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Abstract: Private sector operators of response services such as ambulance, fire or police etc. are often regulated by
targets on the distribution of response times. This may result in inefficient overstaffing to ensure those targets
are met. In this paper, we use a network chain of M/M/K queues to model the arrival and completion of
jobs on the system so that quantities such as the expected total time waiting for all jobs can be calculated.
The Markov nature enables us to evoke the Hamilton Jacobi Bellman equation (HJB) principle to optimize the
required number of staff whilst still meeting targets.

1 INTRODUCTION

There are strong economic arguments for intro-
ducing competition from the private sector into state
emergency response services, in order to improve ef-
ficiency and reduce costs (Blackstone et al., 2007).
The state requires that the response service must try
to minimize the time it takes to reach an a emergency
call, as in a case of an ambulance or a fire fighters
it could save lives. Now, a private sector operator
will always look to minimise their costs so they must
be regulated effectively to maintain service to a re-
quired level. In this paper we outline a framework
to solve for the optimal staffing policy of the private
sector firm given a regulatory framework by weight-
ing the benefit of not missing targets with the cost of
staff given stochastic uncertainty in the demand for
service. This paper has been divided into 5 sections.
In section 2 we discuss the literature review and and
the previous work related to this problem. Then, in
section 3, we introduce and define the problem frame-
work and the partial differential equation (PDE) to
solve it. In section 4 we demonstrate the numerical
result and the conclusion are found in section 5.

2 LITERATURE REVIEW

There are variety of problems associated with the
optimal management of emergency response systems,

and the location of new and existing distribution cen-
ters in particular has received a lot of attention (see
Snyder, 2006, for an overview). A notable work is that
of Singer and Donoso (2008) who combine the prob-
lem of location with queueing theory. They used key
performance indicators such as the average response
time that improves the operation of ambulance ser-
vice providers. Some authors such as Marianov and
ReVelle (1996) have attempted to model both location
and resource/staffing levels with queues. In their pa-
per, they outline how to calculate the probability that
a given distribution centres will have spare capacity
given current resource levels (the number of vehicles
as opposed to staff in our framework), and then us-
ing a linear programming approach they can optimise
the position of a limited number of vehicles at dis-
tribution centres to best cover the area. The results
though are time invariant and cannot be applied to
something as dynamic as staffing levels where shifts
patterns change, and agency staff might be hired to
cover short term spikes in demand.

The optimal resource problem of how many staff
to employ has in general received much less atten-
tion in the literature than the related location or cov-
erage. There are some exceptions such as Fry MJ
(2006) who examined the problem of determining the
number of employees that would minimise the cost
of hiring in a fire department, subject to state staffing
requirements. He applied news-vendor type models
where the uncertainty depends on the decision vari-
ables. Nevertheless, this approach lacked the cost



of hiring and assumed a discrete time model. The
model within this paper is an extension of the stan-
dard queueing theory, utilising a Markov chain of
M/M/K queues. There have been countless other ap-
plications of these theories in problems as diverse as
highway traffic queues Evans et al. (1964) or manage-
ment of call centres (Aksin et al., 2007; Whitt, 2005).
There are some examples of queueing theory within
the problem of optimal staffing, such as Brooks et al.
(2011). They investigated the problem of care-at-
home services using a Markov decision process with
queues aiming to balance the cost of staffing against
the cost of rejection. In our model we assume that the
response service provider wishes to balance costs of
staffing against the response times, since the regulator
has incentivised that with targets. Another difference
between our approach and that of Brooks et al. (2011)
is that the inclusion of different classes of patients
resulted in the full problem becoming computation-
ally intractable. Consequently, they can only provide
heuristic bounds to guide the optimal policy. We aim
to keep our model relatively simple so that the solu-
tions can be found numerically in a reasonable time
frame.

