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THE MATRIX UNWINDING FUNCTION, WITH AN APPLICATION
TO COMPUTING THE MATRIX EXPONENTIAL∗

MARY APRAHAMIAN† AND NICHOLAS J. HIGHAM†

Abstract. A new matrix function corresponding to the scalar unwinding number of Corless,
Hare, and Jeffrey is introduced. This matrix unwinding function, U , is shown to be a valuable tool
for deriving identities involving the matrix logarithm and fractional matrix powers, revealing, for
example, the precise relation between logAα and α logA. The unwinding function is also shown to be
closely connected with the matrix sign function. An algorithm for computing the unwinding function
based on the Schur–Parlett method with a special reordering is proposed. It is shown that matrix
argument reduction using the function mod(A) = A−2πiU(A), which has eigenvalues with imaginary
parts in the interval (−π, π] and for which eA = emod(A), can give significant computational savings
in the evaluation of the exponential by scaling and squaring algorithms.

Key words. matrix unwinding function, unwinding number, matrix logarithm, matrix power,
matrix exponential, argument reduction
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1. Introduction. In previous work on the matrix logarithm [18, Chap. 11] one
of us has made use of a scalar function called the unwinding number. In this work
we define and investigate the corresponding primary matrix function. We show that
the matrix unwinding function is just as useful as its scalar counterpart. First, it
is a valuable tool for stating matrix identities involving the matrix logarithm and
fractional matrix powers, because it elegantly prescribes the correction needed when
identities that are generalized from the positive scalar case break down. For example,
the unwinding function neatly captures the difference between logAα and α logA.
In addition to this role as a theoretical tool, the unwinding function is also useful
computationally. It enables us to preprocess a matrix so that its eigenvalues all have
imaginary parts lying in the interval (−π, π], while not changing the exponential of the
matrix. We show that this matrix argument reduction can provide a large decrease
in norm and can thereby produce significant computational savings when the scaling
and squaring method is used to evaluate the matrix exponential.

We define the scalar unwinding number in the next section and recap some of its
key properties. The matrix unwinding function U(A) is defined in section 3, where
we deal carefully with a subtlety concerning the meaning of the derivative at points
with imaginary parts an odd integer multiple of π. In section 3.1 basic properties
of U(A) are derived. Bounds for the norm and the condition number of U(A) are
given in section 3.2, where we also discuss estimation of the condition number. In
section 3.3 we derive a number of matrix identities involving the functions log z and
zα. Connections with the matrix sign function are explored in section 3.4. In section 4
we give a Schur–Parlett algorithm for computing U(A) based on a reordering of the
Schur form specific to the unwinding function and give some analysis connecting the
conditioning of the Sylvester equations to the conditioning of U . In section 5 we show

∗Version of May 7, 2013. The work of both authors was supported by European Research Council
Advanced Grant MATFUN (267526).
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, Eng-

land (mary.aprahamian@postgrad.manchester.ac.uk, nicholas.j.higham@manchester.ac.uk,
http://www.ma.man.ac.uk/˜higham). The work of the second author was also supported by
Engineering and Physical Sciences Research Council grant EP/E050441/1 (CICADA: Centre for
Interdisciplinary Computational and Dynamical Analysis).

1



via numerical experiments that the algorithm performs well in practice. In section 6
we explore the use of the unwinding function for argument reduction with the matrix
exponential, showing that it can produce significant computational savings when used
with the scaling and squaring method. Some final remarks are given in section 7.

2. The unwinding number. We first state our conventions for three key func-
tions of a complex variable:

(i) arg is the principal argument: −π < arg z ≤ π.
(ii) log is the principal logarithm: −π < Im log z ≤ π.
(iii) For α, z ∈ C we define zα = eα log z. In particular, z1/2 is the principal square

root: Re z1/2 ≥ 0 and (−1)1/2 = i.
Motivation for these particular choices of where to close the branches is given by
Kahan [26]. We will use repeatedly the key properties elog z = z and ez1+z2 = ez1ez2 .
The open negative real axis will be denoted by R−.

The unwinding number of z ∈ C is defined by

(2.1) U(z) =
z − log ez

2πi
.

The definition can be rewritten

(2.2) z = log ez + 2πiU(z),

so that 2πiU(z) is the discrepancy between log ez and z.
The term “unwinding number”, with a definition differing from ours only in sign,

first appeared in Corless and Jeffrey [12] and Jeffrey, Hare, and Corless [25]. A
definition with the same sign as (2.1), and an explanation of why this sign is preferred,
is given by Bradford, Corless, Davenport, Jeffrey, and Watt [8]. Related definitions
can be found in Apostol [4, Thm. 1.48], Aslaksen [5], Bradford [7], and Patton [35].
With the exception of [4], in all these references the interest in the unwinding number
stems from its suitability for use in computer algebra.

The following lemma from [12], [25] gives a formula for the unwinding number
that is easier to evaluate than (2.1).

Lemma 2.1. The unwinding number of z ∈ C can be expressed using the ceiling
function as

(2.3) U(z) =

⌈
Im z − π

2π

⌉
.

Proof. Exponentiating both sides of (2.2) we have

ez = elog ez+2πiU(z) = eze2πiU(z),

so e2πiU(z) = 1 and hence U(z) ∈ Z. Taking imaginary parts in (2.2) gives −π <
Im z − 2π U(z) ≤ π, which can be written

Im z − π
2π

≤ U(z) <
Im z + π

2π
.

The result follows since U(z) ∈ Z.

Thus U takes integer values and is constant for Im z on the intervals ((2k −
1)π, (2k + 1)π] for all integers k. It is therefore easy to characterize when U(z) = 0,
or equivalently, log ez = z.
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Corollary 2.2. For z ∈ C, U(z) = 0 if and only if Im z ∈ (−π, π].

We now consider some of the most useful properties of the unwinding number. In
the formulae below it is implicitly understood that z = 0 is excluded from formulae
involving log z.

Lemma 2.3. For z ∈ C,

U(z) = U(−z) =

{
−U(z), Im z 6= (2k + 1)π, k ∈ Z,
−U(z)− 1, otherwise.

Proof. Straightforward from Lemma 2.1.

Lemma 2.4. For z ∈ C and α ∈ [−1, 1],

U(α log z) =

{
0, z ∈ C, α ∈ (−1, 1] or z 6∈ R−, α = −1,

−1, z ∈ R−, α = −1.

