resilience

of the power system.
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In chapter 3 stochastic optimisation is used as a decision making tool for uncertain

future scenarios. The decision we want to make is for the dispatch of generation in a

future time period. Given we know the probability of a future set of weather variables

occurring, we can calculate the dynamical thermal ratings for discrete values of the

weather variable and optimise over them. Choosing a set of ratings implies choosing

a generation when running an optimal power flow. We use an adapted optimal power

flow as defined in [39] which also considers the cost of interruptible load. Interruptible

load is a contract, between a consumer and a utility, for the consumer to reduce their

demand with advanced notice if requested and has an associated cost to the utility

[40]. We quantify and control the resilience of the system by adding system adequacy

and security constraints. This is developed for a one and two period model.



Chapter 2

Investigating the Effects of Climate

Change in Power Systems

The objective of work package 4 is to “quantify the potential impacts of future climate

upon the day to day resilience and resilience to extreme events of the overall GB

electricity transmission system” [1]. We have defined resilience as the ability of the

network to provide and maintain an acceptable level of service in the face of various

faults and challenges to normal operation. As part of the objective we will first examine

if climate change has an impact on the relevant components of the power system under

normal operating conditions through the use of dynamical thermal ratings. We then

examine how climate change affects the model under hazardous conditions. This is

done by simulating random faults. Finally, we implement the temporary overload

method to try reduce the effect of climate change on the resilience of the system. We

examine resilience through the use of reliability indices and through cost functions,

namely the cost of the optimal power flow and the value of security.

2.1 Predicted Climate Change

We can obtain climate change data and predictions from a number of sources but the

most consistent information is provided by the Met Office. The Met Office is the United

Kingdom’s national weather service [41]. The Met Office has been working in the area

of climate change for more than two decades. The standard climate change information

from the Met Office comes in the form of the UKCP09 climate projections [42]. The

35
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UKCP09 presents probabilities of different future climates. They have classified the

future climate into three scenarios: low emissions scenario, medium emission scenario

and high emission scenario. Probabilities were created by weighting future climate

projections on how well they represent the past climate. They can be seen as the

relative degree to which each climate outcome is supported by the evidence available.

They provide probabilities of these scenarios for different time periods in the future,

up to the year 2100.

There is a weather generator based on the UKCP09 projections [43]. From the

weather generator we can simulate hourly or daily data in which we get current vari-

ables and future variables. In the case of daily data we are given the minimum and

maximum daily temperature while the hourly generated data provides us with the av-

erage temperature for each hour. Current variables are the baseline climate conditions

and the future variables represent a future climate based on the emission scenario

chosen. Throughout this chapter we will examine the effect of all four climates on the

power system. The future time period we use is the year 2080 as this was one of the

decided time periods for the RESNET project.

Figure 2.1 shows the curves of the monthly cumulative distribution functions, of

maximum daily temperature, for one year, taken from one simulation of the weather

generator, for the current climate, low emissions scenario climate, medium emissions

scenario climate and high emissions scenario climate for the year 2080. From these

plots we can see that the UKCP09 anticipate a rise in temperature in the future, for

each of the emission scenarios. This can the seen from the right shift of the curve

corresponding to the current climate, once for the low emissions scenario, again for

the medium emissions scenario and a third time for the high emissions scenario. This

rise leads to the need for examination of how future temperature increase will affect

the components of the model, and how it will affect the power system economically as

a whole.

On a side note, if we were to plot the monthly cumulative distribution functions

for the maximum daily temperature, for one year, for all simulations, we would see

that there is a lot of uncertainty in the data outputted from the weather generator

under the UKCP09 climate models. This would be seen from the slopes of the curves

for the emissions scenarios, which would be much more gentle than those of figure 2.1,
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Generator 1 2
Minimum Output (p.u.) 0 0
Maximum Output (p.u.) 12.5 12.5

Cost (£/p.u.) 400 800

Table 2.1: Specifications of the maximum and minimum output of the generators and
the cost for generation.

and have a wider range of values which have positive probability.

Given these rises in temperature, we shall investigate the differences between the

dynamical thermal ratings of the components using the current climate and future

climate scenarios. We will then examine the economical difference these ratings have

on an overall power system and the effect the climate models have on the system

security.

2.2 Power Systems Model

To investigate the effects of climate change on the transmission components in a power

system I have developed a three busbar model, as seen in figure 2.2. In this model,

there are three buses, labelled Bus 1, Bus 2 and Bus 3. Buses are nodal points in a

power system. All buses are set to 400kV or 1 p.u. Bus 1 and Bus 2 have generators

(G) attached. Table 2.1 displays information about the generators. Bus 2 and Bus 3

have loads (L) attached. Load, also known as demand, is a point at which power is

taken out of the system. Generators, on the other hand, put power into the system.

There are three transmission circuits in the model, labelled circuit one, circuit two

and circuit three. The components of each circuit are listed in table 2.2 and are real

components as used in the National Grid System [15]. Three busbar system are often

used in power system reliability analysis and model testing, as for example in [5] and

[4], due to both their simplicity and sufficiency as a model without losing real world

characteristics. Three busbar systems are relative simple to understand for a non

power systems specialist in comparison to larger systems. Also, the multi directional

power flow between buses makes the model a realistic model of a true power system,

to the degree of realism that is necessary for this project.
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Figure 2.1: Cumulative distribution functions of maximum daily temperature for each
month in the year 2080, taken from one simulation of the weather generator. It contains
plots of the current (‘c’) climate, low (‘l’) emissions scenario, medium (‘m’) emissions
scenario and high (‘h’) emissions scenario data. Combining one months maximum
daily temperature data, and breaking it into 100 evenly spaced centiles, we can obtain
a cumulative distribution function for that month for a given year (2080). .

Circuit One
1 2×400 mm2 Zebra ACSR OHL

Circuit Two
2 2×570 mm2 Sorbus AAAC 30.5n.m OHL

Circuit Three
3 4×400 mm2 Zebra ACSR OHL

Table 2.2: Specifications of components used in the model.
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Figure 2.2: Three busbar power flow system. This comprises of three buses, three
circuits, two generators (‘G’) and two load points (‘L’).

2.2.1 DC Optimal Power Flow

The optimal power flow described in (1.1) is for the full AC power flow which com-

prises of real and reactive power. This is an optimisation over a non-linear system of

equations. To solve these is it necessary to use iterative methods such as the Newton-

Raphson or Gauss-Seidel method. These methods can be computationally expensive

when converging to accurate solutions, especially for large power systems which are

often quite sparse. For these reason we linearise the AC power flow system to a Direct

Current (DC) power flow system.

It is acceptable to use DC power flow as all of the reliability indices which we

will be examining are associated with real power load curtailments and real power

costs. Therefore, calculating these indices only requires real power related information.

Power flow calculations in practical application indicate that in many systems there

are relatively small (3%-10%) differences between AC and DC power flows. These are

small compared to the possible errors due to uncertainties in basic reliability data such

as hazard and repair rates [5].

DC load flow is based on the following three assumptions [44]:

• Branch resistances are much smaller than branch reactances, thus we neglect
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branch resistances in our calculation. This means we are neglecting real power

losses. To do this we set:

Gij = 0.

in (1.1).

• The voltage angle difference between two buses connected by a line is small so

we make the following two approximations:

sin(δi − δj) = δi − δj
cos(δi − δj) = 0

where δi is the voltage angle at bus i.

• All bus voltage magnitudes are assumed to be constant at 1.0 p.u.:

|Vi| = |Vj| = 1

Using these assumptions the AC optimal power flow (1.1) is now converted to the DC

optimal power flow and takes the form:

min
P g

NB∑
i=1

fi(Pgi)

subject to

Pi =
N∑
j=1

(Bij(δi − δj))

Pgi,min ≤ Pgi ≤ Pgi,max

|Fij| ≤ Fij,max

(2.1)

P g is the set of generators power outputs, fi is the cost function for generator i which

is linear with no start up cost. The values can be seen in table 2.1. Pgi is the power

generated from generator i, NB is the set of buses. Pi is the real power injection with

Pi = Pgi − Pdi ∀i ∈ NB, where Pdi is the demand at bus i. Bij is the susceptance

of the circuit between bus i and bus j. Fij is the power flow between bus i and bus

j. Fij,max is the rating of the circuit connecting bus i to j. Pgi,min and Pgi,max are

the minimum and maximum generation from generator i. A derivation of the AC

power flow equations (1.1), and a more detailed derivation of the DC approximation

is included in appendix B. It has been shown in [45] that the DC optimal power flow

has a unique solution.



CHAPTER 2. STUDY OF CLIMATE CHANGE IN POWER SYSTEMS 41

2.3 Simulations

Simulations were performed on a timescale of one year with time intervals correspond-

ing to one hour. These were sampled 100 times for the same year from the weather

generator, the year 2080.1 The weather data used was the baseline (current) climate

and the future (low emissions, medium emission and high emission scenarios) climate

for the year 2080. The demand data being used is a rescaled version of the 2011

National Grid load profile for the whole of Great Britain [46], adapted to per-unit

figures.

A week snapshot of both the weather data and demand data is shown in figure

2.3, as to give some clarity for the reader. We can see that there is quite a difference

between the current climate and future climates. Averaged over the simulated yearly

data, the mean different between the current climate and low emissions scenario is

2.58◦C, between the current climate and medium emissions scenario is 3.38◦C, and

between the current climate and high emissions scenario is 4.27◦C. The average maxi-

mum differences between the current climate and the emissions scenarios are 16.61◦C,

17.55◦C and 18.73◦C for the low, medium and high emission scenarios respectively.

We can also see the periodicity of the demand data with daytime peaks and nighttime

troughs.

We used (1.7) to calculate the dynamical thermal ratings for the simulated climate

data, for all three circuits. In modelling all weather variables were kept constant

except for temperature. The values used for the constants were those used by the

National Grid in calculating their static conductor ratings [15]. This is done as the

UKCP09 does not include wind forecasts in the weather generator as they believe the

probabilistic projections of changes in wind have too large an uncertainty range. They

also state that there is little agreement between different global climate models on the

effect global warming will have on wind speeds. Therefore, using the wind parameter

that is used by National Grid to calculate the static ratings seemed like the best and

the most reasonable conclusion.

The ratings for each circuit for each of the various climates can be seen in figure 2.4.

1The ‘simulations’ correspond to future weather data that is being generated by the weather
generated. For each piece of weather data we receive the optimisation computed in (2.1) is the
unique solution corresponding to that weather value.
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Figure 2.3: The top plot shows the curves of temperature. This is done for the current,
low emissions scenario, medium emission scenario and high emission scenario. We can
see there is an average rise between the current climate and future climate, with the
rise increasing as the emission scenarios increase. The bottom plot shows the daily
load profile used in this model. The load profile is a rescaled version of the load profile
for 2011 in the National Grid. We can see the periodicity of the demand data with
daytime peaks and nighttime troughs.

It can be seen that the current climate, which has lowest temperatures, corresponds

to higher ratings. The emission scenarios, which have higher average temperatures,

have lower ratings for each of the circuits.

2.3.1 Secure System Simulation

A secure system is defined as one where random component faults are not considered.

For each climate: current, low emissions, medium emissions and future emissions, for

the year 2080, 100 simulations of each weather data were generated from the weather

generator. Each weather data simulation contained 8760 hourly data points so 8760

optimal power flows were calculated for each simulation, with the ratings and load of

the optimal power flows varying. This consisted of 876000 optimal power flows, times

by four as it was done for current climate, low emissions, medium emissions scenario

and high emissions scenario. This simulation is represented by the flow chart as seen

in figure 2.5.

Before discussing results we shall discuss the numerical simulation itself. The

software used to create this model was Matlab [47]. The simulations were ran using
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Figure 2.4: This is the plot of the ratings for circuit one, circuit two and circuit three
respectively. The top plot shows the curves for circuit one, the middle plot shows the
curves for circuit two and the bottom plot shows the curves for circuit three. The
colours correspond to that of figure 2.3, with the current climate being represented
by a blue curve, the low emissions scenario is represented by a red curve, the medium
emissions scenario is represented by a green curve, and the high emissions scenario is
represented by a cyan curve.

Figure 2.5: Flow chart for simulation as described in section 2.3.1. N is the number
of simulations of weather data we want to run and in our case equals 100.



CHAPTER 2. STUDY OF CLIMATE CHANGE IN POWER SYSTEMS 44

two different methods. The first method was using a package of Matlab M-files called

Matpower [48]. The second method was using a built in linear programming function

linprog [49].

Using MatPower

Using ratings calculated in (1.7), we call a software package called Matpower. Mat-

power is a package of Matlab M-files for solving power flow and optimal power flow

problems. A formatted M-file is built which contains all the necessary power flow infor-

mation. Using this file, and the package Matpower, simulations can be run. Matpower

returns to the user the optimal power flow. This consists of a summary of how much

power flowed through each line, what generation was dispatched from each generator,

the voltage angle at each busbar and the cost of the power flow. In the case of load

curtailment, using this information, we can calculate how much of the demand was

not supplied to each load point.

Using linprog

Matlab requires the linprog function to take the form:

min
x
fTx

such that

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(2.2)

where f, x, b, beq, lb and ub are vectors, and A and Aeq are matrices. We thus need

to transform (2.1) into the form of (2.2), which results in:

min
P g

∑
i∈NB

fi(Pgi)

such that

P = B′θ

PB = (D×A)× θ

−PB,max ≤ PB ≤ PB,max

Pgi,min ≤ Pgi ≤ Pgi,max

(2.3)
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P g is the set of generators, fi is the cost function for generator i, which is linear with

no start up cost. The values can be seen in table 2.1. Pgi is the power generated

from generator i, NB is the set of buses, P is the vector of power injections with

Pi = Pgi − Pdi ∀i ∈ N , where Pdk is the demand at bus k. PB is the vector of line

flows. B′ is the nodal admittance matrix. θ is the vector of voltage angles. D is the

adjacency (node-arc) matrix which is a diagonal matrix with element Dii equal to the

admittance of line i. A is the bus adjacency matrix which takes values:

Aij =


1 if circuit j “begins” at bus i

−1 if circuit j “ends” at bus i

0 otherwise

A circuit is said to “begin” at bus i if the power flowing across circuit j is defined

positive for a direction from bus i flowing to the other nodal bus. A circuit is said to

“end” at bus i if the power flowing across circuit j is defined positive for a direction to

bus i flowing from the other nodal bus. θ is the vector of bus voltage angles. PB,max

is the vector of line ratings and is calculated from equations (1.7). Pgi,min and Pgi,max

are the minimum and maximum generation outputted from generator i. All values are

adapted to per-unit.

We can change (2.3) into the form of (2.2) by setting:

x =


P g

PB

θ

 (2.4)

The cost function f is a vector made up of the generator costs and zeros elsewhere.

b = beq and is made up of the demand values and zeros elsewhere, lb and ub take the

same structure of x with the minimum and maximum values respectively.

Aeq = A =

03×4 −I3 (D×A)

−C 03×3 B′


where D,A and B′ have been defined previously. Ii is the identity matrix of square

dimension i, 0i×j is a matrix of zeros with i rows and j columns, and C is the con-

nection matrix which comprises of zeros and ones, where Cik is one if bus i has gen-

eration/demand point k attached to it, otherwise it is zero. Using this method the
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ratings of the circuits can be altered by simply changing the corresponding values in

lb and ub to match the corresponding PB values in x.

Method Differences

Both methods give relatively the same results with slight numerical errors, less than

3% error. These errors are assumed due to rounding. The computation time differs

significantly. To run a simulation of 100 sets of data, with 8760 data points in each

set, took over seven hours and thirty minutes using the MatPower approach on an

Intel i7 quad four processor at 3.40GHz and 3.23 GB of RAM. This is compared to

just under one hour and thirty minutes using linprog on the same machine. This is a

massive reduction in computation time for a simulation which depicts similar results.

From now on, due to the difference in computation time, we will only use the linprog

method.

Indices

There are numerous indices which help us get a better understanding of how well our

power system is working, under a variety of weather conditions and faults. We define

load curtailment as any power which is demanded by the model but not supplied, i.e.

when the full load capacity cannot be delivered. We will examine the following indices

in our results:

• Frequency of load curtailment (FofLC): is the number of times the full load

capacity could not be delivered per year:

FofLC =
8760∑
i=1

1li<Li (2.5)

with 1li<Li as the indicator function defined in (1.12), li is the load delivered in

run i and Li is the load demanded in run i. Load curtailment may occur due to

a circuit having too low a rating or, if random faults are simulated, a component

fault. This index is quite vague as it only indicates how often the total demand

isn’t satisfied. We do not get an idea of whether it was 1% or 100% that was

curtailed. We therefore must also consider an index which measures severity,

and not just likelihood.
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• Load curtailed (LC): is the amount of power which could not be delivered in

the system as a whole:

LC =
8760∑
i=1

(Li − li). (2.6)

This index provides us with a better understanding of the overall severity of the

load curtailments.