So the unique contribution of this paper is to intro-
duce a time dynamic optimal control problem where
the control is the number of staff available, rather than
admittance or direction of calls on the system. This is
enabled by offsetting the expected total time between
receipt to arrival versus the cost of employing staff.
The result will be an optimal policy where the opti-
mal number of staff will be a function both of time
and the current state of the system. By including one
off costs at the start and the end of a shift, we can
ensure that the policy will result in realistic shift pat-
terns. The weighting of staff costs can then be varied
so as to establish the minimum staffing policy to meet
the required targets.

3 THE MODEL

Let us define a call to the service provider as a
job J which must be completed, and the staff member
that responds to that we shall denote as an engineer.
The engineer could be a policeman, fireman, ambu-
lance engineer, or a technician in the case of leakage
from a distribution network depending on the service
provider we are solving for. The different stages in
job completion are defined by the four times

• t i
b the time that the ith job is booked on the system.

• t i
t the time that the ith job is assigned to an engi-
neer.

• t i
a the time of arrival of the engineer at the ith job.

• t i
d the time that the engineer finishes the ith job.

Therefore, we define the ith job vector to be

Ji = (t i
b, t

i
t , t

i
a, t

i
d), (1)

and the set of jobs J = {J1,J2, ..JI} represents all jobs
received over a fixed period of time. Furthermore, we
define η = ta− tt to be the travel time for an engineer
to reach their destination, and ξ = td − ta to be the
total time which it takes for the engineer to finish the
job and become available again. We divide time into
K discrete periods of length ∆t, where the values of
K and ∆t may change depending on what we wish to
calculate. We can define the time at a given period to
be

tk = t0 + k∆t with k = 0,1, ..,K (2)

where t0 is the reference time that is before the first
time/date in tk period of time, tK is after the last
time/date, and ∆t = (tK−t0)/K. Now define the num-
ber of jobs that have been received on the system
within the period tk to be Bk, and the number received
but are yet to be completed at the time period tk as Qk.
Next we define the response time as the time between
the job being received on the system and the arrival
time of the engineer, or T = ta− tb. So to get an es-
timation of the response time, we must split the jobs
into three different types

• W the number of jobs waiting for the assignment
of an engineer.

• R the number of jobs where an engineer is in tran-
sit to reach a target

• A the number of jobs for which the engineer has
arrived but has not yet completed the job.

A job will count towards W if the call has been re-
ceived before (or at) the end of the current period, but
the engineer does not set off until after the end of that
period, counted in transit R if the engineer has set off
but not arrived, and counted as an arrived job A if the
engineer arrives before (or at) the end of the current
period and leaves after the start of the next period.
Obviously it follows that

Qk = W k +Rk +Ak, (3)

or Q is sum of all jobs waiting to be completed. We
impose no restriction on the number of jobs await-
ing completion but we must stipulate that the number
of engineers S available at time tk is greater than the
number in transit or at a job:

Rk +Ak ≤ Sk. (4)

If we assume that the optimal way to manage the sys-
tem is to serve costumers on a first-come first served



basis, (although this might not always be the case if
S varies with time and we know some trips might
take a lot longer than others) then if Rk +Ak < Sk we
have spare capacity and any new job that arrives will
immediately have a engineer sent out. Therefore, if
Rk +Ak < Sk then we have a sufficient number of en-
gineers to Sk to cover all the jobs requested or in other
words there are no job waiting for an engineer to be
assigned (W k = 0). Conversely, we know that if jobs
are waiting to be assigned, all engineers must be out
on jobs, so that W k ≥ 0 if Rk + Ak = Sk. So, even
though it appears as though there are three degrees
of freedom there are in fact only two, which means
that predicting the total number of jobs waiting to fin-
ish and the number of engineers travelling to reach a
target is enough information to tell us how many are
waiting and how many have arrived. Now, we can eas-
ily calculate the cumulative total time spent by each
job between it being booked onto the system and an
engineer arriving, denoted by T T , which is given by
the formula

T T = ∑
i
(t i

a− t i
b) = ∑

k
(W k +Rk)∆t +O(∆t) (5)

=
Z tK

t0
W (t)+R(t)dt.

