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LOGARITHM AND ESTIMATING THE CONDITION NUMBER∗
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Abstract. The most popular method for computing the matrix logarithm is the inverse scaling
and squaring method, which is the basis of the recent algorithm of Al-Mohy and Higham [SIAM J.
Sci. Comput., 34 (2012), pp. C152–C169]. For real matrices we develop a version of the latter algo-
rithm that works entirely in real arithmetic and is twice as fast as and more accurate than the original
algorithm. We show that by differentiating the algorithms we obtain backward stable algorithms for
computing the Fréchet derivative. We demonstrate experimentally that our two algorithms are more
accurate and efficient than existing algorithms for computing the Fréchet derivative and we also show
how the algorithms can be used to produce reliable estimates of the condition number of the matrix
logarithm.
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1. Introduction. A logarithm of A ∈ Cn×n is a matrix X such that eX = A.
When A has no eigenvalues on R−, the closed negative real line, there is a unique
logarithm X whose eigenvalues lie in the strip { z : −π < Im(z) < π } [25, Thm. 1.31].
This is the principal logarithm denoted by log(A). Under the same assumptions on
A, there is a unique matrix X satisfying X2 = A that has all its eigenvalues in the
open right half-plane [25, Thm. 1.29]. This is the principal square root of A, denoted
by A1/2.

The matrix logarithm appears in a wide variety of applications, of which some re-
cent examples include reduced-order models [6], image registration [8], patch modeling-
based skin detection [29], and aesthetically pleasing computer animations [34]. The
Fréchet derivative of the matrix logarithm has recently been used in nonlinear opti-
mization techniques for model reduction [33].

An excellent method for evaluating the matrix logarithm is the inverse scaling
and squaring method proposed by Kenney and Laub [31], which uses the relationship
log(A) = 2s log(A1/2s) together with a Padé approximant of log(A1/2s). This method
has been developed by several authors, including Dieci, Morini, and Papini [16],
Cardoso and Silva Leite [11], Cheng et al. [12], and Higham [25, sect. 11.5]. Most
recently, Al-Mohy and Higham [5] developed backward error analysis for the method
and obtained a Schur decomposition-based algorithm that is faster and more accurate
than previous inverse scaling and squaring algorithms.
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This work has three main aims: to develop a version of the algorithm of Al-
Mohy and Higham [5] that works with the real Schur decomposition when A is real,
to extend both versions of the algorithm to compute the Fréchet derivative, and to
develop an integrated algorithm that first computes log(A) and then computes one
or more Fréchet derivatives with appropriate reuse of information—in particular, to
allow efficient estimation of the condition number of the logarithm.

We recall that the Fréchet derivative of a function f : Cn×n → Cn×n at a point
A ∈ Cn×n is a linear function mapping E ∈ Cn×n to Lf (A,E) ∈ Cn×n such that

(1.1) f(A+ E)− f(A)− Lf(A,E) = o(‖E‖),
and if Lf (A,E) exists then it is unique. As well as providing information about
the sensitivity of f in a given direction E, the Fréchet derivative has an intimate
connection with the relative condition number of f ,

(1.2) cond(f,A) = lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖ .

Throughout this paper the norm is any subordinate matrix norm. The condition
number has the explicit representation [25, Thm. 3.1]

(1.3) cond(f,A) =
‖Lf(A)‖‖A‖
‖f(A)‖ ,

where

(1.4) ‖Lf(A)‖ = max
E �=0

‖Lf(A,E)‖
‖E‖ .

Hence if we can compute Lf (A,E) for any given E then we can estimate cond(f,A)
using a norm estimator. Important in this regard is the representation, following from
the linearity of Lf (A,E) in E,

(1.5) vec(Lf (A,E)) = Kf(A) vec(E),

where Kf(A) ∈ Cn2×n2

is called the Kronecker form of the Fréchet derivative and vec
is the operator that stacks the columns of a matrix on top of each other [25, Chap. 3].

The rest of this paper is organized as follows. In section 2 we describe the outline
of our algorithm for computing the Fréchet derivative of the matrix logarithm. We
derive backward error bounds in section 3 and use them to choose the algorithmic
parameters. Estimation of the condition number is discussed in section 4, and detailed
algorithms are then given in section 5 for the complex case and section 6 for the real
case. We compare our algorithms to current alternatives theoretically in section 7
before performing numerical experiments in section 8. Our conclusions are presented
in section 9.

2. Basic algorithm. We begin by deriving the basic structure of an algorithm
for approximating the Fréchet derivative of the logarithm. The idea is to Fréchet dif-
ferentiate the inverse scaling and squaring approximation log(A) ≈ 2srm(A1/2s − I),
where rm(x) is the [m/m] Padé approximant to log(1+x), following the computational
framework suggested in [2], [26, sect. 7.4].

