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A PRECONDITIONER FOR FICTITIOUS DOMAIN

FORMULATIONS OF ELLIPTIC PDES ON UNCERTAIN

PARAMETERIZED DOMAINS∗

ANDREW GORDON AND CATHERINE E. POWELL ‡

Abstract. We consider the numerical solution of elliptic boundary-value problems on uncertain
two-dimensional domains via the fictitious domain method. This leads to variational problems of
saddle point form. Working under the standard assumption that the domain can be described by a
finite number of independent random variables, discretization is achieved by a stochastic collocation
mixed finite element method. We focus on the efficient iterative solution of the resulting sequence of
indefinite linear systems and introduce a novel and efficient preconditioner for use with the minimal
residual method. The challenging task is to construct a matrix that provides a robust approximation
to a discrete representation of a trace space norm on a parameterized boundary.

Key words. mixed finite elements, saddle point problems, stochastic collocation, random do-
mains, algebraic multigrid, preconditioning.
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1. Introduction. Numerical methods for solving partial differential equations
(PDEs) with uncertain (or random) data is currently a very active research area.
In particular, there is now a vast literature treating elliptic PDEs with uncertain
coefficients (see e.g., [4], [24], [23], [5], [21], [10], [13], [17],[12]). Discretization schemes
(e.g., Monte Carlo, stochastic Galerkin, stochastic collocation), error bounds and
iterative solvers for such problems have been extensively studied. On the other hand,
PDEs posed on domains with uncertain geometry or more precisely, domains described
by uncertain parameters (see [3], [9], [19] and [30]), have received less attention.
Solutions to such problems often have low regularity and existing literature focuses
on the challenging question of well-posedness, regularity results and a priori error
estimates. Armed with such analysis and a tried and tested discretization scheme for
deterministic PDEs, we focus here on efficient linear algebra.

We examine second-order elliptic PDEs on uncertain domains D ⊂ R
2. To ac-

count for uncertainty, we take a probabilistic approach and treat D as a function of
ω ∈ Ω, where Ω is an abstract sample space. To that end, let (Ω,F ,P) be a proba-
bility space, consisting of the sample space Ω, a σ-algebra F and probability measure
P. For each ω ∈ Ω, D(ω) is a realization of D with boundary ∂D(ω) and we assume
D(ω) is a bounded polygon P−a.s. (with probability one). Now, let D : Ω → B(R2),

where B(R2) is the Borel σ-algebra on R
2 and assume the data a, f : D̂ → R where

D̂ :=
⋃

ω∈Ω

D(ω). (1.1)

We want to find p :
{

(x, ω) : ω ∈ Ω,x ∈ D(ω)
}
→ R such that P−a.s.,

−∇ · (a(x)∇p(x, ω)) = f(x) in D(ω), (1.2)

p(x, ω) = 0 on ∂D(ω). (1.3)
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For simplicity, we focus on homogeneous Dirichlet boundary conditions, as in [30] and
[9]; Neumann boundary conditions are considered in [19]. There are many reasons why
the domain for the model problem (1.2)–(1.3) could be uncertain. It may correspond
to an object that is inaccessible (such as a subterranean layer of rock in a potential
flow simulation) or to an object that is subject to manufacturing inaccuracies (such
as a component of an engine in a steady-state heat diffusion simulation).

One possibility is to transform (1.2)–(1.3) into a boundary-value problem (BVP)
on a fixed domain E ⊂ R

2. Suppose there exists an invertible mapping η = η(x, ω)
with inverse x = x(η, ω), that transforms D(ω) into E. That is, for almost every
ω ∈ Ω, x ∈ D(ω) gives η ∈ E and η(D(ω), ω) = E. By applying a change of variable,
(1.2)–(1.3) can be transformed into a new BVP on E with random data â(η, ω),

f̂(η, ω). Details about how to construct such a mapping can be found in [30].
Of course, we could also solve (1.2)–(1.3) directly by a Monte Carlo method.

That is, generate realizations D(ω) of D and solve the resulting deterministic BVPs
using e.g., finite elements. A serious disadvantage is that for each D(ω), re-meshing
is required and a new finite element stiffness matrix has to be formed. A different
approach, based on the fictitious domain method (FDM) [14, 15] is taken in [9]. Here,
(1.2)–(1.3) is solved on a larger fixed domain E, in the original co-ordinate system,
and the boundary conditions are enforced weakly on ∂D. This yields a saddle point
problem with deterministic coefficients. When sampling is applied, only one stiffness
matrix is required on E and only the boundary ∂D needs to be re-meshed. Hence,
we follow [9] and use the FDM strategy.

In Section 2, we briefly review the FDM for solving PDEs on fixed, certain do-
mains. We return to the stochastic problem (1.2)–(1.3) in Section 3 and assume that
D(ω) can be described by a finite number of random variables ξk : Ω → R. In this
work, we assume the ξk are bounded. We then combine the FDM with a stochas-
tic collocation mixed finite element method (SCMFEM) (see [25], [29]). The main
contribution of our work is presented in Section 4, where we consider the efficient nu-
merical solution of the sequences of linear systems generated by the combined FDM-
SCMFEM scheme. In particular, we introduce a novel preconditioner for use with
minimal residual (MINRES) iteration. Numerical results are also presented to inves-
tigate robustness of the suggested solver with respect to the discretization parameters
and the statistical parameters describing the uncertainty in the domain geometry. To
conclude this introduction, we recall some standard definitions and results that will
be needed in the sequel.

1.1. Trace spaces and norms. Consider a bounded set E ⊂ R
2 with bound-

ary ∂E and let H1(E) denote the Hilbert space of L2(E) functions with weak first
derivatives in L2(E). If ∂E is sufficiently smooth then it is well known (e.g., see [2,
Section 7.3.4]) that there exists a bounded operator τ : H1(E) → L2(∂E), called a
trace operator, that satisfies τ(v) = v|∂E for all v ∈ H1(E) ∩ C1(E). The range of τ
is not the whole of L2(∂E) but the so-called trace space H1/2(∂E). We next recall
that H1

0 (E) =
{
v ∈ H1(E) : τ(v) = 0

}
, the set of H1(E) functions that are zero, in

the sense of trace, on ∂E. For v ∈ H1
0 (E), we define

‖v‖H1

0
(E) := ‖∇v‖L2(E), ‖v‖H1(E) :=

(
‖v‖2

L2(E) + ‖v‖2
H1

0
(E)

)1/2

,

and, denoting the Poincaré constant for E by KE , we recall the norm equivalence,

‖v‖H1

0
(E) ≤ ‖v‖H1(E) ≤

(
1 +K2

E

)1/2 ‖v‖H1

0
(E). (1.4)
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Now consider a bounded domain D ⊂ E ⊂ R
2. If v ∈ H1

0 (E) then v ∈ H1(D) and
clearly, ‖v‖H1(D) ≤ ‖v‖H1(E). Assuming ∂D is sufficiently smooth, we can examine
the trace of any v ∈ H1(E) on ∂D. Instead of the usual trace operator that relates
H1(E) functions to their boundary values, we consider a trace operator

τ : H1(E) → H1/2(∂D),

where ∂D is a one-dimensional closed curve contained in E. In this setting, we define

H1/2(∂D) :=
{
θ : θ = τ(v) for some v ∈ H1(E)

}
, (1.5)

the set of traces of H1(E) functions on ∂D, which is equipped with the norm

‖θ‖H1/2(∂D) := inf
v∈H1(E),τ(v)=θ

||v||H1(E). (1.6)

We identify H−1/2(∂D) as the dual space of H1/2(∂D) and if we define the duality
pairing by

〈µ, θ〉∂D :=

∫

∂D

µ(s) θ(s) ds, µ ∈ H−1/2(∂D), θ ∈ H1/2(∂D),

then the natural norm on H−1/2(∂D) is given by

‖µ‖H−1/2(∂D) := sup
θ∈H1/2(∂D)

〈µ, θ〉∂D

‖θ‖H1/2(∂D)

. (1.7)

2. FDM for deterministic problem. Let D ⊂ R
2 be a bounded polygon and

consider the elliptic BVP: find p : D → R such that,

−∇ · (a(x)∇p(x)) = f(x), in D, (2.1)

p(x) = 0, on ∂D. (2.2)

The BVP (2.1)–(2.2) is the deterministic analogue of (1.2)–(1.3) and we recall that
the standard weak formulation is: find p ∈ H1

0 (D) such that
∫

D

a(x)∇p(x) · ∇v(x) dx =

∫

D

f(x) v(x) dx, ∀v ∈ H1
0 (D). (2.3)

In the deterministic case, the fictitious domain method (FDM) is advantageous when
D is difficult to mesh. Instead of solving (2.3), a “fictitious domain” E with simple
geometry is chosen with D ⊂ E ⊂ R

2. The weak problem is solved on E and a
Lagrange multiplier is used to constrain the solution so that (2.2) is satisfied weakly.
We must hence assume that f and a can be extended to E and, in particular, that
f ∈ L2(E) and a ∈ L∞(E) with 0 < amin < a(x) < amax almost everywhere in E.