The integral form of the equation is valid as ∆t → 0
and K → ∞. This quantity gives the total time given
all jobs that are taken in the period, but we are in-
terested in the average receipt to arrival time T for a
single job. Then the average receipt to arrival time for
a job T = ta− tb over the given time period is

E[T ] =
∑i(t i

a− t i
b)

I
=

1
I

Z tK

t0
W (t)+R(t)dt (6)

where I is again the total number of jobs. The equa-
tions (5) and (6) provides a link between the distri-
bution of T (the response times) and quantities that
are easily calculated using continuous time differen-
tial equations.

We assume that jobs arriving on the system fol-
lows a Poisson process with a time varying intensity
denoted as λ(t). Since the queues in M/M/K Marko-
vian process has a Poisson process and therefore the
inter arrival times should be exponentially distributed.
The memoryless nature of the exponential distribu-
tions ensures that we have a Markov chain even if the
mean of the process is time varying. Therefore,we
set travel times to be exponentially distributed (and
therefore memoryless) with an average length of η̄(t),
likewise completion times of the job are also expo-
nentially distributed with ξ̄(t). Now define the quan-
tity V (Q,R, t) to be some value function depending on
the stochastic processes followed by Q and R. Given
these stochastic jump processes, we can evaluate what
is the expected change in value of the system over a

small increment of time.

E[dV ] =
∂V
∂t

dt+ (7)

dt
[

λ(t)(V (Q+1,R+ψ, t +dt)−V (Q,R, t))+

R
η̄(t)

(V (Q,R−1, t +dt)−V (Q,R, t))+

µ(Q,R, t)(V (Q−1,R+φ, t +dt)−V (Q,R, t))
]

where µ(Q,R, t) = min(Q,S)−R
ξ̄(t)

and

ψ = 1,φ = 0 if Q < S (8)
ψ = 0,φ = 0 else if Q = S
ψ = 0,φ = 1 else if Q > S

3.1 Optimising the Number of
Engineers

In order to optimise the number of engineers, we
need to define some cash value to E[T T ], and off-
set it against the cost of employing engineers. The
value T T has the units [ time jobs] and we assign this
conversion from time jobs to cash or in other words,
the cost of delay in jobs by the variable α. The vari-
able α must have the units [£ time−1 jobs−1] and can
loosely be interpreted as the negative value added to
the system by increasing the total receipt to arrival
time by one unit. If there is some fixed cost to hire
engineers that is paid continuously at the rate ε (units
[£ time−1 jobs−1]) then we must set

dV =−α(R+max(Q−S,0))dt− εSdt. (9)

Equation (9) is used to calculate the total cost of hir-
ing S engineers plus the cost of T T over the time pe-
riod t ∈ [t0, tK ]. Obviously we would like to find the
strategy that hires engineers in some sort of shift pat-
tern in order to cover the jobs in the optimally. In
order to do this, we must allow S to vary with time -
in fact S will be our control variable. We need to con-
sider what happens when the value of S is increased,
decreased or stays the same throughout time. This
means that our value function will now become an
implicit function of the control variable S as well as
the other variables, so that V = V (Q,R, t;S).

3.1.1 Increasing the Number of Engineers

Since changing the number of engineers happens over
an instant, we define + to mean just after and − to
mean just before. If S+ > S−, then we have hired
more engineers. This means that any spare jobs wait-
ing to be assigned can be handed to the new engineers,



which results in

Q+ = Q− and (10)

R+ = R−+max((min(Q−,S+)−S−),0)

and if there is some fixed cost εs assigned to the engi-
neers starting the shift (this will stop engineers being
used for a short period of time) we have

V (Q−,R−, t−;S−) = V (Q+,R+, t+;S+) (11)

+ εs|S+−S−|

3.1.2 Decreasing the Number of Engineers

When an engineer finishes their shift, we can assume
that if they are already on their way to a job then they
must finish it, and those leaving must be either spare
engineers or those already at jobs. This means that
the number of jobs waiting for an engineer and the
number in transit must stay constant. So if S+ < S−

then R− = R+.

