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We present a quantitative method to find jointly optimal tetyges for an industry regulator and a firm,
who operate under exogenous uncertainty. The firm contt®lgperating policy in order to maximize
its expected future profits, whilst taking account of retpig fines. The regulator aims to control the
probability of the firm terminating production, by imposiagclosure fine which is as low as possible,
while achieving the required reduction in probability. Quethod determines the level of fine which
establishes a Nash equilibrium in these nonzero-sum gamdsr uncertainty.

Keywords: Regulation, Real Options, Uncertainty, Optimal ContRypbabilistic Constraints

1. Introduction

In highly controlled markets such as the public utility isthies, the regulator of an industry may impose
direct control on the operating strategy of a firm, even thotlg company operates under exogenous
uncertainty (Roseta-Palma and Xepapadeas, 2004). As ampéxathe UK water regulator OFWAT
restricts the number of times a privatized water utility igter can impose a domestic hosepipe ban
(Arnell, 1998) - despite uncertainty over the level and grattof rainfall, and the fact that additional
bans may be optimal for the operator and also the user. Iir ataekets, direct regulatory control is
not always present or undesirable. A particular form of taacerns the security of supply of many
publicly awarded contracts, where the regulator wishestiv the likelihood that the firm terminates the
contract early. One such example is vaccine productiordtJth, where demand levels and costs can be
extremely uncertain (Danzon et al., 2005). Indeed, sacafivaccine supply is highly important, since
the effect on public health of vaccine shortages can befgignt (Helms et al., 2005): during the period
2000 to 2005, approximately one-third of all childhood vaecshortages in the US are estimated to
have been caused by vaccine manufacturers deciding to peadction due to unfavorable economic
conditions (Hinman et al., 2006). However, a regulator ogrtandirect influence upon the likelihood
of a company ceasing to deliver upon a contract, by changfingna economic parameters (Sappington,
2005; Laffont and Martimort, 2002) and in particular, by tise of financial incentives such as penalty
fines (Helms et al., 2005).

Motivated by such examples, this paper presents a quavgitaiethod to solve a model of a reg-
ulated industry, where both the operator and regulator lléstéct objectives. Our methodology is
based upon three core economic assumptions: firstly, teatutiure profits of a firm depend on the
values taken by an exogenous stochastic process, such amzodity price, level of demand or labor
market costs; secondly, that the industry under review hrag@ator, who wishes to reduce the proba-
bility of early contract termination, by appropriately ¢woiling the size of a fine (or tax) for doing so;
and thirdly, that firms follow operating policies which menize the expected future profit from their
operation, taking account of fines (or taxes). Under theseragtions we show how to derive partial
differential equations which characterize this termioafdrobability and we describe fast and accurate

(© The authors 2008. Published by Oxford University Press dralbef the Institute of Mathematics and its Applicationdl #ghts reserved.



2of 17 G. W. Evattet. al.

numerical algorithms to determine the optimal level of fine.

We shall assume that the target level for the probabilityas#fredlonment is given, although we do
not specify how this target level should be set; this levelften a political decision (Holt, 2005) and
is clearly outside the scope of this paper. In addition, iimiportant to note that it is without loss
of generality that we consider a penalty fine, as the methaapnopose could just as well be used
to determine an optimally imposed level of continuouslydgaxation by the regulator. As such, the
principles of this paper are broad in its potential areagpgpfiaation (essentially any regulated industry
subject to probabilistic constraints). To highlight thi©adness, as well as considering the vaccine
supply problem, we also analyze the early termination ofjame-switching mining operation in Section
4: The decision to abandon a large mining project can havefigignt undesirable implications for the
surrounding environment and economy (Evatt et al., 201®;,Q010; Veiga et al., 2001) and a mining
industry regulator may therefore seek to reduce the préityabi abandonment to a target level.

In a non-public policy context, some business-to-busimesdracts already incorporate an early
termination fee (Bates and Lemmon, 2003), whose primargativg is financial (Sharp et al., 2008).
This fee can mitigate any additional financial costs assediwith early termination, as it makes the
counterparty less inclined to terminate due to the highst @&illiamson, 1985). One might therefore
view this paper as a translation of that general principte axpublic policy context. Yet because the
two participants within our public policy type problem had#ferent objectives (one monetary, one
probabilistic), the mathematical structure is (to the loestof knowledge) novel and sharply distinct to
situations in which the two participants are both (valuatizaximizing) firms.