• Cost of load curtailment (CofLC): is the cost associated with the demand

which is not satisfied.

CofLC = g(LC). (2.7)

where g(·) is a cost function. Load curtailed is approximately a thousand times

the cost of production [2].

To examine the model economically we will also include the Yearly Cost (YC), which

is the summed hourly cost of each optimal power flow plus the associated value of

security. The value of security is equal to the cost of load curtailment [36].

Results

Table 2.3 highlights some of the relevant indices from the optimal power flow simula-

tion, each containing data for current, future low emissions, future medium emissions

and future high emissions scenarios for the year 2080. For each climate, a simulation

for the 100 data sets were ran. The results not only show the predicted economical

cost but also various reliability indices.

For each index, and each climate, there are two numbers. We have both the mean,

with the standard deviation in brackets. We can see from these indices that there are

substantial increases for the various climates.

Looking first at the frequency of load curtailment, we can see the mean increases

over three fold between the current and low emissions scenario climate, almost four

fold between the current and the medium emissions scenario climate, and almost five

fold between the current and the high emissions scenario climate. Further to this, we

can see that the standard deviation between scenarios increases in even larger steps

in comparison to the mean. This implies there is more variability in the system con-

cerning future scenarios, with the high emissions scenario having the greatest amount

of variability.
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Low Medium High
Climate: Current Emissions Emissions Emissions
FofLC 15.14 (3.64) 50.79(15.73) 57.99 (18.19) 70.82 (24.16)

LC [per unit] 1.65 (0.45) 8.68(3.83) 10.38 (4.43) 13.25 (6.11)
CofLC [£M] 0.71 (0.02) 3.55 (.15) 4.81 (.18) 5.38 (.24)

YC [£M] 52.80 (0.02) 55.94(0.16) 56.78 (0.19) 57.97 (0.26)

Table 2.3: This table is a comparison of results between the current climate, the low
emissions future climate scenario, the medium emissions future climate scenario and
the high emissions future climate scenario. For each index, I have included the mean
and standard deviation (as displayed in brackets).

Examining load curtailment we see that the mean amount curtailed between the

emission scenarios and the current climate is of a higher multiple than the corre-

sponding difference between frequency of load curtailment values. For example, the

frequency of load curtailment between the current climate and high emissions scenario

increases almost five fold, while the load curtailment difference between the current

climate and high emissions scenario increases over eight fold. This means that in the

emission scenarios, on average, load curtailments are more severe than in the cur-

rent climate. Again, the variability of load curtailment between the future emission

scenarios and the current climate increases.

The cost of load curtailment index indicated the same results as the load curtail-

ment index but signifies the monetary value associated to it. The results being that as

the emission scenario increase, so too does the mean cost of load curtailment as well

as the variability in the index.

Finally we have the yearly cost. This includes the cost of the optimal power flow

plus the cost of the load curtailment. There is almost a 6% average increase in the

yearly cost between the low emissions and current climate. The medium emissions

scenario is on average 7% more expensive than the current climate while there is almost

a 10% increase between the high emissions scenario and current climate. Also, the

standard deviation increases eight fold, almost ten fold and over ten fold respectively

for the low emissions, medium emissions and high emissions scenario climate over the

current climate. These results can also be seen in figure 2.6.

From these results we can see the impact the proposed future climate change will

have on both the reliability and the economical cost of a power system. To study how

climate change will affect the resilience of a power system we introduce random fault
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Figure 2.6: This is a plot of the results of table 2.3. The top left plot is the curves for
the frequency of load curtailment, the top right plot is the curves for the amount of
load curtailed, the bottom left plot is the curves for the cost of load curtailment and
the bottom right plots is the curves of yearly cost. This is plotted for the current (‘C’)
climate, the low (‘L’) emissions scenario, the medium (‘M’) emissions scenario and the
high (‘H’) emissions scenario.

scenarios into our modelling and run them under various climate models.

2.3.2 Simulation with Random Faults

In 2.3.1 the simulations we performed were for a secure system meaning they did not

exhibit random faults. We will now introduce random faults into the model. We will

model all failures as independent. Given that we are trying to examine resilience in the

transmission network, we will assume all generators and buses are secure components,

meaning they are fully working and not liable to random faults. We only run fault

simulations on the circuits. In a real power system, the network would be much more

interconnected. For this reason, when modelling the transmission network, assuming

the system has adequate buses and generators is reasonable and well used as if a

generator was to fault, power would be dispatched from another source.

In modelling failures the most simplistic method is to have a constant hazard rate

and constant repair rate. In this modelling we will use a constant repair rate but for

failures the hazard rate will comprise of a time-dependent part and a constant part.
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The term hazard rate and failure have identical implication and are interchanged

throughout this section.

Time-Dependent Hazard Rate

Let us introduce the failure density function, f(t), by first introducing a distribution

function.

Definition For a random variable ξ on a probability space (Ω,F ,P), let F (x) denote

the probability that ξ does not exceed x, that is

F (x) = P ({ω : ξ (ω) ≤ x}) , x ∈ R.

The function F is called the distribution function of the random variable ξ [50].

Definition If there exists a function f : R → R+ such that the distribution function

F of the random variable ξ satisfies

F (x) =

∫ x

−∞
f (u) du

then we call f the density function of the random variable ξ [50].

We shall model the time-dependent hazard rate using the Weibull distribution, as

it is frequently used in reliability analysis [37].

Definition A Weibull distribution is a two parameter distribution with scale param-

eter, λ, and shape parameter, β, and takes the form:

f(t;λ, β) =


β
λ

(
t
λ

)(β−1)
e−(

t
λ
)β t ≥ 0

0 t < 0.

(2.8)

In the case of using the Weibull distribution, the cumulative distribution function

is calculated as:

F (t) =

∫ t

−∞

β

λ

(u
λ

)(β−1)
e−(

u
λ
)βdu = 1− e−(

t
λ
)β (2.9)

Next we shall introduce the reliability function R(t).

Definition A reliability function, R(t), also known as a survival function, calculates

the probability that no failure has occurred before time t.
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From its definition, the reliability function is calculated as:

R(t) = 1− F (t) = 1−
∫ t

−∞
f(u)du. (2.10)

Using (2.9) and (2.10), we can calculate the reliability function as:

R(t) = 1− (1− e−(
t
λ
)β) = e−(

t
λ
)β . (2.11)

Knowing the failure density function and the reliability function we can calculate

the hazard rate function.

Definition The hazard rate function, η(t), is defined as the ratio of the failure density

function to the reliability function.

η(t) =
f(t)

R(t)
. (2.12)

We will denote the hazard rate at time t as ηt, i.e.:

ηt = η(t).

Under the assumption that time-dependent failures follow a Weibull distribution,

the hazard function is calculated as:

ηt =
β

λ

( t
λ

)(β−1)
(2.13)

by substituting (2.8) and (2.11) into (2.12).

Constant Hazard Rate and Repair Rate

When the hazard rates and repair rates are constant the Weibull distribution is equiv-

alent to an exponential distribution distribution.

Definition The exponential distribution is a one parameter distribution which de-

scribes the time between independent consecutive events that occur at a constant rate

ηc, i.e. those that follow a Poisson process (for information on Poisson processes see

[51]).

f(t) =

ηce
−ηct t ≥ 0

0 t < 0

(2.14)
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This distribution has cumulative density function:

F (t) = 1− e−ηct (2.15)

and reliability function

R(t) = e−ηct. (2.16)

Substituting (2.14) and (2.16) into (2.12) we see that the hazard rate function is

constant for the exponential distribution.

ηt =
f(t)

R(t)
=
ηce
−ηct

e−ηct
= ηc. (2.17)

The Weibull distribution takes the same form as the exponential distribution when the

shape parameter takes value one. When β = 1, the constant rate parameter for the

exponential distribution is equal to the inverse of the scale parameter for the Weibull:

ηc =
1

λ
.

Bathtub curve

The hazard rate we shall use in this modelling is more complex than having just a

single hazard rate. It is familiar in reliability analysis and survival analysis and is

called the ‘Bathtub Curve’ [37]. This can be seen in figure 2.7.

The bathtub curve comprises of three parts. Firstly, we have a decreasing function,

known as the early stage or “infant mortality” stage. The second part is a constant

hazard rate and corresponds to the random failures which occur through the life of

the component. The final part of the curve is a wear out, or “aging”, stage. This is an

increasing function and corresponds to the higher rate at which faults normally occur

as they get older. If we combine these three hazard rates we get the observed hazard

rate.

For scale β < 1 in the Weibull distribution, ηt becomes a decreasing function of time

and can be used as the “infant mortality” stage. For β = 1 the Weibull distribution

takes the same form as the exponential distribution and gives a constant hazard rate.

This is then used as the “random” hazard rate. For β > 1, ηt becomes an increasing

function of time and can be used as the “aging” hazard rate. Define the observed

hazard rate ηot as:

ηot = ηβ<1
t + ηβ=1 + ηβ>1

t (2.18)
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Figure 2.7: Bathtub curve hazard rate as used in reliability analysis.

where ηβ<1
t is the hazard rate corresponding to the hazard rate of the “infant mortality”

stage, ηβ=1 corresponds to the “random” hazard rate which is constant, and ηβ>1
t

corresponds to the hazard rate of the wear out stage.

Failure data is not readily available nor is the age of components in the National

Grid system. I have examined failure data from other sources [2], [5] and [37] and

have devised an approximation based on these. In [37] the authors argue that due to

technological advances, and pre-testing of the system using modelling and advanced

computational simulations, the early stage hazard rate, as seen in figure 2.7, is non-

existent in modern times. Following this I will model faults using only the constant

random hazard rate, ηβ=1, and increasing aging hazard rate, ηβ>1
t , as seen in figure

2.8. The observed failure rate for this case is defined as:

ηot = ηβ=1 + ηβ>1
t . (2.19)

The aim of this thesis was not to examine failure rates of components as members

of the project team in WP3 are examining them. For this reason the method used

to approximate the curves in figure 2.8 to data in the literature was a simple trial

and error approximation method in which parameters were guessed in order to find

a suitable curve. Simulations were ran for a range of values corresponding to various

hazard rate functions and it was found that increasing the hazard rate increases the

values of the results. Likewise decreasing the hazard rates decreases the values in the
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Figure 2.8: Bathtub curve for hazard rate with no early “infant mortality” stage.
This hazard rate comprises of two parts, a constant hazard rate corresponding to
the random failures which occur through the life of the component and an increasing
function corresponding to the aging hazard rate.

Failure Rate
Random Failure Rate 2.8e-4

Aging Failure Rate (at 30 years) 6.2e-4
Observed Failure Rate (at 30 years) 9.0e-4

Weibull Parameters
Scale Parameter λ 87600
Shape Parameter β 3.5

Table 2.4: Time-dependent hazard rate data and Weibull parameter data as used in
section 2.3.2. Component age is assumed to average 30 years [ref maybe].

results. The results are comparable as the trend in the results between different climate

scenarios remains the same. Below we discuss the results of a simulation for one hazard

rate function. The values of the hazard rates being used, and the parameters of the

distributions, can be seen in table 2.4.

Outage Model for System Components

When modelling forced outages in power system components the two models deemed

acceptable are: the two state up-down model, and the three state up-derated-down

model [5]. Forced outages are random outages which are not planned in advance and

cannot be altered to a different time. The majority of forced outages occur due to

component failure. We will assume all forced outages can be repaired.

Figure 2.9(a) is the transition diagram of the two state model. A component travels
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(a) Two state transition diagram. (b) Three state transition diagram.

Figure 2.9: In figure 2.9(a) we have the two state transition diagram for a component.
In figure 2.9(b) we have the three state transition diagram for a component.

from a working (up) state to an outage (down) state with failure rate η. It completes

the cycle by travelling from an outage state to a working state with repair rate µ.

Figure 2.9(b) shows the transition diagram for a three state model. A component

can travel from an up state to a down state with failure rate ηdown, and from an up

state to a derated state with failure rate ηderated. In a down state, a component can

transverse to an up state with repair rate µ but cannot transverse to a derated state.

In a derated state, a component can only travel to an up state with repair rate µ and

cannot travel to a down state.

It is generally accepted in reliability analysis to ignore the transition between de-

rated and down states. Reason being: if a component is in a down state it is highly

unlikely to be repaired to a derated state. Almost always the component will be re-

paired to its full up state. Also, given that the repair rate is much higher than the

failure rate, it is much more common for a component to be repaired before making a

transition from a derated to a down state.

In non-severe failures, high-voltage direct current (HVDC) transmission circuits

are known to work in a derated state. HVDC transmission lines are overhead lines

or cables that work at high voltages to transport large amounts of power. They are

normally used over long distances. Direct current is used to minimise losses. Given our

components are 400kV overhead lines we can classify them as high voltage components.

For this reason we shall model our components using a three state model. We will

assume circuits work at 50% of their full capacity in a derated state. Theoretically
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this value could be set to any percentage or indeed be stochastic itself which would

represent the severity of the fault.

To make the capacity of the derated state stochastic we could introduce a uniform

random variable in the interval [0, 1]. Each time a random fault is generated, as

discussed next, a uniform random variable in the interval [0, 1] would be generated

too. The value of this random variable would be the ratio of the capacity of the derated

state to the full capacity of the conductor.

For the three state method, we shall let ηdown = ηderated = ηot where ηot is the

observed time-dependent hazard rate at time t, which is calculated as the sum of

the constant hazard rate and aging hazard rate. This assumes the rate at which a

component traverses to a down state is the same as the rate at which it traverses to

a derated state. These functions could be set differently. However, there is a lack of

derated failure data available given most components utilies record faults using the

two state, up-down, model.

Generating Random Faults

Random faults are generated using the state duration sampling approach [5]. This

involves sampling the probability distribution of the component state duration. The

component state duration is the same as the time to failure distribution, f(t), used in

(2.12). In the event of failure we sample from the time to repair distribution, which is

an exponential distribution. Repeating this we generate the chronological component

state transition process for each component, as seen in figure 2.10.

We begin by specifying the initial component state, normally as the up state.

Next, given the component was initialised to the up state, we want to sample the

failure distribution. For this we need to sample from two distributions as we have

two failure rates. We cannot simply add the failure rates and sample from a given

distribution as the failure rate distributions have different parameters for each of the

stages of the bathtub curve.

We generate two random times to failure: tc and ta. tc corresponds to the time to

failure using the constant “random” failure rate and is sampled from an exponential

distribution. ta is the time to failure corresponding to the “aging” failure rate and

is sampled from a Weibull distribution with shape parameter, β, greater than one.
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The time to failure, tdown, we use for the chronological state transition process is the

minimum of the two randomly generated times to failure tc and ta.

The above method of generating two random times to failure and choosing the

smallest is repeated twice. This is because we are using the three state transition

method. The first run of the method corresponds to generated a time to failure which

transitions the state from up to down, denoted tdown. We must also do a run which

generates a time of transition from up to derated, denoted tderated. Having run the

above method twice to calculate tdown and tderated we choose the smallest and that

decides whether it is transitioned to the down state or the derated state, in time tf ,

where tf = min(tdown, tderated) is the failure time.

Having generated a time to failure, we must now generated a time to repair, tr.

This is generated using an exponential distribution with fixed repair rate µ.

The method used to generate random Weibull and exponential values is the inverse

transform method and a description of this method is included in appendix A.

We repeat the above sampling method of chronological state transition for the

duration of each simulation, T . We repeat this for each component in the system and

for each set of simulated weather variables.

Results

A simulation similar to that in section 2.3.1 was ran but included random faults.

Random faults are generated using the state duration sampling approach as described

above. For each of the four climates: current, future low emissions scenario, fu-

ture medium emissions scenario and future high emissions scenario for the year 2080,

a simulation was run for the 100 data sets, each with its own randomly generated

chronological state transition process for each component. To begin we assume all

components are fully working. Each simulation has one year worth of data points.

Figure 2.10 is a plot of the chronological state transition process for one simulation

for one of the circuits. It can be seen how the component transverses between the up,

down and derated states. A flow chart of the simulation can be seen in figure 2.11.

Table 2.5 shows the results using the same indices as used in table 2.3 for the

secure system simulation. The results in table 2.5 have a similar trend to that of

table 2.3 but are more severe. We can see in table 2.3 that the mean load curtailment
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Figure 2.10: This is the chronological state transition process for one simulation for
one of the circuits. It can be seen how the component transverses between the up,
down and derated states.