Proof. Since Im log z ∈ (−π, π], U(α log z) = 0 for α ∈ (−1, 1] by Corollary 2.2.
For α = −1, U(− log z) = 0 unless Im(− log z) = −π, that is, z ∈ R−, in which case
U(− log z) = U(−πi) = −1.

The next three results are some of the “useful theorems” that motivated the intro-
duction of the unwinding number in [12]. They show that U provides the appropriate
correction term in three important formulas involving the logarithm.

Lemma 2.5. For z1, z2 ∈ C, log(z1z2) = log z1 + log z2 − 2πiU(log z1 + log z2).

Proof. From (2.2) we have

log z1 + log z2 = log(elog z1+log z2) + 2πiU(log z1 + log z2)

= log(elog z1elog z2) + 2πiU(log z1 + log z2)

= log(z1z2) + 2πiU(log z1 + log z2),

as required.

Lemma 2.6. For α, z ∈ C, log(zα) = α log z − 2πiU(α log z).

Proof. Immediate from the definitions of zα and U(z).

Lemmas 2.4 and 2.6 together give that for α ∈ (−1, 1] the identity log(zα) =
α log z holds. Note that α = 1/2 yields the important special case log(z1/2) = 1

2 log z.
Lemmas 2.4 and 2.6 also give log(z−1) = − log z for z 6∈ R−.

Lemma 2.7. For z1, z2 ∈ C, (z1z2)1/2 = z
1/2
1 z

1/2
2 (−1)U(log z1+log z2).

Proof. Using Lemma 2.5 we have

(z1z2)1/2 = exp
(
1
2 log(z1z2)

)
= exp

(
1
2 (log z1 + log z2 − 2πiU(log z1 + log z2))

)
= z

1/2
1 z

1/2
2 exp(−πiU(log z1 + log z2))

= z
1/2
1 z

1/2
2 (−1)U(log z1+log z2).
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An important application of the unwinding number is in accurate evaluation of
elements of functions of triangular matrices. It is well known that for λ1 6= λ2 [18,
sec. 4.6],

f

([
λ1 t12
0 λ2

])
=

 f(λ1) t12
f(λ2)− f(λ1)

λ2 − λ1
0 f(λ2)

 ,
but in floating point arithmetic evaluation of the (1, 2) element from this formula can
incur subtractive cancellation when λ1 is close to λ2. Consider the case where f = log.
Let z = (λ2−λ1)/(λ2+λ1) and assume that a means for accurate evaluation of atanh is
available. The following formula suggested by Higham [18, sec. 11.6.2] allows accurate
evaluation when λ1 and λ2 are close but not equal:

f12 = t12
2 atanh(z) + 2πi U(log λ2 − log λ1)

λ2 − λ1
.

This formula is used in logm in MATLAB. A similar formula is obtained by Higham
and Lin [20, (5.6)] for f(t) = tp, p ∈ R and used in [20] and [21].

3. The matrix unwinding function. We define the matrix unwinding function
to be the matrix function corresponding to the unwinding number:

(3.1) U(A) =
A− log eA

2πi
, A ∈ Cn×n.

To make this definition precise we need to clarify which matrix logarithm is being used.
We cannot use the usual principal matrix logarithm, for which log(X) is defined only
for X with no eigenvalues on R− [18, Thm. 1.31]. Instead we take log to be the
matrix function corresponding to the principal scalar logarithm defined at the start of
Section 2. However, this is not sufficient to define logA for any nonsingular matrix.
To see why, recall that for A ∈ Cn×n with Jordan canonical form

Z−1AZ = J = diag(J1, J2, . . . , Jp),(3.2a)

Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk ,(3.2b)

f(A) is defined as f(A) = Zf(J)Z−1 = Z diag(f(Jk))Z−1 [18, Def. 1.2], where

(3.3) f(Jk) :=


f(λk) f ′(λk) . . .

f (mk−1)(λk)

(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 .

The principal logarithm log is discontinuous on R− and so does not have any deriva-
tives there. We will therefore define the first derivative for z ∈ R− as the one-sided
limit log′(z) = limh→0, Imh≥0[log(z + h) − log z]/h, and so on for higher derivatives,
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which are simply the usual derivatives evaluated on R−. Hence logA is now well
defined.

Another way to define U(A) that is equivalent to (3.1) is by applying the Jordan
form definition directly to the scalar unwinding number U(z), where the derivatives
U ′(z), U ′′(z), . . . , are necessarily zero for Im z 6= (2j+1)π, j ∈ Z, and we define them
to be zero for Im z = (2j+1)π. That this definition is equivalent to (3.1) follows from
the fact that the underlying scalar functions have the same values on the spectrum of
A [18, Sec. 1.2.2]. It is immediate from (3.3) that U(Jk(λk)) = U(λk)I for any Jordan
block Jk(λk). Hence, in terms of the Jordan form (3.2),

(3.4) U(A) = Z diag(U(λk)Imk)Z−1,

so that U(A) is diagonalizable and has integer eigenvalues. In particular, if all the
eigenvalues of A have the same unwinding number u, then U(A) = uI.

Note that U(z) is continuously differentiable as many times as we like in the open
subset D = { z ∈ C : Im z 6= (2j + 1)π for all j ∈ Z } of C. This implies, for example,
that U is a continuous matrix function on the set of matrices A ∈ Cn×n with spectrum
in D [18, Thm. 1.19]. However, for most of our results we need just the following
standard properties that hold for general matrix functions f [18, Chap. 1]:

f(A) is a polynomial in A,(3.5a)

A,B ∈ Cn×n, AB = BA ⇒

{
f(A)f(B) = f(B)f(A),

f(A+B) commutes with A and B.
(3.5b)

3.1. Properties of the unwinding function. We now derive some properties
of the matrix unwinding function, and in particular generalize some of the properties
of the unwinding number given in Section 2.

Theorem 3.1. For A ∈ Cn×n, U(A) = 0 if and only if the imaginary parts of
all the eigenvalues of A lie in the interval (−π, π].

Proof. The result is immediate from (3.4) and Corollary 2.2.

Note that U(A) = 0 is equivalent to log eA = A, and essentially the same condi-
tions as in Theorem 3.1 for this equation to hold are proved in [18, Prob. 1.39] for
the usual principal matrix logarithm without explicitly referring to the matrix un-
winding function. The theorem implies that the spectral radius condition ρ(A) < π,
or the stronger condition ‖A‖ < π for some consistent matrix norm, are sufficient for
log eA = A to hold. For several important classes of matrices the conditions of Theo-
rem 3.1 are always satisfied: matrices with real eigenvalues (in particular, Hermitian
matrices), and unitary, idempotent, or stochastic matrices (for all of which |λ| ≤ 1
for every eigenvalueλ).