The problem of controlling event probabilities in reguthiedustries has been considered previ-
ously in related contexts. In financial regulation, the ¥aht Risk measure limits the probability of
losses above a given size in a portfolio due to market movesr{@uffie and Pan, 1997). It does not,
however, aim to address behavioral considerations in thetnaction of financial portfolios, nor the set-
ting of appropriate regulatory fines. Optimal control witlopabilistic constraints has been investigated
in non-regulatory contexts, such as control engineeriran@Ukuri and Boyd, 2002), mathematical fi-
nance (Folimer and Leukert, 1999) and operations resedvbitd, 1974), although these studies have
only considered the objectives of a single party. Likewaements of the mathematical structure of
this paper could also be used to solve optimal control prablevolving just one participant, who is
concerned with the question: how does a firm adjust its ojmgrablicy so as to reduce the abandon-
ment probability to a desired level? However, the overgdhrust of this paper considers the strategies
of two participants: the firm must choose an operating gsatehich maximizes returns, while the
regulator chooses the level of a fine, taking account of time'fioperating strategy, in order to match
the abandonment probability to the target level. The sohstpresented in this paper are therefore Nash
equilibria for a nonzero-sum game (Starr and Ho, 1969). titamh, the study of decision probabilities
in their own right is a relatively young and expanding areeesarch within quantitative finance, whose
non-linear effects are proving insightful to decision mak&arkar, 2000; Lund, 2005; Wong, 2007).

The remainder of this paper is organized as follows. Detdithe mathematical methods are pre-
sented in Section 2. In Section 3 the method is applied to @a#y wishing to control the security of
supply of a vaccine. A more complex, data-driven exampleésgnted in Section 4, where a mining
industry regulator wishes to reduce the probability of tateandonment of a gold mining project. We
conclude our work in Section 5, where we also discuss patidture extensions.



Optimal regulatory control of early contract termination 30f17

2. Optimal Control with Probabilistic Constraints

In this section we present the mathematical details of thhoak in a manner intended to be sufficiently
general to be employed in a range of regulatory contexts.nmdthod is a one-dimensional search over
the levelK of the fine for abandonment, and may be summarized as follows:

1. Find the optimal control strategy for the current valu&of
2. Find the abandonment probability for this control siysite

3. Check if the regulators criteria is met. If it does not, af@K and return to step 1

In considering the firm’s optimal strategy, the essentiathmanatical tool is the Hamilton-Jacobi-
Bellman (HJB) equation, which links controlled It diffoas and partial differential equations (PDES).
A controlled It diffusion inR" takes the form

dX = dXY = b(X, U)dt + o(X, U)dB, (2.1)

whereb is a function taking values ifR" representing an instantaneous driftjs the instantaneous
volatility function, taking values ilR™™, and (B )0 is a Wiener process iR™. In our setting, the
process X )i>o represents the time evolution of the economic state of a éiriven by the noise process
B which represents random fluctuations in, for example, codity@r labor prices or demand levels.
We assume that the firm will abandon production when its egtoietate ceases to be favorable, which
corresponds to the first time at whighleaves a predetermined $¢t We denote thisbandonment time
by v. The functioru represents the firm’'s operating strategy (specified for pashible economic state
%), which is assumed to be fixed at the outset. At each tiniee valuew; depends on the economic
stateX; and may only take values in the admissiblel$efor further background on stochastic optimal
control we refer the reader to @ksendal (2003).

Given an operating strategy we express the firm’s future profits using a running profitction
g, discounted at the rate of interast Let T be the time at which the operating license expires. In
addition to the running profit, the firm also experiences a fiaahflowh(X,); if v < T then the firm
has abandoned early, andf%X,) includes the fine. We define tiperformance function w! to be the
firm’s expected total profit, net of any fine:

WH(x) = Ex [ /O ’ e 29X, u)dz+ e h(X,) |, (2.2)

whereE, denotes the expected value whén= x € R". We remove the endogenous behavioral uncer-
tainty due to the firm’s choice of operating strategyy assuming that there exists an optimal strat€gy
which maximizes the value of the performance functidi(x). This value is thus given by the function
V*, where

VE(X) = WM (x). (2.3)
The solution foV* is found by solving an HIB equation of the form
sup{LV(x) +g(x,v) —fV(x)} =0 in H

veU

lim V(x) = —h(y,v) for yedH (2.4)

X—=Yy
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where

n 02 n b 0 5
L= ij3-a Tt v S
iyjz:lajaxidxj i; I0Xi ( )

and[aj] = 300’, andH is the set of all economic states which itself is often pathefsolution to the
optimal control. A time derivative is indeed present in §2ak time forms part of the stochastic process
(2.1):dt =1.dt+0.dB.