Figure 2.11: Flow chart for simulation as described in section 2.3.2
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Low Medium High
Climate: Current Emissions Emissions Emissions
FofLC 78.4 (43.9) 116.3 (48.9) 124.17 (49.3) 138.7 (53.4)

LC [per unit] 78.0 (64.5) 90.1 (67.4) 93.6 (68.7) 98.7 (69.4)
CofLC [£M] 31.2 (25.8) 36.0 (27.0) 37.4 (27.5) 39.5 (27.8)

YCofOPF [£M] 83.3 (25.8) 88.5 (26.9) 90.0 (27.5) 92.1 (27.8)

Table 2.5: This table is a comparison of results between the current climate, the
low emission scenario climate, the medium emissions scenario climate and the high
emissions scenario climate with random faults generated for each component. For each
index, I have included the mean and standard deviation (as displayed in brackets).

difference between the current and low emissions scenario is 11.6 units, the current and

medium emission scenario is 8.73 units, and the current and high emissions scenario

is 15.45 units, for the basic model. This is in contrast to the fault model which has

a mean load curtailment difference of 12.01 units for the current and low emissions

scenario, a difference of 15.55 units for the current and medium emissions scenario and

a difference of 20.68 units for the current and high emissions scenario. Also, the yearly

cost increases by 6.2%, 8% and 11% for the low, medium and high emissions scenario

respectively in comparison to the current climate. These three values are greater than

the respective values for the basic model. This suggests that when random faults are

introduced, the system will become less resilient and more expensive to operate for

each of the given future climate scenario.

When testing the resilience of the system it can be seen that climate change will

impact the system both operationally and economically. To combat this we introduce

a method that should help reduce this impact.

2.3.3 Temporary Overload Method

In power systems operations one of the constraints that needs to be fulfilled for each

component is:

θt ≤ θmax (2.20)

where θt is the temperature of the component at time t and θmax is the maximum safe

operating temperature at normal operation. A straight forward way to satisfy this

constraint is to ensure

|It| ≤ Imax (2.21)



CHAPTER 2. STUDY OF CLIMATE CHANGE IN POWER SYSTEMS 60

C L M H
40

60

80

100

120

140

Climate

F
re

qu
en

cy

C L M H
60

70

80

90

100

Climate

Lo
ad

 C
ur

ta
ile

d

C L M H
2.5

3

3.5

4
x 10

7

Climate

C
os

t o
f L

oa
d 

C
ur

ta
ilm

en
t [

£]

C L M H
2

4

6

8

10
x 10

7

Climate

Y
ea

rly
 C

os
t [

£]

 

 

Mean
Standard Deviation

Figure 2.12: This is a plot of the results of table 2.5. The top left plot shows the mean
frequency of load curtailment, the top right plots the mean amount of load curtailed,
the bottom left plots the cost of load curtailment and the bottom right shows the
mean yearly cost. This is plotted for the current (’C’) climate, the low (’L’) emissions
scenario, the medium (’M’) emissions scenario and the high (’H’) emissions scenario.

where, It is the current at time t and as before Imax is the maximum safe operating

current, known as the rating, as calculated in (1.7). The steady state heat equation,

(1.3), assumes that Imax correspond to θmax. This is true in the sense that if It = Imax

for all times t then:

lim
t→∞

θt = θmax. (2.22)

These maxima vary from conductor to conductor depending on its physical properties.

Therefore, various conductors take different lengths of time to reach their steady state

maximum temperature, θmax, when the maximum current, Imax, is applied.

In reality, the transient temperature adjustment incurs some lag time. As a result

of this lag time, a violation in (2.21) may not lead to a violation in (2.20). It is for

this reason that we will apply the method developed in [16] to the power system.

In [16] the authors examine the short term overloading of components. They

examine how the conductor temperature responds to current violations for various

values of the thermal time constant. The thermal time constant is the length of time

it takes the conductor to reach its steady state temperature. They find that fewest

violations occur for higher values of the thermal time constant. In the paper the

authors concentrate on how the component could be better utilised from an engineering
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perspective but do not examine the economic benefit that using this method could

have. They also examine the method under static ratings and do not consider using

dynamical thermal ratings. As a further development I will apply this method to a

power system in order to examine how a power system could benefit both operationally

and economically. I will do this while implementing dynamical thermal ratings.

Methodology

The transient temperature of a conductor at time t, θt, is described by the first-order

ordinary differential equation:

τ
dΘt

dt
+ Θt =

|It|2

I2max
(2.23)

in which we have used the change of variables

Θt =
θt − θa
θmax − θa

(2.24)

which Θt is the relative temperature, θt is the absolute temperature, θa is the ambient

temperature and τ is the thermal time constant. It is for various values of τ that we

want to examine the model. Tables displaying values for τ for various components can

be found in [52].

We can discretise (2.23) into hourly time steps:

τ(Θt −Θt−1) + Θt−1 =
|I2t |
I2max

. (2.25)

Rearranging (2.25) for It we obtain:

It = Imax

(
τ(Θt −Θt−1) + Θt−1

)1/2
(2.26)

If we were to set τ = 1, (2.26) would become:

It = Imax
√

Θt. (2.27)

To satisfy constraint (2.20) we need:

Θt ≤ 1.

In (2.27), if τ = 1, It must be less than or equal to Imax, the normal conductor rating,

which is the constraint in (2.21). However, if we allow τ > 1, we will see that we can

use ratings higher than IN for short durations, without violating constraint (2.20), as

we can set Θt ≤ 1 which implies θt ≤ θmax from (2.24). We can then examine, for

various values of τ , how well the system operates using this method.
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Figure 2.13: This is a plot of the results of the secure system model using temporary
overloading, as discussed in section 2.3.3. The top left plot shows the mean frequency
of load curtailment, the top right plots the mean amount of load curtailed, the bottom
left plots the cost of load curtailment and the bottom right shows the mean yearly
cost. The red dashed line divides the curve into the respective climates in the order of
current, low emissions scenario, medium emissions scenario, and finally high emissions
scenario. The blue line corresponds to the mean using the temporary overload method.
The dashed black curve in each plot corresponds to the mean curve shown in the
respective plot in figure 2.6, i.e. when τ = 1.

Secure System Model

First we apply the above method to a secure model, as described in section 2.3.1.

We run the simulation for τ = 1, 2, 3, 4, 5 for the four climates: current, low emis-

sions scenario, medium emissions scenario and high emissions scenario. The results

of this simulation are shown in figure 2.13. We can see when τ = 1, the temporary

overload method produces the same results as the basic method used in section 2.3.1.

However, for higher values of τ we can see that all curves decrease for each climate.

This is because the temporary overloads result in less curtailments and thus less load

curtailment costs as more power flows through the lines. For higher values of τ we

obtain even less load curtailments and thus even lower load curtailment costs than

lower values of τ .

Fault Generating Model

Next we look at applying the temporary overload model to a simulation which exhibits

component outages through simulated faults as discussed in section 2.3.2. Again we
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Figure 2.14: This is a plot of the results of the model using temporary overloading
when random faults are considered. The top left plot shows the mean frequency of
load curtailment, the top right plots the mean amount of load curtailed, the bottom
left plots the cost of load curtailment and the bottom right shows the mean yearly
cost. The red dashed line divides the curve into the respective climates in the order of
current, low emissions scenario, medium emissions scenario, and finally high emissions
scenario. The blue line corresponds to the mean using the temporary overload method.
The dashed black curve in each plot corresponds to the mean curve shown in the
respective plot in figure 2.12, i.e. when τ = 1.

apply the temporary overload for τ = 1, 2, 3, 4, 5 for the four climates. The results

of this simulation are shown in figure 2.14. The resultant curves are similar to that

described in figure 2.13. However, it is observable that the method is much more

effective when random faults are considered. This is because load curtailment occurs

more often and more severely. The temporarily overloaded circuits can work to a higher

capacity when more energy is needed to be transported. In the case of the basic model,

temporary overload may occur but not to its fullest capacity. When faults occur, power

has to be redispatched and this puts more pressure on the available lines. Thus the

lines that are available work to a higher capacity and when overloaded, the overload

is more utilised than in a basic model. For higher values of τ we obtain even less load

curtailments and thus even lower load curtailment costs than lower values of τ .
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2.4 Summary

In this chapter we have examined how future climate, predicted by the UKCP09, will

affect the resilience and cost associated with a power system, when using dynamical

thermal ratings. We have seen from section 2.3.1 that future climate change, under

any of the proposed emission scenarios, will both increase the cost and decrease the

operational resilience of the power system.

Next, in section 2.3.2, we examined how the resilience of the system would cope

under simulated faults using dynamical thermal ratings. We used the bathtub curve

model, see figure 2.7, to simulate random faults. This involved sampling from time-

dependent hazard rates. Under this method we saw that the resilience of the power

system would decrease for future climate scenarios, with the lowest resilience associated

to the highest emission scenario. The difference between the load curtailment of the

emission scenarios and the current climate was greater for the fault model than for

the no fault model, even though each climate was subject to the same faults. This

indicated that the current climate could withstand some faults while the emission

scenarios could not. These differences increased with respect to the emission scenario.

In section 2.3.3, given the conclusion on the effect of climate change on a power

system in section 2.3.1 and 2.3.2, we examined looking at a method which allows the

conductor to temporarily go above its rating provided it does not break its maximum

temperature constraint. We saw that this method produces results which are beneficial

in terms of system resilience and economical cost.



Chapter 3

Application of Stochastic

Optimisation in Power Systems

In this chapter we examine the application of stochastic optimisation in power sys-

tems. Stochastic optimisation methods are optimisation methods that involve random

variables [53]. In a power system, that uses dynamical thermal ratings, a lot of uncer-

tainty is present when trying to plan for the future. The problem we are examining is

associated with finding the optimal dispatch of generation for some future time, under

uncertain conditions, in a power system that incorporates interruptible load. The opti-

mal dispatch is determined by minimising the combined cost of all generators that are

available to us, while satisfying stochastic constraints. Interruptible load occurs when

consumers are given advanced notice that they may have their power switched off or

reduced. Interruptible load is pre-arranged with consumers and as such the penalty

to the utilty company is less than the value of load curtailment as discussed in section

2.3 [39]. The uncertainty that we will examine is found in the weather variables used

to calculate the ratings of the circuits. The ratings are calculated using the steady

state heat equation (1.3).

We first examine a one period model which optimises over a future weather variable

for one time step ahead in the future and chooses which generation to dispatch. This

is first done for a single random variable, wind speed, and then for two independent

random variables, wind speed and temperature. Constraints are then added to the

single random variable model in the form of system adequacy and system security

constraints. We then examine adding a ramp rate constraint. A ramp rate is defined

65
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as the maximum change in generation output per time step. This involves looking

back at the dispatch planned in the previous time step and finding a planning value

for the next time step which implies a generation that in range of the previous, as set

by ramp rate.

We next examine a two period model. This involves optimising over two future

time periods ahead in the future, and planning the generation for each time period

accordingly. The second time period is liable to be changed when we perform an

optimisation in the next time step. The optimisations are coupled by ramp rates

constraints and thus cannot be treated as independent. We add the same constraints

to the two period model as in the one period. We conclude with a comparison of the

two methods.

3.1 One Period Model

Imagine the scenario in which we are given a finite set of values from the Met office,

each corresponding to a weather variable for some future time. From this we can

calculate the corresponding rating for each circuit and then, by running an optimal

power flow, set our generation accordingly for the future time period to which the set

of values corresponds to. This is the trivial case as if we know for certain what future

weather values are going to occur we can calculate the thermal ratings and, given we

know the load, run the optimal power flow.

Instead consider the scenario in which a forecast is provided to us from the Met

office. A forecast is defined as a probability distribution over a future weather variable

for some specific time in the future. Now we get a set of probability distributions

for the set of circuits rather than a single value for each circuit as before. Each

set of ratings, set as we have three circuits, from the probability distributions will

have a corresponding optimal power flow. The generation from this power flow is the

generation we would want to set our generators to if we knew that set of ratings was

to occur, i.e. the trivial case. This would only happen if we knew that set of weather

values was to occur. However, since we know the probability of each value occurring,

we can optimise over the forecast by first taking the expectation and from that choosing

which generation is optimal to use. This will then be our optimal dispatch.
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In this model we assume that the components are fully working and not subject to

random faults and the demand in the system is constant. This is done throughout the

literature when modelling dynamical thermal ratings, as discussed in section 1.4.2. It

is regularly assumed in power systems that no randomness is present other than that

we are trying to model, and as such we shall adapt this assumption.

3.1.1 Methodology

The method we use is described below and can be seen as a flowchart in figure 3.1 as

follows:

1. At time t we assume we are given a forecast from the Met office, fXt . All random

variables, Xt, take real values. If we concentrate on one variable, say wind speed,

then we will receive one probability distribution for each time step. But say we

concentrate on two (or more) variables, then we will receive a distribution for

each variable at each time step (or a joint distribution). We will revisit this again

later. Assume for now that we are dealing with only one weather variable, wind

speed. We also assume that the forecast we get at time t, will be a probability

distribution for some weather variable for one time step ahead, t+ 1.

2. Let us define a planning weather value as the weather value we choose at time t to

calculate the ratings used in the optimal power flow which decides the generation

for time t + 1. We denote a planning weather value, at time t, as at. We can

choose to use planning weather values as the weather calculates the ratings which

in turn decides what generation is dispatched so setting a planning weather value

implies setting a planned generation.

3. Every value xk has a corresponding set of dynamical thermal ratings. This set

comprises of a rating for each circuit in the system, calculated using (1.7). With

each set of ratings we can calculate an adapted optimal power flow (AOPF),

given we have preset our dispatch using planning value at. An Adapted Optimal

Power Flow is an optimal power flow that incorporates the interruptible load

cost [39].

4. We want to choose a planning value which minimises our expected adapted
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optimal power flow cost over the random weather variable Xt, and use this

weather value to calculate the ratings which in turn sets our optimal generation.

Define the optimal planning value, a∗t , as the weather value which minimises the

expected cost over the forecast.

Now let’s put this in mathematical terms. We have previously defined the random

weather variable, Xt, and the planning value, at, with optimal planning value denoted

a∗t . Our cost function is defined as:

c(xk, at) = min
P g

NB∑
i=1

fi(Pgi) + ILC(IL)

such that

Pi =
N∑
j=1

(Bij(δi − δj))

|Fij| ≤ Fij,max(xk)

Pgi = Pgi(at)

(3.1)

with cost function c : R × R → R+. NB is the number of buses in the system, P g

is the set of generator power outputs with Pgi : R → R+ is the power generated

from generator i ∈ {1, . . . , NB}. The function fi : R+ → R is the cost function for

generator i which is linear with no start up cost. The coefficients are listed in table 3.2.

ILC : R+ → R+ is the interruptible load function, which is linear. The coefficients

are listed in table 3.2. IL ∈ R+ is the amount of interruptible load. Pi ∈ R is the

real power injection with Pi = Pgi − Pdi ∀i ∈ {1, . . . , NB}, where Pdi ∈ R+ is the

demand at bus i. Bij ∈ R+ is the susceptance of the circuit between bus i and bus j.

δi ∈ [0, π] is the voltage angle at bus i. Fij ∈ R is the power flow between bus i and

bus j. Fij,max : R→ R+ is the maximum safe amount of power that can flow through

the circuit connecting bus i to bus j and is calculate using the value xk and equation

(1.7). This is an adapted optimal power flow using generation from the result of the

optimal power flow using planning value at, with ratings calculated using the value

xk from the random variable Xt. Pgi : R → R+ is the generation from generator i

associated to planning value at and is set by first running an optimal power flow with

ratings Fmax(at) and maximum generation Pgi,max, which is the maximum generation

as set by the manufacturer, and then setting Pgi(at) = P at
gi , where P at

gi is the power

generated from generator i when ratings Fmax(at) are used.



CHAPTER 3. STOCHASTIC OPTIMISATION IN POWER SYSTEMS 69

 

Start 

Obtain forecast and 

discretise (x1,….,xm) 

Set Planning 

values (a1,….,an) 

t= 1  

i= 1  

Run OPF with ratings 

calculated using ai 

j=m?
? 

Calculate c(xj 
 , ai) 

j= 1  

j = j+ 1  

Calculate E[c(Xt , ai)] 

i=n? 

i = i+ 1  

Find minE[c(Xt , a)] 

t=T? 

Stop 

Yes 

Yes 

No 

No 

No 

Yes 

Figure 3.1: Flow chart for method used in section 3.1.1.
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Generator 1 2
Minimum Output (p.u.) 0 0
Maximum Output (p.u.) 10 15

Cost (£/p.u.) 400 800

Table 3.1: Specifications of the maximum and minimum output of the generators and
the cost for generation.

Demand at bus 2 (p.u.) 12.5
Demand at bus 3 (p.u.) 4.875

Interruptible Load Cost (£/p.u.) 1600

Table 3.2: Specifications of the demand and the cost for interruptible load.

The expected cost function using planning value at, and the tth forecast Xt is

defined as:

Vt(at) = E[c(Xt, at)] (3.2)

We want to minimise our expected costs so we the take the minimum over all planning

values:

Vt = min
at

E[c(Xt, at)] (3.3)

Every scale value λt from the Weibull distribution, governing a wind speed forecast

with random variable Xt, has a corresponding optimal planning value a∗t .