The next result, which gives a characterization of a class of matrix functions of
which the matrix unwinding function is a special case, enables us to determine the
behavior of U under conjugation and the form of U for real matrices. We denote by
Λ(A) the spectrum of A.

Theorem 3.2. Let f be analytic on an open subset Ω ⊆ C such that for each
connected component Ω̃ of Ω, z ∈ Ω̃ if and only if −z ∈ Ω̃. Consider the corre-
sponding matrix function f on its natural domain in Cn×n, the set D = {A ∈ Cn×n :
Λ(A) ⊆ Ω }. Then the following are equivalent:

(a) f(A∗) = −f(A)∗ for all A ∈ D.
(b) f(A) = −f(A) for all A ∈ D.
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(c) f(Rn×n ∩ D) ⊆ iRn×n.
(d) f(R ∩Ω) ⊆ iR.
Proof. The proof is similar to that of [18, Thm. 1.18] and [22, Thm. 3.2] and so

is omitted.

Applying Theorem 3.2 to the matrix unwinding function we obtain the next result.
Corollary 3.3. For A ∈ Cn×n with no eigenvalues with imaginary parts of the

form (2k + 1)π, k ∈ Z,
(a) U(A∗) = −U(A)∗.
(b) U(A) = −U(A).
(c) U(A) is pure imaginary if A is real.
Proof. U is analytic on the open subset Ω = C \ { z : Im z = (2k + 1)π, k ∈ Z }

of C, which satisfies z ∈ Ω̃ if and only if −z ∈ Ω̃ for each connected component Ω̃.
Hence it suffices to show that any one of the statements in Theorem 3.2 holds. Indeed,
for any z ∈ R, U(z) = 0 ∈ iR, which is condition (d) of Theorem 3.2

We give two examples to illustrate the corollary. First,

A =

[
4 16
−4 4

]
, Λ(A) = {4± 8i}, U(A) =

[
0 −2i

0.5i 0

]
, Λ(U(A)) = {±1}.

Second, a matrix due to Rutishauser, which is gallery(’toeppen’,3) in MATLAB
(non-integers are shown here to three significant figures):

A =

 0 10 1
−10 0 10

1 −10 0

 , Λ(A) = {1,−0.500± 1.41i},

U(A) = i

 0.0354 −1.42 −0.0354
1.42 −0.0708 −1.42
−0.0354 1.42 0.0354

 , Λ(U(A)) = {−2, 0, 2}.

In both cases, U(A) is pure imaginary and a further computation shows that U(A)∗ =
−U(A∗).

We can give an explicit formula for the unwinding function of real, 2× 2 matrices
of the form that appear as diagonal blocks in the real Schur decomposition computed
by LAPACK.

Lemma 3.4. For A =
[
a b
c a

]
∈ R2×2 with bc < 0,

(3.6) U(A) =


−iU(iµ)

µ
(A− aI), µ 6= (2k + 1)π, k ∈ Z,

− i
µ

[
(U(iµ) + 1

2 )(A− aI)− 1
2 iµI

]
, otherwise,

where µ = (−bc)1/2.
Proof. The eigenvalues of A are λ = a + iµ and λ. Let Z−1AZ = diag(λ, λ) =

aI + iµK, where K =
[
1 0
0 −1

]
. Thus A = aI + µW , where W = iZKZ−1 ∈ R2×2.

Hence, for µ 6= (2k + 1)π with k ∈ Z,

U(A) = Z diag(U(λ),U(λ))Z−1

= U(λ)Z diag(1,−1)Z−1 = U(λ)ZKZ−1

=
U(λ)

i
W = −iU(λ)W

= −iU(λ)(A− aI)/µ.
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If µ = (2k+1)π for some k ∈ Z then U(λ) = −U(λ)−1, by Lemma 2.3. Hence we
need to add a correction term −Z diag(0, 1)Z−1 to the formula above. This correction
term can be written

−1

2
Z(I −K)Z−1 =

1

2
(ZKZ−1 − I) =

1

2

(
A− aI
iµ

− I
)

= − i

2µ
(A− aI − iµI).

The 2× 2 example above illustrates the theorem.
Lemma 3.5. For A ∈ Cn×n, e2πiU(A) = I.
Proof. Straightforward from (3.4).

3.2. Norm and conditioning. We now obtain an upper bound for the norm
of U(A) and a lower bound for its condition number. These will be useful in section 4
for understanding the behavior of an algorithm for computing U(A). The norm is
any norm for which ‖ diag(di)‖ = maxi |di|, ρ(A) denotes the spectral radius, and
κ(A) = ‖A‖‖A−1‖ is the condition number with respect to inversion.

Lemma 3.6. For A ∈ Cn×n with Jordan canonical form A = ZJZ−1,

‖U(A)‖ ≤ κ(Z)(ρ(A) + π)

2π
.

Proof. Using (3.4) we have ‖U(A)‖ ≤ κ(Z) maxk |U(λk)|. But

max
k
|U(λk)| = max

k

∣∣∣∣⌈ Imλk − π
2π

⌉∣∣∣∣ ≤ ⌈ρ(A)− π
2π

⌉
≤ ρ(A) + π

2π
.

The (relative) condition number of the matrix unwinding function is defined by

condU (A) = lim
ε→0

sup
‖E‖≤ε‖A‖

‖U(A+ E)− U(A)‖
ε‖U(A)‖

.

We will obtain a lower bound for condU (A). We can assume that ρ(A) ≥ π, since
ρ(A) < π implies U(A) = 0 by Theorem 3.1 and hence condU (A) = 0; then Lemma 3.6
gives ‖U(A)‖ ≤ κ(Z)2ρ(A)/(2π) ≤ κ(Z)‖A‖/π. Hence, using [18, Thm. 3.14] we have

condU (A) ≥ ‖A‖
‖U(A)‖

max
λ,µ∈Λ(A)

U [λ, µ]

≥ π

κ(Z)
max

λ,µ∈Λ(A)
U [λ, µ] (ρ(A) ≥ π),(3.7)

where

U [λ, µ] =


U(λ)− U(µ)