In order to study the effect of varying the level of the filhewe specify the following form foh:

h(XV,uV):l(Xv,uV)+Klv<T (2.6)

wherel, .1 equals 1 if the firm abandons early (ie.,vif< T) and equals O otherwise. Note that in
equation (2.6), the fine is not inflation-linked; for longerizonsT it may be appropriate to inflation-
link the fine, which corresponds to premultiplyikgby a factore’¥. To make the dependence &n
explicit, let us writevV* = V*(x,K) andu* = u*(K) . Our three steps are now:

1. We first solve (2.4) to obtaixi*(x,K) andu*(K). This provides the optimal operating strategy
u*(K) under the model, given that the fine is set at lével

2. The firm is now assumed to follow this operating strategl; ander this assumption, its economic
stateX' (K) is an (uncontrolled) Ito diffusion. As a result the quaniif interest to the regulator,
namely the abandonment probabil®yx) = P(x,K) for a firm with initial economic state, is
then found as described in @ksendal (2003) by solving a fdrineoFeynman-Kac formula:

LP(x) = 0 in H
lim P(x) = Iyt for yedH (2.7)

X—=Y

wherety is the value of the time co-ordinate at the paint

3. We now varK (which in turn variesr*) until the abandonment probability is reduced to the level
Y required by the regulator. L&* be this optimal fine, so that

P(x,K*) =Y. (2.8)

By construction of this three step process, where absokutiation from the target is to be avoided,
once the condition (2.8) is met we are in a form of nonzero s@shNequilibrium (Starr and Ho, 1969).

It is worth noting that, depending on the application, thi raf interestr "above (which is used
to find V) may be different from the one used to solve the Feynman-Kaudla (2.7) (and hence to
find K). If the economic uncertainty is the price process of a wlamemmodity, then the market prices
effectively determine a risk-adjusted rate of interestodder to avoid the possibility of arbitrage, it is
this rate that must be used to calculdten contrast, when calculating the abandonment probglbié
regulator is free to leave the probability undiscountedteatively, a bespoke discount rate may be
specified forP, in order to place greater weight on early abandonment arrdgmondingly less weight
on later abandonment.
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2.1 Feasibility

The fineK* obtained above is optimal, in the sense that a lower fine woatdachieve the desired

reduction in abandonment probability and a higher fine wdalde a negative societal impact by dis-
couraging the purchase of new licenses. However, the opfineamay be sufficiently high so that no

rational firm would buy a new license. The optinfiedsible fine, K¥ (x), is therefore

K$(x) = min{Ks (x),K*(x) }, (2.9)

whereK; (x) is the maximum fine the firm can afford; further discussiontus s given by Lear and
Maxwell (1998), and the practical implementation of finescfs as collecting performance bonds) is
discussed by Holt (2005).

2.2 Notation

The notation used in this section is consistent with thategalty used in probability theory, in the
sense of Pksendal (2003). Yet as can be seen, there are iffieeerd symbols related to the stochastic
process: the set of all possible processethe individual point in the proces§’ and the quantity post-
averagingx. The notation serves a purpose in deriving the theoretigsikb But given its purpose has
been satisfied, we now intentionally relax some of the notati rigor in order for an interdisciplinary
reader to more easily move their way through the remainiotises. To be consistent with some of the
key work on real options theory and quantitative financel{sgDixit and Pindyck (1994) and Wilmott
et al. (1995)) as far as possible we use just the capitat kettdenote the stochastic variable.

3. Improving security of vaccine supply

In this section, motivated by Hinman et al. (2006) and Heltred.€2005), we investigate the problem of
increasing the security of supply of a vaccine. We employrgpt real options model, in which a firm
is contracted to supply vaccines at a fixed quantity and paicd is exposed to both fixed and uncertain
input costs. The only control available to the firm is the y&ekrmination of the contract, whilst the
industry regulator may wish to use a fine to control the prdtiglof termination. Termination fines
are commonly used (Bates and Lemmon, 2003), and the meth8dation 2 provides a quantitative
method for setting the level of fine, taking account of thefiproaximizing behavior of the firm.

