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We present a quantitative method to find jointly optimal strategies for an industry regulator and a firm,
who operate under exogenous uncertainty. The firm controls its operating policy in order to maximize
its expected future profits, whilst taking account of regulatory fines. The regulator aims to control the
probability of the firm terminating production, by imposinga closure fine which is as low as possible,
while achieving the required reduction in probability. Ourmethod determines the level of fine which
establishes a Nash equilibrium in these nonzero-sum games,under uncertainty.
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1. Introduction

In highly controlled markets such as the public utility industries, the regulator of an industry may impose
direct control on the operating strategy of a firm, even though the company operates under exogenous
uncertainty (Roseta-Palma and Xepapadeas, 2004). As an example, the UK water regulator OFWAT
restricts the number of times a privatized water utility operator can impose a domestic hosepipe ban
(Arnell, 1998) - despite uncertainty over the level and pattern of rainfall, and the fact that additional
bans may be optimal for the operator and also the user. In other markets, direct regulatory control is
not always present or undesirable. A particular form of thisconcerns the security of supply of many
publicly awarded contracts, where the regulator wishes to limit the likelihood that the firm terminates the
contract early. One such example is vaccine production in the US, where demand levels and costs can be
extremely uncertain (Danzon et al., 2005). Indeed, security of vaccine supply is highly important, since
the effect on public health of vaccine shortages can be significant (Helms et al., 2005): during the period
2000 to 2005, approximately one-third of all childhood vaccine shortages in the US are estimated to
have been caused by vaccine manufacturers deciding to ceaseproduction due to unfavorable economic
conditions (Hinman et al., 2006). However, a regulator can exert indirect influence upon the likelihood
of a company ceasing to deliver upon a contract, by changing afirms economic parameters (Sappington,
2005; Laffont and Martimort, 2002) and in particular, by theuse of financial incentives such as penalty
fines (Helms et al., 2005).

Motivated by such examples, this paper presents a quantitative method to solve a model of a reg-
ulated industry, where both the operator and regulator havedistinct objectives. Our methodology is
based upon three core economic assumptions: firstly, that the future profits of a firm depend on the
values taken by an exogenous stochastic process, such as a commodity price, level of demand or labor
market costs; secondly, that the industry under review has aregulator, who wishes to reduce the proba-
bility of early contract termination, by appropriately controlling the size of a fine (or tax) for doing so;
and thirdly, that firms follow operating policies which maximize the expected future profit from their
operation, taking account of fines (or taxes). Under these assumptions we show how to derive partial
differential equations which characterize this termination probability and we describe fast and accurate
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numerical algorithms to determine the optimal level of fine.
We shall assume that the target level for the probability of abandonment is given, although we do

not specify how this target level should be set; this level isoften a political decision (Holt, 2005) and
is clearly outside the scope of this paper. In addition, it isimportant to note that it is without loss
of generality that we consider a penalty fine, as the methods we propose could just as well be used
to determine an optimally imposed level of continuously-paid taxation by the regulator. As such, the
principles of this paper are broad in its potential areas of application (essentially any regulated industry
subject to probabilistic constraints). To highlight this broadness, as well as considering the vaccine
supply problem, we also analyze the early termination of a regime-switching mining operation in Section
4: The decision to abandon a large mining project can have significant undesirable implications for the
surrounding environment and economy (Evatt et al., 2012; Otto, 2010; Veiga et al., 2001) and a mining
industry regulator may therefore seek to reduce the probability of abandonment to a target level.

In a non-public policy context, some business-to-businesscontracts already incorporate an early
termination fee (Bates and Lemmon, 2003), whose primary objective is financial (Sharp et al., 2008).
This fee can mitigate any additional financial costs associated with early termination, as it makes the
counterparty less inclined to terminate due to the higher cost (Williamson, 1985). One might therefore
view this paper as a translation of that general principle into a public policy context. Yet because the
two participants within our public policy type problem havedifferent objectives (one monetary, one
probabilistic), the mathematical structure is (to the bestour of knowledge) novel and sharply distinct to
situations in which the two participants are both (valuation maximizing) firms.

