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Abstract

The critical paths of a max-plus linear systems with noise are random variables. In
this paper we introduce the edge criticalities which measure how often the critical
paths traverse each edge in the precedence graph. We also present the parallel path
approximation, a novel method for approximating these new statistics as well as
the previously studied max-plus exponent. We show that for low amplitude noise
the critical paths spend most of their time traversing the deterministic maximally
weighted cycle and that as the noise amplitude is increased the critical paths become
more random and their distribution over the edges in the precedence graph approaches
a highly uniform measure of maximal entropy.

Introduction

Max-plus matrix multiplication corresponds exactly to finding the weight of the max-
imally weighted paths through a graph whose edge weights are determined by the
matrices’ coefficients1. Consider K(N) the complete graph on N vertices. We say
that a sequence of K(N)’s vertices, σ = [σ(k)]n+1

k=1 is a path of length n from σ(1) to
σ(n+ 1) formed from the n edges [σ(k + 1), σ(k)]nk=1.

Now let [A(k)]nk=1 be a sequence of N ×N max-plus matrices and Σn(i, j) be the
set of all paths from j to i of length n through K(N), we have

[A(n)⊗ A(n− 1)⊗ ...⊗ A(1)]i,j = max
σ∈Σn(i,j)

n∑
k=1

W (σ),

where ⊗ stands for max-plus matrix multiplication and the weight function W is
given by

W (σ) =
n∑
k=1

A(k)σ(k+1),σ(k).

1Max-plus matrices are arrays of elements in R ∪∞. If A and B are N ×N max-plus matrices
then their product C = A⊗ B is the N ×N max-plus matrix defined by ci,j =

⊕n
k=1 ai,k ⊗ bk,j =

maxn
k=1 ai,k + bk,j .
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Deterministic autonomous max-plus linear systems exhibit turnpike behaviour char-
acterised by Cuninghame-Green in [1]. We say that a problem of finding an optimal
(i.e. maximally weighted) path has the turnpike property if there is some globally
optimal path, called the turnpike, such that for any a and b and for sufficiently large
t the optimal path from a to b of length t will move from a to the turnpike as quickly
as possible then stay on it for as long as possible. The max-plus turnpike theorem
says that for all i, j and sufficiently large n the maximally weighted path of length
n from j to i will spend most of its steps traversing a critical cycle so that in the
limit n → ∞ the maximally weighted path spends almost all of its steps traversing
the critical cycle and its weight divided by length will equal the average weight of the
critical cycle, which we call the critical cycle mean.

In this paper we examine max-plus linear systems with Gaussian noise from this
path centric viewpoint. The systems we consider consist of a fixed deterministic
part plus a Gaussian distributed noise term which changes from one step to the
next. This is a natural way to define a random max-plus linear system and reflects
the standard engineering approach of including noise in an otherwise deterministic
model. Under a standard irreducibility assumption we show that whilst there is no
longer a predetermined critical cycle there is still turnpike-like behaviour where for all
i, j and large n the maximally weighted path of length n from j to i will spend most
of its steps traversing a critical path common to all (i, j) pairs. This common path
is a random variable which will typically not exhibit the periodic behaviour of the
deterministic system. In the deterministic setting it is possible for two critical paths
to traverse the same critical cycle out of phase so that they are never at the same
vertex at the same step, but in these stochastic systems we see that all the critical
paths come together and coincide exactly for most of their steps. Hence we call this
conflux turnpike behaviour.

This behaviour makes it possible for us to prove the existence of a new set of
critical path statistics, the edge criticalities which measure how often the critical
paths traverse each edge. These statistics are particularly interesting when viewed
as a function of the noise amplitude where we see a transition from deterministic
turnpike behaviour where the edge criticalities are concentrated on the critical cycle
to a highly uniform distribution as the noise amplitude is increased.

Another critical path statistic is the max-plus exponent, which is the average edge
weight of the critical path. This has been well studied and can be proved to exists
for a very general class of max-plus linear system; see for example Heidergrott [2],
Baccelli et.al. [3] and Merlet [4] where some interesting examples in which this limit
does not exist are also discussed. The max-plus exponent is of particular importance
as a performance indicator for queuing systems where it corresponds to the reciprocal
of the throughput.

Analytic investigation of any of these statistics has only proved possible for very
specially structured systems, see for example Baccelli and Hong [5]. One major prob-
lem is that since different paths share edges which they traverse at the same step
their total weights are interdependent which makes statistical analysis difficult. In [6]
Goverde et al. describe an efficient method for estimating the max-plus exponent with
an expectation expression. In this paper we introduce the parallel path approximation
(PPA) a new method for approximating both the max-plus exponent and the edge
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criticalities. The idea is to simply ignore the complicated path weight interdependen-
cies when computing the weight of the maximally weighted path. This approximation
provides an accurate approximation of the edge criticalities and an upper bound on
the max-plus exponent which is accurate for large highly interconnected systems.