Since an adapted optimal power flow is an optimisation we cannot find the expec-

tation by doing an integral as an analytical solution does not exist. We thus do the

expectation numerically by discretising the random variable Xt. This involves choosing

a finite number of discrete values for the random variable, running an adapted optimal

power flow for each value and multiplying each value by its associated probability of

occurring:

E[c(Xt, at)] =
M∑
i=1

P (Xt = xi)× c(xi, at) (3.4)

where P (Xt = xi) is the probability that the random variable Xt takes value xi. M

is the amount of samples we take and xi is the ith sample of the random variable Xt.

This approximates to the continuous case as M →∞, i.e.:

M∑
i=1

P (Xt = xi)× c(xi, at) ≈
∫ ∞
−∞

fXt(x)× c(x, at)dx. (3.5)

for large values of M . The expectation in (3.2) exists as the expected value of the

random variable Xt, which is Weibull distributed, exists and the left hand side of (3.4)
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has absolute convergence as M →∞ (this is equivalent to

∫ ∞
−∞

fXt(x)× |c(x, at)|dx <

∞ for the continuous case).

3.1.2 Single Stochastic Variable Model

For the single stochastic variable model we are considering that the only random

variable is wind speed. Therefore, all other parameters in the calculation of ratings

using (1.7), are constant. The distribution we assume for the forecast is a Weibull

distribution, as defined in (2.8), but with parameter t replaced by x. The Weibull

distribution was chosen as previous research on empirical wind speed data has shown

that using the Weibull distributions when modelling wind speed results in the best

fitting model [54]. The Weibull distribution we use will itself be random. This is done

by using a random variable Λt for the scale, which is calculated as:

Λt = λ0 + εt (3.6)

where λ0 is a fixed constant and εt follows a standard normal distribution.

Definition A normal distribution is a two parameter distribution and takes the form:

f(x;µ, σ2) =
1

σ
√

2π
e−

1
2
(x−µ
σ

)2 (3.7)

where µ is the mean and σ2 is the variance.

A standard normal has mean µ = 0 and variance σ2 = 1, which is denoted as N (0, 1).

We will keep the shape parameter for the Weibull distribution, β, constant as to

examine one source of randomness. Having the scale follow a random walk is similar to

having the mean follow a random walk as the scale value and mean value are directly

proportional, and given as:

mean = λΓ(1 +
1

β
)

where Γ(·) is the gamma function.

λ0 and β have both been calculated using empirical data. The data used was wind

speed data measured from 1973 to 1993 at Heathrow, London and was obtained from

the British Atmospheric Data Centre (BADC) [55]. Using this data we can calculate

the maximum likelihood estimates of the scale and shape parameter for each year

and use the mean of each as λ0 and β respectively. The method of calculating the
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maximum likelihood estimates for the Weibull distribution is included in appendix

C.1. We could have used other methods to calculate λ0 and β such as the method of

moments or least squares method. A comparison between the three methods is given

in [56]. The author concluded that the order of methods based on computational time

are:

1. Least Squares Method.

2. Maximum Likelihood Estimator

3. Method of Moments.

while the order based on accuracy are:

1. Method of Moments.

2. Maximum Likelihood Estimator

3. Least Squares Method.

Choosing the maximum likelihood method seemed like a good choice as it has an

average ranking in both computational time and accuracy.

The random variable Xt is defined as:

Xt ∼Weibull(Λt, β) (3.8)

Figure 3.2 shows the probability density functions of a Weibull distribution, with

varying scale value, λ, and fixed shape parameter, β.

In this model we use the same three busbar model as before, as seen in figure 2.2.

Information about the generation output in the model can be seen in table 3.1 and

information about the demand in the model can be seen in 3.2.

Figure 3.3 shows the expected adapted optimal power flow cost against the wind

speed chosen as the planning value with a∗t , the optimal planning value which corre-

sponds to the minimum expected cost, outlined by a circle. The simulation was run

for the scale values corresponding to that of figure 3.2. The optimal planning value

and corresponding expected adapted optimal flow cost of each simulation can be seen

in table 3.3. We observe the variability in a∗t as well as the variability in Vt due to the

variability of the random scale Λt.
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Figure 3.2: Plot of Weibull distribution probability density functions with varying
scale parameter, λ, and fixed shape parameter, β. The scale parameter λ is plotted
for values 3, 4, 5, 6 and 7 with β fixed equal to 1.5. We can observe that as λ increases,
the range of values for which the probability of occurrence is greater than zero becomes
larger.
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Figure 3.3: Expected adapted optimal power flow cost against the planning wind
speed value, for λ = 4.5. The circle corresponds to the minimum expected adapted
optimal power flow cost. If we draw a vertical line from the circle to the x-axis, this
corresponds to the optimal planning wind speed one should choose. A horizontal line
from the circle corresponds to the expected adapted optimal power flow cost given you
choose the corresponding wind speed. Initially, as the planning wind speed increases,
the expected adapted optimal power flow decreases. This occurs up to a certain point,
which is the optimal planning value, a∗, to choose. After that, the expected cost of
interruptible load comes into account when calculating (3.1) and this is why the curve
begins to increase.
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λt a∗t Vt
3.00 1.63 11366
4.00 2.25 11458
5.00 2.65 11528
6.00 3.06 11619
7.00 3.27 11736

Table 3.3: Optimal planning values and corresponding expected adapted optimal
power flow cost for various values of the scale, λ, corresponding to those of figure
3.2.
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(b) Variation of expected adapted optimal power
flow cost.

Figure 3.4: Figure 3.4(a) shows the optimal planning value (wind speed) to choose for
the 10 time steps we have run in our simulation. This shows how the optimal planning
value can vary under varying forecast fXt(Λt, β). Figure 3.4(b) shows the expected
adapted optimal power flow cost associated with the optimal planning value (wind
speed) chosen for the 10 time steps, corresponding to figure 3.4(a).

Figure 3.4(a) shows the optimal planning wind speed value corresponding to a∗t

for 10 time steps generated using (3.6). The scale values used can be seen in table

3.4. The variability in a∗t is due to the variability in the Weibull distribution we are

using in our forecast as a result of the randomness of the scale value Λt. Figure 3.4(b)

shows the expected adapted optimal power flow cost corresponding to each a∗t shown

in figure 3.3. Again the variability in the expected adapted optimal power flow cost is

due to the same randomness that causes the variability of a∗t . It can be seen how the

curves in figures 3.4(a) and 3.4(b) follow a random walk corresponding to that of Λt.

Time Step: 1 2 3 4 5 6 7 8 9 10
Scale: 4.36 6.25 5.88 4.57 6.07 6.15 5.60 7.64 7.50 7.85

Table 3.4: Scale values for one period simulation.
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3.1.3 Two Stochastic Variables model

We can adapt the previous method for a two stochastic variables model which contains

two sources of randomness: wind speed and ambient temperature. Consider if the Met

office was to provide us with a forecast for both wind and temperature in the form

of two independent probability distributions, a Weibull and a normal distribution

respectively.

Denote the forecast for temperature at time t as the random variable Yt ∼ N (µt, σ
2)

with:

µt = µ0 + ζt (3.9)

where µ0 and σ2 are given constants calculated from empirical data and ζt ∼ N (0, 1).

The data used to calculate µ0 and σ2 was sampled from the weather generator [43].

With this data we can apply the maximum likelihood estimation method. The maxi-

mum likelihood method for a normal distribution is described in appendix C.2.

As before, the Weibull has scale Λt, calculated using (3.6), constant shape β and

has random variable denoted, for time t, as Xt ∼ Weibull(Λt, β).

For this method we must take the expectation over all Xt and Yt and find the

optimal planning value, a∗t = [a∗Xt , a
∗
Yt

], where a∗Xt is the optimal planning value cor-

responding to Xt and a∗Yt is the optimal planning value corresponding to Yt. The

methodology is the same as that in section 3.1.1, but now we optimise over two random

variables and then obtain a set of planning values at = [aXt , aYt ], with aXt correspond-

ing to the planning value for random variable Xt and aYt corresponding to the planning

value for Yt. The cost function is the same as that in (3.1) but when calculating the

ratings using (1.7) we don’t use a constant temperature anymore. The expected total

cost function for planning value at = [aXt , aYt ], given we start with Xt = [Xt, Yt] is:

Vt(at) = E[c(Xt, at)] (3.10)

We want to minimise our expected costs so we need to find the minimum set of planning

values:

Vt = min
at

E[c(Xt, at)] (3.11)

A graphical interpretation of this can be seen in figure 3.5. It can be seen that wind

speed has a much greater affect on the expected adapted optimal power flow cost
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Figure 3.5: This plot shows the expected adapted optimal power flow cost against the
combination of the planning wind speeds and planning temperatures, i.e. the planning
values.

than temperature. This can be seen as the expected adapted optimal power flow cost

decreases relatively gently, as the planning temperature decrease. On the other hand,

the expected adapted optimal power flow decreases significantly as the planning wind

speed is increased. This occurs up to a certain point, which is the optimal plan. After

that it begins to increase quite rapidly before steadying. This rapid increase is due to

the cost of the expected load curtailment being included in the adapted optimal power

flow cost. For the rest of the modelling we will concentrate on the single stochastic

variable model, using wind speed as the random variable.

3.1.4 Adding Constraints to model

So far we have minimised a function over a random variable. When we find the opti-

mal planning value to use, by finding the corresponding minimum expected adapted

optimal power flow value, we do not consider how secure or unsecure the system will

be when using this value. A system operator would like to know what level of secu-

rity he has in his system and be able to control that level if possible. Rather than

telling consumers that they may lose load it would be better to tell them with what

probability a load curtailment may occur.

As discussed in section 1.5, in [5] the authors have a set of indices for which they

can use to evaluate the adequacy in there system. Using one, or a combination of

two or more, we can constrain the adequacy in our system. Also we have discussed
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using probabilistic security assessment. In [35] the authors add a constraint to the

optimal power flow as to control their liability to risk, which in essence is controlling

the security in the system.

We can examine, and control, both adequacy and security in our system by adding

constraints to the stochastic optimisation approach. To examine and control adequacy,

we can calculate individual, or sets of, adequacy indices using (1.11), (1.13) and (1.14).

When running the stochastic optimisation method we then bound these values to a

value we are satisfied with by adding a constraint. To manage risk, we take a similar

approach by putting a constraint on the model. This constraint should contain some

monetary value as to take the form of a risk index, as defined in section 1.5.2.

Adding System Adequacy Constraint

As described in section 1.5.1, there are many indices which measure system adequacy

in the transmission system. In this approach we choose one of the indices and use it

as a constraint in our optimisation model. The index we will use is the probability of

load curtailment (PLC), which was defined in section 1.5.1 as (1.11) as:

PLC =
∑
xt

pi1{li<L}

where pi is the probability of being in system state i, li is the load delivered in state

i, L is load demanded and 1{li<L} is the indicator function as defined in (1.12). The

system states depend on the thermal ratings, which depend on the the forecast Xt.

Thus, we can rewrite the probability of load curtailment as:

PLC =
∑
xi

P (Xt = xi)1{lxi,at<L} (3.12)

where P (Xt = xi) is the probability that the random variable Xt has value xi, where

xi is one of the discrete values taken from Xt. lxi,at is the load delivered when the

random variable Xt takes value xi using planning value at.

We could have chosen any of the indices listed, or any combination of them, but

for the purpose of this example we will focus on only one. If we over constrain the

model it would lead to extensive computation time, particularly for large systems.

Adding extra adequacy constraints doesn’t alter the complexity of the methodology.

Therefore, using one index is sufficient to use in an example.
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We want to ensure that the probability of load curtailment in our power system

is bounded by some value, pmax ∈ [0, 1], which is the maximum probability of load

curtailment we are willing to accept in our system. In section 3.1.2 we found the

optimal planning value but we did not consider the probability of load curtailment

associated with it. Given we choose the optimal planning value a∗, we can calculate

the probability of load curtailment for that value. If it is greater than pmax we reject the

planning value and find the next minimum. We repeat this until we find the lowest

expected adapted optimal power flow cost who’s associated planning value gives a

probability of load curtailment less than pmax. To put mathematically:

Vt = min
at

E[c(Xt, at)]

such that:

PLC =
∑
xi

P (Xt = xi)1{lxi,at<L} ≤ pmax

(3.13)

The method used in this optimisation is a trial and error method. If the optimal

planning value doesn’t satisfy the constraint in (3.13) then we reject the associated

expected adapted optimal power flow and find the next minimum. This is repeated

until we find a minimum that satisfies the constraint. This in portrayed in the flow

chart in figure 3.6.

It has been shown that the optimisation problem (3.1) is convex and has a unique

solution [57]. Given the expectation (3.2) exists, we can conclude that a solution of

(3.13) must also exist. We can see the solution of the problem in figure 3.7. The same

argument holds for (3.14) and (3.15) which are introduced in the following sections.

A graphical interpretation of (3.13) can be seen in figure 3.7 and figure 3.8. For

this simulation the scale values in table 3.4 were used. In figure 3.7 we see that as

the constraint it implemented, the optimal planning value changes to a value which

corresponds to a higher expected adapted optimal power flow cost. The lower the

constraint the higher the expected adapted optimal power flow cost. Figure 3.8 is the

expected adapted optimal power flow cost using the optimal planning value against

various values of pmax. We can see that as pmax becomes smaller, the expected adapted

optimal power flow cost increases. Using this we can compare various expected adapted

optimal power flow costs against the associated probability of load curtailment and

try find one which happily balances reliability and economy. A system controller and
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Figure 3.6: Flow chart for method used in section 3.1.4.
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Figure 3.7: Expected adapted optimal power flow cost against the wind speed chosen
as the planning value, examining both the constrained and non-constrained models.
The constraint on the model is that the probability of load curtailment has to be below
a set limit, pmax. The circle corresponds to the optimal planning value to set in the
non-constrained model while the other symbols correspond to the constrained model
for various values of pmax.

designer must decide on what level of trade off is acceptable between the expected

adapted optimal power flow cost and the probability of load curtailment.

Adding System Security Constraint

Previously we examined adding a constraint to the model which can help us to under-

stand the adequacy of the system. We will now examine adding a constraint which

examines the security of the system. Investigating system security involves investi-

gating the risk that the system is liable to. As stated, risk is defined as the product

of the event’s probability by its impact. When investigating the adequacy of the sys-

tem we used an index which did not take into account the severity of the occurrence.

Probability of load curtailment counts losing 1MWh (Mega-Watt hour) as the same

as counting the loss of 10GWh (Giga-Watt hour). They are both counted as one oc-

currence. Therefore to measure system security, we use a constraint which takes into

account the severity of each event occurring, and not just the likelihood. One area

of power systems under current research is examining the cost of security in a power

system, and whether people would pay extra costs for a higher level of security or

whether they would rather have themselves liable to be the first cut off in the event
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Figure 3.8: Expected adapted optimal power flow cost using the optimal planning
value against various values of the pmax, the maximum probability of load curtailment
we accept.

of a power shortage. At time of writing, this was currently under investigation by

WP5. This idea was the motivation behind [38], as discussed previously, trying to

find a balance between security and economy. We use an index which can allocate a

monetary value to impact so we can calculate the risk in the system. The index we

shall use is the expected cost of load curtailment over the total cost of the adapted

optimal power flow. This will let the system operator define an acceptable percentage

level he is willing to pay for security. For the security constraint the optimisation

function is defined as:

Vt = min
at

E[c(Xt, at)]

such that:

E[CLC] =
∑
xi

P (Xt = xi)× (L− lxi,at)× CLC
PgCg

1{lxi,at<L}

≤ CLCmax

(3.14)

where E[CLC] is the expected cost of load curtailment over the total cost, P (Xt = xi)

is the probability that the random variable Xt has value xi. (L− lxi,at) is the amount

of load that is curtailed when value xi occurs using planning value at, CLC is the cost

of load curtailment, Pg is the power generator output vector and Cg is the generator

output cost vector. CLCmax is the maximum cost of load curtailment over the total

cost that the system operator accepts. The flow chart for this method is the same as
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Figure 3.9: Expected adapted optimal power flow cost against the wind speed chosen
as the planning value, examining both the constrained and non-constrained models.
The constraint on the model is that the expected cost of load curtailment over total
cost had to be below a set limit, CLCmax. The circle corresponds to the optimal
planning value for the non-constrained model while the other symbols correspond to
the constrained model for various values of CLCmax.

that found in figure 3.6.

(3.14) is expressed graphically in figure 3.9 and figure 3.10. For this simulation

the scale values in table 3.4 were used. In figure 3.9 we see that as the constraint is

implemented, the optimal planning value changes to a value which corresponds to a

higher expected adapted optimal power flow cost. Figure 3.10 is a similar graph to

figure 3.8, but with the expected cost of load over total cost as the constraint. We

can see it portrays similar results. As CLCmax increases, the expected cost decreases.