Define the Lagrangian function L : H1
0 (E) ×H−1/2(∂D) → R by

L(v, µ) :=
1

2

∫

E

a(x) |∇v(x)|2 dx −
∫

E

f(x) v(x) dx +

∫

∂D

µ(s) τ(v)(s) ds, (2.4)

where τ : H1(E) → H1/2(∂D) is the trace operator discussed in Section 1.1. We now
consider the saddle point pair (p̂, λ) ∈ H1

0 (E) ×H−1/2(∂D) satisfying

inf
v∈H1

0
(E)

sup
µ∈H−1/2(∂D)

L(v, µ) (2.5)
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which can be found [8] by solving: find (p̂, λ) ∈ H1
0 (E) ×H−1/2(∂D) such that

∫

E

a(x)∇p̂(x) · ∇v(x) dx +

∫

∂D

λ(s) τ(v)(s) ds =

∫

E

f(x) v(x) dx, (2.6)

∫

∂D

µ(s) τ(p̂)(s) ds = 0, (2.7)

for all v ∈ H1
0 (E) and µ ∈ H−1/2(∂D). Here, we apply homogeneous Dirichlet bound-

ary conditions on E but this is not a restriction. We note that p̂|D = p, where p solves
(2.3) and λ = [∂p̂/∂n]∂D , the jump of the normal derivative of p̂ across ∂D; see [9].

Theorem 2.1. Let a ∈ L∞(E) with 0 < amin ≤ a(x) ≤ amax for almost all
x ∈ E and f ∈ L2(E). Then (2.6)–(2.7) has a unique solution (p̂, λ) ∈ H1

0 (E) ×
H−1/2(∂D).

Proof. We appeal to the classical theory of saddle point problems [8], which states
that a unique solution to (2.6)–(2.7) exists if the following conditions are satisfied.

1. ∃c1 > 0 such that
∣∣∣∣
∫

E

a(x)∇w(x) · ∇z(x) dx

∣∣∣∣ ≤ c1||w||H1

0
(E)||z||H1

0
(E), ∀w, z ∈ H1

0 (E).

2. ∃c2 > 0 such that, for all (z, µ) ∈ H1
0 (E) ×H−1/2(∂D),

∣∣∣∣
∫

∂D

µ(s)τ(z)(s) ds

∣∣∣∣ ≤ c2||µ||H−1/2(∂D)||z||H1

0
(E).

3. ∃α > 0 such that
∫

E

a(x) |∇z(x)|2 dx ≥ α||z||H1

0
(E), ∀ z ∈ X0,

where X0 := {z ∈ H1
0 (E) : 〈µ, τ(z)〉∂D = 0, ∀µ ∈ H−1/2(∂D)}.

4. ∃β > 0 such that

sup
z∈H1

0
(E),z 6=0

〈µ, τ(z)〉∂D

||z||H1

0
(E)

≥ β ||µ||H−1/2(∂D), ∀µ ∈ H−1/2(∂D). (2.8)

Using the assumption on a and applying the Cauchy-Schwarz inequality we see that
the first condition holds with c1 = amax. Using (1.6) and (1.4) gives

∣∣∣∣
∫

∂D

µ(s)τ(z)(s) ds

∣∣∣∣ ≤ ||τ(z)||H1/2(∂D)||µ||H−1/2(∂D) ≤ ||z||H1(E)||µ||H−1/2(∂D)

≤ (1 +K2
E)1/2||z||H1

0
(E)||µ||H−1/2(∂D) (2.9)

and hence condition 2 holds with c2 = (1 + K2
E)1/2. Condition 3 is satisfied with

α = amin for all z ∈ H1
0 (E) (by the definition of || · ||H1

0
(E)). That condition 4 (the

so-called inf-sup condition) holds is well known, (e.g., see [14, Section 2], or [9]).

2.1. Finite Element Discretization. We use a mixed finite element method to
discretize (2.6)–(2.7). Specifically, we consider a piecewise bilinear approximation to
p̂ and a piecewise constant approximation to λ. To do this, we introduce two meshes,
one on E and one on ∂D. We choose E to be a rectangle (there is no restriction) and
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construct a uniform mesh of square elements with characteristic edge length h. The
nh interior vertices are denoted x1, . . . ,xnh

and we define Xh := span{φ1, . . . , φnh
} ⊂

H1
0 (E), where φi is the piecewise bilinear function on E satisfying φi(xj) = δij . Next,

we partition the polygonal boundary ∂D into nH disjoint straight line segments ∂Di

and assume that for each i, H ≤ |∂Di| ≤ cH for some c <∞ where H := mini |∂Di|.
We then define YH := span{ψ1, . . . , ψnH} ⊂ H−1/2(∂D) where ψi = 1|∂Di satisfies
ψi(x) = 1 if x ∈ ∂Di and ψi(x) = 0, otherwise.

Working in Xh × YH , the finite-dimensional analogue of (2.6)–(2.7) is: find
(p̂h, λH) ∈ Xh × YH such that,

∫

E

a(x)∇p̂h(x) · ∇v(x) dx +

∫

∂D

λH(s) τ(v)(s) ds =

∫

E

f(x)v(x) dx, (2.10)

∫

∂D

µ(s) τ(p̂h)(s) ds = 0, (2.11)

for all v ∈ Xh and µ ∈ YH . To show that (2.10)–(2.11) is well-posed, we appeal again
to classical saddle point theory, [8]. Conditions 1-3 (see Theorem 2.1) are satisfied on
the finite-dimensional spaces since Xh ⊂ H1

0 (E) and YH ⊂ H−1/2(∂D). The inf-sup
condition now reads: ∃β > β∗ > 0 (with β∗ independent of h and H) such that

sup
zh∈Xh,zh 6=0

〈µH , τ(zh)〉∂D

‖zh‖H1

0
(E)

≥ β ‖µH‖H−1/2(∂D), ∀µH ∈ YH . (2.12)

The choice of the mesh parameters is crucial. In [14], (2.12) is shown to hold when
piecewise linear triangular elements are used on E, provided 3 ≤ H/h ≤ L, for a
constant L. Hence, we require that each element ∂Di on ∂D is of a comparable
length to h but larger by a factor of at least three. This ensures the dimension of
Xh is large enough compared to that of YH . To the best of the authors’ knowledge,
there is no such theoretical result for bilinear elements (also used in [9]). However,
numerical evidence suggests that a similar result holds.

Define A ∈ R
nh×nh and B ∈ R

nH×nh by

Aij :=

∫

E

a(x)∇φi(x) · ∇φj(x) dx, Bkj :=

∫

∂D

ψk(s)τ(φj)(x(s)) ds.

Then, (2.10)–(2.11) leads to a linear system of the form
(
A BT

B 0

)(
p̂

λ

)
=

(
f

0

)
,

where fj =
∫

E f(x)φj(x) dx. In addition, define AI as A with a(x) = 1. Then, for
zh ∈ Xh and µH ∈ YH , we have

‖zh‖2
H1

0
(E) = zTAIz, 〈µH , τ(zh)〉∂D = µTBz,

where z ∈ R
nh , µ ∈ R

nH are the vectors of coefficients appearing in the expansions
of zh and µH , respectively. Now, if we can find a matrix X ∈ R

nH×nH such that

‖µH‖2
H−1/2(∂D) = µTXµ, (2.13)

then (2.12) may equivalently be written as

β2 µTXµ ≤ max
z∈R

nh

(
µTBz

)2

zTAIz
= µTBA−1

I BT µ, ∀µ ∈ R
nH \ {0}. (2.14)
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Hence, β2 is the smallest eigenvalue λmin in BA−1
I BT µ = λXµ. The matrix X is not

easy to compute, however, as ‖ · ‖H−1/2(∂D) is defined by (1.7). In Section 4, we will

construct an X such that ‖µH‖2
H−1/2(∂D)

≈ µTXµ.

A priori error estimates for the mixed finite element method on triangular meshes
of E are established in [14]. Since the solution p̂ to (2.6) is singular in the vicinity of
∂D, only on a strict subset D′ ⊂ D (see [6]), do we obtain the bound

||p̂− p̂h||H1

0
(D′) ≤ ch1−ǫ||f ||L2(E), ∀ǫ > 0.