This paper is organised as follows. In section 1 we introduce the specific type
of matrix distribution we will be using as well as some other important notation
for the remainder of the paper. In section 2 we define the critical path statistics
and the notion of conflux turnpike behaviour, we prove that these statistics are well
defined and that this behaviour will always be observed. In section 3 we define the
PPA approximation and show how to compute its statistical properties in order to
approximate those of the original max-plus system. Finally we present a suite of
examples and pose a conjecture that states there is a class of systems for which the
PPA max-plus exponent approximation is perfectly accurate in the limit of large
systems.

1 System specification

Although it is possible to treat a slightly more general set up we will, for the sake of
simplicity, restrict all results and examples to systems of the following formulation.
Our approach is to take a fixed max-plus matrix β (which could be used to model a
deterministic system) and add a time varying Gaussian noise term to it. The noise
terms in each component of the matrix and at each stage in the system are mutually
independent. The amplitude of the noise in each component of the matrix can be
chosen arbitrarily through the choice of the matrix α.

Definition 1 Let β ∈ (R ∪ {−∞})N×N be the matrix of deterministic weights, α ∈
RN×N+ be the matrix of noise amplitudes and [Z(k)]∞k=1 be an i.i.d. sequence of N×N
matrices whose components are mutually independent (0, 1) Gaussians which we call
the noise terms. Define the sequence of max-plus matrices [A(k)]∞k=1 by their (i, j)
components

A(k)i,j = βi,j + αi,jz(k)i,j.

Further define the sequence of product matrices [M(n)]∞n=1 by

M(n) =
n⊗
k=1

A(k) = A(n)⊗ A(n− 1)⊗ ...⊗ A(1),

where ⊗ stands for max-plus multiplication.

Note that the randomness in this distribution only affects the exact value of the
finite entries in the matrix and not the position of the −∞ entries. We say that
matrix distributions with this property have fixed support.

Definition 2 Further define the associated precedence graph G = 〈V,E〉 with vertex
set V = {1, 2, ..., N} and an edge (i, j) ∈ E whenever βi,j 6= −∞. Now define the set
of all paths through G of length n from j to i

Σn(i, j) = {σ ∈ {1, 2, ..., N}n+1 : σ(1) = j, σ(n+1) = i, [σ(k+1), σ(k)] ∈ E for k = 1, 2, ..., n}.
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For each edge (i, j) ∈ E associate a weight sequence [w(i, j)k]
∞
k=1 given by

w(i, j)k = A(k)i,j = βi,j + αi,jz(k)i,j,

and define the weight of a path σ ∈ Σn(i, j) by

W (σ) =
n∑
k=1

w[σ(k + 1), σ(k)]k.

By assigning a sequence of weights to each edge we are able to express components of
the product matrices in terms of maximally weighted paths through the precedence
graph just as in the deterministic case.

M(n)i,j = max
σ∈Σn(i,j)

W (σ).

Throughout this paper we will make the standard assumption that G has the following
properties.

Definition 3 We say that a graph G = 〈V,E〉 is irreducible if for all i, j ∈ V there
exists a path through G from j to i. We say that G is aperiodic if the greatest common
divider of the lengths of the cycles in G is equal to one.

2 Confluxes and critical path statistics

In this section we define exactly what we mean by a conflux turnpike, roughly the
idea is that there is always a maximally weighted (critical) path between each pair of
vertices and that a conflux occurs when all of these paths come together and coincide
exactly for at least one step. The turnpike is then this subpath where they coincide.

We also define the new critical path statistic, the edge criticality’s which measure
how often the critical paths traverse each edge.

Theorem 9 states that systems of the sort outlined in section 1 will almost surely
exhibit conflux turnpike behaviour and shows how this then enables us to factorize
our sequence of matrices in a useful way. Theorem 10 makes use of this factorisation
to prove the existence of the edge criticalities as an almost sure limit independent of
any initial conditions.

Definition 4 For a sequence of matrices [A(k)]nk=1, which define the weight function
W , a path σ ∈ Σn(i, j) is (i, j)-critical if

W (σ) = max
σ∈Σn(i,j)

W (σ),

and a path σ ∈ Σn(i, j) is critical if

W (σ) = max
i′,j′

max
σ∈Σn(i′,j′)

W (σ) = max
σ∈Σn

W (σ),

where Σn is the set of all paths of length n through G.
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For systems of the sort outlined in section 1 the probability of any two different paths
having the same weight is zero so that these maximums are attained uniquely and we
are able to define the following.

Definition 5 The (i, j)-critical path of length n, φi,jn is the unique path of length n
that is (i, j)-critical. The critical path of length n, φn is the unique path of length n
that is critical.

Definition 6 The critical path statistics are then the max-plus exponent λ ∈ R and
the edge criticalities P ∈ RN×N defined by

λ = lim
n→∞

1

n
W (φn),

provided this limit exists and

Pi,j = lim
n→∞

1

n
#[(i, j) ∈ φn],

provided this limit exists, where #[(i, j) ∈ φn] is the number of times that the path φn
traverses the edge (i, j).