We will need two tools: the chain rule for Fréchet derivatives, Lf◦g(A,E) =
Lf (g(A), Lg(A,E)) [25, Thm. 3.4] and the inverse function relation for Fréchet deriva-
tives Lf (X,Lf−1(f(X), E)) = E [25, Thm. 3.5].
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Applying the inverse function relation to f(x) = x2, for which Lx2(A,E) = AE+
EA, we see that L = Lx1/2(A,E) satisfies A1/2L+LA1/2 = E. Furthermore, using the
chain rule on the identity log(A) = 2 log(A1/2) gives Llog(A,E) = 2Llog(A

1/2, E1),
where E1 = Lx1/2(A,E). Repeated use of these two results yields Llog(A,E) =
2sLlog(A

1/2s , Es), where E0 = E and

(2.1) A1/2iEi + EiA
1/2i = Ei−1, i = 1: s.

For suitably chosen s and m we then approximate Llog(A,E) ≈ 2sLrm(A1/2s − I, Es).
The following outline algorithm will be refined in the subsequent sections.
Algorithm 2.1. Given A ∈ Cn×n with no eigenvalues on R−, E ∈ Cn×n, and

nonnegative integers s and m, this algorithm approximates log(A) and the Fréchet
derivative Llog(A,E).

1 E0 = E
2 for i = 1: s

3 Compute A1/2i .

4 Solve the Sylvester equation A1/2iEi + EiA
1/2i = Ei−1 for Ei.

5 end
6 log(A) ≈ 2srm(A1/2s − I)

7 Llog(A,E) ≈ 2sLrm(A1/2s − I, Es)

Higham [23] showed that among the various alternative representations of rm, the
partial fraction form given by

(2.2) rm(X) =
m∑
j=1

α
(m)
j (I + β

(m)
j X)−1X,

where α
(m)
j , β

(m)
j ∈ (0, 1) are the weights and nodes of the m-point Gauss–Legendre

quadrature rule on [0, 1], respectively, provides the best balance between efficiency
and numerical stability. To calculate the Fréchet derivative Lrm we differentiate (2.2)
using the product rule. Recalling that Lx−1(X,E) = −X−1EX−1 we obtain

Lrm(X,E) =
m∑
j=1

α
(m)
j (I + β

(m)
j X)−1E − α

(m)
j β

(m)
j (I + β

(m)
j X)−1E(I + β

(m)
j X)−1X

=

m∑
j=1

(
α
(m)
j (I + β

(m)
j X)−1E

)(
I − β

(m)
j (I + β

(m)
j X)−1X

)

=

m∑
j=1

α
(m)
j (I + β

(m)
j X)−1E(I + β

(m)
j X)−1.(2.3)

3. Backward error analysis. We now develop a backward error result for
the approximation errors in lines 6 and 7 of Algorithm 2.1. Define the function
h2m+1 : C

n×n �→ C
n×n by h2m+1(X) = erm(X) −X − I, which has the power series

expansion [5]

(3.1) h2m+1(X) =

∞∑
k=2m+1

ckX
k.

We need the following backward error bound from [5, Thm. 2.2] for the approximation
of the logarithm. In the following ρ denotes the spectral radius.
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Table 3.1

Maximal values θm of αp(X) such that the bound in (3.2) for ‖ΔX‖/‖X‖ does not exceed u.

m 1 2 3 4 5 6 7 8

θm 1.59e-5 2.31e-3 1.94e-2 6.21e-2 1.28e-1 2.06e-1 2.88e-1 3.67e-1

m 9 10 11 12 13 14 15 16

θm 4.39e-1 5.03e-1 5.60e-1 6.09e-1 6.52e-1 6.89e-1 7.21e-1 7.49e-1

Theorem 3.1. If X ∈ Cn×n satisfies ρ(rm(X)) < π then rm(X) = log(I +X +
ΔX), where, for any p ≥ 1 satisfying 2m+ 1 ≥ p(p− 1),

(3.2)
‖ΔX‖
‖X‖ ≤

∞∑
k=2m+1

|ck|αp(X)k−1

for αp(X) = max(‖Xp‖1/p, ‖Xp+1‖1/(p+1)). Furthermore, ΔX = h2m+1(X).
The αp(X) values were first introduced and exploited in [3]. We recall that

αp(X) ≤ ‖X‖ and that αp(X) 	 ‖X‖ is possible for very nonnormal X , so that
bounds based upon αp(X) are potentially much sharper than bounds based solely
on ‖X‖.

Values of θm := max{ t : ∑∞
k=2m+1 |ck|tk−1 ≤ u }, where u = 2−53 ≈ 1.1× 10−16

is the unit roundoff for IEEE double precision arithmetic, were determined in [5] for
m = 1: 16 and are shown in Table 3.1. It is shown in [5] that ρ(X) < 0.91 implies
ρ(rm(X)) < π. Since we will need αp(X) ≤ θ16 = 0.749 and as ρ(X) ≤ αp(X) for all
p, the condition ρ(rm(X)) < π in Theorem 3.1 is not a practical restriction. Now we
give a backward error result for the Fréchet derivative computed via Algorithm 2.1.