Our model in this section is the following. The firm must dehwa fixed numbeq of doses each year
for T years, which are to be sold at an agreed sale pricg @ér dose. The firm’s costs include a fixed
amount ofe per year and a variable amousitvhich is uncertain and is assumed to follow a geometric
Brownian motion

dS= uSdt + oSdB (3.1)

wherey is the percentage drift aral is the percentage volatility. The firm’s control strateggiisiply

to terminate the contract whérises to a predetermined lev@&l(t). This level may be time-dependent
(although we will often suppress the time parameter for timial convenience), and takes account of
all termination costs. With the notation of Section 2, thefexerts no control until the termination time
v, and so the choice of strategy reduces to the choice of anation surface&s*. We supply our own
plausible parameter values characterizing the unceytaimd where possible, we use parameter values
consistent with those given in Hinman et al. (2006):

u=25%yrl o=03yr¥2 r=2%yrl s=%$30U71
T=5yr, 1=%$100M, g=5MUyr ! e=%$13Myr 1 (3.2)
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wherel is the initial investment and we suppose that the currem lefvariable input costs iIS= $10
U~1, whereU refers to a single dose. We suppose that the regulatoristtartp reduce the termination
probability by 20% relative to the baseline level when thHeneo fine, that is:

4P(v < T|K =0)

PV<TIK=K")=Y= =

(3.3)

3.1 Regulator problem: Termination probability

In the notation of Section 2 we have= 2 andm= 1. Since the firm exerts no control before the
termination time, we do not model a control variabjeand (2.1) reduces to

x=| 5| ocw = | 53] o0 =| T 34)

where the economic stak takes values in the regid# bounded above (in its first coordinate) by the
surfaceS". Inserting this in equation (2.7), we have the equation guug the probability of contract
termination:

L 9%P oP
ot t2% S THSs 0

P=0 when t=T,
P=1 on S=§S,
P—-0 as S—0. (3.5)

The solution to this equation depends on the firm’s contrakstyy, which is given by the termination
surfaceS* obtained in Section (3.2) below.

We note that if the contract is held in perpetuity, and if tmaficashflowh is constant in time, we
obtain a time-stationary version of the problem. Theserapsions are commonly used in real options
studies (Dixit and Pindyck, 1994), and make closed formtsmhs available by removing the time
dimension from the problem. However, in the setting of thaper, the effect of discounting a constant
fine reduces its effect so greatly that such perpetual swisitare uninformative. In the following we
therefore explore solutions to finite time horizon problemsng robust numerical algorithms.

3.2 Operator problem: termination surface

We now obtain the optimal termination surfe8e as a function of the fine levél. The surfaces"(K)
is both an input to the calculation in section (3.1), and thineal operating strategy for the firm under
this model. The firm’s running profit is modeled as the sum efdhles, variable costs and fixed costs:

9SS =q(s&—9 ¢ (3.6)

and the functiorh from (2.6) in section 2.4 represents the capital cost ofwwldE. Inserting the price
process (3.1) and cashflows (3.6) into (2.4), we can writ@thgtion governing the valuation as

‘9_V+} o229V

oV
o 5g tHSgg 1V Hd(s -9 —£=0



Optimal regulatory control of early contract termination 7 of 17

V=0 when t=T,
V=%t (1—e*r<T*t)) when S=0,

r

V=-C—-K on S=§. 3.7

This particular equation is a form of HJB equation with ‘bawang’ control. The reason it is written
in the same form as the Feynman-Kac equation, is due to théhiacunning profit functiomy is linear
and a continuous intervé, b] of choices is available fdd ; although the HIB equation holds, in this
instance it simplifies to solving Feynman-Kac equations werlapping domains with free boundaries
(ksendal, 2003). However, when the running profit is nadirthis is no longer true, and the full HIB
equation must be solved.

To maximizeV, the firm must choose the surfa& optimally. This may be achieved using the
smooth pasting principle as fully detailed by Dixit (1991 the case of this abandonment problem, in
which there are no future cash flows once abandonment hacbew®ieted, the condition is given by,

ov

d_S:O on S=S. (3.8)

3.3 Numerical Approach

The boundang(K) found in Section (3.2) may now be input to the calculation atti®n (3.1), to
obtain the abandonment probability. We denote this prdibaBi(K, St), again to indicate dependence
on K. Given the current variable production c&tit is now a matter of a one-dimensional search to
find the minimum value oK such thaP(K,Sit) =Y.