λ− µ
, λ 6= µ,

U ′(λ) = 0, λ = µ

is a divided difference and A = ZJZ−1 is a Jordan canonical form. When Imλ and
Imµ lie close to but on opposite sides of (2k+1)π, for some k, then U [λ, µ] = (λ−µ)−1

and hence U [λ, µ] is necessarily large if Reλ ≈ Reµ; in this case the lower bound for
condU (A) is large unless κ(Z) is large,
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We now turn to estimation of the condition number. By standard results [18,
Sec. 3.1],

condU (A) =
‖LU (A)‖‖A‖
‖U(A)‖

,

where

‖LU (A)‖ := max
Z 6=0

‖LU (A,Z)‖
‖Z‖

and LU (A, ·) is the Fréchet derivative of U at A. Moreover, since LU is a linear
operator,

(3.8) LU (A,E)) = KU (A) vec(E),

where KU (A) ∈ Cn2×n2

is the Kronecker form of the Fréchet derivative and vec is
the operator that stacks the columns of a matrix on top of each other [18, Chap. 3].
Following [18, Alg. 3.22] we will approximate ‖LU (A)‖1 by ‖KU (A)‖1 and estimate the
latter quantity using the block 1-norm estimation algorithm of Higham and Tisseur
[23]. This algorithm requires the ability to evaluate matrix–vector products involving
KU (A) and KU (A)∗. A product KU (A)y can be evaluated as the left-hand side of
(3.8) with vec(E) = y. This can be done using the formula

LU (A,E) =
E − Llog(eA, Lexp(A,E))

2πi

obtained by applying the chain rule [18, Thm. 3.4] to (3.1), or by evaluating the
unwinding function of a 2n × 2n matrix [18, (3.13)] then extracting the upper right
n× n block:

(3.9) U
([

A E
0 A

])
=

[
U(A) LU (A,E)

0 U(A)

]
.

Howe to evaluate a product KU (A)∗y is not immediately obvious. We need to intro-
duce the adjoint L?f of the Fréchet derivative Lf , which is defined by the condition

(3.10) 〈Lf (A,G), H〉 = 〈G,L?f (A,H)〉

for all G,H ∈ Cn×n, where 〈X,Y 〉 = trace(Y ∗X) = vec(Y )∗ vec(X).
Lemma 3.7. Let f be 2n− 1 times continuously differentiable on an open subset

D of R or C such that for each connected component D̃ of D, z ∈ D̃ if and only if
−z̄ ∈ D̃. Suppose that f̄(A)∗ = −f̄(A∗) for all A ∈ Cn×n with spectrum in D, where
f̄(z) := f(z̄). Then

(3.11) L?f (A,E) = Lf (A∗, E) = −Lf (A,E∗)∗.

Proof. The proof of the first equality is exactly the same as that of the corre-
sponding equality in the analogous result [21, Lem. 6.2].

To prove the second equality we consider g = f̄ . By the definition of the Frèchet
derivative, Lg(A,E) = g(A + E) − g(A) + o(‖E‖). Taking the conjugate transpose,
Lg(A,E)∗ = g(A + E)∗ − g(A)∗ + o(‖E‖) = −g(A∗ + E∗) + g(A∗) + o(‖E‖) =
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−Lg(A∗, E∗) + o(‖E‖). By the linearity of the Frèchet derivative we then have
Lg(A,E)∗ = −Lg(A∗, E∗), which gives the second equality in (3.11).

It is shown by Higham and Lin [21, Lem. 6.1] thatKf (A)∗ vec(E) = vec(L?f (A,E))
for any f . Combined with (3.11) this yields Kf (A)∗ vec(E) = − vec(Lf (A,E∗)∗).

For the unwinding function we have f = −f by Lemma 2.3, so Lf = −Lf and
KU (A)∗ vec(E) = vec(LU (A,E∗)∗), and hence products with KU (A)∗ can be com-
puted in exactly the same way as products with KU (A).

3.3. Identities involving the logarithm and powers. We now use the ma-
trix unwinding function to derive mathematical identities involving the matrix loga-
rithm and fractional matrix powers.

For any nonsingular A ∈ Cn×n and any α ∈ C we define the principal matrix
power

(3.12) Aα = eα logA,

where we recall that log denotes the principal matrix logarithm defined at the start
of section 3. The following result is immediate from the definitions of U(A) and Aα.

Lemma 3.8. For nonsingular A ∈ Cn×n and α ∈ C,

logAα = α logA− 2πiU(α logA).

To establish when logAα = α logA, we need to determine when U(α logA) =
0. The following result describes a particularly useful context in which the latter
condition holds.

Corollary 3.9. For nonsingular A ∈ Cn×n, logAα = α logA for α ∈ (−1, 1]
and for α = −1 if A has no eigenvalues on R−.

Proof. It is immediate from (3.4) and Lemma 2.4 that U(α logA) = 0 under the
given conditions, so the result follows by Lemma 3.8.

Note the special cases α = −1 and α = 1/2. We have logA−1 = − logA if A
has no eigenvalues on R− and logA1/2 = 1

2 logA for all A. The latter identity can be

used to write 2k logA1/2k = logA, for any k ∈ Z, which underlies the inverse scaling
and squaring algorithm for computing the matrix logarithm [2], [3], [10].

We next describe the result of powering successively by α and 1/α.
Lemma 3.10. For nonsingular A and α ∈ C,

(Aα)1/α = Ae−
2
απiU(α logA).

Proof. Using (3.12) and Lemma 3.8 we have

(Aα)1/α = e
1
α logAα = e

1
α (α logA−2πiU(α logA))

= Ae−
2
απiU(α logA).

We note the special case of Lemma 3.10 with α = 2, which will be needed in the
next subsection:

(3.13) (A2)1/2 = Ae−πiU(2 logA).

We proceed to study the relation between a logarithm of a matrix product and
the logarithms of the matrices involved.
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Lemma 3.11. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.
Then

log(AB) = logA+ logB − 2πiU(logA+ logB).

Proof. Recall that e(A+B)t = eAteBt for all t if and only if A and B commute,
[18, Thm. 10.2]. Since A and B commute, so do logA and logB. We therefore have

log(AB) = log(elogAelogB) = log(elogA+logB)

= logA+ logB − 2πiU(logA+ logB),

where we have used the definition (3.1) of the matrix unwinding function.

Recall from [18, Cor. 1.41] that if A and B commute then for each eigenvalue µj
of A there is an eigenvalue νj of B such that µj + νj is an eigenvalue of A + B. We
will call νj the eigenvalue corresponding to µj .

Corollary 3.12. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.
Then

log(AB) = logA+ logB

if and only if argµj + arg νj ∈ (−π, π] for every eigenvalue µj of A and the corre-
sponding eigenvalue νj of B.