That is to say that as the security decreases, so too does the expected cost. Using this

we can compare various expected costs against the associated expected cost of load

curtailment over total cost and try find a value which happily balances security and

economy. If we want sufficient security which is economically viable a balance between

how secure the system is and how much the consumer is willing to pay must be found.

Examining finding a balance is outside the scope of this thesis but, at time of writing,

was being examined by WP5.
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Figure 3.10: Expected adapted optimal power flow cost using the optimal planning
value against various values of the CLCmax.

Adding Ramp Rate Constraint

We will now introduce a different type of constraint in the model. Previously, when

choosing the optimal planning value, each time step was independent. We did not

consider previous time steps and thus previous planning values. Some generators

cannot instantaneously change from a small output to a large output or vice verse.

Therefore, to consider this factor, we constrain the change in generation by introducing

a ramp rate. A ramp rate, ∆gmax, is defined as the maximum change in output power

in a generator, between time steps. Adding the ramp constraint to (3.3) gives:

Vt = min
at

E[c(Xt, at)]

such that:

0 ≤ |∆g(a∗t−1, at)| ≤ ∆gmax

(3.15)

where ∆g(a∗t−1, at) is the change in generation between the optimisation at time t− 1

and time t using optimal planning value a∗t−1 and planning value at for time t− 1 and

t respectively. For this constraint we must constantly look back to the previous time

step. This is true except for the first time step. When we begin running the model

we make the assumption that all generators are originally off. Therefore, on first run

of the model we can imagine that we are turning the generators on and setting them

to the desired output. Therefore the ramp rate will be zero.

As mentioned previously for the non-constrained model, every scale value λt from
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the Weibull distribution, governing a wind speed forecast, has a corresponding optimal

planning value a∗t . This is calculated using (3.3). Let a′t denote the planning value

which minimises the objective function in (3.15), prior to checking the constraint, for

forecast random variable Xt with scale value λt which is a realisation of Λt, i.e. a′t is

the unconstrained optimal planning value. For time t0:

a∗t0 = a′t0

as we assume the generators are initially off and thus there is no ramp rate constraint.

For time t > t0, having obtained a′t we check the ramp rate constraint

∆g(a∗t−1, a
′
t) ≤ ∆gmax.

If the constraint is satisfied then we set

a∗t = a′t.

If the constraint is not satisfied for the value a′t we can observe the following:

• If λt > λt−1 then a∗t < a′t.

• Likewise, if λt < λt−1 then a∗t > a′t

If

a∗t 6= a′t

the constrained expected adapted optimal power flow will be more expensive then the

unconstrained. The above is shown graphically for time t0 and t1 in figure 3.11. For

this example λt1 > λt0 . We can see for various values of the ramp rate that a∗t < a′t and

this leads to a more expensive expected adapted optimal power flow. The values a′t are

labelled by a ‘o’. Values of a∗t constrained by the ramp rate are labelled with various

symbols. Observing how λt and λt−1 affect the value a∗t will help us to understand the

two period model when we examine it in section 3.2.

The ramp rate constraint was applied to the optimisation run in section 3.1.2, see

figure 3.4. The results produced curves as seen in figure 3.12 and figure 3.13. For this

simulation the scale values in table 3.4 were used. In figure 3.12, we see that as the

ramp rate decreases, the values of the optimal planning value are less varied and at

∆gmax = 0 the curve is a straight horizontal line meaning that the optimal planning
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Figure 3.11: Variation of expected adapted optimal power flow cost for various ramp
rates for two time steps. This figure investigates how the ramp rate constraint affects
the solution in comparison to the unconstrained model.

value is stationary in time. However, this does not result in a constant expected cost.

In figure 3.13 we can see that as the ramp rate increases from zero, the curves converge

towards the original simulation which didn’t have any constraint.

Combining Adequacy and Ramp Rate Constraint

We will now examine the combination of using two constraints, an adequacy constraint

as well as a ramp rate constraint. Using an adequacy or security constraint comprises

of the same methodology. For this example we will use an adequacy constraint. The

adequacy constraint we will impose is on the probability of load curtailment as defined

in (3.12). For two constraints the optimisation problem becomes:

Vt = min
at

E[c(Xt, at)]

such that:

PLC =
∑
xt

P (Xt = xi)1{lxi,at<L} ≤ pmax

0 ≤ |∆g(a∗t−1, at)| ≤ ∆gmax

(3.16)

What this is effectively doing is taking every curve in figure 3.13 and applying the

probability of load curtailment constraint. This simulation was under the same fore-

casts as we used in the optimisation we originally ran, with scale values as in table 3.4,

which is discussed in section 3.1.2 and can be seen in figure 3.4. The best means of



CHAPTER 3. STOCHASTIC OPTIMISATION IN POWER SYSTEMS 86

0 1 2 3 4 5 6 7 8 9
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Time

O
pt

im
al

 P
la

nn
in

g 
V

al
ue

 

 
∆ g

max
 = 0

∆ g
max

 = .1 

∆ g
max

 = .2

∆ g
max

 = .3

∆ g
max

 = .4

∆ g
max

 ≥ .5

Figure 3.12: In this figure we see how adding the ramp rate constraint affects the
optimal planning value in time. This is done for various values of the ramp rate. The
curve with the highest ramp rate has the most variation in values, and is identical to
the non-constraint curve as seen in figure 3.4(a). As the maximum allowable ramp
rate decreases, the variation in the curve decreases until we have a straight line corre-
sponding to ∆gmax = 0. This line is straight as the planning value cannot change in
subsequent steps after being decided in step 1.
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Figure 3.13: In this figure we see how adding the ramp rate constraint affects the
expected adapted optimal power flow cost in time. The curves of the expected adapted
optimal power flow cost for various ramp rates. If the ramp rate constraint was not
imposed in this model then all curves would be identical to that of the curve in figure
3.4(b). We can see however that all curves do follow the same trend and for large
values of the ramp rate the curves are identical to that of figure 3.4(b). As the ramp
rate increases from zero we can see that the curves converge towards the curve identical
to that with no ramp rate constraint. It is evident from this plot that lower ramp rates
result in higher expected adapted optimal power flow costs.
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examining this graphically is to examine each time step individually as a 3-dimensional

plot of expected adapted optimal power flow cost against ramp rate and probability of

load curtailment. The plots of the second and fourth time step can be seen in figure

3.14(a) and figure 3.14(b) respectively. I have plotted the second time step as the

first time step isn’t constrained by the ramp rate constraint and is flat across the axis

corresponding to ∆gmax. The third time step is similar to the second time step with

all solutions available. The fourth time step is the first time step in which solutions

are unavailable. As you more forward in time more solutions become unavailable.

Figure 3.14(a) corresponds to the second time step of the simulation with pmax on

the x-axis, ∆gmax on the y-axis and the expected adapted optimal power flow cost on

the z-axis. It can be seen that the expected adapted optimal power flow cost decreases

as pmax and ∆gmax increase. Again this brings about the need of a system operator

deciding how secure he wants his system and at what economical cost.

Figure 3.14(b) corresponds to the fourth time step of the simulation. We can see

that for some values of ∆gmax and pmax no corresponding expected adapted optimal

power flow costs are present. We saw in figure 3.13 how solutions were always available

for various ramp rate values. However, these solutions may not always satisfy the

reliability constraints.

The lower the ramp rate, the more constrained the model is. This leads to higher

expected adapted optimal power flow values. It also decreases the range of the solution

set for the next time step. The solution set is the range of planning values which

satisfies the ramp rate constraint. In the case where no planning value in the solution

set satisfies the adequacy constraint we say that the solution is unavailable. This

usually occurs for lower values of ∆gmax when there is a decrease in the random scale

variable Λt. For higher values of Λt, the mean wind speed is higher and thus the

probability of the wind speed being above a set planning value is less than it is for

lower values of Λt. Therefore higher values of Λt will have a lower probability of load

curtailment than lower values of Λt for a set planning value. If the solution set is

tightly constrained due to the ramp rate, and the scale value moves from a higher to

a lower value, it may be the case where all solutions in the solution set may not be

able to satisfy the probability of load curtailment constraint.

For example, in the case of ∆gmax = 0, the optimal planning value is constant for
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(a) Expected adapted optimal power flow cost
against ramp rate and adequacy constraint, pmax,
for second time step t = t1.
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(b) Expected adapted optimal power flow cost
against ramp rate and adequacy constraint, pmax,
for fourth time step t = t3.

Figure 3.14: In these plots we see the expected adapted optimal power flow cost
plotted against various ramp rate values and values of the adequacy constraint, pmax.
This can be seen for the second and fourth time step in figure 3.14(a) and figure
3.14(b) respectively. I have plotted the second time step as this is constrained by both
constraints. Was I to plot the first time step, then the second constraint in (3.16)
would not affect the model. Also, the fourth time step shows how the constraints
affect the solution as time passes, in which sometimes solutions aren’t available due
to the constraints.

the duration of the simulation for each value of pmax tested and are the values chosen

in the first time step. If Λt < Λt0 for some t > t0, the values chosen as the optimal

planning values will not satisfy the probability of load curtailment constraints for time

t. If a solution is not available in one time step for a combination of ∆gmax and pmax

then we assume it is not available for subsequent time steps as the ramp rate would

become invalid due to no solution being available in the previous time step and thus

no generation being dispatched.

3.2 Two Period Model

In the previous section, section 3.1, we assumed at each time t we are given a forecast

in the form of a probability distribution for one time step ahead in the future. This

is the one period model as we are optimising over only one time period at each time

step.

Assume now that at time t we are given two forecasts, in the form of two probability

distributions, for the same weather variable, wind speed, but for two different time
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periods. One probability distribution is a forecast for one period ahead and the other

is a forecast for two periods ahead. We define a period as a future time step as to

distinguish between the current time step we are in and the future time step (time

period) we are optimising over. The two forecasts have random variables denoted X
(1)
t

and X
(2)
t for one period and two periods in the future, with planning values denoted

a
(1)
t and a

(2)
t respectively and at = {a(1)t , a

(2)
t }.

For the two period optimisation we want to minimise the sum of the expected

adapted optimal power flows for the two periods. The objective function for the two

period optimisation is defined as:

min
at={a(1)t ,a

(2)
t }

2∑
i=1

E[c(X
(i)
t , a

(i)
t )]. (3.17)

When we do the optimisation we want to find two planning weather values, at =

{a(1)t , a
(2)
t }, one for time t + 1 and one for time t + 2, which minimises the expected

cost of the two adapted optimal power flows. These will be the optimal planning values

denoted a
(1)∗
t and a

(2)∗
t respectively

After running the optimisation, the optimal planning value a
(1)∗
t implies a dis-

patched generation for time t+ 1 and we assume this generation is dispatched at time

t + 1, as in the one period model. However, the dispatch which corresponds to the

two period optimal planning value, a
(2)∗
t , may not be dispatched at time t+ 2. This is

because we receive an updated forecast at time t+ 1.

When we move forward to time t+ 1, we are provided with two new forecasts with

random variables denoted X
(1)
t+1 and X

(2)
t+1 for one and two periods ahead, i.e. time t+2

and t+3. X
(1)
t+1 is an update of X

(2)
t , as we receive X

(2)
t at time t and X

(1)
t+1 at time t+1.

Both forecasts correspond to time t + 2. When we run the optimisation for random

variables X
(1)
t+1 and X

(2)
t+1, we calculate two optimal planning values denoted a

(1)∗
t+1 and

a
(2)∗
t+1 . The optimal planning value a

(1)∗
t+1 is an update of a

(2)∗
t and the generation implied

by the optimal planning value a
(1)∗
t+1 is the generation that is dispatched.

3.2.1 Calculating Scale value

We assume the one period forecast will be more accurate than the two period forecast.

This is an appropriate assumption as in weather forecasting uncertainty increases the

further into the future one is trying to predict [23]. The two forecasts, at time t, for
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time t + 1 and t + 2 will have random variables denoted X
(1)
t and X

(2)
t respectively.

As the forecasts are for wind speed, both forecasts are Weibull distributions:

X
(1)
t ∼ Weibull(Λ

(1)
t , β)

X
(2)
t ∼ Weibull(Λ

(2)
t , β)

(3.18)

where Λ
(1)
t and Λ

(2)
t , the scale parameters, are random variables, and β, the shape

parameter, is constant.

Since the forecasts we are given at time t are for times t + 1 and t + 2, we want

some dependency between the climate conditions now, i.e. when the forecasts are

being calculated, the one period forecast and the two period forecast. It would not be

sensible if the current climate was not taken into consideration when calculating the

one period forecast. Considering what we think is going to happen in the one step

ahead forecast, this information should also be taken into account when calculating

the two period forecast. This is the case for the first time step. When we move into

the next time step, we want to calculate an update of the previous second period

forecast. The updated forecast is based on the new information gained and is now for

one period ahead. We then calculate a two period forecast based on the one period

forecast. A mathematical description is provided below and a graphical interpretation

is provided in figure 3.15.

We calculate the random scales as follows:

• Assume we start at time t0 with fixed scale value, λ0, calculated using the max-

imum likelihood estimator on empirical data, as discussed in section 3.1.2.

• For the one period scale value we add a random increment ε
(1)
t0 ∼ N (0, 1) to λ0.

This is now the scale value for the one period forecast.

• The scale value for the two period forecast is chosen as the one period scale value

plus a random increment ε
(2)
t0 ∼ N (0, 1), where ε

(1)
t0 and ε

(2)
t0 are independent and

identically distributed.

• Moving to subsequent time steps t > t0, we calculate a scale value for the one

period forecast, which is an update of the previous time step’s two period scale

value. We denote the new information obtained between time t − 1 and t as

ut ∼ N (0, 1
2
). We add this ut to the previous time step’s two period scale value.
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Figure 3.15: This figure shows the randomness of the scale value used in the Weibull
Distributions for which we use as forecasts. Each colour segment corresponds to a time
step, in which the scale value for the two future periods is generated. Since the shape
parameter is constant, having the scale value as a random walk is effectively the same
as having the first moment as a random walk since they are directly proportional.

• For time t’s two period scale value we add a random increment ε
(2)
t ∼ N (0, 1) to

the one period scale.

Mathematically we define as:

for t = t0

Λ
(1)
t0 = λ0 + ε

(1)
t0

Λ
(2)
t0 = Λ

(1)
t0 + ε

(2)
t0

for t > t0

Λ
(1)
t = Λ

(2)
t−1 + ut

Λ
(2)
t = Λ

(1)
t + ε

(2)
t

(3.19)

We can write these as conditional and unconditional random variables.

As conditional random variables:

for t = t0

Λ
(1)
t0 ∼ N (λ0, 1)

Λ
(2)
t0 |Λ

(1)
t0 ∼ N (Λ

(1)
t0 , 1)

for t > t0

Λ
(1)
t |Λ

(2)
t−1 ∼ N (Λ

(2)
t−1,

1
2
)

Λ
(2)
t |Λ

(1)
t ∼ N (Λ

(1)
t , 1)

(3.20)
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As unconditional random variables:

for t = t0, . . . , T

Λ
(1)
t ∼ N (λ0, 1 + (1 + 1

2
)(t− t0))

Λ
(2)
t ∼ N (λ0, 2 + (1 + 1

2
)(t− t0)

(3.21)

When we do the optimisation we want to find two planning weather values, at =

{a(1)t , a
(2)
t }, one for time t+ 1 and one for time t+ 2, which minimises the sum of the

expected cost of the two adapted optimal power flows. If we were only to do this, it

would essentially be the same as running the unconstrained single stochastic variable

model in section 3.1 for two time steps. To make the model both more interesting,

complex and realistic we are going to add a constraint to the optimisation which will

couple the optimsation between the two periods.

3.2.2 Adding Ramp Rate Constraint

We have previously examined adding a ramp rate constraint to a one period model.

Now we will examine adding the constraint to a two period model, and the differences

between this constraint for the one and two period model. For the one period, the

ramp rate constraint was added in section 3.1.4 and was defined by (3.15) as:

min
at

E[c(Xt, at)]

such that:

0 ≤ |∆g(a∗t−1, at)| ≤ ∆gmax

In order to couple the two periods in the two period model we add two constraints to

the objective function as defined in (3.17):

min
at={a(1)t ,a

(2)
t }

2∑
i=1

E[c(X
(i)
t , a

(i)
t )]

such that:

0 ≤ |∆g(a
(1)
t , a

(2)
t )| ≤ ∆gmax

0 ≤ |∆g(a
(1)∗
t−1 , a

(1)
t )| ≤ ∆gmax

(3.22)

where ∆g(a
(1)
t , a

(2)
t ) is the change in the generation output implied by the two planning

values a
(1)
t and a

(2)
t , thus coupling the two periods. ∆g(a

(1)∗
t−1 , a

(1)
t ) is the change in the

generation output between the one period optimal planning value at time t−1, denoted
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Time Step: 1 2 3 4 5 6 7 8 9 10
First Period Scale: 4.36 6.25 5.88 4.57 6.07 6.15 5.60 7.64 7.50 7.85
First Period Scale: 6.33 5.93 4.54 6.25 6.36 5.72 7.53 7.86 7.74 7.59

Table 3.5: Scale values for two period simulation.

a
(1)∗
t−1 , and the one period planning value at time t, denoted a

(1)
t . This constraint was

previously examined in section 3.1.4. We do not need to constrain a
(2)
t with a

(2)∗
t−1 as

these planning values are liable to change. For time t = t0 the second constraint

doesn’t apply as we assume the generators are in an off state and as such can be

switched to whatever generation we choose upon start up.