The problem of controlling event probabilities in regulated industries has been considered previ-
ously in related contexts. In financial regulation, the Value at Risk measure limits the probability of
losses above a given size in a portfolio due to market movements (Duffie and Pan, 1997). It does not,
however, aim to address behavioral considerations in the construction of financial portfolios, nor the set-
ting of appropriate regulatory fines. Optimal control with probabilistic constraints has been investigated
in non-regulatory contexts, such as control engineering (Kandukuri and Boyd, 2002), mathematical fi-
nance (Follmer and Leukert, 1999) and operations research (White, 1974), although these studies have
only considered the objectives of a single party. Likewise,elements of the mathematical structure of
this paper could also be used to solve optimal control problems involving just one participant, who is
concerned with the question: how does a firm adjust its operating policy so as to reduce the abandon-
ment probability to a desired level? However, the overriding thrust of this paper considers the strategies
of two participants: the firm must choose an operating strategy which maximizes returns, while the
regulator chooses the level of a fine, taking account of the firm’s operating strategy, in order to match
the abandonment probability to the target level. The solutions presented in this paper are therefore Nash
equilibria for a nonzero-sum game (Starr and Ho, 1969). In addition, the study of decision probabilities
in their own right is a relatively young and expanding area ofresearch within quantitative finance, whose
non-linear effects are proving insightful to decision makers (Sarkar, 2000; Lund, 2005; Wong, 2007).

The remainder of this paper is organized as follows. Detailsof the mathematical methods are pre-
sented in Section 2. In Section 3 the method is applied to a regulator wishing to control the security of
supply of a vaccine. A more complex, data-driven example is presented in Section 4, where a mining
industry regulator wishes to reduce the probability of total abandonment of a gold mining project. We
conclude our work in Section 5, where we also discuss potential future extensions.
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2. Optimal Control with Probabilistic Constraints

In this section we present the mathematical details of the method, in a manner intended to be sufficiently
general to be employed in a range of regulatory contexts. Themethod is a one-dimensional search over
the levelK of the fine for abandonment, and may be summarized as follows:

1. Find the optimal control strategy for the current value ofK

2. Find the abandonment probability for this control strategy

3. Check if the regulators criteria is met. If it does not, updateK and return to step 1

In considering the firm’s optimal strategy, the essential mathematical tool is the Hamilton-Jacobi-
Bellman (HJB) equation, which links controlled Itô diffusions and partial differential equations (PDEs).
A controlled Itô diffusion inRn takes the form

dXt = dXu
t = b(Xt ,ut)dt +σ(Xt ,ut)dBt , (2.1)

whereb is a function taking values inRn representing an instantaneous drift,σ is the instantaneous
volatility function, taking values inRn×m, and(Bt)t>0 is a Wiener process inRm. In our setting, the
process(Xt)t>0 represents the time evolution of the economic state of a firm,driven by the noise process
B which represents random fluctuations in, for example, commodity or labor prices or demand levels.
We assume that the firm will abandon production when its economic state ceases to be favorable, which
corresponds to the first time at whichXt leaves a predetermined setH. We denote thisabandonment time
by ν. The functionu represents the firm’s operating strategy (specified for eachpossible economic state
Xt ), which is assumed to be fixed at the outset. At each timet, the valueut depends on the economic
stateXt and may only take values in the admissible setU . For further background on stochastic optimal
control we refer the reader to Øksendal (2003).