On domains that contain ∂D, the H1
0 norm of the error is (in the worst case) O(h1/2).

3. FDM for stochastic problem. We now consider (1.2)–(1.3) and make the
standard assumption that D depends on M independent real-valued random variables
ξ1, . . . , ξM : Ω → R so that D(ω) = D(ξ(ω)) where ξ := (ξ1, . . . , ξM ). Denote the joint
density of ξ by ρ and define Γ := ξ(Ω) ⊂ R

M so that y = ξ(ω) ∈ Γ. We assume that
each ξk is bounded and focus on the uniform distribution. Hence, if ξk ∼ U(−γk, γk)
for some γk > 0, then Γ = [−γ1, γ1] × · · · × [−γM , γM ] and

ρ(y) =
M∏

k=1

(2γk)−1 for y ∈ Γ, ρ(y) = 0 for y ∈ R
M \ Γ.

The BVP (1.2)–(1.3) can now be written in the equivalent parametric form: find

p :
{
(x,y) : y ∈ Γ,x ∈ D(y)

}
→ R such that for almost all y ∈ Γ,

−∇ · (a(x)∇p(x,y)) = f(x) in D(y), (3.1)

p(x,y) = 0 on ∂D(y). (3.2)

To establish well-posedness of weak formulations and to perform analysis, the pa-
rameterization of the boundary in terms of y = (y1, . . . , yM ) requires some thought.
Following [9], we assume that for each y ∈ Γ, ∂D(y) may be obtained from the bound-
ary ∂D0 of a reference polygon D0 ⊂ R

2, by applying a piecewise smooth invertible
mapping γ0 : ∂D0×Γ → R

2. That is, we assume there exists a well-behaved mapping
γ0 such that for each y ∈ Γ, ∂D(y) = γ0(∂D0,y) and ∂D0 = γ−1

0 (∂D(y),y).
Let E ⊂ R

2 be a domain such that E ⊃ D(y) for almost every y in Γ and define

L2
ρ(Γ, H

1
0 (E)) :=

{
v : E × Γ → R :

∫

Γ

ρ(y) ‖v(·,y)‖2
H1(E) dy <∞,

and v(·,y) = 0 on ∂E (in the sense of trace) ∀y ∈ Γ
}
.

The fictitious domain weak formulation of (3.1)–(3.2) is: find p̂ ∈ L2
ρ(Γ;H1

0 (E)) and

λ ∈ L2
ρ(Γ;H−1/2(∂D)) such that
∫

Γ

ρ

∫

E

a∇p̂ · ∇v dx dy +

∫

Γ

ρ

∫

∂D(y)

λ τy(v) ds dy =

∫

Γ

ρ

∫

E

f v dx dy, (3.3)

∫

Γ

ρ

∫

∂D(y)

µ τy(p̂) ds dy = 0, (3.4)

for all v ∈ L2
ρ(Γ;H1

0 (E)) and µ ∈ L2
ρ(Γ;H−1/2(∂D)), where the trace operator

τy : H1(E) → H1/2(∂D(y)). For brevity, we now drop the arguments in the in-
tegrands. Note that each of the boundary integrals in (3.3)–(3.4) can be trans-
formed into an integral on ∂D0 using γ−1

0 . This mapping also allows us to associate
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H−1/2(∂D(y)) functions with H−1/2(∂D0) functions. Hence, the meaning we give to
µ ∈ L2

ρ(Γ;H−1/2(∂D)) (see [9]) is that the function µ0 : ∂D0 × Γ satisfying

∫

∂D0

µ0(·,y)v0 ds =

∫

∂D(y)

µ(·,y) (v0 ◦ γ−1
0 (·,y)) ds, ∀v0 ∈ H1/2(∂D0), ∀y ∈ Γ,

belongs to L2
ρ(Γ, H

−1/2(∂D0)), where

L2
ρ(Γ, H

−1/2(∂D0)) :=

{
µ0 : ∂D0 × Γ → R :

∫

Γ

ρ(y) ‖µ0(·,y)‖2
H−1/2(∂D0) dy <∞

}
.

Well-posedness of (3.3)–(3.4) is established in [9, Proposition 6.1] for the case
a ≡ 1. By assuming that (2.8) holds for the deterministic problem associated with
any fixed y ∈ Γ, with a constant β independent of y, it can be shown that

sup
z∈L2

ρ(Γ;H1

0
(E)),z 6=0

〈µ, τy(z)〉∂D

||z||L2
ρ(Γ;H1

0
(E))

≥ β ||µ||L2
ρ(Γ;H−1/2(∂D)), ∀µ ∈ L2

ρ(Γ;H−1/2(∂D)).

That is, the stochastic problem (3.3)–(3.4) is inf-sup stable. When a 6= 1, if the
assumption on a in Theorem 2.1 holds, then the problem is well-posed.

3.1. SCMFEM discretization. To derive a finite-dimensional problem, we
apply a SCMFEM. That is, we combine collocation on Γ with the mixed finite element
discretization from Section 2.1. A continuous approximation on Γ is then constructed
by interpolation.

Let Ξ := {y1, . . . ,ync
} ⊂ Γ ⊂ R

M be a chosen set of collocation points. In the
SCMFEM approach, for each yr ∈ Ξ we find (p̂r

h, λ
r
Hr

) ∈ Xh × YHr that solves

∫

E

a∇p̂r
h · ∇v dx +

∫

∂D(yr)

λr
Hr
τr(v) ds =

∫

E

fv dx, ∀v ∈ Xh, (3.5)

∫

∂D(yr)

µ τr(p̂
r
h) dx = 0, ∀µ ∈ YHr , (3.6)

where τr : H1(E) → H1/2(∂D(yr)) is the trace operator for ∂D(yr). We assume
that E is a rectangle, construct a uniform mesh of rectangles with edge length h, and
choose Xh ⊂ H1

0 (E) to be the set of piecewise bilinear functions. For each yr ∈ Γ,
we partition ∂D(yr) into nHr disjoint straight line segments ∂Dr

i such that for each
one, Hr ≤ |∂Dr

i | ≤ cHr for some c <∞, where

Hr := min
i

|∂Dr
i |.

We then define YHr := span{ψr
1, . . . , ψ

r
nHr

} ⊂ H−1/2(∂D(yr)) where ψr
i = 1|∂Dr

i
is

the indicator function associated with the element ∂Dr
i . Hence, YHr contains piecewise

constant functions on ∂D(yr). Note that the dimension nHr may be different for each
collocation point yr and the partitions are not uniform in general.

After solving each of the decoupled problems (3.5)–(3.6), we construct an approx-
imation to p̂ on E × Γ via

p̂h,Ξ(x,y) :=

nc∑

r=1

p̂r
h(x)Lr(y), x ∈ E,y ∈ Γ (3.7)

7



where Lr is the Lagrange polynomial satisfying Lr(ys) = δrs. Note that p̂r
h is a fi-

nite element approximation to p̂(·,yr), where p̂ solves (3.3)–(3.4). Similarly, λr
Hr

approximates λ(·,yr). Constructing an interpolant from the Lagrange multiplier ap-
proximations is not quite so straightforward as each one is defined on a different
one-dimensional manifold. However, using γ−1

0,r := γ−1
0 (·,yr) to map λr

Hr
onto the

boundary of the reference domain D0, we can form an approximation on ∂D0 ×Γ via

λ0,Ξ(x0,y) :=

nc∑

r=1

(λr
Hr

◦ γ0,r)(x0)Lr(y), x0 = γ−1
0,r (x) ∈ ∂D0,y ∈ Γ. (3.8)

From (3.7), we have p̂h,Ξ ∈ Xh ⊗ SΞ where SΞ := span{Lr(y),yr ∈ Ξ}. SΞ is a
set of multivariate polynomials determined by the set Ξ. We choose Ξ so that

SΞ ⊂ L2
ρ(Γ) :=

{
v : Γ → R :

∫

Γ

ρ(y)v(y)2 dy <∞
}
.

This gives Xh ⊗ SΞ ⊂ L2
ρ(Γ, H

1
0 (E)). In so-called tensor product schemes, Ξ is the

Cartesian product of M sets of interpolation points on the intervals Γk = ξk(Ω).
Possibilities include Clenshaw-Curtis and Gauss points. If dk + 1 points are selected
on Γk, so that the one-dimensional rule is exact for polynomials of degree dk, then
nc = |Ξ| =

∏M
k=1(dk + 1). This is intractable as M → ∞ and sparse grid schemes

(e.g., see [18]) are favoured when M is large. For the applications we have in mind
here, however, we do not anticipate the number of random variables to be large.
Certainly, far fewer than the number of variables required to represent a spatially
varying uncertain material coefficient. In our experiments we apply tensor product
schemes because M is small.