The precise numerical scheme we shall use to solve for theatpeal control determined via equa-
tion (3.7), is a projected successive over relaxation (PS®&hod, which is an accurate procedure for
solving such free boundary problems in quantitative finaritke solution to the regulators problem
for determining the probability, (3.5), does not involveaetenining a free boundary, as this boundary
is purely an input. As such, one can use a standard impliciefiifference scheme. Both of these
schemes are explained and detailed in Wilmott et al. (199&¢re uniqueness has recently been shown
to be ensured (Briani et al., 2011).

3.4 Results

The solutions to (3.7) and (3.5), when using the paramefeendy (3.2), are shown in Figure 1.
The top graph shows how the optimal net present value (NRY— ) of the operation is dependent
upon the termination fin&, and the lower graph shows how the resulting probabilityeofrination
varies. The objective of the regulator is to reduce the guditya of early termination by 20%, and
the fine which achieves this aim is indicated by the inteisgalashed lines in the lower grapk: =
$5.6M. The introduction of this fine leads to a reduction of thenfe NPV from $1375M to $13682M,

a reduction in NPV of just 0.5%. As one would expect, the apipnate size of this reduction in
valuation is given by the probability of abandonment muikigh by the size of the optimal penalty fine.

Figure 2 illustrates the effect of the optimal fik& on the optimal operating strategy of the firm,
where the termination boundari8f)) (dashed line) an&K*) (solid line) are shown. The difference
between these two termination prices becomes greater asntract expiry. It is clear from Figure



8 of 17 G. W. Evattet. al.
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FIG. 1. The top graph shows the firm’s NPV for each termination Kinand the lower graph shows the firm’s probability of early
termination (the quantity of interest to the regulator)dachK. The fineK* achieving a 20% reduction in termination probability
is shown in the lower graph (where the curve meets the haazolashed line), and the corresponding NPV is given in tpe to
graph

2 that the reduction in termination probability is prindigaachieved by excluding termination deci-
sions close to expiry of the operating license: this featlse explains the relatively low impact of the
termination fine on the firm’'s NPV.

In Figure 3 we investigate the sensitivity of the resultdeparameter values specified in (3.1). The
top graph shows how, given the initial price level, the pialiy of early termination increases as the
percentage volatility is increased. In the bottom graph we show how the probaluifitgrmination
increases as the percentage duifincreases. We note that the main effect is a translationeo€tinve,
so that the objective of a 20% reduction in termination philitg appears robust to uncertainty over the
parametergt ando.

4. Increasing the societal benefit of an extraction project

In this section we consider the use of fines to reduce the pilityahat a mining project will be aban-
doned early. The societal and economic benefits from a mipingect can be large, with increased
investment in an area providing increased levels of empéntrand improved community resources.
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FiG. 2. Optimal termination prices for the manufacturer, vidvess the time to expiry is approached, for two different pgnal
fines. The continuous line is when the optimal terminatioe fsnimposed upon the operatiéf = $5.6M, and the dashed line
shows the optimal strategy when no penalty fine is impd&ed$0

When extraction ceases, these benefits also cease, to theatdtof the community (Andrews-Speed
et al., 2005); the abandonment of the extraction site may @sry an environmental cost. A recent
World Bank report (Otto, 2010) discusses a legal framewadtkimwhich local governments can en-
sure more sustainable resource extraction projects. Sudiderations include making provisions for
new forms of economic activity and employment post-extoacf\Veiga et al., 2001). However, these
provisions may not address the risk of early abandonmerti@ifriining project due to unfavorable
commaodity prices. In the context of a regulated market, tabié equilibrium must be sought between
the regulator and mining firm (Kniesner and Leeth, 2004; Qt897). If the equilibrium is achieved
through a fine for abandonment, the regulator must avoidiiegethis often vital corporate investment
(Otto, 2010). We now show that this problem falls within tlvege of Section 2, when the exogenous
uncertaintySis the commodity price and the operating stratagy the rate at which the commaodity is
extracted.