Given an operating strategyu, we express the firm’s future profits using a running profit function
g, discounted at the rate of interestr. Let T be the time at which the operating license expires. In
addition to the running profit, the firm also experiences a final cashflowh(Xν); if ν < T then the firm
has abandoned early, and soh(Xν) includes the fine. We define theperformance function wu to be the
firm’s expected total profit, net of any fine:

wu(x) = Ex

[

∫ ν

0
e−r̂zg(Xz,uz)dz+ e−r̂νh(Xν)

]

, (2.2)

whereEx denotes the expected value whenX0 = x ∈ R
n. We remove the endogenous behavioral uncer-

tainty due to the firm’s choice of operating strategyu by assuming that there exists an optimal strategyu∗

which maximizes the value of the performance functionwu(x). This value is thus given by the function
V ∗, where

V ∗(x) = wu∗(x). (2.3)

The solution forV ∗ is found by solving an HJB equation of the form

sup
v∈U

{LV (x)+ g(x,v)− r̂V (x)}= 0 in H

lim
x→y

V (x) =−h(y,v) for y ∈ ∂H (2.4)
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where

L ≡
n

∑
i, j=1

ai j
∂ 2

∂xi∂x j
+

n

∑
i=1

bi
∂

∂xi
(2.5)

and[ai j] =
1
2σσ ′, andH is the set of all economic states which itself is often part ofthe solution to the

optimal control. A time derivative is indeed present in (2.4), as time forms part of the stochastic process
(2.1): dt = 1.dt +0.dB.

In order to study the effect of varying the level of the fineK, we specify the following form forh:

h(Xν ,uν) = l(Xν ,uν)+KIν<T (2.6)

whereIν<T equals 1 if the firm abandons early (ie., ifν < T ) and equals 0 otherwise. Note that in
equation (2.6), the fine is not inflation-linked; for longer horizonsT it may be appropriate to inflation-
link the fine, which corresponds to premultiplyingK by a factorer̂ν . To make the dependence onK
explicit, let us writeV ∗ =V ∗(x,K) andu∗ = u∗(K) . Our three steps are now:

1. We first solve (2.4) to obtainV ∗(x,K) andu∗(K). This provides the optimal operating strategy
u∗(K) under the model, given that the fine is set at levelK.

2. The firm is now assumed to follow this operating strategy and, under this assumption, its economic
stateXu∗(K) is an (uncontrolled) Itô diffusion. As a result the quantity of interest to the regulator,
namely the abandonment probabilityP(x) = P(x,K) for a firm with initial economic statex, is
then found as described in Øksendal (2003) by solving a form of the Feynman-Kac formula:

LP(x) = 0 in H

lim
x→y

P(x) = Ity<T for y ∈ ∂H (2.7)

wherety is the value of the time co-ordinate at the pointy.

3. We now varyK (which in turn variesu∗) until the abandonment probability is reduced to the level
Y required by the regulator. LetK∗ be this optimal fine, so that

P(x,K∗) = Y. (2.8)

By construction of this three step process, where absolute deviation from the target is to be avoided,
once the condition (2.8) is met we are in a form of nonzero sum Nash equilibrium (Starr and Ho, 1969).

It is worth noting that, depending on the application, the rate of interest ˆr above (which is used
to find V ) may be different from the one used to solve the Feynman-Kac formula (2.7) (and hence to
find K). If the economic uncertainty is the price process of a traded commodity, then the market prices
effectively determine a risk-adjusted rate of interest. Inorder to avoid the possibility of arbitrage, it is
this rate that must be used to calculateV . In contrast, when calculating the abandonment probability the
regulator is free to leave the probability undiscounted. Alternatively, a bespoke discount rate may be
specified forP, in order to place greater weight on early abandonment and correspondingly less weight
on later abandonment.
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2.1 Feasibility

The fineK∗ obtained above is optimal, in the sense that a lower fine wouldnot achieve the desired
reduction in abandonment probability and a higher fine wouldhave a negative societal impact by dis-
couraging the purchase of new licenses. However, the optimal fine may be sufficiently high so that no
rational firm would buy a new license. The optimalfeasible fine,K∗

f (x), is therefore

K∗
f (x) = min{K f (x),K

∗(x)}, (2.9)

whereK f (x) is the maximum fine the firm can afford; further discussion on this is given by Lear and
Maxwell (1998), and the practical implementation of fines (such as collecting performance bonds) is
discussed by Holt (2005).