Proof. Using Lemma 3.11, log(AB) = logA + logB if and only if U(logA +
logB) = 0. From Theorem 3.1 the latter equality holds if and only if the imaginary
parts of the eigenvalues of logA+ logB lie in the interval (−π, π], which is equivalent
to arg µj + arg νj ∈ (−π, π] for all j.

Corollary 3.12 was proved by Higham [18, Thm. 11.3] directly from the definition
of principal logarithm, and a variant of the result was obtained by Cheng, Higham,
Kenney, and Laub [10, Lem. 2.1]; in both cases the additional assumption that A and
B have no real negative eigenvalues was in force. The benefit of the matrix unwinding
function is that it provides the correction term for the general case in Lemma 3.11.

The next result gives a relation between the power of a matrix product and the
product of the powers.

Theorem 3.13. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.
Then, for any α ∈ C,

(AB)α = AαBαe−2παiU(logA+logB).

Proof. Applying (3.12), Lemma 3.11, and (3.5b) we have

(AB)α = eα log(AB)

= eα(logA+logB−2πiU(logA+logB))

= AαBαe−2απiU(logA+logB).

The next corollary characterizes when (AB)α = AαBα holds in terms of the
eigenvalues of A and B rather than logA and logB.
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Corollary 3.14. Let A,B ∈ Cn×n be nonsingular matrices such that AB = BA.
Then (AB)α = AαBα if and only if αU(logµj + log νj) ∈ Z for every eigenvalue µj
of A and the corresponding eigenvalue νj of B.

Proof. It follows from [18, Thm. 1.27] that all solutions of eX = I are of the
form X = V diag(2πik1, . . . , 2πikn)V −1, where V is an arbitrary nonsingular ma-
trix and kj ∈ Z for all j. Hence, given that U(logA + logB) is diagonalizable,
exp(−2απiU(logA+logB)) = I if and only if the eigenvalues of 2απiU(logA+logB)
are of the form 2πikj , kj ∈ Z, which yields the result.

Note that αU(logµj +log νj) ∈ Z holds when either α ∈ Z or U(logµj +log νj) =
0, since U(logµj + log νj) ∈ {−1, 0, 1}.

An important case in which the condition of Corollary 3.14 holds for all α is
when the eigenvalues of A and B have arguments in (−π/2, π/2], for then Im(logµj +
log νj) ∈ (−π, π] and so U(logµj + log νj) = 0. As a special case we recover the result
of [18, Prob. 1.35], which states that (AB)1/2 = A1/2B1/2 when A and B commute
and both have eigenvalues lying in the open right half-plane.

The following result clarifies the relation between (eA)α and eαA, for α ∈ C.
Theorem 3.15. For A ∈ Cn×n and α ∈ C, (eA)α = eαAe−2πiαU(A). Hence

(eA)α = eαA if and only if αU(λ) ∈ Z for every eigenvalue λ of A.
Proof. From the definitions (3.12) of matrix power and (3.1) of matrix unwinding

function we have

(eA)α = eα log eA = eα(A−2πiU(A)) = eαAe−2πiαU(A).

The last part follows as in the proof of Corollary 3.14.

When α is an integer, the correction term in Theorem 3.15 is the identity matrix,
and after rescaling A ← α−1A and setting α = 2s we obtain the basis of the scaling
and squaring method for computing the matrix exponential: (eA/2

s

)2
s

= A.
Note that Theorem 3.15 shows that it is not the case that eA = (eA/α)α holds for

all α ∈ C, as is incorrectly stated in [18, p. 241]!

3.4. Relation with the matrix sign function. We now explore some interest-
ing connections between the matrix unwinding function and the matrix sign function.
The scalar variants of some of these are given in [11, Table A.1].

Recall that the matrix sign function is defined only for A ∈ Cn×n with no purely
imaginary eigenvalues and is given by sign(A) = A(A2)−1/2, as well as by various
other equivalent formulas [18, Chap. 5], [27].

Taking the inverse of equation (3.13) we can write

(3.14) sign(A) = A(A2)−1/2 = AA−1eπiU(2 logA) = eπiU(2 logA).

If the eigenvalues of A lie in the open right half-plane then the eigenvalues of logA have
imaginary parts in the interval (−π/2, π/2), hence U(2 logA) = 0 and sign(A) = I.
Conversely, if the eigenvalues of A lie in the open left half-plane then the imaginary
part of every eigenvalue λ of logA lies in (−π,−π/2) or (π/2, π] and hence U(2λ) = −1
or 1, respectively, yielding sign(A) = −I.

We note that the right-hand side of our formula (3.14) is defined for any non-
singular A. The formula gives a meaning to the sign function on the imaginary
axis: for y > 0, sign(iy) = 1 and sign(−iy) = −1. Indeed, this conforms with
the counter-clockwise continuity principle introduced by Kahan [26]. We will call
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sign(A) := eπiU(2 logA) the extended matrix sign function and we note that it is dif-
ferent to other extensions in the literature of the sign function to arbitrary nonsingular
matrices [27, sec. I.D].

This result can be generalized for the matrix sector function [18, Sec. 2.14.3],
[36], which for a given integer p and A ∈ Cn×n with no eigenvalues with argument
(2k+ 1)π/p, k = 0 : p− 1, is defined as sectp(A) = A(Ap)−1/p. From Lemma 3.10 we
have

sectp(A) = e
2
pπiU(p logA).

Analogously to the relation sign(A) = A(A2)−1/2, we have the following result
involving the extended matrix sign function.

Lemma 3.16. For a nonsingular A ∈ Cn×n with no eigenvalues with imaginary
parts of the form (2k + 1)π, for k ∈ Z,

(3.15) U(A) = sign(A)U
(
(A2)1/2

)
.

Proof. It suffices to prove the result for diagonalizable A, by [18, Thm. 1.20]
(or simply because U(·) and sign(·) are diagonalizable), so the result reduces to the
scalar case, U(z) = sign(z)U((z2)1/2). If we now suppose z lies in the open left half-
plane, or on iR−, sign(z) = −1 and (z2)1/2 = −z. Since for any z ∈ C such that
Im z 6= (2k + 1)π for all k ∈ Z, U(−z) = −U(z) by Lemma 2.3, the desired result
follows. A similar argument applies for z in the open right half-plane or on iR+.

We can use (3.15) to derive a formula for the matrix unwinding function of a
particular block matrix.