So a sequence of matrices [A(k)]nk=1 defines a critical path φn, which as a function
of the noise terms [Z(k)]nk=1 is a random variable. The max-plus exponent measures
the growth rate of the critical paths weight and the edge criticalities measure what
proportion of the critical paths steps traverse each edge. Note that in general there
is no guarantee that these limits will exist. In theorem 10 we will show that for
systems of the sort outlined in section 1 the two expressions converge almost surely
to constants independent of any initial conditions, so that the max-plus exponent or
edge criticalities of the (i, j)-critical paths are all the same and equal to those of the
critical path.

Definition 7 A sequence of max-plus matrices [A(k)]nk=1 is a conflux if the different
(i, j)-critical paths of length n all come together and coincide for one or more steps.
So if there exists lT > 0 and kC such that for all (i, j), (i′, j′)

φi,jn (k) = φi
′,j′

n (k),

for kC ≤ k ≤ kC + lT . The section ϕ for which they coincide is called the turnpike
which a path through G of length lT . We say that [A(k)]nk=1 is a minimal conflux if it
is a conflux but [A(k)]n−1

k=1 is not.

It is easy to show that if the sequence [A(k)]nk=1 is a conflux then the product M(n) =
A(n)⊗A(n−1)⊗ ...⊗A(1) is a rank-1 matrix and that the sequence therefore has the
memory loss property used by Mairesse [9] to prove many statistical results for the
max-plus exponent. This characterisation of the condition in terms of critical paths
will enable us to prove some new statistical properties for these systems, in particular
the existence of the edge criticalities.
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Example 8 Define the sequence of i.i.d. 2× 2 max-plus matrices [A(n)]∞n=1 by

A(n) =

(
1 + aZ1(n) aZ2(n)
3 + aZ3(n) aZ4(n)

)
,

where a ∈ R is the single noise amplitude parameter. Clearly this is of the form
outlined in section 1 with G the complete graph on 2 vertices. Through Monte Carlo
simulation we sample the (i, j)-critical paths of length 6 for a = 0 and a = 1, and
approximate the critical path statistics. The results are displayed in figure 1.

For a = 0 the system exhibits deterministic turnpike behaviour where all critical
paths spend most of their steps traversing the critical cycle 1 7→ 2 7→ 1. The edge
criticalities are concentrated on the critical cycle with P1,1 = P2,2 = 0 and P1,2 =
P2,1 = 0.5. The max-plus exponent is equal to the critical cycle mean λ = (3 + 0)�2.

For a = 1 the system exhibits stochastic conflux turnpike behaviour where all the
critical paths coincide between steps 3 and 5 so that in the terms of definition 7 we
have KC = 3, lT = 3 and ϕ = (1, 1, 2, 1). Observe that unlike in the deterministic
case the turnpike is random and all paths coincide in phase. The edge criticalities
are more uniform than in the deterministic case, roughly a convex combination of
the deterministic a = 0 edge criticalities and the measure of maximal entropy P1,1 =
P1,2 = P2,1 = P2,2 = 0.25. The max-plus exponent is greater than in the deterministic
a = 0 case.

When the noise amplitude is increased further the edge criticalities slowly converge
to the measure of maximal entropy on the graph P1,1 = P1,2 = P2,1 = P2,2 = 0.25.
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Figure 1: Top: critical path statistics vs noise amplitude, max-plus exponent (left),
edge criticalities (right) with P1,1, P1,2 = P2,1 and P2,2 bottom to top. Middle and
bottom: (i, j)-critical paths of length 6 for a = 0 and a = 1 respectively with φ(1, 1)6

black, φ(1, 2)6 blue-dashed, φ(2, 1)6 green and φ(2, 2)6 yellow-dashed, Critical paths
φ6 are distinguished by black head and tail dots.

The following theorem tells us that for systems of the sort outlined in section 1 we
will (with probability 1) observe conflux turnpike behaviour, and that as we look at
longer and longer sequences of matrices the proportion of steps that each critical path
spends on the turnpike tends to one.

Theorem 9 Let [A(k)]nk=1 be a sequence of max-plus matrices of the sort outlined in
section 1. Provided G is irreducible and aperiodic

lim
n→∞

P{[A(k)]nk=1 is a conflux } = 1.

And for all ε > 0

lim
n→∞

P{| lT
n
− 1| ≤ ε} = 1,

where lT is the length of the turnpike.
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Proof. The sequence [A(k)]nk=1 can be factorized into a sequence of minimal confluxes
with a non-conflux remainder

[A(k)]nk=1 = C1, C2, ..., CnC ;A(tnC + 1), ..., A(n),

where each Cm is a minimal conflux of length |Cm| and

tm =
m∑
k=1

|Ck|.