Theorem 3.2. If X ∈ Cn×n satisfies ρ(rm(X)) < π then

(3.3) Lrm(X,E) = Llog(I +X +ΔX,E +ΔE),

where ΔX = h2m+1(X) and ΔE = Lh2m+1(X,E).
Proof. From Theorem 3.1 we know that rm(X) = log(I +X +ΔX) with ΔX =

h2m+1(X). Using the chain rule we obtain

Lrm(X,E) = Llog

(
I +X + h2m+1(X), E + Lh2m+1(X,E)

)
=: Llog(I +X +ΔX,E +ΔE).

Note that Theorems 3.1 and 3.2 show that rm(X) = log(I + X + ΔX) and
Lrm(X,E) = Llog(I + X + ΔX,E + ΔE) with the same ΔX , so we have a single
backward error result encompassing both rm and Lrm . It remains for us to bound
‖ΔE‖, which can be done using the following lemma [25, Prob. 3.6], [31].

Lemma 3.3. Suppose f has the power series expansion f(x) =
∑∞

k=1 akx
k with

radius of convergence r. Then for X,E ∈ C
n×n with ‖X‖ < r,

(3.4) Lf (X,E) =

∞∑
k=1

ak

k∑
j=1

Xj−1EXk−j .

We would like to use Lemma 3.3 with f = h2m+1 to obtain a bound similar to
(3.2) in terms of αp(X). Unfortunately this is impossible when X and E do not
commute (which must be assumed, since we do not wish to restrict E). To see why,
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Table 3.2

Maximal values βm of ‖X‖ such that the bound in (3.5) for ‖ΔE‖/‖E‖ does not exceed u, and
the values of μm.

m 1 2 3 4 5 6 7 8

βm 2.11e-8 2.51e-4 5.93e-3 2.89e-2 7.39e-2 1.36e-1 2.08e-1 2.81e-1
μm 4.00e0 6.00e0 8.06e0 1.03e1 1.27e1 1.54e1 1.85e1 2.20e1

m 9 10 11 12 13 14 15 16

βm 3.52e-1 4.17e-1 4.77e-1 5.30e-1 5.77e-1 6.18e-1 6.54e-1 6.86e-1
μm 2.59e1 3.02e1 3.49e1 4.00e1 4.56e1 5.15e1 5.79e1 6.48e1

note that the sum in (3.4) contains terms akX
j−1EXk−j with j ranging from 1 to k.

The next lemma implies that ‖X‖, for example, is always a factor in the norm of one
of these terms for some E, which means that a bound for ‖ΔE‖ in terms of αp(X)
cannot be obtained.

Lemma 3.4. For A,B,E ∈ C
n×n, ‖AEB‖ ≤ ‖A‖‖E‖‖B‖ and the bound is

attained for a rank-1 matrix E.
Proof. Only the attainability of the bound is in question. Using properties of

the norm ‖ · ‖D dual to ‖ · ‖ [24, sect. 6.1, Probs. 6.2, 6.3] it is straightforward to
show that the bound is attained for E = xy∗, where ‖Ax‖ = ‖A‖‖x‖ and ‖B∗y‖D =
‖B∗‖D‖y‖D.

Instead of trying to bound ‖ΔE‖ in terms of αp(X), we take norms in (3.4) with
f = h2m+1 (see (3.1)) to obtain

(3.5)
‖ΔE‖
‖E‖ ≤

∞∑
k=2m+1

k|ck|‖X‖k−1.

Define βm = max
{
θ :

∑∞
k=2m+1 k|ck|θk−1 ≤ u

}
, so that ‖X‖ ≤ βm implies that

‖ΔE‖/‖E‖ ≤ u. Table 3.2 shows the values of βm, calculated using the Symbolic
Math Toolbox for MATLAB. In each case we have βm < θm, as is immediate from
the definitions of βm and θm.

It is possible to obtain unified bounds for ‖ΔX‖ and ‖ΔE‖ in terms of αp(X) if
we change the norm. For αp(X) < 1 there exists ε > 0 and a matrix norm ‖ · ‖ε such
that

‖X‖ε ≤ ρ(X) + ε ≤ αp(X) + ε < 1.

Taking norms in (3.1) using ‖ · ‖ε and taking ‖ · ‖ = ‖ · ‖ε in (3.5) we obtain

‖ΔX‖ε
‖X‖ε ≤

∞∑
k=2m+1

|ck|
(
αp(X) + ε

)k−1
,
‖ΔE‖ε
‖E‖ε ≤

∞∑
k=2m+1

k|ck|
(
αp(X) + ε

)k−1
.

Unfortunately, the norm ‖ ·‖ε is badly scaled if ε is small, so these bounds are difficult
to interpret in practice.

We will build our algorithm for computing the logarithm and its derivative on
the condition αp(X) ≤ θm that ensures that ‖ΔX‖/‖X‖ ≤ u. The bound (3.5) for
‖ΔE‖/‖E‖ is generally larger than u due to (a) ‖X‖ exceeding αp(X) by a factor
that can be arbitrarily large and (b) the extra factor k in (3.5) compared with (3.2).
The effect of (b) can be bounded as follows. Suppose we take ‖X‖ ≤ θm and define
μm by
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(3.6) μm =
1

u

∞∑
k=2m+1

k|ck|θk−1
m .