Theorem 3.17. For nonsingular A,B ∈ Cn×n such that (AB)1/2 has no eigen-
values with imaginary parts of the form (2k + 1)π, for k ∈ Z,

U
([

0 A
B 0

])
=

[
0 A(BA)−1/2 U((BA)1/2)

B(AB)−1/2 U((AB)1/2) 0

]
.

Proof. The result is obtained by applying (3.15) to the matrix C =
[

0 A
B 0

]
then

using

U
(
(C2)1/2

)
= U

(
diag((AB)1/2, (BA)1/2

)
= diag

(
U((AB)1/2),U((BA)1/2)

)
and the following result of Higham, Mackey, Mackey, and Tisseur [22, Lem. 4.3], [18,
Thm. 5.2] (which holds even when AB has eigenvalues on R−, given that we are using
the extended matrix sign function):

sign

([
0 A
B 0

])
=

[
0 A(BA)−1/2

B(AB)−1/2 0

]
.

4. Algorithm. The matrix unwinding function can be computed directly via
the definition (3.1), but this requires a matrix exponential and a matrix logarithm.
Instead we will compute a Schur decomposition A = QTQ∗ ∈ Cn×n, where Q is
unitary and T is upper triangular, after which U(A) = QU(T )Q∗. The problem is
reduced to computing U(T ), which we will do directly rather than via the exponential
and logarithm.

12



The Parlett recurrence for computing a function of a triangular matrix T is not
appropriate because it breaks down when T has repeated diagonal elements. The
Schur–Parlett method [13], which is implemented in MATLAB function funm, reorders
and blocks T so that the eigenvalues within a diagonal block are close while distinct
diagonal blocks have well separated eigenvalues. We do not have a special way of
evaluating the unwinding function of a triangular matrix with close eigenvalues, so
we cannot use this general method.

Instead we adapt the Schur–Parlett method by putting eigenvalues having the
same unwinding number in the same block. We use the algorithm of Bai and Dem-
mel [6] (implemented in MATLAB function ordschur) to compute a unitary V such

that T̃ = V ∗TV = (T̃ij) is upper triangular with all the diagonal elements of T̃ii hav-
ing imaginary parts in the same interval ((2ki−1)π, (2ki+1)π], for some ki ∈ Z. The

diagonal blocks of F = U(T̃ ) are therefore given by Fii = uiI for all i, by (3.4). The
off-diagonal blocks are obtained from the block Parlett recurrence, which is obtained
by equating blocks in FT̃ = T̃F :

(4.1) T̃iiFij − Fij T̃jj = (ui − uj)T̃ij +

j−1∑
k=i+1

(FikT̃kj − T̃ikFkj), i < j.

These Sylvester equations are nonsingular, since T̃ii and T̃jj have no eigenvalue in
common, and they can be solved a block column or a block superdiagonal at a time.

For notational simplicity, we express our algorithm at the scalar level, but it is
mathematically equivalent to carrying out the blocking described above and using the
block Parlett recurrence; blocking is preferred in practice as it allows the use of higher
level BLAS. The following algorithm is similar to an algorithm of Ng [33, Sec. 7.4]
for matrix argument reduction (see Section 6).

Algorithm 4.1. Given A ∈ Cn×n this algorithm computes the unwinding func-
tion U = U(A) using the Schur–Parlett method with a particular reordering and block-
ing.

1 Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).
2 If Im tii ∈ (−π, π] for all i, U = 0, quit, end
3 Assign tii to set SU(tii), i = 1:n, and use a unitary similarity transformation

to reorder T so that all elements belonging to each set SU(tii) are contiguous,
and update Q.

4 fii = U(tii), i = 1:n
5 for j = 2:n
6 for i = j − 1:−1: 1
7 if fii = fjj
8 fij = 0
9 else

10 fij =

(
tij(fii − fjj) +

j−1∑
k=i+1

(
fiktkj − tikfkj

)) /
(tii − tjj)

11 end
12 end
13 end
14 U = QFQ∗

Cost: 25n3 flops for the Schur decomposition plus the cost of the reordering, n3/3
flops for F , and 3n3 flops to form U .

The cost of the reordering can be shown to be at most 10n3 − 20n2 flops, but
will usually be much less, because this bound assumes a worst case distribution of
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diagonal entries of the Schur factor and block sizes.
Note that an alternative in Algorithm 4.1 is to reorder T so that Im t11 ≤ · · · ≤

Im tnn. However, this requires more swaps in general, so it is more expensive and
introduces more rounding errors.

The condition number of the Sylvester equations (4.1) is proportional to the

reciprocal of the separation of T̃ii and T̃jj [16, sec. 16.3], which is bounded below by the

reciprocal of min{ |λ−µ| : λ ∈ Λ(T̃ii), µ ∈ Λ(T̃jj) }. Hence (4.1) can be ill conditioned,
as there is no lower bound on the absolute value of the differences between eigenvalues
of T̃ii and T̃jj . A small eigenvalue difference occurs precisely when two consecutive
blocks have eigenvalues λi and λj such that Re(λi−λj) < ε, and Imλi = (2k+1)π−δ1,
Imλj = (2k+1)π+δ2, for some k ∈ Z and some small ε, δ1, δ2 ∈ R, which is equivalent
to U [λi, λj ] being large.

Recall from (3.7) that the condition number condU of the matrix unwinding func-
tion satisfies condU (A) ≥ πmaxλ,µ∈Λ(A) U [λ, µ]/κ(Z) for ρ(A) ≥ π, and so condU is
necessarily large when maxλ,µ∈Λ(A) U [λ, µ] is large if the matrix is close to normal.
We can conclude that ill conditioning of the Sylvester equation may correspond to ill
conditioning of the matrix unwinding function itself, which provides some indication
that Algorithm 4.1 will perform in a numerically stable fashion in practice.

When A is real, U(A) is pure imaginary if A has no eigenvalues with imaginary
parts an odd integer multiple of π, by Corollary 3.3. In this case we would like
our algorithm to guarantee a pure imaginary result. We can compute a real Schur
decomposition A = QTQT , where T is real and upper quasitriangular. The ma-
trix unwinding function of any 2 × 2 diagonal blocks can be computed using (3.6).
However, the block Parlett recurrence may break down due to two different diagonal
blocks having the same eigenvalues, so this approach is not reliable and we will not
consider it further. This inability to split complex conjugate eigenvalues affects the
standard Schur–Parlett algorithm in the same way, preventing the derivation of a
version tailored to real matrices [13], [18, sec. 9.4].