2.2 Notation

The notation used in this section is consistent with that generally used in probability theory, in the
sense of Øksendal (2003). Yet as can be seen, there are three different symbols related to the stochastic
process: the set of all possible processesX , the individual point in the processXu

t and the quantity post-
averagingx. The notation serves a purpose in deriving the theoretical basis. But given its purpose has
been satisfied, we now intentionally relax some of the notational rigor in order for an interdisciplinary
reader to more easily move their way through the remaining sections. To be consistent with some of the
key work on real options theory and quantitative finance (such as Dixit and Pindyck (1994) and Wilmott
et al. (1995)) as far as possible we use just the capital letter to denote the stochastic variable.

3. Improving security of vaccine supply

In this section, motivated by Hinman et al. (2006) and Helms et al. (2005), we investigate the problem of
increasing the security of supply of a vaccine. We employ a simple real options model, in which a firm
is contracted to supply vaccines at a fixed quantity and price, and is exposed to both fixed and uncertain
input costs. The only control available to the firm is the early termination of the contract, whilst the
industry regulator may wish to use a fine to control the probability of termination. Termination fines
are commonly used (Bates and Lemmon, 2003), and the method ofSection 2 provides a quantitative
method for setting the level of fine, taking account of the profit maximizing behavior of the firm.

Our model in this section is the following. The firm must deliver a fixed numberq of doses each year
for T years, which are to be sold at an agreed sale price ofsc per dose. The firm’s costs include a fixed
amount ofε per year and a variable amountS which is uncertain and is assumed to follow a geometric
Brownian motion

dS = µSdt +σSdB (3.1)

whereµ is the percentage drift andσ is the percentage volatility. The firm’s control strategy issimply
to terminate the contract whenS rises to a predetermined levelS∗(t). This level may be time-dependent
(although we will often suppress the time parameter for notational convenience), and takes account of
all termination costs. With the notation of Section 2, the firm exerts no control until the termination time
ν, and so the choice of strategy reduces to the choice of a termination surfaceS∗. We supply our own
plausible parameter values characterizing the uncertainty and where possible, we use parameter values
consistent with those given in Hinman et al. (2006):

µ = 2.5% yr−1, σ = 0.3 yr−1/2, r = 2% yr−1, sc = $30 U−1,

T = 5 yr, I = $100M, q = 5M U yr−1, ε = $1.3M yr−1 (3.2)
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whereI is the initial investment and we suppose that the current level of variable input costs isS = $10
U−1, whereU refers to a single dose. We suppose that the regulator’s target is to reduce the termination
probability by 20% relative to the baseline level when thereis no fine, that is:

P(ν < T |K = K∗) = Y =
4P(ν < T |K = 0)

5
. (3.3)

3.1 Regulator problem: Termination probability

In the notation of Section 2 we haven = 2 andm = 1. Since the firm exerts no control before the
termination time, we do not model a control variableut and (2.1) reduces to

Xt =

[

St

t

]

, b(Xt ,ut) =

[

µS
1

]

, σ(Xt) =

[

σS
0

]

, (3.4)

where the economic stateXt takes values in the regionH bounded above (in its first coordinate) by the
surfaceS∗. Inserting this in equation (2.7), we have the equation governing the probability of contract
termination:

∂P
∂ t

+
1
2

σ2S2 ∂ 2P
∂S2 + µS

∂P
∂S

= 0,

P = 0 when t = T,

P = 1 on S = S∗,

P → 0 as S → 0. (3.5)

The solution to this equation depends on the firm’s control strategy, which is given by the termination
surfaceS∗ obtained in Section (3.2) below.

We note that if the contract is held in perpetuity, and if the final cashflowh is constant in time, we
obtain a time-stationary version of the problem. These assumptions are commonly used in real options
studies (Dixit and Pindyck, 1994), and make closed form solutions available by removing the time
dimension from the problem. However, in the setting of this paper, the effect of discounting a constant
fine reduces its effect so greatly that such perpetual solutions are uninformative. In the following we
therefore explore solutions to finite time horizon problems, using robust numerical algorithms.