So that A(tm−1+r) = Cm(r) for r = 1, 2, .., |Cm|. This factorisation can be performed
inductively so that

[A(k)]n+1
k=1 = C1, C2, ..., CnC , CnC+1;

if A(tnC + 1), ..., A(n), A(n+ 1) = CnC+1 forms a conflux and

[A(k)]n+1
k=1 = C1, C2, ..., CnC ;A(tnC + 1), ..., A(n), A(n+ 1),

if not.
We will first show that the length of each of the minimal confluxes in this factori-

sation is exponentially bounded. W.l.o.g. α1,2 6= 0 and β1,2 6= −∞, irreducibility and
aperiodicity implies that there exist n1 and n2 such that for all (i, j) there is a path
of length n1 from j to 2 and a path of length n2 from 1 to i. Now suppose that the
noise terms [Z(k)]n1+n2+1

k=1 satisfy

z(n1 + 1)1,2 ≥
2(n1 + n2 + 1) + 1− β1,2

α1,2

,

and
−βi,j
αi,j

≤ z(k)i,j ≤
1− βi,j
αi,j

,

for all (i, j, k) 6= (1, 2, n1+1). Any path not traversing the edge (1, 2) on the (n1+1)th
step will have weight ≤ n1 +n2 +1 whereas any path traversing the edge (1, 2) on the
(n1 + 1)th step will have weight ≥ (n1 + n2 + 1) + 1. Therefore all the critical paths
will come together and coincide on this edge at this step and the sequence will be a
conflux. Of course this is only one possible way for a conflux to occur, but it gives us
the bound

P{|C| ≥ n} ≤ (1− ρ
1

n1+n2+1 )n−(n1+n2+1),

for all n ≥ n1 + n2 + 1, where ρ is the (non-zero) probability associated with the
condition on the noise terms described above.

So given a sequence [A(k)]∞k=1 the finite sequences [A(k)]nk=1 can be factorized
into sequences of minimal confluxes. As n grows, with probability one, the matrix
sequences factorized into a longer and longer sequence of minimal confluxes which
themselves form an i.i.d. random sequence [Cm]nCm=1.

Now consider φi,jn , the (i, j)-critical path of length n for some sequence of matrices
[A(k)]nk=1 which has a minimal conflux factorisation as described

[A(k)]nk=1 = C1, C2, ..., CnC ;A(tnC + 1), ..., A(n).
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Since φi,jn (tm−1 + 1) = i′ and φi,jn (tm) = j′ for some i′, j′ the maximally weighted path
from j to i of length n which accumulates weight according to [A(k)]nk=1 contains a
subpath γi

′,j′
m of length |Cm| from j′ to i′ which accumulates weight according to the

minimal conflux sequence Cm.
Therefore γi

′,′j′
m is the (i′, j′)-critical path of length |Cm| for the matrix sequence

Cm, since otherwise there would be a more weighted such path and we could use it
to construct a new path of length n from j to i with greater weight than φi,jn which
would be a contradiction.

Therefore the factorisation of the matrix sequence gives rise to a factorisation of
the (i, j)-critical paths

φi,jn = γ
i′(1),j
1 , γ

i′(2),i′(1)
2 , ..., γi

′(nC),i′(nC−1)
nC

, ζ i,i
′(nC),

where the γ’s are the subpaths corresponding to each minimal conflux sequence and
ζ is a remainder term to complete the path.

Now since Cm is a conflux sequence and γi,jm is (i, j)-critical for Cm it follows that
γi,jm traverses the turnpike ϕm of Cm.

Therefore γ
i′(m),i′(m−1)
m will traverse ϕm and γ

i′(m+1),i′(m)
m+1 will traverse ϕm+1 so that

φi,jn will contains a subpath from the beginning of ϕm to the beginning of ϕm+1, call
it ψm - intuitively this is the second half of the subpath γm glued to the first half
of the subpath γm+1. As before this path will be critical but most importantly it is
independent of (i, j). We therefore have another path factorisation

φi,jn = ηj, ψ1, ψ2, ..., ψnC−1, θi,

where ψm is the critical path linking the turnpike of Cm to that of Cm+1, and η and
θ are remainder terms to complete the path. Note that the only subpaths in this
factorisation to depend on the conditions (i, j) are the first and last terms. The ψ
subpaths are common to all (i, j) and therefore constitute the turnpike, as all the
critical paths will coincide along this section.

Finally given a sequence [A(k)]nk=1 factorized in this way the total length of its
turnpike lT is equal to n minus the length of the two remainder terms η and θ. Each
of these terms is smaller than some minimal conflux sequence, whose length we have
shown to be exponentially bounded so that for all ε

lim
n→∞

P{| lT
n
− 1| ≤ ε} = 1.

The second theorem in this section uses the path factorisation introduced in the
previous proof to show that the definition of the edge criticalities in terms of a limit
exist almost surely.

Theorem 10 Let [A(k)]∞k=1 be a sequence of max-plus matrices of the sort outlined
in section 1. Provided G is irreducible and aperiodic there exists P ∈ RN×N such that
for all (i, j) and all ε > 0

lim
n→∞

P{|#[(i′, j′) ∈ φi,jn ]

n
− Pi′,j′ | ≤ ε} = 1,
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where #[(i′, j′) ∈ φi,jn ] is the number of times that the (i, j)-critical path of length n
traverses the edge (i′, j′).