5. Numerical experiments. We investigate experimentally two algorithms for
computing U(A):

• Algorithm 4.1.
• log-exp: evaluation of (3.1) using the scaling and squaring algorithm of Al-

Mohy and Higham [1] for the exponential and the inverse scaling and squaring
algorithm of Al-Mohy, Higham, and Relton [3] for the logarithm; the matrix
A is reduced to Schur form (the real Schur form if A is real) before applying
these algorithms.

All tests were done in MATLAB R2013a, for which the unit roundoff u ≈ 1.1×10−16.
While log-exp is useful as a means for comparison, we note that it has two flaws

that make it unsuitable as a general way to compute U(A). First, it is prone to
overflow, since eA can overflow when U(A) does not, as is clear from the scalar case;
indeed, U(A) is very unlikely to overflow, in view of Lemma 3.6. Second, eA can be
singular, making the log computation fail. For example, for

A =

[
1 1
0 −103

]
, f l(eA) =

[
e fl(e/(103 + 1))
0 0

]
,

since fl(e−10
3

) = 0. Evaluation with log-exp fails since fl(eA) is singular, yet U(A) =
0, as is correctly computed by Algorithm 4.1.

To test the performance, we first constructed a set of 10×10 random matrices, Set
1, with eigenvalues λi that are odd integer multiples of πi perturbed by 10−6 times
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Fig. 5.1. Relative errors for Set 1. The red line is an estimate of condU (A)u.

complex numbers with N(0, 1) distributed real and imaginary parts. The matrices, 40
in total, are the upper triangular Schur factors of A = XDX−1, where D = diag(λi)
and X is random with 2-norm condition number 2, 10, 100, or 1000. Figure 5.1
shows the relative error ‖U(A)− Û‖F /‖U(A)‖F , where Û is the computed unwinding
function and U(A) is the correctly rounded one; U(A) is obtained by evaluating (3.4)
at 100 digit precision using the Symbolic Math Toolbox then rounding to double
precision. The matrices are arranged according to decreasing value of κ2(X), with
10 matrices for each value. An estimate of condU (A)u is shown in the figure, where
condU (A) is estimated as indicated in section 3.2, using Algorithm 4.1 with (3.9) to
obtain the Fréchet derivatives. We see that both algorithms produce errors smaller
than condU (A) in every case, showing that they are performing in a forward stable
fashion. Algorithm 4.1 produces errors substantially smaller than log-exp in many
cases.

Our second test uses a set of 24 matrices, Set 2, drawn from the gallery function
of MATLAB, the Matrix Computation Toolbox [15] and test problems provided with
EigTool [37]. These matrices have been scaled to make them have nonzero unwinding
functions or otherwise make them useful for test purposes. Figure 5.2 shows the
relative errors for both algorithms, with the matrices arranged by decreasing estimated
condition number condU (A). Algorithm 4.1 performs in a forward stable way in every
case, but log-exp is unstable on about half the matrices.

The conclusion from these tests is that Algorithm 4.1 is more accurate than log-
exp and performs in a forward stable manner in the test sets.

6. Matrix argument reduction. A notion of matrix argument reduction was
introduced by Ng in his PhD thesis [33] and pursued with a particular choice of
“modulus” (2πi) by McCurdy, Ng, and Parlett [29, Sec. 5.3]. In the latter paper, a
matrix function mod is defined that is related to the matrix unwinding function by

(6.1) mod(A) = A− 2πiU(A).
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Fig. 5.2. Relative errors for Set 2. The red line is an estimate of condU (A)u.

The motivation for the use of mod was that for A ∈ Cn×n, eA = emod(A) (by
Lemma 3.5) and, because mod(A) has eigenvalues with bounded imaginary parts
(indeed, in (−π, π]), the computation of emod(A) may be easier than the computation
of eA. In [29] and [33] the authors do not explicitly identify the matrix unwinding
function or obtain any of the properties given in section 3.

Many techniques are available for computing the matrix exponential, as explained
in the classic paper by Moler and Van Loan [30], [31]. The MATLAB function expm

uses the scaling and squaring algorithm of Higham [17], [19]. The algorithm is based

on the relation eA = (e2
−sA)2

s

and the use of [m,m] Padé approximants rmm to

the exponential; it approximates e2
−sA ≈ rm(2−sA) with a choice of s and m that

depends on ‖A‖. Opting for a larger than necessary value for s may lead to overscaling
and possibly inaccurate results [18, sec. 10.3]. Overscaling can be avoided by using
the sequence {‖Ak‖1/k} instead of ‖A‖ when choosing the value of s, as shown by
Al-Mohy and Higham [1], who derive an improved scaling and squaring algorithm,
which we denote by expm new. The cost of both algorithms is roughly 6 + s matrix
multiplications and one solution of a multiple right-hand side system.

We combine expm new with the matrix unwinding function in the following algo-
rithm.

Algorithm 6.1. Given A ∈ Cn×n this algorithm computes eA using the scaling
and squaring method in conjunction with the matrix unwinding function.

1 Compute the Schur decomposition A = QTQ∗ (Q unitary, T upper triangular).
2 Compute U = T − 2πiU(T ) using Algorithm 4.1 and omitting line 14.
3 if ‖U‖F > ‖T‖F , U = T ; end
4 Compute X = eU using expm new from [1].
5 X = QXQ∗

Cost: (30 2
3 + θ + s1

3 )n3, where θn3 flops is the cost of the reordering in Algo-
rithm 4.1 and s1 is the scaling parameter used by expm new.

Note that in line 3 we test whether the unwinding function increases the norm
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of T , and if it does we work with T . The reason is that if U(T ) exceeds T in norm
then there is likely to be no benefit to the scaling and squaring method from using
U(T ) in place of T and, moreover, this is only likely to happen when U(T ) is very ill
conditioned, in which case the computed U(T ) may be rather inaccurate.

It is instructive to compare the costs of computing eA from Algorithm 6.1 and
directly from expm new. For expm new applied directly to A the cost is (14 + 2s1)n3

flops, and if a Schur decomposition is computed and expm new applied to the triangular
factor the cost is (301

3 + s2
3 )n3; here, s1 and s2 are the respective scaling parameters

chosen by expm new. We see from these figures that for large s it is more efficient to
use the Schur decomposition in the eA computation, in which case denoting the cost
of the reordering in Algorithm 4.1 by θn3 flops, Algorithm 6.1 will be cheaper if its
scaling parameter s satisfies s < s2−1−3θ. This inequality is unlikely to be satsified
if θ achieves its maximum value of 20, but in the more typical case of θ = 1 (say), the
inequality is

(6.2) s < s2 − 4,

which is readily satisfied.
Many problems require the computation of a matrix exponential with an argument

that has a very large norm due to the presence of eigenvalues with imaginary parts of
large magnitude. In these applications it is often required to compute eAt, its norm
[32], or a product eAtB, for many values of t, not necessarily equally spaced. In these
situations significant savings in cost are possible by computing with mod(A) instead
of A.