3.2 Operator problem: termination surface

We now obtain the optimal termination surfaceS∗, as a function of the fine levelK. The surfaceS∗(K)
is both an input to the calculation in section (3.1), and the optimal operating strategy for the firm under
this model. The firm’s running profit is modeled as the sum of the sales, variable costs and fixed costs:

g(S) = q(sc − S)− ε (3.6)

and the functionl from (2.6) in section 2.4 represents the capital cost of closure,C. Inserting the price
process (3.1) and cashflows (3.6) into (2.4), we can write theequation governing the valuation as

∂V
∂ t

+
1
2

σ2S2 ∂ 2V
∂S2 + µS

∂V
∂S

− rV + d(sc − S)− ε = 0
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V = 0 when t = T,

V = qsc−ε
r

(

1− e−r(T−t)
)

when S = 0,

V =−C−K on S = S∗. (3.7)

This particular equation is a form of HJB equation with ‘bang-bang’ control. The reason it is written
in the same form as the Feynman-Kac equation, is due to the fact the running profit functiong is linear
and a continuous interval[a,b] of choices is available forU ; although the HJB equation holds, in this
instance it simplifies to solving Feynman-Kac equations on overlapping domains with free boundaries
(Øksendal, 2003). However, when the running profit is nonlinear this is no longer true, and the full HJB
equation must be solved.

To maximizeV , the firm must choose the surfaceS∗ optimally. This may be achieved using the
smooth pasting principle as fully detailed by Dixit (1991).In the case of this abandonment problem, in
which there are no future cash flows once abandonment has beencompleted, the condition is given by,

∂V
∂S

= 0 on S = S∗. (3.8)

3.3 Numerical Approach

The boundaryS∗(K) found in Section (3.2) may now be input to the calculation in Section (3.1), to
obtain the abandonment probability. We denote this probability P(K,S, t), again to indicate dependence
on K. Given the current variable production costS, it is now a matter of a one-dimensional search to
find the minimum value ofK such thatP(K,S, t) = Y .

The precise numerical scheme we shall use to solve for the operational control determined via equa-
tion (3.7), is a projected successive over relaxation (PSOR) method, which is an accurate procedure for
solving such free boundary problems in quantitative finance. The solution to the regulators problem
for determining the probability, (3.5), does not involve determining a free boundary, as this boundary
is purely an input. As such, one can use a standard implicit finite-difference scheme. Both of these
schemes are explained and detailed in Wilmott et al. (1995),where uniqueness has recently been shown
to be ensured (Briani et al., 2011).

3.4 Results

The solutions to (3.7) and (3.5), when using the parameters given by (3.2), are shown in Figure 1.
The top graph shows how the optimal net present value (NPV= V − I) of the operation is dependent
upon the termination fineK, and the lower graph shows how the resulting probability of termination
varies. The objective of the regulator is to reduce the probability of early termination by 20%, and
the fine which achieves this aim is indicated by the intersecting dashed lines in the lower graph:K∗ =
$5.6M. The introduction of this fine leads to a reduction of the firm’s NPV from $137.5M to $136.82M,
a reduction in NPV of just 0.5%. As one would expect, the approximate size of this reduction in
valuation is given by the probability of abandonment multiplied by the size of the optimal penalty fine.

Figure 2 illustrates the effect of the optimal fineK∗ on the optimal operating strategy of the firm,
where the termination boundariesS(0) (dashed line) andS(K∗) (solid line) are shown. The difference
between these two termination prices becomes greater closeto contract expiry. It is clear from Figure
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FIG. 1. The top graph shows the firm’s NPV for each termination fineK, and the lower graph shows the firm’s probability of early
termination (the quantity of interest to the regulator) foreachK. The fineK∗ achieving a 20% reduction in termination probability
is shown in the lower graph (where the curve meets the horizontal dashed line), and the corresponding NPV is given in the top
graph

2 that the reduction in termination probability is principally achieved by excluding termination deci-
sions close to expiry of the operating license: this featurealso explains the relatively low impact of the
termination fine on the firm’s NPV.