The notation SΞ is used to stress that the set Ξ is part of the discretization. For
tensor product schemes, the polynomial degrees d1, . . . , dM determine Ξ and so, like
H and Hr, are discretization parameters. To ensure existence and uniqueness of the
SCMFEM solution, it is sufficient to show that each of the nc deterministic problems
(3.5)–(3.6) is well-posed. In particular, we must ensure that (2.12) holds for each one.
Since the mesh parameter Hr can be different for each ∂D(yr), care must be taken
in implementation to ensure that for each yr, 3 ≤ Hr/h < L, for some L > 0.

The authors of [9] focus on a related stochastic Galerkin mixed finite element
method (SGMFEM). It is equivalent to a tensor product collocation scheme in the
case where d + 1 points are chosen on each Γk, so that nc = (d + 1)M . It can be
shown that when f is sufficiently smooth (and a ≡ 1), then p̂ is Hölder continuous as
a function of y on E with some exponent γ ∈ (0, 1]. However, on D∗ = ∩y∈ΓD(y), p̂
is smoother. Based on the results for the SGMFEM studied in [9], if we choose dk = d
points in each direction, we can only expect that

‖ p̂− p̂h,Ξ ‖L2
ρ(Γ,H1

0
(E))= O(h1/2) + O(d−γ/2).

However, on some strict subset D′ ⊂ D∗, we have

‖ p̂− p̂h,Ξ ‖L2
ρ(Γ,H1

0
(D′))= O(h) + O(d−r/2),

where r ≥ 1 depends on the regularity of f.

3.2. Numerical results. To illustrate the SCMFEM scheme, we present results
for a test problem. Consider (1.2)–(1.3) with a = 1, f = 1 and

D(ω) = {x = (x1, x2) : −0.5 ≤ x1 ≤ 0.5 + ξ1(ω),−0.5 ≤ x2 ≤ 0.5 + ξ2(ω)}
8
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Fig. 3.1. Top line: Uniform mesh on E = (−1, 1)2 with h = 1/16 and stable partitions of three
sample boundaries ∂D(yr), where D(yr) = (−0.5, 0.5 + y1,r) × (−0.5, 0.5 + y2,r), r = 0, 1, 2 and
y0 = (0, 0), H0/h = 4 (left), y1 = (0.2, 0), H1/h = 3.84 (middle) and y2 = (−0.2, 0.2), H2/h = 3.84
(right). Bottom line: zoom of plots on top line.

where ξ1 ∼ U(−γ1, γ1) and ξ2 ∼ U(−γ2, γ2) are independent, for some γ1, γ2 > 0.
This corresponds to a rectangular domain of uncertain width and height with a fixed
vertex at (−0.5,−0.5). We choose E = (−1, 1)2 (note that it contains all realizations
of D) and transform (1.2)–(1.3) into (3.3)–(3.4). We then perform collocation on
Γ = [−γ1, γ1]× [−γ2, γ2] and apply the mixed finite element method from Section 3.1.

Each collocation point yr ∈ Γ generates a new domain D(yr) and a new saddle
point system. Since ∂D(yr) is one-dimensional, it is feasible to re-mesh it for each
yr. For a fixed mesh on E with elements of size h, we construct the mesh on ∂D(yr)
so that |∂Dr

i |/h is close to 4. Figure 3.1 shows a uniform mesh of squares on E with
h = 1/16 and three samplesD(yr) ofD. The meshes constructed on the corresponding
boundaries ∂D(yr) are also shown. Observe that the number of elements on ∂D(yr)
varies with yr, and the meshes on E and ∂D(yr) are not necessarily aligned.

Now, let γ1 = 0.2 = γ2 and choose Ξ = X1×X1, where X1 is the set of d+1 Gauss
points in [−0.2, 0.2]. Cross-sections (at x2 = 0) of the mean E[p̂h,Ξ] and the variance
V ar[p̂h,Ξ] of the SCMFEM solution, obtained with d = 26 and varying choices of
mesh parameters h and Hr, are shown in Figure 3.2. There are 729 collocation points
in total. To compute the statistics we set each p̂h(·,yr) in (3.7) to zero in E\D(yr).
As anticipated, there is little variation in the solution when x1 = −0.5 and the largest
variation occurs when x1 ≈ 0.3. A two-dimensional plot of the mean and variance of
p̂h,Ξ obtained in the case h = 1/64 is also shown in Figure 3.3.

4. Linear systems. We now focus on the iterative solution of the sequence of
linear systems corresponding to (3.5)–(3.6). We have to solve nc systems of the form

(
A BT

r

Br 0

)

︸ ︷︷ ︸
=:Cr

(
pr

λr

)
=

(
b

0

)
, r = 1, . . . , nc, (4.1)

where nc = |Ξ| is the number of collocation points. Note that the rth system consists
of nh + nHr equations, where nh and nHr are the dimensions of the spaces Xh and

9
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Fig. 3.2. Cross-sectional plots on [−0.5, 0.7] × {0} of the expected SCMFEM solution E[bph,Ξ]
(top) and variance Var[bph,Ξ] (bottom) for the test problem with h = 1/8 (left), h = 1/16 (middle)
and h = 1/32 (right). For all samples, 3.6 ≤ Hr/h ≤ 4.4, for r = 1, . . . , 729.
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Fig. 3.3. Plot of the expected SCMFEM solution E[bph,Ξ] (left) and variance Var[bph,Ξ] (right)
for the test problem with d = 26, h = 1/64 and 3.9 ≤ Hr/h ≤ 4.1, for r = 1, . . . , 729.

YHr , respectively. For each r = 1, . . . , nc,

[Br]ij =

∫

∂D(yr)

ψr
i τr(φj) ds =

∫

∂Dr
i

φj |∂Dr
i
ds, (4.2)

for i = 1, . . . , nHr , j = 1, . . . , nh, where YHr = span{ψr
1 , . . . , ψ

r
nHr

} is the set of
piecewise constant functions on ∂D(yr). In addition, we have

Aij =

∫

E

a(x)∇φi(x) · ∇φj(x) dx, bi =

∫

E

f(x)φi(x) dx, i, j = 1, . . . , nh

where Xh = span{φ1, . . . , φnh
} ⊂ H1

0 (E). We recognise A as a standard finite element
diffusion matrix; it is sparse, symmetric and positive definite. From (4.2) we see that
the (i, j)th entry of Br is non-zero only when ∂Dr

i intersects an element of E with
vertex xj (where φj(xj) = 1). Since Hr/h is fixed to ensure stability, this number of
elements is small relative to nh (see Figure 3.1), and hence Br is sparse.

Applying Sylvester’s law of inertia reveals that the matrix Cr in (4.1) has nh

positive eigenvalues and nHr negative eigenvalues. Consequently, it is indefinite as
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well as symmetric and sparse. Linear systems with such coefficient matrices may
be solved via the (preconditioned) minimal residual method (MINRES, see [20]) and
this is the approach we take. Other authors (e.g., see [15]) have considered the
iterative solution of the single linear system that arises when the FDM is applied to
the deterministic problem (2.3). Instead of solving the indefinite system, however,
existing studies focus on the reduced Schur-complement system associated with the
Lagrange multiplier λ. This system has a dense positive definite matrix BA−1BT

(where B is defined as in (4.2) but on a fixed domain). The authors of [15] discuss
preconditioning for it, in the special case where D is a circle.

To determine whether preconditioning is required when MINRES is used to solve
the sequence of linear systems (4.1) associated with the stochastic PDE problem
(1.2)–(1.3), we first examine eigenvalue bounds for the matrix Cr.

Theorem 4.1. Let θ,Θ denote the minimum and maximum eigenvalues of A
and let σr,min, σr,max be the minimum and maximum singular values of Br. Then,
for each r = 1, . . . , nc, the eigenvalues of Cr in (4.1) are contained in
[
1

2

(
θ −

√
θ2 + 4σ2

r,max

)
,
1

2

(
Θ −

√
Θ2 + 4σ2

r,min

)]
∪
[
θ,

1

2

(
Θ +

√
Θ2 + 4σ2

r,max

)]
.

Proof. This is a well-known result, due to Rusten and Winther; see [22].
For bilinear elements on uniform meshes of E and a = 1, it is known (e.g., see [11])
that the eigenvalues of A are contained in a bounded interval of the form [ ch2, ĉ ] for
some c, ĉ > 0, independent of h. Hence, θ = O(h2) and Θ = O(1) in Theorem 4.1. If
a is spatially varying with 0 < amin ≤ a(x) ≤ amax a.e. in E, then the eigenvalues of
A are contained in the interval

[ caminh
2, amaxĉ ].