We will first examine this method for a single time step, t0. At time t0 we are

provided with two forecasts. One is for one period in the future and the other is for

two periods ahead in the future. This is effectively only considering the first ramp

rate constraint, ∆g(a
(1)
t , a

(2)
t ) in (3.22), as in the first time step, the second ramp rate

constraint isn’t considered.

Figure 3.16 shows the expected adapted optimal power flow cost against the plan-

ning wind speed values for both periods. The optimal planning values are marked on

the curves and this is done for a range of values of ∆gmax, as portrayed by various sym-

bols. We can see as the ramp rate increases, the minimum expected adapted optimal

power flow, for each period, that satisfies the constraints, decreases. For ∆gmax = 0

the optimal planning values are the same value. This can be seen as one lies vertically

above the other. The sum of these values is the most expensive pair. This will be

more evident in figure 3.17.

Figure 3.17 shows the curves of the minimum expected adapted optimal power flow

cost for both periods, for a range of ramp rates. We can see that as the ramp rate

increases the minimum expected adapted optimal power flow cost for both periods

decreases. The most expensive case is when ∆gmax = 0.

We will now examine the case of subsequent time steps. This includes using both

constraints in (3.22). The results of this simulation can be seen in figure 3.18 and figure

3.19. Table 3.5 contains the scale values used for the simulation. The scale values

for the first period are the same as that used in the one period model simulations

performed in section 3.1, as so we can make some comparisons between results. See

table 3.4 for one period model scale values.
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Figure 3.16: Expected adapted optimal power flow costs for two period model for single
time step with varying ramp rate. This is done for various values of the ramp rate
denoted by the various symbols. We can see as the ramp rate increases, the minimum
expected adapted optimal power flow, for each period, that satisfies the constraints,
decreases. When ∆gmax = 0 the optimal planning values are the same value for each
period and can be seen as they are vertically above each other.
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Figure 3.17: Minimum expected adapted optimal power flow costs for various ramp
rates. We can see as the ramp rate increases, the expected adapted optimal power
flow cost decreases for each time period.
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Figure 3.18 shows the variation of the optimal planning value for various ramp

rates in the two period model for ten time steps. This is similar to the one period

model graph as shown in figure 3.12 but with some different values. When ∆gmax = 0

we can see this produces a straight line as the optimal planning value chosen at time

t0 cannot be changed. We can see this line is different from that in figure 3.12. In this

simulation it takes a higher value. However in others it can take a lower value. This

is due to the influence of Λ
(2)
t0 , which is discussed in more detail further in the section.

In the one period model the planning value corresponding to ∆gmax = 0 is decided by

simply choosing the optimal planning value that corresponds to the minimum expected

adapted optimal power flow cost as the constraint in (3.15) isn’t considered in the first

time step. Thus it is influenced by the value of scale variable Λt0 corresponding to

the forecast Xt0 in the one period model. In the two period model, at time t0 the

second constraint in (3.22) isn’t considered. However the first constraint is and thus

choosing the optimal planning value for ∆gmax = 0 is influenced by the value of Λ
(1)
t0

and Λ
(2)
t0 . If Λ

(2)
t0 takes a value lower than the value of Λ

(1)
t0 than the optimal planning

value corresponding to ∆gmax = 0 will be lower for the two period model than in the

one period model. The opposite is true if the value of Λ
(2)
t0 is higher than the value of

Λ
(1)
t0 .

Figure 3.19 shows the variation of the expected adapted optimal power flow cost

for various ramp rates in the two period model for ten time steps, corresponding to

the curves in figure 3.18. These curves are similar to that of figure 3.13 but do have

some variation due to the second period. At some times the one period model is more

expensive than the two period model while at other times the two period model is

more expensive than the one period model. We discuss this in more detail next.

Effect of Second Period Using Ramp Rate Constraint

We shall now examine how the constraint between the first and second period in the

two period model affects the solution in relation to the one period model. We can do

this comparison as the results we examine for both models are the first period optimal

planning values and expected adapted optimal power flow costs, as seen in figures

3.12, 3.13, 3.18 and 3.19. For the two period model we only plot the first period as

the second period is liable to change in the following time step.
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Figure 3.18: Variation of the optimal planning value for various ramp rates in the two
period model. This is similar to that of figure 3.12 but for the two period model. Only
the first period is plotted as the second period is liable to change in the next time step.
The curve with the highest ramp rate has the most variation in values, and is identical
to the none constraint curve as seen in figure 3.4(a). As the maximum allowable ramp
rate decreases, the variation in the value of the curve decreases until we have a straight
line corresponding to ∆gmax = 0. This line is straight as the planning value cannot
change in subsequent steps after being decided in at time t0.
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Figure 3.19: Variation of the expected adapted optimal power flow cost for various
ramp rates in the two period model. If the second period ramp rate was not constraint
then all curves would be identical to that of figure 3.13. We can see that as the ramp
rate increases, all curves converge towards the curve ∆gmax ≥ 0.5.
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An observation we can make is that if the planning values a
(1)′

t and a
(1)∗
t−1 , where

a
(1)′

t is the first period unconstrained optimal planning value at time t, i.e. the optimal

planning value that satisfies (3.17), and a
(1)∗
t−1 is the first period constrained optimal

planning value at time t − 1, i.e. the optimal planning value that satisfies (3.22) at

time t− 1, do not satisfy the ramp rate constraint:

∆g(a
(1)′

t , a
(1)∗
t−1 ) ≤ ∆gmax (3.23)

or satisfy the constraint but the constraint is binding, then the second period does not

affect the solution. This is because the value a
(1)∗
t−1 cannot be changed at time t and

thus a
(1)′

t must be set within a range of a
(1)∗
t−1 , or be stationary in the case of a binding

constraint, such that the ramp rate constraint is satisfied by the generation implied by

the planning values. Let a
(1)′′

t be the planning value which satisfies constraint (3.23)

meaning a
(1)′′

t takes the value of a
(1)′

t when a
(1)′

t satisfies constraint (3.23). When

satisfying the constraint:

∆g(a
(1)′′

t , a
(2)′

t ) ≤ ∆gmax (3.24)

a
(2)′

t will be brought within range of a
(1)′′

t . Therefore a
(1)′′

t is not changed or affected.

The value that a
(2)′

t is set to, to satisfy (3.24), will be the value set to a
(2)∗
t . We also

set

a
(1)∗
t = a

(1)′′

t

where a
(1)∗
t and a

(2)∗
t are the solutions to the constrained optimisation as in (3.22).

When the planning values a
(1)′

t and a
(1)∗
t−1 satisfy constraint (3.23), and the constraint

is non-binding, then the second period does affect the first period solution. This

only occurs when the unconstrained planning values a
(1)′

t and a
(2)′

t do not satisfy the

constraint:

∆g(a
(1)′

t , a
(2)′

t ) ≤ ∆gmax. (3.25)

If a
(1)′

t and a
(2)′

t satisfy (3.23) and (3.25) then we set:

a
(1)∗
t = a

(1)′

t

a
(2)∗
t = a

(2)′

t

However, if it is the case where a
(1)′

t satisfies (3.23) we set:

a
(1)′′

t = a
(1)′

t
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and investigate how the second period affects the solution.

This investigation involves examining the scale values λ
(1)
t−1, λ

(1)
t and λ

(2)
t which cor-

respond to the forecasts denoted by random variables X
(1)
t−1, X

(1)
t and X

(2)
t respectively.

If:

• λ(2)t > λ
(1)
t > λ

(1)
t−1 then a

(1)∗
t ≥ a

(1)′′

t and a
(2)∗
t ≤ a

(2)′

t .

• λ(2)t > λ
(1)
t−1 > λ

(1)
t then a

(1)∗
t ≥ a

(1)′′

t and a
(2)∗
t ≤ a

(2)′

t .

• λ(1)t > λ
(1)
t−1 > λ

(2)
t then a

(1)∗
t ≤ a

(1)′′

t and a
(2)∗
t ≥ a

(2)′

t .

• λ(1)t−1 > λ
(1)
t > λ

(2)
t then a

(1)∗
t ≤ a

(1)′′

t and a
(2)∗
t ≥ a

(2)′

t .

For each of the λ scenarios, one or both of the inequalities involving the planning

values are strict inequalities, depending on the difference between the planning values.

For the scenarios:

λ
(1)
t−1 > λ

(2)
t > λ

(1)
t

and

λ
(1)
t > λ

(2)
t > λ

(1)
t−1

if constraint (3.23) is satisfied then so too will (3.25) and thus the one period and two

period will have the same values.

We will examine this graphically for the scenario of λ
(1)
t−1 > λ

(1)
t > λ

(2)
t . This is

seen in figure 3.20. In this example a
(1)′

t and a
(1)∗
t−1 satisfy constraint (3.23) and the

constraint is unbinding. It can be seen how the value a
(1)∗
t decreases below the value

a
(1)′′

t , as outlined by the green star and circle respectively. It can also be seen how

the value a
(2)∗
t increases above the value a

(2)′′

t , as outlined by the red star and circle

respectively.

Economically, if the constraint (3.23) isn’t satisfied or is binding then the method

gives the same results as in the one period model. If it is non-binding then we must

examine the λ scenarios listed above. For:

• λ(2)t > λ
(1)
t > λ

(1)
t−1, the two period is cheaper than the one period if a

(1)∗
t > a

(1)′′

t .

Otherwise it is the same.

• λ(2)t > λ
(1)
t−1 > λ

(1)
t , the two period is more expensive than the one period if

a
(1)∗
t > a

(1)′′

t . Otherwise it is the same.
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Figure 3.20: Observing how the second period ramp rate constraint affects the solution
of the one period for λ

(1)
t−1 > λ

(1)
t > λ

(2)
t .

• λ(1)t > λ
(1)
t−1 > λ

(2)
t , the two period is more expensive than the one period if

a
(1)∗
t < a

(1)′′

t . Otherwise it is the same.

• λ(1)t−1 > λ
(1)
t > λ

(2)
t , the two period is cheaper than the one period if a

(1)∗
t < a

(1)′′

t .

Otherwise it is the same.

This can also be seen in figure 3.20 for the case λ
(1)
t−1 > λ

(1)
t > λ

(2)
t . When we say more

expensive or cheaper, we mean in the comparative sense, i.e. if:

a∗t−1 = a
(1)∗
t−1

where a∗t−1 is the optimal planning value using the one period model for time t − 1.

This would be the case if the second period forecast didn’t affect the solution for all

times up to t−1. However, this isn’t always the case as the second period affects some

solutions, for low ramp rates, for time t0. The first time the second period affects the

solution, it will keep the planning value at a higher or lower value until the next time

the second period affects the solution. This is seen graphically in figure 3.21. This

figure is the expected adapted optimal power flow cost for the one period model minus

the first period’s expected adapted optimal power flow costs for the two period model.

This is affectively the curves in figure 3.13 minus the curves in figure 3.19.

In figure 3.21 we can see for the first time step t0 the two period is more expensive

or the same depending on the ramp rate. For the next time step, t1, from table 3.5,
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Figure 3.21: Difference in one period and two period expected adapted optimal power
flow cost. This is the curves for the one period model, as seen in figure 3.17, minus
the curves in the two period model, as seen in figure 3.19

we can see that λ
(1)
t1 > λ

(2)
t1 > λ

(1)
t0 . According to the list above this should make the

two period model the same as the one period. This is the case for some ramp rates

however for lower rates the two period model is cheaper due the constrain between the

previous time step’s optimal planning value, which isn’t the same as the one period

model due to the presence of λ
(2)
t0 . For time t2, we can see that: λ

(1)
t1 > λ

(1)
t2 > λ

(2)
t2 . This

should make the two period model cheaper or equal also. We can see for low values of

∆gmax the difference between the model is positive, although lower than the difference

in time t1. Subsequent time steps follow the scenarios as listed previously. Forwarding

to time t5 we see λ
(1)
t5 > λ

(1)
t4 > λ

(2)
t5 . This corresponds to the more expensive solution

for the two period than the one period, for low ramp rates. However, we can see

that the model doesn’t become more expensive for these ramp rates. The difference

between the one and two period does decrease but does not become negative due to

the positive difference at time t4. The planning value cannot shift by an amount that

would change the two period from cheaper to more expensive in a single time step due

to the ramp rate constraint and as such still stays cheaper than the one period model.
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3.2.3 Adding Reliability Constraint

The above method constrains the ramp rate but does not take into consideration other

probabilistic scenarios such as load curtailment due to the overload of lines. In section

3.1.4 I discuss adequacy and security indices which can be added to the model as

constraints. The same method can be applied to the two period optimisation. All

the same indices as in section 3.1.4 could be used but for this example I have chosen

probability of load curtailment, as defined in (3.12), as to compare with section 3.1.4.

To incorporate this adequacy index into the model we must add another constraint

to (3.22). For the two period model, we check this for the first period only. We do

this because the second period forecast are subject to recalculation in the next time

step so will be checked then. If we wanted to check the second period reliability index

constraint could be added to this method with ease. Implementing (3.12) into (3.22)

the optimisation becomes:

min
at={a(1)t ,a

(2)
t }

2∑
i=1

E[c(X
(i)
t , a

(i)
t )]

subject to:

0 ≤ |∆g(a
(1)
t , a

(2)
t )| ≤ ∆gmax

0 ≤ |∆g(a
(1)∗
t−1 , a

(1)
t )| ≤ ∆gmax∑

xi

P (X
(1)
t = xi)1{l

xi,a
(1)
t

<L} ≤ pmax

(3.26)

3.2.4 Method

The method I used to compute the optimisation in (3.26) is described below and can

be seen as a flow chart in figure 3.22:

Start at time t = t0 and p = 1 (p denoting the time step ahead forecast):

1. Generate Λ
(p)
t .

2. Generate x
(p)
1 , . . . , x

(ip)
m ∼ Weibull(Λ

(p)
t , β).

3. For each planning wind speed, a
(p)
t ∈ a, where a is the set of possible planning

values, calculate:
m∑
j=1

c(x
(p)
j , a

(p)
t )× Pr(X

(p)
t = x

(p)
j )

then find a
(p)∗
t , the optimal planning value.
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Figure 3.22: Flow chart for method used in section 3.2.3.
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4. If p = 1, set p = 2 and go to step 1. Otherwise go to step 5.

5. Check constraints in (3.26). If unsatisfied, reject set, set p = 1 and return to step

3. If unsatisfied for all possible sets at = [a
(1)
t , a

(2)
t ] then model is unable to run

for the given ramp rate, ∆gmax, and maximum probability of load curtailment,

pmax, based on the scale value. End run. If satisfied go to step 6.

6. If t < T : increment t, set p = 1 and go to step 1. Else finish.

When we find the set a∗t that satisfies constraints (3.26) for each time step from t0

to T , we can then find the corresponding expected adapted optimal power flow costs

associated with these planning weather values. We can do this for a range of ramp

rate values, some of which will have solutions and some of which will not depending

on the value of the constraint pmax, the value of the ramp rate ∆gmax and the values

of the scale values used in the forecasts.

3.2.5 Results

We ran a simulation of the method described in section 3.2.3 with scale values as in

table 3.5. Firstly we will examine how the expected adapted optimal power flow cost

changes with varying values of ∆gmax and pmax for fixed time steps. I have shown this

for two different time steps, the second and fourth, t1 and t3, in figure 3.23. It can be

seen in both plots how the expected adapted optimal power flow cost decreases as the

value of pmax, the maximum probability of load curtailment we allow in the system,

increases. In figure 3.23(a) it is evident that there is also a decrease in the expected

adapted optimal power flow cost as the ramp rate increases. In figure 3.23(b) we see

that some of the plot is missing. This is because as t moves forward in time, some

solutions aren’t available. This was previously examined for the one period model in

section 3.1.4. The one period and the two period model have similar results however

not exactly identical. Depending on the scale values at each time step, the two period

may have more or less missing solutions than the one period and may be more or less

expensive for the solutions that are obtained.