Note that it is easy to show that

eAt = emod(A)te2πitU(A),

and e2πitU(A) is the identity matrix precisely when tU(λi) ∈ Z for every eigenvalue
λi of A. So it is safe to compute eAt as emod(A)t only when t is an integer.

Before describing two particular problems from applications we consider three
matrices that demonstrate the reduction in computational cost that can be obtained
by using argument reduction.

The first matrix is a 2× 2 matrix with real entries and eigenvalues 1± 500i:

(6.3) A =

[
1 −500

500 1

]
, U(A) =

[
0 8i
−8i 0

]
.

Matrices like this often appear as diagonal blocks in a quasitriangular Schur form.
The second matrix is the Tolosa matrix of dimension 1090 from Matrix Market [28].
It is a sparse matrix arising in the stability analysis of a model of an airplane in flight;
it has many eigenvalues with large imaginary part, as shown in Figure 6.1. Our last
matrix is the block upper triangular matrix

(6.4)


0 30 1 1 1 1
−100 0 1 1 1 1

0 0 0 −6 1 1
0 0 500 0 1 1
0 0 0 0 0 200
0 0 0 0 −15 0


from [34, p. 7, Ex I], which has two triple eigenvalues ±10

√
30i. We compute the

exponential eAt of each of the three matrices for t = 1 and t = 100, first using
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Fig. 6.1. Spectrum of Tolosa matrix of dimension 1090.

Table 6.1
Scaling parameter s in scaling and squaring method for evaluating eAt.

expm expm new

A mod(A) A mod(A)
Matrix (6.3), t = 1 7 0 7 0
Matrix (6.3), t = 100 14 5 14 5
Tolosa matrix, t = 1 16 10 8 6
Tolosa matrix, t = 100 22 14 15 12
Matrix (6.4), t = 1 7 3 4 0
Matrix (6.4), t = 100 14 9 11 2

MATLAB function expm and expm new from [1], and then by Algorithm 6.1 using
expm and expm new on line 4. Table 6.1 shows the value of s used in the scaling and
squaring method in each case. We see reductions in the value of s for mod(At) in
every case, the amount of reduction varying with A and t, but being as much as 9,
and with (6.2) being satisfied in over half of the cases. For expm new the values of s
are smaller than for expm, since expm new gathers and exploits information about the
nonnormality of the matrices, but argument reduction still leads to a decrease in s,
which is especially notable for (6.4) and (6.3), for which no scaling is needed when
t = 1. The number of swaps required by the Tolosa matrix is about 250, which yields
a value of θ about 0.0084.

6.1. Example 1. Open quantum systems. Problems in open quantum sys-
tems study the the interaction of a closed quantum system with elements external to
it, that is, the environment. The Markovian quantum master equation can be written
as

(6.5)
d

dt
ρ(t) = Lρ(t), ρ(0) = ρ0.

Here, L stands for the Lindbladian super-operator, which is an n×n skew-Hermitian
matrix, with three nonzero diagonals and bandwidth 2n1/2+3, perturbed by terms in-
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Fig. 6.2. Relative errors (left) and scaling factors s (right) for computing eL and emodL.

duced from interaction of the system with the environment, for example, from damp-
ing. These matrices are characterized by having eigenvalues with large imaginary
parts and relatively small real parts [9].

The exact solution to equation (6.5) is ρ(t) = eLtρ0 and hence we consider comput-
ing the exponential of the Lindbladian. For the example of the quantum damped har-
monic oscillator, Figure 6.2 shows the relative errors in computing eL using expm new

and emodL using Algorithm 6.1 and a comparison of the scaling factors s the two
approaches require. Twenty 100 × 100 matrices with different parameters are used;
their eigenvalues have real parts of order 1 or less and imaginary parts up to order
103. We observe that emodL is computed with very similar levels of accuracy to eL,
but requires a much smaller scaling factor and in many cases no scaling at all. The
replacement of U by T in line 3 of Algorithm 6.1 was not carried out for any of these
matrices.

6.2. Example 2. Convection–diffusion problems. We consider the convec-
tion (advection)–diffusion problem

(6.6) ut + cux = duxx,

where c and d > 0 are constants [24, sec. 3.4]. Spatial discretization using second
order central differences yields ut = Au with a tridiagonal A, so again the solution is
given in terms of the matrix exponential.

When the system is dominated by the convection term, i.e., d � |c|, the matrix
A has eigenvalues with small real and large imaginary parts.

We constructed a set of 20 discretization matrices of dimension 100, arranged such
that the convection coefficient is increasing and the diffusion coefficient is decreasing:
c = (1.6)k and d = 0.2(0.5)k for k = 1: 20. Figure 6.3 shows the relative errors in
computing eA by expm new and emodA by Algorithm 6.1 and a comparison of the
scaling factors the two methods employ. We see that emodA is computed with the
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Fig. 6.3. Relative errors (left) and scaling factors s (right) for computing eA and emodA.

same accuracy as eA. For the first five matrices the eigenvalues have imaginary parts
smaller or not much larger than the real parts and about the same amount of scaling is
required to compute eA and emodA; thereafter the imaginary parts of the eigenvalues
dominate and the use of the matrix unwinding function results in smaller scaling
parameters, and no scaling is required for matrices 12 onwards. The replacement of
U by T in line 3 of Algorithm 6.1 was used for matrices 3–5.

Finally, we note that for both of these examples inequality (6.2) is satisfied in
most cases, with θ < 1.

7. Concluding remarks. The matrix unwinding function is a new primary ma-
trix function that is both an elegant theoretical tool for working with multivalued ma-
trix functions and also a computational tool for matrix argument reduction. Although
we have concentrated here on equations involving the logarithm and fractional matrix
powers, the matrix unwinding function also plays a useful role in working with inverse
trigonometric matrix functions, and this is the subject of our ongoing investigations.

Matrix argument reduction for the exponential is an important ingredient in an
algorithm of Güttel and Nakatsukasa, where it helps to avoid a difficult case that
arises when the eigenvalues have large imaginary parts [14]. We are also investigating
the use of matrix argument reduction in the computation of other matrix functions
such as trigonometric functions.
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