Proof. We showed previously that the sequence of matrices [A(k)]nk=1 could be fac-
torized into a sequence of minimal conflux sequences

[A(k)]nk=1 = C1, C2, ..., CnC ;A(tnC + 1), ..., A(n),

where each Cm is a minimal conflux of length |Cm| and

tm =
m∑
k=1

|Ck|.

We also showed how this factorisation gave us a factorisation of the (i, j)-critical paths

φi,jn = ηj, ψ1, ψ2, ..., ψnC−1, θi,

where ψm is the critical path from the beginning of Cm’s turnpike to the beginning
of Cm+1’s.

This factorisation can be used in the transition counting function

#[(i′, j′) ∈ φi,jn ] = #[(i′, j′) ∈ ηj] +

nC−1∑
m=1

#[(i′, j′) ∈ ψm] + #[(i′, j′) ∈ θi],

where #[(i′, j′) ∈ ηj] is the number of times that the path ηj traverses the edge (i, j)
and so on. Since the length of the remainder terms η and θ are exponentially bounded
their contribution to this sum is also bounded. With probability one we have

lim
n→∞

#[(i′, j′) ∈ φi,jn ]

n
= lim

n→∞

∑nC−1
m=1 #[(i′, j′) ∈ ψm]

n
.

From the proof of the previous theorem we know that

lim
n→∞

nC
n

= l

exists and is non-zero so that

lim
n→∞

#[(i′, j′) ∈ φi,jn ]

n
= lim

nC→∞

l

nC

nC−1∑
m=1

#[(i′, j′) ∈ ψm].

Clearly each ψm has the same distribution and therefore this sample average is taken
over identically distributed variables but we need to be a little careful as they are not
independent.

The sequence of i.i.d. matrices [A(k)]nk=1 gives a sequence of i.i.d. minimal conflux
sequences [Cm]nCm=1 and the ψ subpaths are functions of successive pairs of these matrix
sequences so that

ψm = F (Cm, Cm+1),

10



for some function F . The sequence of subpaths [ψm]nC−1
m=1 and their transition counts

are therefore the the output of a hidden Markov model. The underlying Markov chain
is a sequence of successive paris of i.i.d. variables

X(m) = (Cm, Cm+1) 7→ X(m+ 1) = (Cm+1, Cm+2),

where [Cm]∞m=1 is an i.i.d. sequence.
From any state in this Markov chain it is possible to move to any other state in

two moves by
(A,B) 7→ (B,C) 7→ (C,D).

It is also possible to start at one state and return to it in three moves by

(A,B) 7→ (B,C) 7→ (C,A) 7→ (A,B).

The chain is therefore ergodic (irreducible and aperiodic). Finally since the length of
each subpath ψm is bounded by the sum of the lengths of Cm and Cm+1, which are
themselves exponentially bounded, the expectation of the edge counts of a subpath
ψm are also bounded so that

Pi′,j′ = lE#[(i′, j′) ∈ ψm]

exists and for all ε > 0

lim
n→∞

P{|#[(i′, j′) ∈ φi,jn ]

n
− Pi′,j′ | ≤ ε} = 1.

3 Parallel path approximation

In this section we introduce the parallel path approximation (PPA) which is a simpli-
fication of the max-plus systems outlined in definition 1. Theorem 15 gives an exact
formula for the statistical properties of the approximated system in the form of a con-
vex optimisation problem. Lemma 13 is a technical result that supports the second
part of theorem 15 which states that the PPA approximated max-plus exponent is
greater than or equal to the true max-plus exponent, the PPA approximated expo-
nent therefore provides a performance guarantee for queuing systems as its reciprocal
gives a lower bound on the throughput.

Definition 11 For a max-plus linear system

M(n)i,j = max
σ∈Σn(i,j)

W (σ).

define the parallel path approximation by

M̂(n)i,j = max
σ∈Σn(i,j)

Ŵ (σ),
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where the modified path weight function Ŵ is given by

Ŵ (σ) =
n∑
k=1

βσ(k+1),σ(k) + tσ

√√√√ n∑
k=1

α2
σ(k+1),σ(k),

where {tσ : σ ∈ Σn : n ∈ N} is a set of i.i.d. (0, 1)-Gaussians, one for each and every
path through G.

The idea is that since different paths through G share edges which they traverse on
the same step their weights have very complicated interdependencies and this makes
further analytic analysis extremely difficult. However the individual path weights are
fairly simple

W (σ) =
n∑
k=1

βσ(k+1),σ(k) + ασ(k+1),σ(k)z(k)σ(k+1),σ(k)

The modified path wights are identically distributed to the original path weights but
are mutually independent, the exact form of the PPA weight function is simply derived
from the original weight function and basic properties of the Gaussian distribution.

Each modified path weight is a function of a unique independent Gaussian so
that the modified weights are independent which greatly simplifies analysis. One
interpretation is that we have assumed that no two paths between the same pair of
vertices ever share an edge, hence parallel.