Then ‖X‖ ≤ θm implies that ‖ΔE‖/‖E‖ ≤ μmu. Table 3.2 gives the values of μm,
which we see are of modest size and increase slowly with m. The algorithm of [5]
normally chooses a Padé approximant of degree m = 6 or 7, for which we have the
reasonable bound ‖ΔE‖/‖E‖ ≤ 18.5u.

Since our main use of the Fréchet derivative is for condition number estimation,
for which only order of magnitude estimates are required, it is reasonable to allow
this more liberal bounding on the backward error ΔE. We will see in the numerical
experiments of section 8 that in fact our algorithm gives very accurate estimates of
the Fréchet derivative in practice.

4. Condition number estimation. In the Frobenius norm the condition num-
ber (1.3) can be computed by explicitly computing the Kronecker form of the Fréchet
derivative and taking its 2-norm. Indeed, using definitions (1.4) and (1.5),

‖Lf(A)‖F = max
E �=0

‖Lf(A,E)‖F
‖E‖F = max

E �=0

‖Kf(A) vec(E)‖2
‖ vec(E)‖2 = ‖Kf(A)‖2.

However, this is an expensive computation that requires O(n5) flops. We will therefore
estimate the condition number, and for this we will use the block 1-norm estimation
algorithm of Higham and Tisseur [28], which is available in MATLAB as function
normest1. This algorithm estimates the 1-norm of an n× n matrix B by evaluating
products of B and B∗ with n× t matrices, where t is a parameter whose significance
is explained below. In the 1-norm we have [25, Lem. 3.18]

(4.1)
‖Lf(A)‖1

n
≤ ‖Kf(A)‖1 ≤ n‖Lf(A)‖1.

Using the block 1-norm estimation algorithm, we now employ the same idea as [2,
Alg. 7.3] and approximate ‖Llog(A)‖1 ≈ ‖Klog(A)‖1.

Algorithm 4.1. This algorithm estimates the 1-norm of Klog(A) using Fréchet
derivative evaluations of the logarithm at A.

1 Apply [28, Alg. 2.4] with parameter t = 2 to the Kronecker matrix
B = Klog(A), noting that By = vec(Llog(A,E)) and B∗y = vec(L�

log(A,E)),

where vec(E) = y.

Here, 	 denotes the adjoint, and as the logarithm has a real power series expan-
sion, L�

log(A,E) = Llog(A
∗, E) = Llog(A,E

∗)∗ and so it is straightforward to compute
L�
log(A,E). Known properties of Algorithm 4.1 are that it requires 4t Fréchet deriva-

tive evaluations on average and is rarely more than a factor of 3 away from ‖Klog(A)‖1
[25, p. 67]. Higher values of t give greater accuracy at the cost of more derivative
evaluations.

In the next two sections we give algorithms that compute log(A) and one or more
Fréchet derivatives Llog(A,E) and L∗

log(A,E), making appropriate reuse of informa-
tion from the logarithm computation in the calculation of the Fréchet derivatives.

5. Complex algorithm. We now give an algorithm to compute the matrix
logarithm and one or more Fréchet derivatives and adjoints of Fréchet derivatives
using complex arithmetic, building on Algorithm 2.1. As in [5] and [25, Alg. 11.9]
we begin with a reduction to Schur form A = QTQ∗ (Q unitary, T upper triangu-
lar), because working with a triangular matrix leads to a generally smaller operation
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count and better accuracy. We will use the relation Llog(A,E) = QLlog(T,Q
∗EQ)Q∗

[25, Prob 3.2]. Our algorithm employs the inverse scaling and squaring algorithm in
[5, Alg. 4.1] and reduces to it if all the lines associated with the Fréchet derivative are
removed.

Algorithm 5.1. Given A ∈ Cn×n with no eigenvalues on R− and one or more
E ∈ Cn×n this algorithm computes the principal matrix logarithm X = log(A) and
either of the Fréchet derivatives Llog(A,E) and L�

log(A,E).

1 Compute a complex Schur decomposition A = QTQ∗.
2 T0 = T
3 Determine the integers s and m ∈ [1, 7] as in [5, Alg. 4.1], at the same time

computing (and storing, if Fréchet derivatives are required) the matrices

Tk+1 = T
1/2
k , k = 0: s− 1 using the recurrence of [9], [25, Alg. 6.3].

4 R = Ts − I
5 Replace the diagonal and first superdiagonal of R by the diagonal and

first superdiagonal of T
1/2s

0 − I computed via [1, Alg. 2] and [27, (5.6)],
respectively.

6 X = 0
7 for i = 1:m

8 Solve (I + β
(m)
j R)U = α

(m)
j R for U by substitution.