The singular values of Br, however, depend on the particular realization ∂D(yr) and
the associated mesh. The following simple example illustrates that σr,min and σr,max

depend on both h and Hr.
Example 4.1 Consider E = (−1, 1)2 and D0 = (−0.5, 0.5)2 ⊂ E. Since D0 is

square, we can partition ∂D0 into nH0
= 4/H0 elements ∂D0

i of length H0. On E,
we select a uniform mesh of squares with edge length h. If h = 2−k for some k ≥ 1,
then the meshes on E and ∂D0 are aligned. For example, see the leftmost plot in
Figure 3.1 (where h = 1/16 and H0 = 1/4). Now, let B0 be the rectangular matrix
associated with ∂D0, defined as in (4.2). We have

[B0B
T
0 ]ij =

nh∑

k=1

[B0]ik[B0]jk, i, j = 1, . . . , nH0
,

and for the specific meshes described,

[B0]ik =






h if xk lies in the interior of ∂D0
i

h/2 if xk is an end point of ∂D0
i

0 otherwise
(4.3)

where xk is a vertex of the mesh on E. Each ∂D0
i is composed of H0/h edges of

elements in E. Hence, there are at most H0/h+ 1 nodes xk such that [B0]ik is non-
zero. Two of these are end points of ∂D0

i and the rest lie in the interior. If i = j,

[B0B
T
0 ]ii =

nh∑

k=1

[B0]
2
ik = h2/4 + h2/4 + (H0/h− 1)h2 = h2/2 + (H0/h− 1)h2,
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and if i 6= j, then

[B0B
T
0 ]ij =

nh∑

k=1

[B0]ik[B0]jk =

{
h2/4 if ∂D0

i and ∂D0
j are connected,

0 otherwise.
(4.4)

If we number the elements ∂D0
i in a circular fashion, starting at the vertex (−0.5, 0.5)

and travelling around ∂D0 in an anti-clockwise direction, it is easy to show that

B0B
T
0 =





(H0 − h/2)h h2/4 0 . . . 0 h2/4

h2/4
. . .

. . .
. . . 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . .

. . . 0

0
. . .

. . .
. . . h2/4

h2/4 0 . . . 0 h2/4 (H0 − h/2)h





. (4.5)

The eigenvalues λj of this symmetric circulant matrix are determined only by the
entries in the first row (or column) and are given explicitly by

λj = [B0B
T
0 ]11 + [B0B

T
0 ]12(ωj−1 + ω

nH0
−1

j−1 ), j = 1, . . . , nH0
,

where ωj−1 = exp(2iπ(j − 1)/nH0
). The largest eigenvalue is

λ1 = (H0 − h/2)h+ (h2/4)(2) = H0h

and if nH0
is even, the smallest eigenvalue corresponds to j = 1 + nH0

/2, which is

λ1+nH0
/2 = (H0 − h/2)h+ (h2/4)

(
exp(iπ) + exp(iπ)nH0

−1
)

= H0h− h2.

Hence, the smallest and largest singular values of B0 are, respectively,

σ0,min =
√
H0h− h2, σ0,max =

√
H0h.

If we fix H0/h = L0, then H0h = L0h
2 and both σ0,min and σ0,max are O(h).

The above example tells us how the singular values of Br behave with respect
to the mesh parameters, for one particular realization of the uncertain domain. For
other realizations, the dependence of σr,min and σr,max in Theorem 4.1 on Hr and h
varies with the relationship between the selected meshes on ∂D(yr) and E.

4.1. Preconditioning. The discussion above tells us that for a fixed yr, the
eigenvalues of Cr in (4.1) depend on the mesh parameters h and Hr and the diffusion
coefficient a. Since the eigenvalues depend on yr, the variation across all nc systems is
potentially also affected by the standard deviation of the input random variables and
by the polynomial degrees dk that determine the one-dimensional interpolation rules
underpinning the tensor product collocation. Preconditioning is therefore essential.
We consider block-diagonal preconditioners of the form

Pr =

(
XA 0
0 Xr

)
, r = 1, . . . , nc, (4.6)

where XA is a fixed symmetric and positive definite approximation to A and Xr is a
symmetric and positive definite approximation to the Schur complement matrix

Sr := BrA
−1BT

r , r = 1, . . . , nc. (4.7)
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Remark 4.1. SGMFEMs constructed using tensor product polynomial approx-
imation in the variables y1, . . . , yM also lead to sequences of decoupled saddle point
systems of the form (4.1) (see [9]). Hence, the preconditioners of the form (4.6) that
we develop for SCMFEMs could also be applied for these alternative discretisations.

The next result provides eigenvalue bounds for the preconditioned matrix P−1
r Cr.

Theorem 4.2. Let θ, Θ denote the minimum and maximum eigenvalues of
X−1

A A, respectively, and let αr, βr denote the minimum and maximum eigenvalues of
X−1

r Sr. Then, for each r = 1, . . . , nc, the eigenvalues λ of

(
A BT

r

Br 0

)(
ur

pr

)
= λ

(
XA 0
0 Xr

)(
ur

pr

)

are contained in the union of two intervals
[
1

2

(
θ −

√
θ2 + 4Θβr

)
,
1

2

(
Θ −

√
Θ2 + 4θαr

)]
∪
[
θ,

1

2

(
Θ +

√
Θ2 + 4Θβr

)]
.

Proof. The eigenvalues we seek coincide with those of

P−1/2
r CrP

−1/2
r =




X

−1/2
A AX

−1/2
A X

−1/2
A BT

r X
−1/2
r

X
−1/2
r BrX

−1/2
A 0



 =:

(
Ã B̃T

r

B̃r 0

)
.

The eigenvalues of Ã coincide with those of X−1
A A and the squares of the singular

values of B̃r are the eigenvalues of B̃rB̃
T
r = X

−1/2
r

(
BrX

−1
A BT

r

)
X

−1/2
r . Note that the

latter coincide with the eigenvalues of X−1
r

(
BrX

−1
A BT

r

)
. Now, since,

vT
(
BrX

−1
A BT

r

)
v

vTXrv
=

(
vTBrX

−1
A BT

r v

vTSrv

) (
vTSrv

vTXrv

)
, ∀v ∈ R

nHr \ {0},

and the eigenvalues of S−1
r

(
BrX

−1
A BT

r

)
coincide with those of X−1

A A, we conclude

that the squares of the singular values of B̃r are contained in [θαr,Θβr]. The result
now follows by applying Theorem 4.1.

To approximate the action of A−1, we apply a V-cycle of algebraic multigrid
(AMG, [7], [26], [27]) with symmetric smoothing. This implicitly defines the matrix
XA that we will use in (4.6). Note that A is an M -matrix (the meshes on E are
uniform) and for such matrices, AMG provides an optimal approximation. That is,
the constants θ and Θ in the bounds in Theorem 4.2 are independent of h and often
insensitive to a. Many other efficient solvers for diffusion problems exist which can be
used for XA. The challenge in designing a good preconditioner Pr of the form (4.6)
lies in identifying a matrix Xr such that the constants αr and βr in the bounds in
Theorem 4.2 are (ideally) independent of h and Hr, for each r.

Consider, first, the linear operator Sr : H−1/2(∂D(yr)) → H1/2(∂D(yr)) defined
by Srµr := τr(uµr ), where uµr ∈ H1

0 (E) satisfies

∫

E

a∇uµr · ∇v dx =

∫

∂D(yr)

µrτr(v) ds, ∀v ∈ H1
0 (E)

and τr : H1(E) → H1/2(∂D(yr)) is the trace operator. It follows that

〈Srµr, µr〉∂D(yr) = sr(µr, µr)
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where sr : H−1/2(∂D(yr)) ×H−1/2(∂D(yr)) → R is defined by

sr(µ, ν) :=

∫

E

a∇uµ · ∇uν dx.

Since we assumed that a is positive and bounded on E, the bilinear form sr(·, ·) is
symmetric, positive definite and H−1/2(∂D(yr))-elliptic; see [15, Proposition 3.1].
Hence, for any µr ∈ H−1/2(∂D(yr)), we have

c1,r ‖µr‖2
H−1/2(∂D(yr)) ≤ 〈Srµr, µr〉∂D(yr) ≤ c2,r ‖µr‖2

H−1/2(∂D(yr)), (4.8)

for some c1,r, c2,r > 0 depending on a and r (due to the change in geometry).