Definition 12 In analogy to definition 4 define the PPA critical path of length n,
φ̂n ∈ Σn by

W̃ (φ̂n) = max
σ∈Σn

Ŵ (σ),

where Σn is the set of all paths of length n through G. The PPA critical path statistics
are then the PPA max-plus exponent λ̂ ∈ R defined by

λ̂ = lim
n→∞

1

n
Ŵ (φ̂n),

and the PPA edge criticalities P̂ ∈ RN×N defined by

P̂i,j = lim
n→∞

1

n
#[(i, j) ∈ φ̂n],

where #[(i, j) ∈ φ̂n] is the number of times that the path φ̂n traverses the edge (i, j).

Lemma 13 A sequence of real random variables [ak]
n
k=1 is said to be associated if

the covariance
cov[f(a1, ..., an), g(a1, ..., an)] ≥ 0

for all f and g : Rn → R non-decreasing in each component [10].
Let [ak]

n
k=1 be a sequence of associated real random variables and [bk]

n
k=1 be a

sequences of independent real random variables such that ak is identically distributed
to bk for each k. We have

E[
n

max
k=1

ak] ≤ E[
n

max
k=1

bk].

12



Proof. For any i ∈ {1, 2, ..., n} J ⊂ {1, 2, ..., n}, with i not in J and for t ∈ R define
the non-decreasing functions

f(a) =

{
−1, if ai < t;
0, otherwise.

g(a) =

{
−1, if maxj∈J aj < t;
0, otherwise.

Substitution into the definition of associativity gives

P[ai < t|aj < t∀j ∈ J ] ≥ P[ai < t].

Now

P[
n

max
i=1

ai < t] =
n∏
i=1

P[ai < t|aj < t : j = 1, 2, ..., i− 1],

so that repeated application of the above result using J = {1, 2, ..., i− 1} gives

P[
n

max
i=1

ai < t] ≥
n∏
i=1

P[ai < t] = P[
n

max
i=1

bi < t].

So that

E[
n

max
i=1

ai < t] =

∫ ∞
0

1− P[
n

max
i=1

ai < t]dt <

∫ ∞
0

1− P[
n

max
i=1

bi < t]dt = E[
n

max
i=1

bi < t].

Before our man result we need a few more definitions.

Definition 14 The simplex of G admissible edge criticalities is the simplex

∆G =
{
x ∈ RN×N :

∑
i,j

xi,j = 1 :
∑
j

xi,j =
∑
j

xj,i
}
.

For x ∈ ∆G define y ∈ RN by

yi =
∑
j

xi,j,

then the edge partition entropy and vertex partition entropy are given by

He(x) = −
∑

e∈E xe log xe, Hv(x) = −
∑

i∈V yi log yi,

respectivly.

Theorem 15 For a max-plus system of the sort outlined in section 1 the PPA max-
plus exponent and edge criticalities defined in definition 11 are given by

λ̂ = max
x∈∆G

〈β, x〉+
√

2〈α2, x〉[He(x)−Hv(x)],

P̂ = arg max
x∈∆G

〈β, x〉+
√

2〈α2, x〉[He(x)−Hv(x)],

where α2 ∈ RN×N is the componentwise square of α. Furthermore the PPA max-plus
exponent is greater than or equal to the max-plus exponent,

λ̂ ≥ λ.

13



Proof. For a path of length n, σ ∈ Σn define X(σ) ∈ RN×N by X(σ)i,j =
1
n
#[(i, j) ∈ σ] where #[(i, j) ∈ σ] is the number of times that the path σ traverses

the edge (i, j).
For an open cover ∆G =

⋃
γ∈C Uγ,

λ̂ = max
γ∈C

lim
n→∞

max
σ∈Σn:X(σ)∈Uγ

1

n
Ŵ (σ)︸ ︷︷ ︸,

where the underbraced term is greater than or equal to

min
x∈Uγ
〈β, x〉+

√
min
x∈Uγ
〈α2, x〉[ lim

n→∞
max

σ∈Σn:X(σ)∈Uγ

tσ√
n

]

and less than or equal to

max
x∈Uγ
〈β, x〉+

√
max
x∈Uγ
〈α2, x〉[ lim

n→∞
max

σ∈Σn:X(σ)∈Uγ

tσ√
n

].

We now apply an extreme value result from [11]. Let [t(n)]∞n=1 be a sequence of
i.i.d. (0, 1)-Gaussians. For a measure-1 set of such sequences

lim
n→∞

maxnk=1 t(k)√
2 log n

= 1.

Therefore

lim
n→∞

max
σ∈ΣnG:X(σ)∈Uγ

tσ√
n

=

√
2( lim
n→∞

1

n
log #n[σ ∈ Uγ]),

where #n[σ ∈ Uγ] is the number of paths σ ∈ Σn with X(σ) ∈ Uγ.
This limit can be calculated using the large deviation principal from [12],

lim
n→∞

1

n
log #n[σ ∈ Uγ] = max

x∈∆G∩Uγ
He(x)−Hv(x).

Finally taking the limit maxγ∈C ‖Uγ‖ → 0 gives

λ̂ = max
x∈∆G

〈β, x〉+
√

2〈α2, x〉[He(x)−Hv(x)].