9 X ← X + U
10 end
11 X ← 2sX
12 Replace diag(X) by log(diag(T0)) and the elements of the first

superdiagonal of X with those given by [25, (11.28)] taking T = T0.
13 X ← QXQ∗

14 . . . To compute Llog(A,E) for a given E:
15 E0 = Q∗EQ
16 for i = 1: s
17 Solve the Sylvester equation TiEi + EiTi = Ei−1

for Ei by substitution.
18 end
19 L = 0
20 for j = 1:m

21 Compute Y = α
(m)
j (I + β

(m)
j R)−1Es(I + β

(m)
j R)−1 by substitution.

22 L← L+ Y
23 end
24 L← 2sQLQ∗

25 . . . To compute L�
log(A,E) for a given E:

26 Execute lines 15–24 with E replaced by E∗ and take the
conjugate transpose of the result.

Cost: 25n3 flops for the Schur decomposition plus (3 + (s+m)/3)n3 flops for X
and (8 + 2(s+m))n3 flops for each Fréchet derivative evaluation.

6. Real algorithm. If A and E are real and A has no eigenvalues on R− then
both log(A) and Llog(A,E) will be real. To avoid complex arithmetic we can modify
Algorithm 5.1 to use a real Schur decomposition A = QTQT , where Q is orthogonal
and T is upper quasi-triangular, that is, block upper triangular with diagonal blocks of
dimension 1 or 2. The use of real arithmetic increases the efficiency of the algorithm,
since a complex elementary operation has the same cost as two or more real elementary
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operations. It also avoids the result being contaminated by small imaginary parts due
to rounding error and halves the required intermediate storage.

The main difference from Algorithm 5.1 is that since T is now upper quasi-
triangular it is more complicated to replace the diagonal and superdiagonal elements
of the shifted square root and final log(T ) with more accurately computed ones.

Consider first the computation of T 1/2s − I. To avoid cancellation we recompute
the 1 × 1 diagonal blocks using [1, Alg. 2] and the 2 × 2 blocks using [5, Alg. 5.1],
modified to use the recurrence of [22] for the square roots. We also recompute every
superdiagonal (i, i + 1) element for which the (i, i) and (i + 1, i + 1) elements are in
1× 1 blocks using [27, (5.6)].

As in the complex version of the algorithm, it is desirable to replace the diagonal
blocks of the computed log(T ) with more accurately computed ones. When the real
Schur decomposition is computed using dgees from LAPACK [7], as in MATLAB,
the 2× 2 diagonal blocks are of the form

B =

[
a b
c a

]
,

where bc < 0 and B has eigenvalues λ± = a± i(−bc)1/2. Let θ = arg(λ+) ∈ (−π, π).
Using the polynomial interpolation definition of a matrix function [25, Def. 1.4] we
can derive the formula

(6.1) log(B) =

[
log(a2 − bc)/2 θb(−bc)−1/2

θc(−bc)−1/2 log(a2 − bc)/2

]
,

which can also be obtained by specializing a formula in [16, Lem. 3.3]. Since bc <
0, (6.1) involves no subtractive cancellation; so long as we can compute the scalar
logarithm and the argument θ accurately we will obtain log(B) to high componentwise
accuracy.

Algorithm 6.1. Given A ∈ Rn×n with no eigenvalues on R− and one or more
E ∈ Rn×n this algorithm computes the principal matrix logarithm X = log(A) and ei-
ther of the Fréchet derivatives Llog(A,E) and L�

log(A,E), using only real arithmetic.

1 Compute a real Schur decomposition A = QTQT .
2 T0 = T
3 Determine the integers s and m ∈ [1, 7] as in [5, Alg. 4.1], at the same time

computing (and storing, if Fréchet derivatives are required) the matrices

Tk+1 = T
1/2
k , k = 0: s− 1 using the recurrence of [22], [25, Alg. 6.7].

4 R = Ts − I

5 Replace the diagonal blocks of R by the diagonal blocks of T
1/2s

0 − I
computed by [1, Alg. 2] for the 1× 1 blocks and [5, Alg. 5.1]
(with square roots computed by [25, (6.9)]) for the 2× 2 blocks.

6 For every i for which tii and ti+1,i+1 are in 1× 1 diagonal blocks,
recompute ri,i+1 using [27, (5.6)].

7 Evaluate X = 2srm(R) as in lines 6–11 of Algorithm 5.1.
8 Recompute the block diagonal of X using (6.1) for the 2× 2 blocks of T0 and

as log((T0)ii) for the 1× 1 blocks.
9 For every i for which xii and xi+1,i+1 are in 1× 1 diagonal blocks,

recompute xi,i+1 using [25, (11.28)].
10 X ← QXQT

11 . . . To compute Llog(A,E) or L�
log(A,E) for a given E,

execute lines 15–24 or line 26 of Algorithm 5.1.
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The cost of this algorithm is essentially the same as Algorithm 5.1, except that
the flops are now operations on real (as opposed to complex) operands.

7. Comparison with existing methods. In this section we give a comparison
between our algorithms and those currently in the literature for computing the matrix
logarithm and its Fréchet derivatives, concentrating mainly on computational cost.
Section 8 contains a variety of numerical experiments comparing the accuracy of the
algorithms empirically.