Take for example the case when ∆gmax = 0. As discussed in section 3.2.2, the

optimal planning value for the two period model is influenced by Λ
(1)
t0 and Λ

(2)
t0 , while

the one period model’s optimal planning value is influenced by Λt0 only. If Λ
(2)
t0 > Λ

(1)
t0



CHAPTER 3. STOCHASTIC OPTIMISATION IN POWER SYSTEMS 104

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

x 10
4

∆ g
maxp

max

E
[A

O
P

F
]

(a) Expected adapted optimal power flow cost
against ramp rate and adequacy constraint, pmax,
for second time step t = t1.
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(b) Expected adapted optimal power flow cost
against ramp rate and adequacy constraint, pmax,
for fourth time step t = t3.

Figure 3.23: In these plots we see the expected adapted optimal power flow cost for
the first period plotted against various ramp rate values and adequacy constraint,
pmax, values for the two period model. This can be seen for the second, figure 3.23(a),
and fourth, figure 3.23(b), time step. I have plotted the second time step as this
gives evidence to both constraints. Was I plot to the first time step, then the second
constraint in (3.16) would not affect the model. The fourth time step shows how the
constraints affects the solution as time passes.

the optimal planning value is higher for ∆gmax = 0. This makes the model less

conservative as there is a higher probability of wind speeds occurring that are below

the optimal planning value and thus the model is more liable to the risk of having

no solution in further time steps. This is due to the probability of load curtailment

constraint. However, for solutions that do exist they are generally cheaper as the

planned ratings are higher, due to higher planned wind speed values, so more cheaper

generation can be utilised. The opposite is true for Λ
(2)
t0 < Λ

(1)
t0 . This model is more

conservative then the one period model and will generally have more solutions for

various values of pmax and will generally be more expensive than the one period model

as the ratings will be lower and thus more power from the expensive generators will

be dispatched.

We can generalise this for any time step. We saw in section 3.2.2 the effects that

the second period has on the planning values in the two period model. This is turn

affects the solutions that are available to us. We listed scenarios in section 3.2.2 for the

various scale values, and the results of planning values when there was a difference in

the scale values. These results carry forward to when adding an adequacy constraint.

In the case when λ
(2)
t > λ

(1)
t > λ

(1)
t−1, the two period is cheaper than the one period
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if a
(1)∗
t > a

(1)′′

t . Otherwise it is the same. If a
(1)∗
t > a

(1)′′

t then the probability of load

curtailment for the random variable X
(1)
t will be greater than it would be in the one

period model for the same time step. In this case the solution set will have higher

probability of load curtailment and less solutions may be available to which meet the

adequacy constraint in comparison to the one period model. The same is true for

when λ
(1)
t−1 > λ

(1)
t > λ

(2)
t .

The opposite is true for when λ
(2)
t > λ

(1)
t−1 > λ

(1)
t and λ

(1)
t > λ

(1)
t−1 > λ

(2)
t . In

these cases, a
(1)∗
t < a

(1)′′

t and the solution set will be more expensive. However, the

probability of load curtailment for the random variable X
(1)
t will be lower than the

corresponding one period model and the solution set will have lower probability of

load curtailment values. In these cases, more solutions should be available than in the

one period model.

Next we will examine how the expected adapted optimal power flow cost changes

with time and maximum ramp rate, for various value of pmax. This is shown in figure

3.24 which shows three different curves, each ran under the same simulation, each

with a different value of pmax. The top curve represents pmax = 0.0. This is flat for

all values of t and ∆gmax. This is the case as for very low values of pmax, the planning

values are zero, and whether it is a still or windy day doesn’t come into consideration.

This will be the solution regardless of the ramp rate. This is approximately the static

ratings method as using static ratings has a very low probability of overheating. Of

course, true probability of load curtailment can never be zero due to random faults.

The second curve represents pmax = 0.1. We can see that all costs are lower than then

the curve representing pmax = 0.0. In this curve there are pieces missing meaning

solutions weren’t available. These correspond to the missing pieces of the curve in

figure 3.23(b) as well as missing pieces that occur in subsequent time steps. The

bottom curve corresponds to pmax = 0.4. As we can see no pieces are missing in this

curve and solutions are much cheaper. However we pay for that by having a potentially

unreliable power system. This amplifies the fact that a balance between security and

economy must be established.



CHAPTER 3. STOCHASTIC OPTIMISATION IN POWER SYSTEMS 106

0

1.8

3.6

5.4

7.2

9

0

0.2

0.4

0.6

0.8

1
1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

x 10
4

 

Time∆ g
max

 

E
[A

O
P

F
]

p
max

 = 0.0

p
max

 = 0.1

p
max

 = 0.4

Figure 3.24: This figure shows three different curves, each ran under the same simu-
lation, each with a different value of of pmax. The top curve represents pmax = 0. The
second curve represents pmax = 0.1. The third curve represents pmax = 0.4.

3.3 Summary

In this chapter we examined the application of stochastic optimisation methods in

power systems. Being able to plan for future time periods is of great benefit to system

operators. We help the system operator to make uncertain decisions by running a

stochastic optimisation over a random variable and choosing the minimum expected

value. We then find the planning weather value corresponding to the minimum ex-

pected cost as a weather planning value implies generation by calculating dynamical

thermal ratings and running an optimal power flow.

When we found the optimal planning value we did not consider the reliability in the

system when dispatching future generation. To consider reliability we examined the

model under a system adequacy constraint and system security constraint in which the

adequacy or security index is bound by some maximum value that the system operator

is willing to accept. We also examined the scenario of a ramp rate constraint. For

bulk generators a lag time is normally involved for large shifts in the output power.

For each time unit the output can change by a maximum amount known as the ramp

rate. We added this constraint as so the model would have to look back at previous

times steps.

A two period model was developed in which we were given two forecasts to plan for
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the next two time steps, with the second decision liable to change in the subsequent

time step. We introduced a ramp rate which coupled the two periods so we could not

treat them as independent. Finally, an adequacy constraint was introduced as so the

decision made by the system operator would have an adequacy index bound by some

value as so keep the reliability in the system within a safe acceptable level.

The two period model was examined against the one period model. It was found

under some weather forecast scenarios, the two period model can provide more ex-

pensive results while under other scenarios it can provide cheaper results. This was

discussed in section 3.2.2. However, when cheaper results are available the model is

generally less reliable and for some combinations of ∆gmax and pmax, solutions may not

be available that were available for the one period model. The opposite is true for more

expensive solutions. The system is generally more reliable and for some combinations

of ∆gmax and pmax, solutions may be available that previously were not available for

the one period model.



Chapter 4

Conclusions and further work

4.1 Conclusions

The aim of this thesis was to examine and improve the future of the resilience of a

power system through the use of probabilistic methods. This is done by first using

probabilistic risk assessment and comparing the quantitative results for current and

future climate scenarios. Methods were then introduced which were shown to improve

the resilience of the power system under stochastic conditions.

In chapter 2 we examined the resilience of a power system under the future prob-

abilistic climate conditions devised by the Met Office, in the form of the UKCP09 cli-

mate projections. Dynamical thermal ratings coupled with random fault simulations

were used and ran under various climate conditions. We first examined the adequacy

of the system under secure conditions. We found that the future climate scenarios

predicted by the UKCP09 will have a negative effect on a power system resulting in

a higher costing and less reliable system. Next we examined the system from a prob-

abilistic security perspective. This was done by generating random, time-dependent

faults and then running power flows under these conditions. This was done while us-

ing dynamical thermal ratings. It was found that under random fault conditions, the

model performs worse for the future climate scenarios, with load curtailments being

more severe than in the current climate. A method was then implemented to increase

the reliability of the power system. This was the temporary overload method. It was

found the method reduces the effects of climate change on the system and performs

better under more severe conditions.
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In chapter 3 we examined using stochastic optimisation in which we optimised

over the randomness encapsulated in future weather variables as to find the optimal

future generation the system operator should dispatch. By adding constraints the

system operator can choose to plan the dispatch which minimises costs and keeps the

reliability of the system within a predefined set limit. We examine this for a one and

two period model. To make the model more realistic we add ramp rate constraints. In

the one period model it causes the optimisation to look back to the previous time step.

This also occurs for the two period model. Another constraint is added which couples

the first and second period in the two period model so the optimisations cannot be

treated as independent.

Through the use of quantitative methods we have shown the impact that future

climate change will have on a power system that incorporates dynamical thermal rat-

ings. The temporary overload method was introduced which showed that introducing

methods is necessary in order to keep the same level of resilience in a future power

system that is present currently. This was just one method which was examined and

the development of more would help make a future power system resilient. Being able

to plan for future time periods is beneficial to the system operator and it was shown

that using stochastic optimisation methods can help the system operator make deci-

sions, while keeping the reliability of the power system within an acceptable bound. It

is believed the development of these methods would further help the system operator.

The code used in this thesis, along with any data used, is available from the author

upon request.

4.2 Further work

A development of this thesis could be taking in various directions. Firstly, a move

towards using a larger power system would increase the complexity of the methods

used. In chapter 3 a simple trial and error method is used when the constraints are

introduced. In this method minimum values are chosen and if they do not satisfy the

constraints they are rejected and the next minimum is chosen. This is then repeated

until the constraints are satisfied, or until no solution becomes available. If a larger
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power system was introduced this method would not be feasible due to the large com-

putation time involved. Therefore, development of stochastic optimisation methods

would be one area of further work. This could be further developed if we were to in-

troduce the full non-linear AC power flow equations. Only 50% of the National Grid’s

circuits are thermally constrained, the rest are voltage constrained. A move from DC

to AC would not only increase the complexity but also the computation time involved.

Another method to examine would be to develop the two stochastic variable opti-

misation optimisation by involving constraints and subsequent time steps. We could

also examine a two period model which has two random variables in each period. In

the modelling the distribution for wind speed and temperature were independent. An

investigation to correlating these distributions by means of examining joint density

functions could lead to interesting work. Developing the two stochastic variable model

to involve constraints and coupling between periods would result in the need for better

optimisation techniques due to the computational burden involved when discretising

the distributions.

A shift towards renewable energy is expected in the future as non-renewable re-

sources become depleted. One problem associated with renewable energy is that there

is a lot of uncertainty regarding the magnitude of its production, given some forms

rely on stochastic weather conditions such as solar and wind production. Another

development of the work in this thesis would be to make the model more realistic

and introduce more stochasticity in the system. An example would be to introduce

renewable energy in replacement of the generators, or working along side them. A

particularly interesting case would be to have renewable wind energy that would be

generated using the same wind that is used to calculate the ratings.



Appendix A

Generating Random Numbers

Using Inverse Transform Method.

A.1 Inverse Transform Method

If a random variate U follows a uniform distribution in the interval [0, 1] the random

variate X = F−1(U) has a cumulative probability distribution function F .

From this:

P (X ≤ x) = P (F−1(U) ≤ x)

with X = F−1(U). Given F is a cumulative distribution function we know it is a

monotonic increasing function. Therefore:

P (F−1(U) ≤ x) = P (U ≤ F (x)).

As U is uniformly distributed in [0, 1]:

P (U ≤ F (x)) = F (x)

and therefore:

P (X ≤ x) = F (x).

Using this we can generate exponential and Weibull distributed random numbers from

uniformly distributed random numbers.
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A.2 Generating Exponentially Distributed Random

Variables

An exponentially distributed random variate has a probability density function:

f(x) = ηe−ηx

and a cumulative distribution function:

F (x) = 1− e−ηx.

We can use the inverse transform method such that:

U = F (x) = 1− e−ηx

so that:

X = F−1(U) = −1

η
ln(1− U) = −1

η
ln(U)

where U is uniformly distributed random number on interval [0, 1] and X is an ex-

ponentially distributed random number with rate parameter η. If U is in a uniformly

distributed random number between [0, 1] then so too is 1− U and as such are inter-

changeable.

A.3 Generating Weibull Distributed Random Vari-

ables

The probability density function of the Weibull distribution takes the form:

f(x) =
β

λ

(x
λ

)(β−1)
e−(

x
λ
)β .

The cumulative distribution function takes the form:

F (x) = 1− e−(
x
λ
)β .

We can use the inverse transform method such that:

U = F (x) = 1− e−(
x
λ
)β
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so that:

X = F−1(U) = λ[− ln(1− U)]
1
β = λ[− ln(U)]

1
β

where U is uniformly distributed random number on interval [0, 1] and X is a Weibull

distributed random number with scale parameter λ. and shape parameter β



Appendix B

Derivation of AC and DC Optimal

Power Flow

B.1 Derivation of Alternating Current (AC) Opti-

mal Power Flow

Kirchoff’s current law states that the sum of currents meeting at a nodal point is

zero. For a power system, the nodal equations, nodes being buses, are defined from

Kirchoff’s current law as:

I = YV (B.1)

where Ii is the sum of injected currents at bus i, Vi is the bus voltage magnitude of

bus i and Y is the admittance matrix which has values:

Yii =
N∑
k=1
k 6=i

Yik

Yik = Yki = −yik

(B.2)

with:

yik =
1

rik + jxik
(B.3)

where rik is the branch resistance between bus i and bus k and xik is the branch

reactance. N is the number of buses in the system. j denotes the imaginary unit:

j =
√
−1

.
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AC power, Si, is complex and for bus i takes the form

Si = Pi + jQi (B.4)

where Pi and Qi are the sum of the real power and reactive power injected at bus i

respectively with:

Pi = Pgi − Pdi
Qi = Qgi −Qdi

(B.5)

where Pgi and Qgi is the real and reactive power generated from bus i and Pdi and Qdi

is the real and reactive power demand at bus i.

Real and reactive power at bus i is calculated as:

Pi + jQi = ViĪi

= Vi

N∑
k=1

ȲikV̄k

=
N∑
k=1

ȲikViV̄k

(B.6)

where Īi denotes the complex conjugate of Ii. Vi is the voltage magnitude at bus i and

can be wrote as:

Vi = |Vi|∠δi (B.7)

where δi is the voltage angle at bus i.

Yik is the complex admittance and takes the form:

Yik = Gik + jBik (B.8)

where Gik and Bik are the conductance and susceptance respectively for branch con-

necting bus i and k. From (B.2) and (B.3):

Gik = rik
r2ik+x

2
ik

Bik = −xik
r2ik+x

2
ik
.

(B.9)

Substituting (B.7) and (B.9) into (B.6) we obtain:

Pi + jQi =
N∑
k=1

(Gik − jBik)|Vi|∠δi|Vk|∠− δk

=
N∑
k=1

(Gik − jBik)|Vi||Vk|∠(δi − δk)

=
N∑
k=1

|Vi||Vk|(Gik − jBik)[cos(δi − δk) + sin(δi − δk)].

(B.10)
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Therefore:

Pi =
N∑
k=1

|Vi||Vk|[Gik cos(δi − δk) +Bik sin(δi − δk)]

Qi =
N∑
k=1

|Vi||Vk|[Gik sin(δi − δk)−Bik cos(δi − δk)].
(B.11)

The optimal power flow determines the real and reactive power dispatch from

the generators at each bus that minimises the operating cost, while meeting system

operating constraints. This is done by minimising the objective function, fi, while

satisfying (B.11) as equality constraints and satisfying operating limitation constraints

on the voltage, the real and reactive output by each generator and the limitations of

the transmission circuits. The AC optimal power flow is then defined as:

min
P g

N∑
i=1

fi(Pgi)

subject to

Pi =
N∑
k=1

|Vi||Vk|(Gik cos(δi − δk)+ Bik sin(δi − δk))

Qi =
N∑
k=1

|Vi||Vk|(Gik sin(δi − δk)− Bik cos(δi − δk))

Pgi,min ≤ Pgi ≤ Pgi,max

Qgi,min ≤ Qgi ≤ Qgi,max

Vi,min ≤ Vi ≤ Vi,max

|Fik| ≤ Fik,max

(B.12)

where P g is the set of generator power outputs, fi is the cost function for generator

at bus i, Pgi is the power generated from generator i. Pgi,min and Pgi,max are the

minimum and maximum real output power of generator i. Qgi,min and Qgi,max are

the minimum and maximum complex output power of generator i, where Qgi is the

complex power output of generator i. Vi,min and Vi,max are the minimum and maximum

voltage magnitudes at bus i. Fik is the power flow between bus i and bus k. Fik,max is

the maximum safe amount of power that can flow through the circuit connecting bus

i to bus k. This is also known as the circuit rating.

For each bus in the network, we know two out of the following four variables:

Pi, Qi, |Vi| and δi, so that for each bus, there are two equations available for two un-

knowns. This problem is one where we are required to solve simultaneous nonlinear
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equations. Because most power systems are very large interconnections, with many

buses, the number of power flow equations (and thus the number of unknowns) is very

large. For example, a model of the UK power system has a few hundred buses.

The approach to solving the power flow problem, and the optimal power flow

problem, is to use an iterative algorithm. The Newton-Raphson algorithm is the most

commonly used algorithm in commercial power flow programs. This process involves

starting with an initial guess. A linearised system of equations is then solved to find

the next guess, using the initial guess. This method continues, using the previous

guess to find the next guess, until a stopping criteria is met. Usually, this process

requires 5-20 iterations to converge to a satisfactory solution. For large networks, it

is computationally intensive. In the case where we want to re-run simulations for

deterministic security analysis, such as N − 1, we would need to look at using parallel

computing to do the computation in a satisfactory time. A more detailed discussion

of power flow computation can be found in [58] which was used as the source for this

derivation.