R+ = R− and (12)

Q+ = Q−−min(min(Q−,S−)−R−,

max(min(Q−,S−)−S+,0))

and

V (Q−,R−, t−;S−) = V (Q+,R+, t+;S+) (13)

+ ε f |S+−S−|

where ε f is some fixed cost associated with finishing
a shift (maybe equal to ε f the average cost of finishing
a job if they are on their way to or yet to finish one).
Furthermore, we now have to consider what happens
to the partial differential equation (PDE) if R > S, a
situation which might arise if engineers finish shifts
whilst they are on their way to a job. In this case we
have to add an extra equation to the calculation of dV
for this case when R > S. We are assuming that any
jobs in which the engineers have arrived are lost from
the system along with any jobs that arrive at their des-
tination in the state R > S. This loss from the system
and the cost of finishing the job is captured by fixed
costs for reducing the number of engineers. Therefore
we have,

dV =
∂V
∂t

dt+

λ(t)dt(V (Q+1,R, t +dt)−V (Q,R, t))+
R

η̄(t)
dt(V (Q−1,R−1, t +dt)−V (Q,R, t)). (14)

3.1.3 Solving the PDE

Now let us define the operator L such that the combi-
nation of equations (7), (8),(13) and (14) can be cap-
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Figure 1: The optimal hiring policy S∗ with η̄ = 1.5, ξ̄ =
0.5, tk = 24ε = 0.4,α = 3.5εs,ε f = 2.5 and K = 480.

tured by the single equation
∂V
∂t
−L(V ) =−α(R+max(Q−S,0))− εS (15)

In order to solve and optimise the equations we must
solve backwards in time . The value at the end of
the period should be assigned so that it is subop-
timal to allows jobs to remain unfinished, such as
V (Q,R, tK ;S) = PQ where P is some penalty for ev-
ery job remaining unfinished. We proceed to solve the
equations as follows. First, given that we have already
solved at tk+1, we must solve for all possible values
of Q, R, and S in the state space using the scheme

V k(Q,R;S) = V k+1(Q,R;S) (16)

+∆t
[
L(V k+1)+α(R+max(Q−S,0))+ εS

]
Once all values have been found we can apply the op-
timising condition (here we must minimise the value)
by checking at each Q, R, what the optimal number of
engineers is. This can be written as

(V ∗)k(Q−,R−) = min
E

[
V k(Q+,R+;E)+CS,E

]
(17)

where CS,E is the appropriate cost function from equa-
tions (10)-(13) and V ∗ is the optimal value. Once the
conditions of (10)-(13) are applied in (15) we can then
solve backwards in time until t0 which will be the op-
timal grid.

4 NUMERICAL RESULTS

4.1 Calculating the optimal number of
engineers through the day

Unless stated otherwise the results in this section as-
sume that we have

λ(t) = 2.5 if t ∈ [9,16] (18)
λ(t) = 0 otherwise.
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Figure 3: The optimal hiring policy of the engineers through
out the day.

and η̄ = 1.5, ξ̄ = 0.5, tk = 24ε = 0.4,α = 3.5,εs,ε f =
2.5 and K = 480. In figure 1, we plot the mean
path followed by both of the state variables Q and
R in the problem, the corresponding choice of opti-
mal S∗ (given the mean path), alongside the intensity
at which jobs appear on the system. We can observe
that S∗ fluctuates depending on the number of jobs
Q, keeping the total number of engineers close to the
current number of jobs on the system. As such in the
region t ∈ [0,9] we hire no engineers at all since there
is no jobs, then increase the number of engineers up
to time t ∈ [12,16] which is the peak time, and then
gradually decrease numbers until all engineers are fin-
ished their shifts at time t = 21. Given the parameters
as stated, the number of engineers S is always close
to the value of Q, keeping the cost of engineers to
a minimum. This ensures staffing and prevents jobs
left unattended. However, we can also observe how
the cost of engineers can vary under certain param-
eter choices. In the same figure, we can see that R
fluctuates with the number of of engineers hired. The
difference between the number of engineers hired S
and the travelling engineers R is controlled by ξ̄ and
η̄, such that as we increase η̄ and ξ̄ then the difference
between S and R decreases and vice versa.