In Figure 3 we investigate the sensitivity of the results to the parameter values specified in (3.1). The
top graph shows how, given the initial price level, the probability of early termination increases as the
percentage volatilityσ is increased. In the bottom graph we show how the probabilityof termination
increases as the percentage driftµ increases. We note that the main effect is a translation of the curve,
so that the objective of a 20% reduction in termination probability appears robust to uncertainty over the
parametersµ andσ .

4. Increasing the societal benefit of an extraction project

In this section we consider the use of fines to reduce the probability that a mining project will be aban-
doned early. The societal and economic benefits from a miningproject can be large, with increased
investment in an area providing increased levels of employment and improved community resources.
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FIG. 2. Optimal termination prices for the manufacturer, viewed as the time to expiry is approached, for two different penalty
fines. The continuous line is when the optimal termination fine is imposed upon the operatorK∗ = $5.6M, and the dashed line
shows the optimal strategy when no penalty fine is imposedK = $0

When extraction ceases, these benefits also cease, to the detriment of the community (Andrews-Speed
et al., 2005); the abandonment of the extraction site may also carry an environmental cost. A recent
World Bank report (Otto, 2010) discusses a legal framework within which local governments can en-
sure more sustainable resource extraction projects. Such considerations include making provisions for
new forms of economic activity and employment post-extraction (Veiga et al., 2001). However, these
provisions may not address the risk of early abandonment of the mining project due to unfavorable
commodity prices. In the context of a regulated market, a suitable equilibrium must be sought between
the regulator and mining firm (Kniesner and Leeth, 2004; Otto, 1997). If the equilibrium is achieved
through a fine for abandonment, the regulator must avoid deterring this often vital corporate investment
(Otto, 2010). We now show that this problem falls within the scope of Section 2, when the exogenous
uncertaintyS is the commodity price and the operating strategyu is the rate at which the commodity is
extracted.

4.1 Model: the mining operation

In this example we use empirical data on the ore-grade quality G (grammes of gold per tonne of earth)
from a real gold mining operation, whose data has been supplied by Gemcom Software International
(a large mining solutions provider). The data is plotted in Figure 4, following an extraction schedule
which is scheduled to last 4.9 years at constant extraction rate. In our model, the economic state of
the mine is(S, t,Q), whereQ is the volume of ore remaining in the mine. We assume thatS follows a
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FIG. 3. The sensitivity of the probability of early termination, as one varies the parameters of the stochastic process (3.1). The top
graph shows the sensitivity towards the volatility:σ = 0.25,0.3 and 0.35 %. The bottom graph shows the sensitivity towards the
drift: µ = 0.1,0.2 and 0.3 %. Unless being varied in the graph, all other parameters are given by (3.2)

mean-reverting Cox-Ingersoll-Ross process, with stochastic dynamics

dS = κ(µ − S)dt+σ
√

SdB, (4.1)

whereµ is the long-term average price of gold andκ is the speed of mean reversion. The diffusion
(S, t,Q) is controlled by choosing the rate of extractionq = − dQ

dt . In the notation of Section 2 we have
n = 3, m = 1 and

ut = qt , Xt =





St

t
Qt ,



 , b(Xt ,ut) =





κ(µ − S)
1

−qt



 , σ(Xt ,ut) =





σ
√

S
0
0



 . (4.2)