7.1. Methods to compute the logarithm. We have obtained a new algo-
rithm for computing the logarithm of a real matrix (Algorithm 6.1). The relevant
comparison is between the following three methods:

• iss schur complex: the complex Schur decomposition-based Algorithm 5.1,
which is equivalent to [5, Alg. 4.1] when just the logarithm is required.
• iss schur real: our real Schur decomposition-based Algorithm 6.1, which
is the real analogue of iss schur complex.
• iss noschur: the transformation-free inverse scaling and squaring algorithm
[5, Alg. 5.2] that requires only matrix multiplications and the solution of
multiple-right-hand-side linear systems. This algorithm uses only real arith-
metic when A is real.

In general, iss noschur is much more expensive than iss schur real. For exam-
ple, if s = 3 and m = 7 in both iss schur real and iss noschur and if iss noschur

requires five iterations (a typical average) to compute each square root (for which it
uses a Newton iteration) then the operation counts are approximately 31n3 flops for
iss schur real and 79n3 flops for iss noschur.

It is worth noting that there is no real arithmetic version of the Schur–Parlett
algorithm that underlies the MATLAB function logm, since the real Schur form is
incompatible with the blocking requirements of the block Parlett recurrence [14], [25,
sect. 9.4].

7.2. Methods to compute the Fréchet derivative. We now compare our al-
gorithms iss schur complex and iss schur real to existing methods for computing
the Fréchet derivative.

Kenney and Laub give an algorithm based on a special Kronecker representation of
Llog that solves Sylvester equations and employs a Padé approximant to the function
tanh(x)/x [32], [25, Alg. 11.12]. We will refer to this as the Kronecker–Sylvester
algorithm. The minimum cost of this algorithm per Fréchet derivative, assuming a
Schur decomposition is used and that s is such that ‖I−T 1/2s‖1 ≤ 0.63, is the cost of
solving s+9 triangular Sylvester equations and computing 16 products of a triangular
matrix with a full matrix. This is to be compared with a smaller maximum cost for
iss schur complex and iss schur real of s triangular Sylvester equations and 2m
(≤ 14) multiple-right-hand-side triangular substitutions. Moreover, the value of s for
iss schur complex and iss schur real is generally smaller and potentially much
smaller than for the Kronecker–Sylvester algorithm, and the latter always requires
complex arithmetic, even when A and E are real.

Another method, which we denote by dbl size, evaluates the left-hand side of
the formula

(7.1) log

([
A E
0 A

])
=

[
log(A) Llog(A,E)

0 log(A)

]
,

from [25, (3.16)], by iss schur real (or iss schur complex when A or E is com-
plex). This method has the disadvantages that it doubles the problem size and that
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FRÉCHET DERIVATIVE OF THE MATRIX LOGARITHM C403

the entire logarithm of the block matrix must be reevaluated if we require further
Fréchet derivatives, greatly increasing the cost of this method. On the other hand,
the backward error analysis of [5] fully applies, giving a sharper backward error bound
than (3.5) for the Fréchet derivative. However, backward error is now measured with
respect to the matrix [A E

0 A ] rather than A and E separately. Moreover, it is unclear
how to scale E: its norm is arbitrary because Llog is linear in its second argument,
but the size of ‖E‖ affects both the accuracy and the cost of the inverse scaling and
squaring method. In the absence of a better approach, we have left E unscaled in our
tests.

We mention two other methods. Dieci, Morini, and Papini [16] propose using the
inverse scaling and squaring approach with adaptive Simpson’s rule applied to the

integral Llog(A,E) =
∫ 1

0 ((A− I)t+ I)−1E((A− I)t+ I)−1 dt. Since we are interested
in computing Llog to full precision the tolerance for the quadrature rule needs to be
set to order u, and this makes the method prohibitively expensive, as each function
evaluation requires two multiple-right-hand-side solves. As noted in [16], this method
is more appropriate when only low accuracy is required, so we will test it only for
condition number estimation.

We also mention the complex step approximation Llog(A,E) ≈ Im log(A+ihE)/h
suggested by Al-Mohy and Higham [4], which is valid for real A and E and has
error O(h2); unlike finite difference approximations it does not suffer from inherent
cancellation, so h can be taken very small. Since the argument A + ihE of the
logarithm is complex we must use Algorithm 5.1 for the evaluation. As noted in
[4], this approximation is likely to suffer from numerical instability if used with an
algorithm that intrinsically employs complex arithmetic such as Algorithm 5.1. This
is indeed what we observed, with relative errors of order at best 10−7, so we will not
consider this approach further.

8. Numerical experiments. Our numerical experiments are performed in
either MATLAB R2012a or Fortran in IEEE double precision arithmetic. Throughout
the experiments we use a set of 66 (mostly 10×10) test matrices, extending those used
in [5] and [25, sect. 11.7] which include matrices from the literature, the MATLAB
gallery function, and the Matrix Computation Toolbox [20].