Now consider the analogous operator Ŝr : YHr → Zr
h associated with the finite-

dimensional spaces YHr ⊂ H−1/2(∂D(yr)) and Zr
h ⊂ H1/2(∂D(yr)), where Zr

h :=
τr(Xh) is the set of traces of piecewise bilinear functions on E. The Schur complement
matrix Sr in (4.7) is a discrete representation of this operator. Indeed, for µr ∈ YHr

we have Ŝrµr := τr(uµr ), where uµr =
∑nh

i=1 uiφi ∈ Xh satisfies,

∫

E

a∇
(

nh∑

i=1

uiφi

)
· ∇φj =

∫

∂D(yr)

µrτr(φj) ds, j = 1, . . . , nh.

Writing µr =
∑nHr

i=1 µr,iψ
r
i then gives

nh∑

i=1

ui

(∫

E

a∇φi · ∇φj dx

)
=

nHr∑

i=1

µr,i

(∫

∂D(yr)

ψr
i τr(φj) ds

)
,

for j = 1, . . . , nh and so Auµr
= BT

r µr where uµr
= [u1, . . . , unh

]T and µr =
[µr,1, . . . , µr,nHr

]T . Hence, for each µr ∈ YHr ,

〈
Ŝrµr, µr

〉

∂D(yr)
=

∫

∂D(yr)

µrτr(uµr) ds =

∫

E

a∇uµr · ∇uµr dx = uµr

TAuµr

= (A−1BT
r µr)

T (BT
r µr) = µT

r BrA
−1BT

r µr =: µT
r Srµr.

It also follows that
〈
Ŝrµr, µr

〉

∂D(yr)
= sr(µr, µr), ∀µr ∈ YHr ,

and since sr(·, ·) is H−1/2(∂D(yr))-elliptic and YHr ⊂ H−1/2(∂D(yr)), we have

c1,r‖µr‖2
H−1/2(∂D(yr)) ≤

〈
Ŝrµr, µr

〉

∂D(yr)
≤ c2,r‖µr‖2

H−1/2(∂D(yr)), ∀µr ∈ YHr

where c1,r and c2,r are the positive constants from (4.8). Hence,

c1,r‖µr‖2
H−1/2(∂D(yr)) ≤ µT

r Srµr ≤ c2,r‖µr‖2
H−1/2(∂D(yr)), ∀µr ∈ YHr . (4.9)

Now, if we can construct an nHr × nHr matrix Xr that satisfies

b1,r‖µr‖2
H−1/2(∂D(yr)) ≤ µT

r Xrµr ≤ b2,r‖µr‖2
H−1/2(∂D(yr)), ∀µr ∈ YHr , (4.10)

for some positive constants b1,r and b2,r, then we have

c1,r

b2,r
≤ µT

r Srµr

µT
r Xrµr

≤ c2,r

b1,r
. (4.11)
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If the action of X−1
r can be effected cheaply and b1,r and b2,r in (4.10) do not depend

on h or Hr, then (4.11) tells us that we have a good preconditioner for Sr. Since
we have a sequence of systems to solve, it would be desirable to have bounds that
are insensitive to the change in geometry induced by yr. It is unlikely that we can
satisfy this in practice. Moreover, since c1,r and c2,r depend on amin and amax, the
bounds in (4.11) will be sensitive to the diffusion coefficient. Nevertheless, the above
discussion does tells us that a sensible choice for Xr is a matrix representation of a
norm that is equivalent to ‖ · ‖H−1/2(∂D(yr)).

Fractional power Sobolev spaces (e.g., H−1/2, H3/4) can be interpreted as inter-
polation spaces [V,W ]θ, where (V,W ) is a generating pair of Hilbert spaces—with
V dense in W—and θ ∈ R is the “index”. Discrete representations of norms on
such spaces are discussed in [1]. When the generating pair is a suitable pair of fi-
nite element spaces Vh ⊂ V, Wh ⊂W (of dimension n, say), it can be shown that the
finite-dimensional interpolation space [Vh,Wh]θ is equipped with a norm that is equiv-
alent to the one on [V,W ]θ. Matrix representations of the norm on [Vh,Wh]θ are then
readily constructed from n× n Grammian matrices associated with an appropriately
chosen basis for Vh and Wh. The authors of [1] apply this theory to construct a matrix
representation of a norm that is equivalent to ‖ · ‖H−1/2(∂D) (where ∂D ⊂ R is the
boundary of a fixed convex polygon). This is used to design a solver for the biharmonic
problem. More precisely, ∂D is first decomposed into edges Γj (i.e., one-dimensional
domains) and matrix representations of ‖ · ‖H−1/2(Γj) are sought.

To develop a preconditioner Xr for Sr, we follow [1] and assume that each real-
ization D(yr) of the uncertain domain is a convex polygon. Hence, we can decompose
∂D(yr) intoKr edges (straight lines), which we denote by Γr

j ⊂ R. We do not consider
circular domains. Then,

∂D(yr) =

Kr⋃

j=1

Γr
j , r = 1, . . . , nc

and we want to construct a matrix Xr ∈ R
nHr×nHr of the form

Xr :=

Kr⊕

j=1

Xj
r , (4.12)

where Xj
r is a discrete representation of a norm that is equivalent to ‖ · ‖H−1/2(Γr

j ).

Ideally, we want (4.10) to hold where, recall, YHr is the set of piecewise constant
functions on ∂D(yr). The analysis in [1] yields discrete representations of ‖·‖H−1/2(Γr

j )

on finite-dimensional subspaces of the dual space of

H
1/2
00 (Γr

j) = [H1
0 (Γr

j), L
2(Γr

j)]1/2,

which is a subspace of H−1/2(Γr
j). To apply this analysis, however, we have to work

with finite-dimensional subspaces Vh of V = H1
0 (Γr

j). This precludes the use of piece-

wise constant functions to construct Xj
r . Another difficulty is that Γr

j is meshed
independently of E and (unlike the problems in [1]) does not inherit a mesh that is
the restriction of the mesh on the domain of the underlying PDE problem. A natural
idea is to use the traces of the bilinear basis functions φi for Xh ⊂ H1

0 (E) to obtain a
subspace of H1

0 (Γr
j). However, since several φis have non-zero trace on each element

of Γr
j , the dimension of the resulting subspace is too high.
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We need a subspace of H1
0 (Γr

j) of dimension nj,r, where nj,r is the number of
elements on Γr

j , so that n1,r +n2,r + · · ·+nKr,r = nHr = dim(YHr ). We simply choose

VHj,r := span{ϕr
1,j, . . . , ϕ

r
nj,r ,j} ⊂ H1

0 (Γr
j)

where ϕr
m,j is a piecewise linear “hat function” associated with an interior vertex of

a dual mesh on Γr
j of width Hj,r = |Γr

j |n−1
j,r . We then define Xj

r ∈ R
nj,r×nj,r by

Xj
r := Mj,r(M

−1
j,r Aj,r)

−1/2, j = 1, . . . ,Kr, (4.13)

where Mj,r and Aj,r are mass and diffusion matrices associated with Γr
i . That is,

[Mj,r]mn :=

∫

Γr
j

ϕr
m,j(s)ϕ

r
n,j(s)ds, m, n = 1, . . . , nj,r, (4.14)

[Aj,r]mn :=

∫

Γr
j

dϕr
m,j(s)

ds
·
dϕr

n,j(s)

ds
ds, m, n = 1, . . . , nj,r. (4.15)

We have no rigourous proof about the dependence of the constants in (4.10) and (4.11)
on r and on the discretisation parameters. However, with the above construction, the
theoretical arguments in [1] suggest that

br1,j‖µj,r‖2
H−1/2(Γr

j ) ≤ µT
j,rX

j
rµj,r ≤ br2,j‖µj,r‖2

H−1/2(Γr
j ), ∀µj,r ∈ VHj,r ,

for some constants br1,j and br2,j depending on j and here, on r, where µj,r is the vector
of coefficients associated with µj,r when expanded in the basis for VHj,r and hence
that (4.10) holds with b1,r = minj{br1,j} and b2,r = maxj{br2,j} for functions

µr ∈ VH1,r + VH2,r + · · · + VHKr ,r .

Note that we do not fine-tune the choice of subspaces VHj,r for the rth system and
the dependence of the resulting constants br1,j and br2,j on Hj,r and r is not clear.
However, our suggestion offers a fair compromise in terms of computational work. We
simply construct two one-dimensional finite element matrices for each edge Γr

j . Given
the mesh parameters Hj,r, j = 1, . . . ,Kr, this is computationally trivial. We could
adapt the choice of VHj,r to ∂D(yr) more closely by working, say, with the traces of
the basis functions for Xh and then taking a linear interpolant with respect to the
particular mesh on each Γr

j . This may result in improved bounds but requires more
computational effort.