We take a simple model in whichq may have either the valueq1 or q2, with q1 < q2; we will refer to
state 1 as ‘normal operation’, and to state 2 as ‘expanded operation’. As such, this example may be
considered a particular form of regime switching diffusion(Chen and Insley, 2012). The capital cost of
switching from state 1 to state 2 isCe, and switching from state 2 to state 1 is not possible. The mine
may be abandoned from either state, incurring a capital costC1a andC2a from states 1 and 2 respectively.
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FIG. 4. The ore grade of a gold mine, ordered in a chronological sequence of extraction. The grade,G, is measured in grammes
per tonne, and the x-axis denotes the amount of remaining ore, Q. This data was supplied by Gemcom Software International

The firm’s running cost per unit time in statei is εi, so that the running cashflows for the mine are

gi(S, t,Q) = qiG(Q)S− εi. (4.3)

The operational strategy of any firm is assumed to consist of three price thresholdsS∗e(t,Q), S∗1a(t,Q)
andS∗2a(t,Q), all of which may depend on both the timet and the remaining quantity of oreQ. The
thresholdS∗e(t,Q) is the gold price at which the operation expands from state 1 to state 2, whileS∗1a(t,Q)
andS∗2a(t,Q) are the gold prices at which the project is abandoned, respectively from states 1 and 2.

The objective of the regulator is assumed to be the introduction of a fine for abandonment which
halves the probability of abandonment (so as to improve the security of supply of economic benefit to
the surrounding community), relative to the probability without a fine. The remaining parameter values
of this gold mine extraction project are given by

µ = $24.4gr−1, σ = 25%, κ = 0.01yr−1, r = 8% yr−1,

I = $50M, q1 = 1Mt yr−1, q2 = 2Mt yr−1, ε1 = ε2 = $yr−1,

C1a = $10M, C2a = $10M, Ce = $20M, S0 = $25.7gr−1. (4.4)

4.2 Abandonment probability

Inserting the controlled diffusion (4.2) into equation (2.7), the probability of abandonment is given by
the coupled equations

1
2

σ2S
∂ 2P1

∂S2 − ∂P1

∂τ
− q1

∂P1

∂Q
+κ(µ − S)

∂P1

∂S
= 0,

P1 = 1 on S = S∗1a,

P1 = 0 when min{Q,τ}= 0,

P1 = P2 on S = S∗e , (4.5)
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and
1
2

σ2S
∂ 2P2

∂S2 − ∂P2

∂τ
− q2

∂P2

∂Q
+κ(µ − S)

∂P2

∂S
= 0,

P2 = 1 on S = S∗2a,

P2 = 0 when min{Q,τ}= 0,

P2 → 0 as S → ∞, (4.6)

whereτ = T − t. These particular boundary conditions are mathematicallyanalogous to hysteresis
problem in physics solved by Freidlin et al. (2000). As in theprevious section, the solution to the
coupled equations (4.5)—(4.6) depends on the firm’s controlstrategy. We now describe, from the point
of view of a firm, the optimal choice for the three surfacesS∗1a(τ,Q), S∗2a(τ,Q) andS∗e(τ,Q).

4.3 Operator

From the price process (4.1), controlled diffusion (4.2) and running cash flows (4.3), we can insert them
into equation (2.4), to obtain the following PDE for the mines expected profit:

1
2

σ2S
∂ 2V1

∂S2 − ∂V1

∂τ
− q1

∂V1

∂Q
+κ(µ − S)

∂V1

∂S
− rV1+ q1GS− ε1 = 0,

V1 = 0 when min{τ,Q}= 0,

V1 =−C1a −K when S = S∗1a

V1 =V2−Ce on S = S∗e , (4.7)

and
1
2

σ2S
∂ 2V2

∂S2 − ∂V2

∂τ
− q2

∂V2

∂Q
+κ(µ − S)

∂V2

∂S
− rV2+ q2GS− ε2 = 0,

V2 = 0 when min{τ,Q}= 0,

V2 =−C2a −K when S = S∗2a

V2 ∼ S as S → ∞. (4.8)

We refer to Brennan and Schwartz (1985) for the justificationof these boundary conditions. In addition,
for optimality to be obtained, we require that at each of the transitions the smooth pasting condition
must hold:

∂V
∂S

= 0 on S = {S∗e,S
∗
1a,S

∗
2a}. (4.9)

The boundariesS∗1a(τ,Q), S∗2a(τ,Q) andS∗e(τ,Q), which again depend onK (although we have sup-
pressed this for notational convenience), may be obtained from (4.7)—(4.8) via a PSOR numerical
method and input to the calculation in section (4.2). A one-dimensional search is again sufficient to
obtain the minimum value ofK achieving the desired reduction in abandonment probability under the
model.
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FIG. 5. The probability of abandonment (top graph) and NPV (bottom graph) of a gold mining project, plotted as a function
of abandonment penalty fine. The dashed lines show where the regulators objective is met - which is to half the probabilityof
abandonment - and the resulting optimal NPV. The results areplotted at $0.5M intervals, using the parameters values of (4.4)

4.4 Results

Since equations (4.7)—(4.8) are convection dominated in the Q variable, we obtain numerical results
by the semi-Lagrangian method, as utilized by Evatt et al. (2011) and Chen and Forsyth (2007). In
Figure 5 we show the probability of abandonment versus levelof fine K (top graph), and the mining
project’s NPV versusK (bottom graph). The optimal level forK is K∗ = $8.85M with an associated
NPV of $97.05M, which compares to $97.8M whenK = 0. The halving of abandonment probability
is thus achieved in return for a reduction in NPV of $0.75M, or0.8%.The roughness of Figure 5 (top)
is a consequence of roughness in the ore grade data as shown inFigure 4. Figure 6 shows the optimal
thresholds for changing operational state, when no fine is imposed (top) and when the optimal fine
K = $8.85M is imposed (bottom). The higher dashed line is the optimal price to expand operationS∗e ,
the lower dotted line is the optimal price to abandon from theexpanded stateS∗a2 and the continuous line
is the decision to abandon from normal operationS∗a1. The most significant difference between the two
operating strategies is found towards the end of extraction, asQ approaches 0.
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FIG. 6. Graphs showing the optimal prices for when to change operational state of a gold mine, for when no penalty fine is present
(top graph) and for when the optimal penalty fine,K = $8.85M, is imposed (bottom graph). In each figure, results are shownfor
the optimal expansion decisionS∗e (higher dashed line), the optimal abandonment decision from the expanded stateS∗a2 (lower
dashed line), and the optimal abandonment decision from thenormal extraction stateS∗a1 (lower continuous line). The graphs
were calculated using the parameters values of (4.4)

5. Conclusion and discussion

We have presented a method for determining regulatory fines,payable upon contract termination, which
establish a Nash equilibrium between an industry regulatorand a firm, in the presence of exogenous
uncertainty: the regulator aims to increase the security ofcontract delivery, whilst the firm aims to
maximise its valuation. The method uses the partial differential equations which govern both the firm’s
expected profit and the values of regulatory interest. It therefore contrasts with scenario analysis (Postma
and Liebl, 2005) by consideringall possible future scenarios, and is exact in that it does not require
simulations.

Our work is applicable whenever the evolution of a firm’s economic state can be modeled by a
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controlled Itô diffusion, and its profits can be expressed in the form (2.2). We have given illustrative
applications to two example regulatory scenarios. However, if the uncertainty in question exhibited
jumps -and was therefore a form of Lévy process- one could still make use of the principles and majority
of mathematics within this paper. This potential model extension would introduce integral terms with
the underpinning differential equations, turning them into forms of partial integral differential equations
(PIDEs), whose solutions can be extraction via numerical schemes such as that suggested in Thompson
et al. (2004).

Extensions of this work can be made, and need not be restricted to the early termination of contracts.
This is because many other firm decisions can attract a regulators attention, who may then seek to utilise
penalty fines in order to reduce their likelihood. For an interesting example within financial services
regulation in which (non-controlled) regulatory fines are imposed on profit-maximizing banks within a
Basal II setting, see Jimenez-Martin et al. (2009).
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