8.1. Real versus complex arithmetic for evaluating the logarithm. Our
first experiment compares, on the 60 real matrices in the test set, the three algorithms
defined in section 7.1. The matrices are used in real Schur form. We compute all
relative errors in the 1-norm and for our “exact” logarithm we diagonalize A in 250-
digit precision, using the Symbolic Math Toolbox, and use the relationship log(A) =
V log(D)V −1, where A = V DV −1, rounding the result to double precision. If A is
not diagonalizable then we add a small random perturbation of order 10−125 so that
with high probability we can diagonalize it without affecting the accuracy of the final
rounded solution [13].

Figure 8.1 shows the normwise relative errors with the problems ordered by de-
creasing condition number. The solid line denotes cond(log, A)u (with ‖Llog(A)‖1
approximated by ‖Klog(A)‖1). Figure 8.2 shows the same data in the form of a per-
formance profile [18], [19, sect. 22.4], for which we use the transformation in [17] to
lessen the influence of tiny relative errors.

The results show that iss schur complex and iss schur real are both signifi-
cantly more accurate than iss noschur (as also shown in [5] for iss schur complex)
and that iss noschur is often a little unstable (by which we mean errors exceed
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Fig. 8.1. Normwise relative errors in computing the logarithm.
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Fig. 8.2. Performance profile for the data in Figure 8.1.

n cond(log, A)u, say). Moreover, iss schur real outperforms iss schur complex,
showing that treating real matrices in real arithmetic benefits accuracy.

We repeated the experiments on full matrices and found that iss schur real

is again the most accurate algorithm overall but that iss noschur is now much
more competitive with iss schur real and iss schur complex. The performance
profile is given in Figure 8.3. The reason for the improved relative performance
of iss noschur is that rounding errors during the reduction to Schur form within
iss schur complex and iss schur real tend to lead to larger errors for these algo-
rithms than in the quasi-triangular case above.

Next, we compare the run times of Fortran implementations of iss schur real

and iss schur complex to quantify the speed benefits of using real versus complex
arithmetic. Square roots of (quasi-) triangular matrices are required in both algo-
rithms, and since this operation is not one of the BLAS [10] it must be coded spe-
cially. A straightforward implementation using nested loops does not provide good
performance, so a blocked algorithm described by Deadman, Higham, and Ralha [15]
is used that yields a much more efficient implementation rich in matrix multiplication.
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Fig. 8.3. Performance profile for the accuracy of the logarithm algorithms on full matrices.

Table 8.1

Run times in seconds for Fortran implementations of iss schur real and iss schur complex

on random, full n× n matrices.

n 10 50 100 500 1000 2000
Real 1e-3 6e-3 4e-2 1.55 9.22 65.53

Complex 2e-3 1.1e-2 7.3e-2 3.6 21.59 147
Ratio: complex/real 2.0 1.8 1.8 2.3 2.3 2.2

Similarly, triangular Sylvester equations are solved using the recursive algorithm of
Jonsson and Kågström [30].

Table 8.1 reports timings for the Fortran implementations compiled by gfortran

linking to ACML BLAS, using the blocked square root algorithm described above
and run on a quad-core Intel Xeon 64-bit machine. The tests were performed on full,
random matrices with elements selected from the uniform [0, 1) distribution. We see
that iss schur real is around twice as fast as iss schur complex for all n, which
is consistent with the counts of real arithmetic operations (see section 6).

8.2. Fréchet derivative evaluation. We now test our algorithms against the
alternatives mentioned in section 7.2 for computing Fréchet derivatives. The matrices
are in real or complex Schur form according as the original matrix is real or complex.
We define iss schur to be the algorithm that invokes Algorithm 6.1 when A is real
and otherwise invokes Algorithm 5.1. In each test we take for E, the direction in
which to calculate the Fréchet derivative, a random real matrix with normal (0, 1)
distributed elements.

In other experiments not reported here we took E to be a matrix such that
‖A2m+1E‖1 = ‖A2m+1‖1‖E‖1 in an attempt to maximize the gap between the true
backward error ‖ΔE‖/‖E‖ and its upper bound in (3.5). We obtained similar results
to those presented.

Figure 8.4 shows the relative errors of the Fréchet derivatives computed with the
methods described in section 7.2. Here, kron sylv denotes the implementation of the
algorithm of Kenney and Laub [32], [25, Alg. 11.12] in the Matrix Function Toolbox
[21] (named logm_frechet_pade there), and kron sylv mod denotes a modification of
it in which calls to logm are replaced by calls to the more accurate iss schur complex.
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Fig. 8.4. Normwise relative errors in computing Llog(A,E).

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

p

iss_schur
dbl_size
kron_sylv_mod
kron_sylv

Fig. 8.5. Performance profile for the data in Figure 8.4.

The values are ordered by descending condition number cond(Llog, A), where, anal-
ogously to [2], we estimate cond(Llog, A) with finite differences by taking (1.2) with
f ← Llog and a random direction E of norm 10−8, employing the Kronecker form of
the derivative. In Figure 8.5 we present the same data as a performance profile.