The performance guarantee inequality follows from lemma 13. Since the weight of
each path is itself a non-decreasing function of the independent noise terms it follows
that the path weights are associated. Also by construction the approximated path
weights are independent with W (σ) and Ŵ (σ) identically distributed for each σ so
that

E[max
σ∈Σn

W (σ)] ≤ E[max
σ∈Σn

Ŵ (σ)].

Finally since the limits λ and λ̂ exist with probability-1 they are equal to their ex-
pectations and

λ = lim
n→∞

1

n
E[max

σ∈Σn
W (σ)] ≤ lim

n→∞

1

n
E[max

σ∈Σn
Ŵ (σ)] = λ̂.

14



The formula for the PPA critical statistics gives some insight into the factors
determining the maximally weighted path in the original max-plus linear system.
Each path’s weight has a deterministic and random part and the critical path is the
path that maximizes the sum of these parts. Consider paths σ with X(σ) in a small
ball containing X(c∗) where c∗ is the critical cycle in the deterministic system, these
path’s weights will have large deterministic part but there will be relatively few of
them and they will be unable to freely explore the whole graph in order to have a
large random part. On the other hand paths with X(σ) in a small ball in the center
of ∆G will not have a large deterministic part but there will be many of them and
they will be able to freely explore the whole graph so that there will be some paths
in this ball with large random part. It is this balance that determines the critical
statistics of the true max-plus system as well as the PPA system.

Example 16 Taking the max-plus linear system from example 8 we represent X(σ) ∈
R2×2 by x ∈ R4 with

x = [X(σ)1,1, X(σ)1,2, X(σ)2,1, X(σ)2,2].

∆G is then the triangle with vertices (1, 0, 0, 0), (0, 1
2
, 1

2
, 0) and (0, 0, 0, 1). The PPA

Statistics are given by

λ̂ = max
x∈∆G

〈


1
0
3
0

 , x〉+ a
√

2[He(x)−Hv(x)],

with P̂ the arg max of the above, where

He(x) = −x1 log x1 − x2 log x2 − x3 log x3 − x4 log x4,

and
Hv(x) = −(x1 + x2) log(x1 + x2)− (x3 + x4) log(x3 + x4).

We solve this optimisation problem to obtain λ̂ and P̂ using gradient ascent. The
results are displayed in figure 2.
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Figure 2: Critical path statistics and PPA vs noise amplitude, max-plus exponent
(left), edge criticalities (right) with P1,1, P1,2 = P2,1 and P2,2 top to bottom in black

and approximations λ̂ and P̂ in green.

Example 17 For an irreducible aperiodic graph G define the homogenous noise max-
plus linear system on G by setting βi,j = 0 if (i, j) is an edge in G and −∞ otherwise
and setting αi,j = 1 for all (i, j).

The PPA statistics of these systems are determined by

λ̂ = max
x∈∆G

√
2[He(x)−Hv(x)],

which is equal to
√

2 log ρ where ρ is the classical Perron root of G’s adjacency matrix
A. The maximum is attained by the measure of maximal entropy P ∗, defined by

P ∗i,j = Ai,j
uivj
ρ
,

where u is defined by uA = ρu with ‖u‖l1 = 1, and v by Av = ρv with ‖v‖l1 = 1.
Define χn the greedy path of length n by setting χn(1) = 1 and then choosing the

maximally weighted edge at each step inductively so that

aχn(k+1),χn(k)(k) = max
i
ai,χn(k)(k)

for k = 2, ..., n. Since φn is the maximally weighted path of length n we have

lim
n→∞

1

n
W (χn) = λ̃ ≤ λ ≤ λ̂.

Now consider the homogeneous noise max-plus linear system on K(N), the com-

plete graph on N vertices. The PPA statistics are given by λ̂ =
√

2 logN and
Pi,j = N−2 for all (i, j). The greedy path’s max-plus exponent is

λ̃ = lim
n→∞

1

n
W (χn) = ENk=1t(k),
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where [t(k)]∞k=1 is a sequence of i.i.d. (0, 1)−Gaussians. Applying the same extreme
value result we used in the proof of theorem 15 gives,

lim
N→∞

λ̃N

λ̂N
= lim

N→∞

λN

λ̂N
= 1.

So that the proportional error in the approximation λ ≈ λ̂ goes to zero in the limit of
a large highly interconnected system.

Figure 3 shows the convergence of the ratio of the true exponent (which we approx-
imate through simulation) to the PPA exponent for Gaussian noise systems on K(N).
We also make the same plot for systems with uniformly distributed noise terms and
exponentially distributed noise terms. The PPA exponents for the uniform case are
given by

λ̂N = 1− 1

eN
,

where e = 2.718... and for the exponential case the PPA exponents satisfy

λ̂N = logN + log(1 + eλ̂N),

and we can find them by iterating the RHS as it is a contraction mapping.

Example 18 To demonstrate this phenomena in a more robust setting we generate
a family of randomly configured homogeneous noise max-plus linear systems on Erdos
Renyi graphs over a range of parameters and compare their PPA max-plus exponent
to a Monte Carlo approximation of their true max-plus exponent. The results are
displayed in figure 4. Observe that the true max-plus exponent also appears to be a
function of the Perron root and that the proportional error decreases with the size of
the root.