4.1 Model: the mining operation

In this example we use empirical data on the ore-grade gual{grammes of gold per tonne of earth)
from a real gold mining operation, whose data has been gpplf Gemcom Software International
(a large mining solutions provider). The data is plotted iguFe 4, following an extraction schedule
which is scheduled to last 4.9 years at constant extractten rin our model, the economic state of
the mine is(S;t,Q), whereQ is the volume of ore remaining in the mine. We assume $fatlows a
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ProbabilityP

ProbabilityP
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FiG. 3. The sensitivity of the probability of early terminatjcas one varies the parameters of the stochastic proce$sTBeltop
graph shows the sensitivity towards the volatility'= 0.25,0.3 and 035 %. The bottom graph shows the sensitivity towards the
drift: u=0.1,0.2 and 03 %. Unless being varied in the graph, all other parametergigen by (3.2)

mean-reverting Cox-Ingersoll-Ross process, with staahdgnamics
dS= k(u—S)dt+ o/dB, (4.1)
wherey is the long-term average price of gold ards the speed of mean reversion. The diffusion

(St,Q) is controlled by choosing the rate of extractips- —%. In the notation of Section 2 we have
n=3,m=1and

S K(H—9) (V&
=0, %=| t |,bX%w)= 1 , (X, ) = 0o |. (4.2)
Qtv *Qt 0

We take a simple model in whiatpmay have either the valug or gz, with g1 < g2; we will refer to
state 1 as ‘normal operation’, and to state 2 as ‘expandexhtipe’. As such, this example may be
considered a particular form of regime switching diffus{@nen and Insley, 2012). The capital cost of
switching from state 1 to state 2@, and switching from state 2 to state 1 is not possible. Thesmin
may be abandoned from either state, incurring a capital@gstndCy, from states 1 and 2 respectively.
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FIG. 4. The ore grade of a gold mine, ordered in a chronologiogliesece of extraction. The grads, is measured in grammes
per tonne, and the x-axis denotes the amount of remainingorEhis data was supplied by Gemcom Software International

The firm’s running cost per unit time in states g, so that the running cashflows for the mine are

0i(St,Q) =0qiG(Q)S—¢&. (4.3)

The operational strategy of any firm is assumed to considirektprice thresholds;(t,Q), Sj,(t,Q)
andS;,(t,Q), all of which may depend on both the timend the remaining quantity of o@. The
thresholdSi(t, Q) is the gold price at which the operation expands from stapesiate 2, whil&S],(t, Q)
andS;,(t, Q) are the gold prices at which the project is abandoned, régplycfrom states 1 and 2.

The objective of the regulator is assumed to be the intradinictf a fine for abandonment which
halves the probability of abandonment (so as to improve ¢learity of supply of economic benefit to
the surrounding community), relative to the probabilitgiveiut a fine. The remaining parameter values
of this gold mine extraction project are given by

u=9%244gr1, 0=25% k=001yr ! r=8%yr 1
| =$50M, qur=1IMtyr !, =2Mtyrt g=g=%r1
Cia=$10M, Cpa=$10M, Ce=$20M, S—=$257grL. (4.4)

4.2  Abandonment probability

Inserting the controlled diffusion (4.2) into equationqR.the probability of abandonment is given by
the coupled equations

2
2 0 P]_ dP]_ dP]_

Q1o +K(H-9)

op,
9  at  1aQ

1

2° 9s
Pb=1 on S= SIa,

PL=0 when miqdQ,1}=0,

PP=P, on S=§, (4.5)
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and
1 ,.0°P, 0P, P, P,

=1 on S=S,,
P,=0 when mif{Q,1}=0,
PP—+0 as S— o, (4.6)

wheret =T —t. These particular boundary conditions are mathemati@iglogous to hysteresis
problem in physics solved by Freidlin et al. (2000). As in firevious section, the solution to the
coupled equations (4.5)—(4.6) depends on the firm’s costrategy. We now describe, from the point
of view of a firm, the optimal choice for the three surfa8g1,Q), S;,(7,Q) andSi(T, Q).

4.3 Operator

From the price process (4.1), controlled diffusion (4.2) amning cash flows (4.3), we can insert them
into equation (2.4), to obtain the following PDE for the merexpected profit:

1,0 Vi oVq oVy -
EU Sﬁ—F—q]_%+K(H—S)£—er+quS—£l—O,

Vi=0 when miq1,Q}=0,
Vi=—-Cia—K when S=§j,
Vi=V,—-Ce oOn S=§, 4.7)

and
2
%02 2%V, B N, N,

Ny -
FI2 a1 *CI2%JrK([J*S)—fl’VzﬁLCIzGSsz—O,

S

Vo,=0 when miq1,Q}=0,
Vo =—-Ca—K when S=S§j,
Vo~S as S— oo. (4.8)