In summary, the matrix Xr in (4.12) is the direct sum of matrices representing
norms that are equivalent to the H−1/2 norm on each edge Γr

j of ∂D(yr). Although
we cannot specify the constants in (4.9) and (4.10), we do anticipate some variation
in the performance of Xr as a preconditioner for Sr, as r varies. Moreover, since
the norms do not incorporate the diffusion coefficient, the constants in the bounds in
(4.9), and hence in (4.11), depend on a. When a 6= 1, some modification to Aj,r and
Mj,r may be required to maintain robustness. We put this theory to the test for a
simple model problem.

4.2. Numerical results. In this section, we report MINRES iteration counts
obtained using the preconditioners

PA =

(
amg(A) 0

0 I

)
, Pr =

(
amg(A) 0

0 Xr

)
,
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where amg(A) means that one V-cycle of AMG is applied to approximate the action
of A−1, I is the nHr × nHr identity matrix and Xr is defined in (4.12)–(4.13). Using
PA constitutes a one-preconditioner-fits-all approach since it is fixed for all systems
(up to the change in dimension of I). On the other hand, the preconditioner Pr is
different for each r = 1, 2, . . . , nc. Note that it is difficult to find one representative
approximation for every matrix Sr, since the dimension changes with each sample of
∂D(y). The usual ‘mean-based’ approach of constructing one preconditioner for all
systems (e.g., see [12]), based on a fixed sample point such as y0 = (0, 0), cannot be
applied here.

In general, the cost of applying nc distinct preconditioners should not be over-
looked. A few remarks are therefore warranted. Each preconditioned MINRES itera-
tion with Pr requires a matrix-vector multiplication with X−1

r and the application of
one V-cycle of AMG to a linear system with coefficient matrix A. The latter can be
performed optimally, in O(nh) work. Note also that the AMG set-up only needs to
be performed once, offline. Fortunately, Xr is block-diagonal by construction and so

X−1
r :=

Kr⊕

j=1

(
Xj

r

)−1
, where (Xj

r )−1 =
(
M−1

j,r Aj,r

)1/2
M−1

j,r . (4.16)

Since diagonal approximations are efficient for mass matrices (e.g., see [28]) we also
consider the following cheaper variants of Xr:

• Xr,diag : defined as Xr with the matrices Mj,r replaced by their diagonals
• Xr,I : defined as Xr with the matrices Mj,r replaced by identity matrices

leading to the following variants of the block-diagonal preconditioner Pr

Pr,diag =

(
amg(A) 0

0 Xr,diag

)
, Pr,I =

(
amg(A) 0

0 Xr,I

)
.

Applying the actions of X−1
r , X−1

r,diag and X−1
r,I requires the computation of Kr matrix

square roots. This is not expensive since the dimensions of the matrices involved are
equal to the numbers of elements on Γr

j , j = 1, . . . ,Kr, each of which is O(H−1
r ).

Recall also that K is the number of sides of the convex polygon D(ω), and this is
also small (e.g., Kr = 4 for a rectangle). Sophisticated methods for computing matrix
square roots exist (e.g., see [1] and references therein), but are not needed here. In the
experiments below, we simply use the MATLAB function sqrtm. For MINRES, we set
the stopping tolerance on the preconditioned relative residual error to be tol = 10−6.

Test Problem 1 First, consider (1.2)–(1.3) with a(x) = 1, f(x) = 1 and

D(ω) = {x = (x1, x2) : −0.5 ≤ x1 ≤ 0.5 + ξ1(ω),−0.5 ≤ x2 ≤ 0.5 + ξ2(ω)}

where ξ1 ∼ U(−γ1, γ1) and ξ2 ∼ U(−γ2, γ2). The fictitious domain is chosen to be
E = (−1, 1)2 and we apply the FDM-SCMFEM scheme outlined in Section 3. We
use a tensor product grid of collocation points yr ∈ [−γ1, γ1] × [−γ2, γ2], based on
a (d + 1)-point one-dimensional Gauss rule. This yields a sequence of nc = (d + 1)2

saddle point systems of the form (4.1). The Kr = 4 edges of each sampled boundary
∂D(yr) are partitioned such that the ratio Hr/h is as close to 4 as possible.

In Table 4.1 we record the total number of MINRES iterations required to solve
the single linear system (4.1) corresponding to the sample point y0 = (0, 0). If we fix
H0/h = 4 then, with no preconditioner, the number of iterations required to satisfy
the stated tolerance grows roughly like h−3/2. When we apply the preconditioner
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h = 1/32 h = 1/64 h = 1/128 h = 1/256
Preconditioner H0 = 1/8 H0 = 1/16 H0 = 1/32 H0 = 1/64

None 112 295 732 1915
PA 22 39 51 62
P0 27 32 34 34

P0,diag 24 26 26 28
P0,I 18 22 22 23

Table 4.1

Iteration counts for Test Problem 1 with γ1 = 0 = γ2, d = 0 (corresponding to one collocation
point y0 = (0, 0)) and H0/h = 4 fixed.

PA, the iteration counts grow less rapidly with mesh refinement but it is clear that
convergence is not independent of the mesh parameters. All three variants of our new
preconditioner Pr, however, are optimal! Iteration counts are completely independent
of the discretization and are static as h → 0 with H0/h fixed. The approximate
preconditioner Pr,diag leads to slightly lower iteration counts than Pr, because the
chosen diagonal approximation to the mass matrix causes the eigenvalues of X−1

r,diagSr

to be more tightly clustered than those of X−1
r Sr, and similarly for Pr,I .

Next, in Table 4.2, we record the average number and the range of MINRES
iterations required to solve the entire sequence of nc = 121 systems that arises when
we select γ1 = 0.2 = γ2 and d = 10. We vary both h and Hr whilst keeping Hr/h
roughly fixed. The symbol ∗ indicates that the unpreconditioned experiment was too
time-consuming to run. For each of the three variants of the preconditioner Pr, we
observe that the minimum iteration count coincides with that obtained for the single
linear system associated with y0 = (0, 0) and is bounded as h → 0. The maximum
iteration count grows however, as h → 0. This is slightly disappointing. However,
it is to be expected that Pr behaves differently for each system. There are several
possible reasons for this. Some realizations of ∂D(y) are roughly square and may
be partitioned with uniform meshes, whereas some realizations are rectangular and
necessarily have non-uniform meshes. In addition, the interplay between the meshes
on E and ∂D(yr) changes. When y0 = (0, 0), the meshes on E and ∂D(y0) happen to
be aligned, and the preconditioner seems to work the best for that system. The choice
of subspace VHj,r , which underpins the construction of the preconditioner, although
optimal for some systems, is not the best possible one, for all systems.

The systems that have the highest preconditioned iteration counts also have the
highest unpreconditioned iteration counts, suggesting that those systems are simply
harder to solve. It is clear that Pr does not perform well on some systems, for some
values of h. However, when the entire sequence is considered collectively, the moderate
increase in the average number of iterations as h→ 0 is acceptable. The most efficient
preconditioner proved to be Pr,diag, which yielded a 98% decrease in the number of
MINRES iterations compared to doing no preconditioning (in the case h = 1/128)
and up to a 50% decrease compared to using the weaker preconditioner PA (for the
range of values of h considered).

To investigate the robustness of the preconditioners with respect to the stochastic
discretization, we repeat the experiment reported on in Table 4.2, for d = 26. That
is, we increase the degree of the polynomial for the Gauss rule that generates the set
of collocation points. This yields nc = 729 systems. Results are shown in Table 4.3.
Comparing the iteration counts with those in Table 4.2, we see that the results are
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Preconditioner h = 1/32 h = 1/64 h = 1/128 h = 1/256
None 377 906 2062 *

[112, 445] [295, 1033] [732, 2331] *
PA 40 55 69 86

[22, 48] [39, 61] [51, 83] [62, 101]
Pr 35 40 45 51

[27, 42] [32, 54] [34, 64] [34, 108]
Pr,diag 30 34 38 43

[24, 34] [26, 46] [26, 52] [28, 75]
Pr,I 30 35 42 48

[18, 37] [22, 45] [22, 56] [23, 79]
Table 4.2

Average iteration counts and range [min, max] for Test Problem 1 with γ1 = 0.2 = γ2, d = 10
(nc = 121 systems) and varying h, Hr with 3.6 < Hr/h < 4.4.

completely insensitive to the change in the discretization parameter d.