Example 19 Since the Perron root of the adjacency matrix is roughly the average
degree of a vertex in the graph we might hope that having a large Perron root would
guarantee accuracy of the PPA exponent, as a large Perron root would mean we had
a large highly interconnected system. However this is not always the case as we have
the following counter example.

For some m,N ∈ N let G = 〈V,E〉 be a graph with V = V1 ∪ V2 ∪ ... ∪ Vm where
for i = 1, 3, 4, ...,m Vi = {v(i)} contains a single vertex and

V2 = {v(2, j) : j = 1, 2, ..., Nm},

contains Nm vertices. Let E=E1 ∪ E2 ∪ ... ∪ Em where

E1 = {[v(2, j), v(1)] : j = 1, 2, ..., Nm},

contains an edge from vertex v(1) to every vertex in V2 and where

E2 = {[v(3), v(2, j)] : j = 1, 2, ..., Nm},

contains an edge from every vertex in V2 to vertex v(3) and where Ei = {(v(i+1), v(i)}
contains an edge from v(i) to v(i + 1) for i = 3, 4, ...,m where we identify v(m + 1)
with v(m). See figure 3.
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This graph’s adjacency matrix has Perron root ρ = N . Every path through G is
quasi periodic, visiting V1, V2, ..., Vm, V1... and the only possible choice in how to move
through G is which of the Nm routes from v(1) to v(3) to pick in each cycle. The
average weight of the maximally weighted path, the max-plus exponent is therefore

λ =
1

m
(E[

Nm

max
j=1

tj] + E[t′]),

where the tj are i.i.d. (0,
√

2) Gaussians and t′ is an (0,
√
m− 2) Gaussian so that

λ =

√
2
√

2 logNm + 0

m
= 2

√
logN

m
.

Thus for fixed N and large m we have a graph with Perron root N but arbitrarily
small max-plus exponent.

Figure 3: Left: ratio of max-plus exponent to PPA exponent λ/λ̂ vs graphs size
for homogenous noise systems on complete graphs with uniform noise terms (top),
Gaussian noise terms (middle) and exponential noise terms (bottom). Right: counter
example graph for N = 2, m = 4.

Conjecture 20 There is a class of graphs (e.g. Erdos Renyi graphs with parameters
in some range) for which the PPA exponent is an accurate approximation of the true
max-plus exponent. The relative error between the two exponents converges to zero as
we consider large graphs in this class.

Furthermore if we consider homogenous noise max-plus linear systems on this
same class of graphs but with different noise term distributions (e.g. uniform, ex-
ponential,...) then the above statement still holds and the accuracy of PPA will be
superior for distributions with lighter tails.

Example 21 We generate a further randomly configured proportional noise max-
plus linear system by constructing an Erdos Renyi graph with N = 10 and p =
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0.5 and then assign each edge (i, j) an edge weighting parameter δi,j which is itself
an independent mean-1 exponential. The edge’s weight sequence is then defined by
w[(i, j), k] = δi,j(1+aZi,j[k]) where a ∈ R is the single noise parameter and [Zi,j(k)]nk=1

is an independent sequence of i.i.d. (0, 1)−Gaussians.
Through Monte Carlo simulation we approximate the max-plus exponent λ of this

system and compare it to the PPA exponent λ̂ computed using gradient ascent. The
results are displayed in figure 4.

Figure 4: Left: max-plus exponent vs classical Perron root for randomly configured
homogeneous noise systems with PPA approximation in green, for p = 0.5 there are
five samples of each of N = 4, 8, 16 and 32 clustered left to right and in black, for
p = 0.25 there are five samples of each of N = 8, 16, 32 and 64 clustered left to right
in yellow. Right: max-plus exponent vs noise amplitude for proportional noise system
with PPA approximation in green.

4 Conclusion

In this paper we introduced the notion of conflux turnpike behaviour, the edge crit-
icalities and the PPA approximation. Theorems 9, 10 and 15 only apply to systems
with Gaussian noise as outlined in section 1. Can these results be extended to a
broader class of stochastic max-plus linear system?

The max-plus exponent has received considerable attention as it is equal to the
reciprocal of the throughput of a queuing system. Are there useful practical inter-
pretations of the edge criticalities? For instance should edges with high criticality be
prioritised to have their weight reduced somehow in order to reduce the exponent?
Can the PPA critical statistics be used to analytically optimise the constrained design
of a queuing system?

We have shown that the PPA approximation is accurate for homogeneous systems
on large complete graphs and large Erdos Renyi graphs. These homogeneous systems
(introduced in example 17) should be of theoretical interest as they are the simplest
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class of stochastic max-plus linear systems with interesting graph topology. Answering
conjecture 20 would give us a sub class of systems where the max-plus exponent
depends only on the Perron root of the associated adjacency matrix, adding to the
existing links between max-plus matrix algebra and classical Perron Frobenius theory.
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