The relative errors in Figure 8.4 show that the algorithms all performed very
stably. We see from Figure 8.5 that the two most accurate methods for Fréchet
derivative computation are iss schur and dbl size. Figure 8.5 also shows that
using the more accurate logarithm evaluation in kron sylv mod produces a slight
improvement in accuracy over kron sylv.

Testing with full matrices we obtain similar results, although most relative errors
are now within an order of magnitude of cond(Llog, A). The associated performance
profile is shown in Figure 8.6. The much tighter grouping of the algorithms is again
due to the relative errors introduced by the Schur reduction.

8.3. Condition number estimation. We now consider the estimation of
‖Klog(A)‖1, which is the key quantity needed to estimate cond(log, A) (see (4.1)).
We obtain the exact value by explicitly computing the n2 × n2 matrix Klog(A) via
[25, Alg. 3.17] and taking its 1-norm. The matrices are in real or complex Schur form.
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Fig. 8.6. Performance profile for the accuracy of the Llog(A,E) algorithms for full matrices.
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Fig. 8.7. Underestimation ratios η/‖K(A)‖1 , where η is the estimate of ‖K(A)‖1; lower plot
is zoomed version of upper plot.

We use Algorithm 4.1 with three different methods for computing the Fréchet
derivatives. The first is our new algorithm, iss schur (again denoting the use of
Algorithm 5.1 or Algorithm 6.1 as appropriate). The second is a general purpose
method based on finite differences, as implemented in the code funm condest1 from
the Matrix Function Toolbox [21]. The last method, denoted integral, is the quadra-
ture method of [16] described in section 7.2, used with quadrature tolerance 10−10.
We do not test dbl size or kron sylv within Algorithm 4.1, as these algorithms are
substantially more expensive than iss schur (see section 7) and no more accurate
(as shown in the previous subsection).

In Figure 8.7 we plot the ratios of the estimated condition numbers to the accu-
rately computed ones, sorted by decreasing condition number. These underestimation
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ratios should be less than or equal to 1 as we use the 1-norm power method to estimate
‖K(A)‖1. From these ratios we see that while the funm condest1 and integralmeth-
ods provide good estimates for most of the well conditioned problems, they produce
estimates many orders of magnitude too small for some of the more ill conditioned
problems. On the other hand, iss schur gives excellent estimates that are at worst
a factor 0.47 smaller than the true value, making it the clear winner.

The unreliability of funm_condest1 can be attributed to the presence of the
potentially very large term ‖ log(A)‖1 in the steplength formula used for the finite
differences [25, (3.23)]. It is not clear whether a different choice of finite different
steplength leading to better results can be derived.

Estimating the condition number using Algorithm 4.1 with t = 2, as in our
algorithms, requires around 8 Fréchet derivative evaluations. With the mean s and
m found to be 4 and 6 respectively in our tests, the cost of computing the logarithm
and estimating its condition number via our algorithms is around 8 times that of the
logarithm alone. By reducing t in the block 1-norm estimation algorithm to 1, this
can be lowered to 4 times the cost at the risk of lower reliability.

9. Conclusions. We have extended the complex Schur-form-based inverse scal-
ing and squaring algorithm of Al-Mohy and Higham [5] for computing the matrix
logarithm in two ways. First, Algorithm 6.1 extends the algorithm to work entirely
in real arithmetic for real matrices. It has the advantages over the original version of
being twice as fast, requiring less intermediate storage, and yielding generally more
accurate results.

Second, Algorithm 5.1 extends the algorithm of [5] to compute one or more Fréchet
derivatives after computing log(A), with reuse of information, while Algorithm 6.1
does the same but working in real arithmetic for real data. We have shown that the
new algorithms for Llog(A,E) are significantly less expensive than existing algorithms
(see section 7) and are also more accurate in practice (see section 8.2).

The fact that our choice of the algorithmic parametersm and s is based on αp(A),
while our backward error bounds for the Fréchet derivative involve the potentially
much larger quantity ‖A‖, does not appear to affect the accuracy of the Fréchet
derivative computations: in our experiments the Fréchet derivatives were computed
in a forward stable way throughout.

By combining the new algorithms with the block 1-norm estimation algorithm
of Higham and Tisseur [28] reliable condition estimates are obtained, whereas we
have shown that a general purpose cond(A, f) estimate based on finite differences can
greatly underestimate the condition number (see section 8.3).

Acknowledgments. We thank the referees for their helpful suggestions and
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[23] N. J. Higham, Evaluating Padé approximants of the matrix logarithm, SIAM J. Matrix Anal.

Appl., 22 (2001), pp. 1126–1135.
[24] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,

2002.
[25] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[26] N. J. Higham and A. H. Al-Mohy, Computing matrix functions, Acta Numer., 19 (2010),

pp. 159–208.
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[32] C. S. Kenney and A. J. Laub, A Schur–Fréchet algorithm for computing the logarithm and
exponential of a matrix, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 640–663.

D
ow

nl
oa

de
d 

08
/0

6/
13

 to
 1

30
.8

8.
12

3.
15

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C410 AWAD AL-MOHY, NICHOLAS HIGHAM, AND SAMUEL RELTON
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