Preconditioner h = 1/32 h = 1/64 h = 1/128 h = 1/256
None 391 917 2146 *

[112, 448] [295, 1085] [732, 2509] *
PA 41 54 70 88

[22, 48] [39, 67] [51, 85] [62,109]
Pr 36 41 47 53

[27, 44] [32, 64] [34, 81] [34, 110]
Pr,diag 30 34 40 44

[24, 38] [26, 50] [26, 67] [28,80]
Pr,I 30 35 43 49

[18, 37] [22, 51] [22, 70] [23, 91]
Table 4.3

Average iteration counts and range [min, max] for Test Problem 1 with γ1 = 0.2 = γ2, d = 26
(nc = 729 systems) and varying h, Hr (keeping 3.6 < Hr/h < 4.4).

Finally, we vary the standard deviation of the two random variables that pa-
rameterize the uncertain boundary. Recall that ξi ∼ U(−γi, γi), i = 1, 2 and so
the standard deviations are σi = γi/

√
3. Increasing σi corresponds to increasing the

amount of uncertainty we have in the geometry of the domain. We vary the standard
deviation by varying γ1 and γ2. Results for PA and Pr,diag are shown in Table 4.4,
for h fixed. Not only do we observe that both preconditioners are robust with respect
to the standard deviation of ξ1 and ξ2, we also observe that the unpreconditioned
iteration counts do not grow as the standard deviation increases. This suggests that
the eigenvalues of the saddle point matrices Cr are not affected directly by σ1 and σ2

but simply by the different meshes.
Test Problem 2 We conclude by repeating Test Problem 1 with a non-unit

diffusion coefficient. Specifically, we choose

a(x) =
(
1 + 100(x2

1 + x2
2)
)−1

, (4.17)

which satisfies amin ≤ a(x) ≤ amax a.e. in E = (−1, 1)2 with amin = O(10−2) and
amax = 1. Iteration counts required to solve the single linear system associated with
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Preconditioner γ1 = γ2 = 0.1 γ1 = γ2 = 0.2 γ1 = γ2 = 0.4
None 380 391 393

[112, 445] [112, 448] [112, 448]
PA 39 41 40

[22, 48] [22, 48] [22, 48]
Pr,diag 29 30 30

[24, 36] [24, 38] [24, 38]
Table 4.4

Average iteration counts and range [min, max] for Test Problem 1 with d = 26 (nc = 729
systems), h = 1/32 and 3.6 < Hr/h < 4.4, for varying γ1 and γ2.

h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512
Preconditioner H0 = 1/8 H0 = 1/16 H0 = 1/32 H0 = 1/64 H0 = 1/128

None 509 1,476 4,051 10,962 *
PA 24 35 41 50 64
P0 41 47 53 57 62

P0,diag 33 37 41 45 49
P0,I 23 24 24 25 27

Table 4.5

Iteration counts for Test Problem 2 with γ1 = 0 = γ2, d = 0 (corresponding to one collocation
point y0 = (0, 0)) and H0/h = 4 fixed.

y0 = (0, 0) are recorded in Table 4.5. Comparing with the results in Table 4.1, we
observe that the unpreconditioned iteration counts have increased, confirming our
hypothesis that the matrices Cr are ill-conditioned with respect to a. We made no
modification to Xr to account for the non-unit coefficient, however, and we see that
Pr now fares worse than PA on all but one of the meshes considered. On very fine
meshes, however, Pr does start to yield lower iteration counts than PA. The modified
preconditioner Pr,diag outperforms PA for the meshes with h ≤ 1/256, while Pr,I fares
the best on all meshes.

Preconditioner h = 1/32 h = 1/64 h = 1/128 h = 1/256
PA 41 50 62 78

[24, 54] [35, 70] [41, 93] [50, 115]
Pr,diag 47 57 67 75

[33, 62] [37, 76] [41, 102] [45, 132]
Pr,I 35 37 42 50

[23, 50] [24, 54] [24, 69] [25, 89]
Table 4.6

Average iteration counts and range [min, max] for Test Problem 2 with γ1 = 0.2 = γ2, d = 26
(nc = 729 systems) and varying h, Hr (keeping 3.6 < Hr/h < 4.4).

Next, in Table 4.6, we record the average number and the range of MINRES
iterations required to solve the entire sequence of nc = 729 systems that arises when
we select γ1 = 0.2 = γ2 and d = 26. We vary both h and Hr whilst keeping Hr/h
close to 4. For brevity, we include only the results for the more efficient variants of the
preconditioner. Comparing the results with those in Table 4.3 we see that once again,
average preconditioned iteration counts increase slightly with mesh refinement. To

20



Preconditioner γ1 = γ2 = 0.1 γ1 = γ2 = 0.2 γ1 = γ2 = 0.4
PA 38 41 50

[24, 46] [24, 54] [24, 77]
Pr,diag 41 47 57

[33, 50] [33, 62] [33, 80]
Pr,I 31 35 44

[23, 38] [23, 50] [23, 69]
Table 4.7

Average iteration counts and range [min, max] for Test Problem 2 with d = 26 (nc = 729
systems), h = 1/32 and 3.6 < Hr/h < 4.4, for varying γ1 and γ2.

combat this, some modification to Xr would be required to account for the variation in
a(x) on ∂D(yr). However, since this would have to be done for each yr, this increases
computational costs. Recall, the constants c1,r and c2,r in the bounds (4.9) do depend
on amin and amax in a potentially different manner, for each r. For Pr,I , however, the
rise is acceptably small. In fact, only this version of the preconditioner beats PA on
all the meshed considered.

Finally, we vary the standard deviations σ1, σ2 of the random variables ξ1 and
ξ2. Comparing the results in Table 4.7 with those in Table 4.4 we see that increasing
the standard deviations causes the average iteration counts to rise slightly. In con-
trast to the experiment with unit coefficients, the worst recorded performance of the
preconditioner on a single system deteriorates as σ1, σ2 increase. When the standard
deviations are increased, we encounter domains D(yr) whose boundaries ∂D(yr) are
located in regions of E where a(x) takes larger values. Since Xr represents a norm
that does not contain the diffusion coefficient, its performance is poorer for Schur-
complements associated with these domains. For the specific coefficient (4.17), a(x)
takes is maximum value at the centre of E and decays towards ∂E. Note also that
y0 = (0, 0) is a collocation point for any value of γ1 and γ2 and, in particular, a(x) is
small on the reference boundary ∂D(y0) of D(y0) = (−0.5, 0.5)2. The preconditioner
performs best for that system, in particular.

4.3. Conclusions. We have demonstrated that the sequence of linear systems
(4.1) arising from stochastic collocation mixed finite element discretizations of ficti-
tious domain formulations of elliptic PDEs on uncertain parameterized domains can
be solved efficiently using preconditioned MINRES. Although not optimal for each
individual saddle point system, our novel block-diagonal preconditioner—which is
based on a discrete approximation of the H−1/2 norm on edgewise decompositions
of the sampled boundaries ∂D(yr)—is practical and yields iteration counts that are
robust with respect to the statistical parameters. Moreover, average iteration counts
display only a slight growth with respect to spatial mesh refinement. A subset of
the saddle point systems proved to be very challenging to solve and fine-tuning the
preconditioner for this subset, to reduce average iteration counts even further, will be
the subject of future work.

Since the only source of uncertainty in our model problem is in the domain geom-
etry, only the off-diagonal block Br of the coefficient matrix Cr in (4.1) changes from
system to system. Incorporating multiple sources of data uncertainty into the under-
lying PDE model is our long-term goal and leads to saddle point systems in which
more components change as the collocation point is varied. Of particular interest is
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the elliptic BVP: find p :
{

(x, ω) : ω ∈ Ω,x ∈ D(ω)
}
→ R such that P−a.s.,

−∇ · a(x, ω)∇p(x, ω) = f(x), in D(ω) × Ω, (4.18)

p(x, ω) = 0, on ∂D(ω) × Ω.

This arises in potential flow models where both the diffusion coefficient and the do-
main are uncertain. SCMFEM discretizations lead to very long sequences of saddle
point matrices where both the (1, 1) block A and the off-diagonal block B change.
We anticipate that combining the recycled AMG preconditioning strategy in [16] (for
elliptic PDEs with uncertain coefficients on certain domains) and the H−1/2(∂D(yr))
preconditioner suggested in this work will yield an efficient solver for FDM-SCMFEM
discretizations of (4.18).

REFERENCES

[1] M. Arioli and D. Loghin, Discrete interpolation norms with applications, SIAM J. Numer.
Anal., 47 (2009), pp. 2924–2951.

[2] K. Atkinson and W. Han, Theoretical Numerical Analysis (2nd ed.), Springer-Verlag, New
York, 2007.

[3] I. Babuska and J. Chleboun, Effects of uncertainties in the domain on the solution of
neumann boundary value problems in two spatial dimensions, Math. Comput, 71 (1999),
pp. 1339–1370.
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