To demonstrate that optimal choices are made for
the number of engineers we compare

min
E

[
Qmax

∑
i=0

Qmax

∑
j=0

V (Qi,Ri,E)] for all E (19)

for each time t and choice of engineer S. with λ = .5
for all t. We can then compare the effect of different
hiring policies with the respective optimal solutions.
In figure 2 we can see that this sum over all values
for constant hiring policies S = 3,6 and 15 is always
higher than the optimal policy S∗ for all t. Although
this is no way rigorous, it does show the effect of hir-
ing the optimal number of engineers on V (Q,R, t;S).

In figure 3 we set Qmax = 16. In this figure, we
have V (Q,R,S) at time t = 0 for different values of Q
and R where each represents the expected time it takes
R number of travelling engineers finish Q jobs with
S = 0. Most significantly, for Q = Qmax and R = 0
or in other words, there is Q job demand and no en-
gineers available to travel, then V (Q,R,S) = 68.9 as
evident from the figure. It represents the expected to-
tal travelling ( or waiting time for calls). Additionally,
we can see that if R > Q then V (Q,R,S) = 0 and all
the jobs will be covered by R engineers and there is
no waiting time. To show the effect of optimizing the
number of engineers, we compare the optimal hiring
policy with S = 6 and S = 15 . As we can see in figure
4, using the same previously mentioned parameters,
V (Q,R,S) at time t = 0 for S = 15 is always higher,
in comparison with the optimal hiring policy S∗, for
all values of Q and R. The expected total waiting time
V (Q,R,S) = 2944 for S = 15 is significantly higher
than using the optimal hiring policy. Furthermore, in
figure 5 we compare the optimal solution with S = 6
and in this case we set Qmax = 20. In this figure, we
can see that the expected travelling time is for S = 6
is higher than the optimal hiring policy for all val-
ues of Q and R where for Q = Qmax and R = 0 then
V (Q,R,S) = 4002 for S = 6, and V (Q,R,S) = 120.5
for S∗.

4.2 The effects of the cost parameters ε

and α

In figure 6, we set λ(t) as in equation (19) and ξ̄ =
0.5, η̄ = 1.5α = 3.5,K = 480,εs = 2.5,ε f = 2.5 with
the maximum of 10 engineers. As we decrease ε then
the optimal number of engineers required to complete
the job increases. This is because ε is the cost of hir-
ing and because it becomes cheaper to hire engineers
therefore we can invest in more of them. We notice
that for ε = 0 it is optimal to hire S = 10 for all t
since it is effectively free to hire them. For ε = 5 and
ε = 10 the number of engineers hired are actually less
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than the number of jobs Q since it is too expensive to
hire engineers.

5 CONCLUSION

In this paper, we have developed a model to opti-
mize the number of engineers hired by the response
service operator. We modelled the arrival and com-
pletion of jobs of a response as M/M/K queues using
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a time dynamic stochastic processes and allowed the
operator to the control the number of staff. We defined
the problem as a jump process PDE and categorized
the jump into three different types depending on the
current state of the system. The structure of the model
is developed from queueing theory but we put a real
options style slant on the model in which the operator
must invest fixed costs to start and end the shift pat-
terns of their staff. The main results show that the op-
timal staffing policy can effectively balance the costs
of employing staff with the total waiting time, allow-
ing an operator to find the balance of staffing levels
required to meet the regulatory targets.
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