We refer to Brennan and Schwartz (1985) for the justificatibihese boundary conditions. In addition,
for optimality to be obtained, we require that at each of tla@gitions the smooth pasting condition

must hold:
ov
55 =0 on S={S S, Sa}- (4.9)

The boundarie§;,(1,Q), S5,(1,Q) andSi(1,Q), which again depend oK (although we have sup-
pressed this for notational convenience), may be obtaired {4.7)—(4.8) via a PSOR numerical
method and input to the calculation in section (4.2). A oimeeahsional search is again sufficient to
obtain the minimum value df achieving the desired reduction in abandonment probwhifitler the
model.
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0.2 T T T T T T T T T

ProbabilityP

NPV V, ($m)

96.5

96 . . . .
0 2 4 6 8 10 12 14 16 18 20

Penalty Fine K ($m)

FIG. 5. The probability of abandonment (top graph) and NPV ¢otgraph) of a gold mining project, plotted as a function
of abandonment penalty fine. The dashed lines show wheresthdators objective is met - which is to half the probabiby
abandonment - and the resulting optimal NPV. The resultplateed at $66M intervals, using the parameters values of (4.4)

4.4 Results

Since equations (4.7)—(4.8) are convection dominatederQXivariable, we obtain numerical results
by the semi-Lagrangian method, as utilized by Evatt et @112 and Chen and Forsyth (2007). In
Figure 5 we show the probability of abandonment versus lef/éhe K (top graph), and the mining
project’'s NPV versuK (bottom graph). The optimal level fdaf is K* = $8.85M with an associated
NPV of $97.05M, which compares to $97.8M whikn= 0. The halving of abandonment probability
is thus achieved in return for a reduction in NPV of $0.75M0@%.The roughness of Figure 5 (top)
is a consequence of roughness in the ore grade data as shé&guie 4. Figure 6 shows the optimal
thresholds for changing operational state, when no fine @sed (top) and when the optimal fine
K = $8.85M is imposed (bottom). The higher dashed line is the optimakgo expand operatios;,
the lower dotted line is the optimal price to abandon frometkiganded statf;, and the continuous line
is the decision to abandon from normal operat&p The most significant difference between the two
operating strategies is found towards the end of extracis@ approaches 0.
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Reference Price
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/

0 2= | 1 1 ) 1
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FiG. 6. Graphs showing the optimal prices for when to changeabipeal state of a gold mine, for when no penalty fine is presen
(top graph) and for when the optimal penalty fike—= $8.85M, is imposed (bottom graph). In each figure, results are stiown
the optimal expansion decisid (higher dashed line), the optimal abandonment decisiom tfee expanded stat, (lower
dashed line), and the optimal abandonment decision frorméneal extraction stat&; (lower continuous line). The graphs
were calculated using the parameters values of (4.4)

5. Conclusion and discussion

We have presented a method for determining regulatory fpasble upon contract termination, which
establish a Nash equilibrium between an industry regulahar a firm, in the presence of exogenous
uncertainty: the regulator aims to increase the securitgonitract delivery, whilst the firm aims to
maximise its valuation. The method uses the partial difféa¢equations which govern both the firm’s
expected profit and the values of regulatory interest. hetfoee contrasts with scenario analysis (Postma
and Liebl, 2005) by consideringl| possible future scenarios, and is exact in that it does roptire
simulations.

Our work is applicable whenever the evolution of a firm’'s emwmit state can be modeled by a
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controlled It6 diffusion, and its profits can be expressethie form (2.2). We have given illustrative
applications to two example regulatory scenarios. Howefehe uncertainty in question exhibited
jumps -and was therefore a form of Lévy process- one coilldstke use of the principles and majority
of mathematics within this paper. This potential model egten would introduce integral terms with
the underpinning differential equations, turning thenoiftrms of partial integral differential equations
(PIDEs), whose solutions can be extraction via numeridases such as that suggested in Thompson
et al. (2004).

Extensions of this work can be made, and need not be resttiwtbe early termination of contracts.
This is because many other firm decisions can attract a regs/@tention, who may then seek to utilise
penalty fines in order to reduce their likelihood. For antiesting example within financial services
regulation in which (non-controlled) regulatory fines argbsed on profit-maximizing banks within a
Basal Il setting, see Jimenez-Matrtin et al. (2009).
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