B.2 Derivation of Direct Current (DC) Optimal

Power Flow

To compensate for the computational burden of the AC power flow we can linearise

these equations. We can then apply the linear equations to an optimisation function

which will make computation of the optimal power flow much more time efficient.

This is called a DC optimal power flow. Making DC approximations to the power flow

equations consists of using the following three observations [44]:

1. The resistance, rik, of transmission circuits is significantly less than the reactance,

xik. For a given transmission circuit the conductance and susceptance is defined

in (B.9). If rik is small compared to xik, then Gik is small compared to Bik. We

approximate Gik and Bik as:

Gik = 0

Bik = −1
xik
.

(B.13)
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From this (B.11) become:

Pi =
N∑
k=1

|Vi||Vk|(Bik sin(δi − δk))

Qi =
N∑
k=1

|Vi||Vk|(−Bik cos(δi − δk)).
(B.14)

2. For most systems, the difference in angles between bus i and k is small. We

use this to approximate cos(δi − δk) = 1. It then seems logical to approximate

sin(δi − δk) = 0. However, a better approximation is sin(δi − δk) = δi − δk.

Applying this (B.14):

Pi =
N∑
k=1

|Vi||Vk|(Bik(δi − δk))

Qi =
N∑
k=1

|Vi||Vk|(−Bik).

(B.15)

Expanding Bik:

Bik = −bik if i 6= k

Bii = bii +
N∑
k=1
k 6=i

bik if i = k
(B.16)

Substituting (B.16) into (B.15) obtains:

Pi =
N∑
k=1

|Vi||Vk|(Bik(δi − δk))

Qi = −|Vi|2bii +
N∑
k=1

|Vi||bik|(|Vi| − |Vk|)
(B.17)

3. In per unit systems the numerical values of voltage magnitudes |Vi| and |Vk|

are very close to 1.0. Typical range under most operating conditions is 0.95 to

1.05. Given this we can approximate |Vi| = |Vk| = 1. However, we can not

approximate |Vi|− |Vk| = 0 as the difference of two numbers close to 1 can range

significantly. Substituting this into (B.17) we obtain

Pi =
N∑
k=1

(Bik(δi − δk))

Qi = −bii +
N∑
k=1

|Vi||bik|(|Vi| − |Vk|)
(B.18)
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The reactive power flow equation is proportional to the circuit susceptance and

the difference in voltage phasor magnitudes. The maximum difference in voltage

phasor magnitudes will be on the order of 1.05-0.95=0.1. The real power flow

equation is proportional to the circuit susceptance and the difference in voltage

phasor angles. The maximum difference in voltage phasor angles will be, in

radians, about 0.52. From this we can assume:

Pi � Qi. (B.19)

Finding the absolute value of (B.6), we can rewrite as:

|Ii| =
√
P 2
i +Q2

i

|Vi|
. (B.20)

Using approximation of (B.19):

|Ii| ≈
√
P 2
i

|Vi|
=
|Pi|
|Vi|
≈ |Pi| (B.21)

Therefore we neglect Qi in (B.18)

We have eliminated the reactive power terms in (B.12) and we have linearised

the real power flow equation. We can neglect the reactive power constraint and the

voltage magnitude constraint. The transformation from the AC power flow (B.12) to

DC evaluates to:

min
P g

N∑
i=1

fi(Pgi)

subject to

Pi =
N∑
j=1

(Bij(δi − δk))

Pgi,min ≤ Pgi ≤ Pgi,max

|Fik| ≤ Fik,max

(B.22)

which is much simpler to solve than (B.12) as we can use linear programming tech-

niques.



Appendix C

Maximum Likelihood Estimation

Let x1, x2, . . . , xn be a sample of independent and identically distributed observations,

coming from a distribution with unknown probability density function fX(x; θ) where

θ is an unknown parameter and referred to as the true value of the parameter. We can

find an estimation of θ by using the maximum likelihood method. This estimation is

denoted θ̂.

The likelihood function of an independent and identically distributed sample is the

joint density function and is a function of the unknown parameter θ, with the values

xi seen as fixed parameters:

L(θ;x1, . . . , xn) = Πn
i=1fXi(xi; θ). (C.1)

The maximum likelihood of θ is the value of θ that maximises L(θ;x1, . . . , xn), or for

simplicity, maximises lnL(θ;x1, . . . , xn), where ln is the natural logarithm. Moreover,

in the case where the logarithm of (C.1) is differentiable (as is the case for the Weibull

distribution and Normal distribution), we find the value of θ̂ by finding the solution

of:
d lnL(θ;x1, . . . , xn)

dθ
= 0 (C.2)

where θ can be a vector of parameters. Since the logarithm function is strictly increas-

ing then the values which maximise the likelihood will also maximise its logarithm. To

examine is the solution unique we must examine the second derivative of the likelihood.

If it is negative we can conclude the value of θ̂ we found is the unique maximum.
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C.1 Maximum Likelihood Estimation for Weibull

Distribution

To solve for the Weibull parameters fX(x; θ) takes the form of (2.8). Therefore θ =

[λ β]T , where superscript T denotes the transpose. (C.1) takes the form:

L(λ, β;x1, . . . , xn) = Πn
i=1

(β
λ

)(xi
λ

)β−1
exp

(
(
xi
λ

)β
)
. (C.3)

Taking the logarithm of (C.3) and differentiating with respect to λ and β we obtain:

∂ lnL
∂λ

= −n
λ̂

+
1

λ̂2

n∑
i=1

lnxβ̂i = 0

∂ lnL
∂β

=
n

β̂
+

n∑
i=1

lnxi −
1

λ̂

n∑
i=1

xβ̂i lnxi = 0

(C.4)

where λ̂ and β̂ are the maximum likelihood estimates of λ and β respectively. Rear-

ranging (C.4) we can set:

λ̂ =

∑n
i=1 lnxβ̂i
λ

0 =

∑n
i=1 x

β̂
i lnxi∑n

i=1 x
β̂
i

− 1

β̂
− 1

n

n∑
i=1

lnxi

(C.5)

We can then use an iterative method to solve for β̂, such as the Newton-Ramphson

method. Upon evaluation, we can use simple substitution to arrive with an answer for

λ̂.

C.2 Maximum Likelihood Estimation for Normal

Distribution

To solve for the gaussian parameters fX(x; θ) takes the form of (3.7). Therefore

θ = [µ σ2]T , where superscript T denotes the transpose. (C.1) takes the form:

L(µ, σ2;x1, . . . , xn) =
( 1

2πσ2

)n
2

exp
(
−
∑n

i=1(xi − µ)2

2σ2

)
(C.6)

Taking the logarithm of (C.6) and differentiating with respect to µ and σ2 we obtain:

∂ lnL
∂µ

=

∑n
i=1(xi − µ̂)

σ2
= 0

∂ lnL
∂σ2

= − n

2σ2
+

∑n
i=1(xi − µ̂)2

2σ4
= 0.

(C.7)
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where µ̂ and σ̂2 are the maximum likelihood estimates of µ and σ2 respectively. We

can then solve for µ̂ and σ̂2 by first solving for µ̂:

µ̂ =

∑n
i=1 xi
n

(C.8)

and then solving for σ̂2:

σ̂2 =

∑n
i=1(x−µ̂)2

n
(C.9)

and substituting the value of µ̂ found in (C.8) into (C.9). We could also solve first for

σ̂2 by substituting (C.8) into (C.9):

σ̂2 =
1

n

n∑
i=1

x2i −
1

n2

n∑
i=1

n∑
j=1

xixj. (C.10)



Appendix D

Nomenclature for Chapter One

A Area of conductor per unit length.

Bij Susceptance of the circuit between bus i and bus j.

Ci Load curtailed in system state i.

D Diameter of the conductor.

EDLC Expected duration of load curtailment.

EDNS Expected demand not supplied.

f
0
(·) Cost function vector.

fi(·) Cost function for generator i.

Fij Power flow between bus i and bus j.

Fij,max
Maximum safe amount of power that can flow through the circuit con-

necting bus i to bus j.

Gij Conductance of the circuit between bus i and bus j.

g
k
(·) Power flow equality equations.

Hc Altitude of the sun.

hk(·) Power flow inequality equations.

I Current.

Imax Maximum safe operating current.

IN Normal conductor rating corresponding to Imax.

Im(·) Impact.

Kangle Wind direction factor.

kf Thermal conductivity of air.

NB Number of buses.
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Pdi Real power demand at bus i.

P g Vector of real power outputs.

Pgi Real power generated from generator i.

Pi Real power injection at bus i.

pi Probability of being in state i.

PLC Probability of load curtailment.

Qc(·) Forced convection.

Pgi,max Maximum real output power of generator i.

Pgi,min Minimum real output power of generator i.

Qch(·) Convection during high wind speeds.

Qcl(·) Convection during low wind speeds.

Qcn(·) Convection during zero wind speed.

Qdi(·) Reactive power demand at bus i.

Qgi Reactive power generated from generator i.

Qgi,max Maximum reactive output power of generator i.

Qgi,min Minimum reactive output power of generator i.

Qi Reactive power injection at bus i.

Qs Solar heat gain due to radiation from the sun.

Qse Total solar and sky radiated heat flux rate elevation corrected.

R(·) Resistance of conductor.

Risk(·) Risk index.

RiskCij Expected risk of circuit ij

RiskVk Expected risk of bus k.

S Set of all system states.

uk Control variables.

Vi Voltage at bus i.

Vi,max Maximum voltage at bus i.

Vi,min Minimum voltage at bus i.

xk State variables.

Ws Wind Speed.

z Set of weather parameters.

Zc Azimuth of the sun.
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Zl Azimuth of the line.

α Solar absorbability of the conductor.

β Temperature coefficient of resistance.

δi Voltage angle at bus i.

η Hazard Rate.

θa Ambient temperature.

θc Conductor temperature.

θmax Maximum safe operating temperature.

ω Weighting coefficients.

µ Repair rate.

µf Dynamic viscosity of air.

ρf Density of air.

φ Angle at which the wind meets the conductor.



Appendix E

Nomenclature for Chapter Two

A Bus adjacency matrix.

B′ Nodal admittance matrix.

Bij Susceptance of the circuit between bus i and bus j.

C Connection matrix.

D Adjacency (node-arc) matrix.

fi(·) Cost function for generator i.

f(t) Probability density function.

F (t) Cumulative distribution function.

Fij Power flow between bus i and bus j.

Fij,max
Maximum safe amount of power that can flow through the circuit con-

necting bus i to bus j.

Gij Conductance of the circuit between bus i and bus j.

g(·) Load curtailment cost function.

I Identity matrix.

Imax Maximum safe operating current for conductor.

It Current flowing through conductor at time t.

Li Load demanded in run i.

li Load delivered in run i.

NB Number of buses.

P Vector of power injections.

PB Vector of line flows.

PB,max Vector of line ratings.
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Pdi Real power demand at bus i.

P g Vector of real power outputs.

Pgi Real power generated from generator i.

Pgi,max Maximum real output power of generator i.

Pgi,min Minimum real output power of generator i.

Pi Real power injection at bus i.

R(t) Reliability (survival) function.

ta First failure time corresponding to “aging” hazard rate.

tc First failure time corresponding to constant “random” hazard rate.

tderate First failure time to derate state.

tdown First failure time to down state.

tf First failure time. tf = min(tdown, tderate).

tr First time to repair.

Vi Voltage at bus i.

β Shape parameter for Weibull Distribution.

δi Voltage angle at bus i.

ηc Constant hazard rate for exponential distribution.

ηdown Hazard rate for transition from up to down state

ηderate Hazard rate for transition from up to derate state

ηt/η(t) Time dependent hazard rate.

ηβ>1
t

Increasing time dependent hazard rate corresponding to β > 1 in

Weibull Distribution.

ηβ=1
t Constant hazard rate corresponding to β = 1 in Weibull Distribution.

ηβ<1
t

Decreasing time dependent hazard rate corresponding to β < 1 in

Weibull Distribution.

ηot Observed time dependent hazard rate for bathtub curve.

θ Vector of bus voltage angles.

θa Ambient temperature of conductor.

θmax Maximum safe operating temperature of conductor.

θt Absolute temperature of conductor at time t.

Θt Relative temperature of conductor at time t.

λ Scale parameter for Weibull Distribution.

µ Constant repair rate for exponential distribution.
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τ Thermal time constant.



Appendix F

Nomenclature for Chapter Three

at Planning value for time t for one period model.

a∗t Optimal planning value for time t for one period model.

a
(1)
t First period planning value for time t for two period model.

a
(2)
t Second period planning value for time t for two period model.

a
(p)′

t

pth period optimal planning value for time t for unconstrained model

for two period model.

a
(p)′′

t

pth period optimal planning value for time t for that satisfies constraint

(3.23) for two period model.

a
(p)∗
t

pth period optimal planning value for time t for that satisfies constraint

model, i.e (3.23) and (3.25), for two period model.

at
Set of planning values for time t containing aXt and aYt for one period

model.

a∗t
Set of optimal planning values for time t containing a∗Xt and a∗Yt for one

period model.

aXt
Planning value at time t corresponding to random variable Xt for one

period model.

aYt
Planning value at time t corresponding to random variable Yt for one

period model.

a∗Xt
Planning value at time t corresponding to random variable Xt for one

period model.

a∗Yt
Planning value at time t corresponding to random variable Yt for one

period model.

Bij Susceptance of the circuit between bus i and bus j.

CLC Cost of load curtailment.

CLCmax Maximum cost of load curtailment accepted by system operator.

Cg Generator output cost vector.
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c(xk, at) Cost function using sample xk and planning value at.

fi(·) Cost function for generator i.

Fij Power flow between bus i and bus j.

Fij,max(xk)

Maximum safe amount of power that can flow through the circuit con-

necting bus i to bus j calculated using ratings with weather parameters

xk.

Fij,max(at)

Maximum safe amount of power that can flow through the circuit con-

necting bus i to bus j calculated using ratings with weather parameters

at.

fXt(·) Probability density function with random variable Xt.

L Load demanded.

li Load delivered in state i.

lxi,at
Load delivered when the random variable Xt takes value xi using plan-

ning value at.

IL Interruptible load.

ILC(·) Interruptible load function.

M Number of discrete values when discretising Xt.

NB Number of buses.

P Vector of power injections.

PB Vector of line flows.

PB,max Vector of line ratings.

Pdi Real power demand at bus i.

P g Set of real power outputs.

Pgi Real power generated from generator i.

P at
gi Power generated from generator i when ratings Fmax(at) are used.

Pgi,max Maximum real output power of generator i.

Pgi(at)

Generation from generator i associated to planning value at and is

set by first running an optimal power flow with ratings Fmax(at) and

maximum generation Pgi,max

Pi Real power injection at bus i.

P (Xt = xi) Probability random variable Xt takes value xi.

pi Probability of being in system state i

pmax Maximum probability of load curtailment accepted by system operator.

t0 Initial starting time.
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ut Normal random variable at time t with mean zero and variance 0.5.

Vt Minimum expected cost function at time t.

Vt(at) Expected cost function using planning value at, and the tth forecast Xt.

xk Sample k from random variable Xt.

Xt Random variable at time t that follows probability distribution fXt(·).

X
(1)
t Random variable at time t for first period of two period model.

X
(2)
t Random variable at time t for second period of two period model.

Xt Set of random variables at time t containing Xt and Yt.

Yt Random variable at time t that follows probability distribution fYt(·).

β Shape parameter for Weibull Distribution.

Γ(·) Gamma function.

δi Voltage angle at bus i.

∆gmax Maximum ramp rate.

∆g(at−1, at)
Change in generation output between times t− 1 and t using planning

values at−1 and at.

∆g(a
(1)
t , a

(2)
t )

Change in generation output between first and second period at time t

using planning values a
(1)
t and a

(2)
t .

εt Standard normal random variable at time t.

ε
(1)
t

Standard normal random variable at time t for first period scale pa-

rameter in two period model.

ε
(2)
t

Standard normal random variable at time t for second period scale

parameter in two period model.

ζt Standard normal random variable at time t.

λ0 Initial scale parameter for Weibull Distribution.

Λt Random scale parameter for Weibull Distribution at time t.

Λ
(1)
t

Random scale parameter for Weibull Distribution at time t for one

period forecast in two period model.

Λ
(2)
t

Random scale parameter for Weibull Distribution at time t for two

period forecast in two period model.

µ Mean parameter for normal distribution.

µ0 Initial mean parameter for normal distribution.

µt Random mean parameter for normal distribution at time t.

σ Standard deviation of normal distribution.

σ2 Variance of normal distribution.
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