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LOG-MAJORIZATION OF THE MODULI OF THE EIGENVALUES
OF A MATRIX POLYNOMIAL BY TROPICAL ROOTS

MARIANNE AKIAN ∗, STÉPHANE GAUBERT † , AND MEISAM SHARIFY ‡

Abstract. We show that the sequence of moduli of the eigenvalues of a matrix polynomial is log-
majorized, up to universal constants, by a sequence of “tropical roots” depending only on the norms
of the matrix coefficients. These tropical roots are the non-differentiability points of an auxiliary
tropical polynomial, or equivalently, the opposites of the slopes of its Newton polygon. This extends
to the case of matrix polynomials some bounds obtained by Hadamard, Ostrowski and Pólya for the
roots of scalar polynomials. We also obtain new bounds in the scalar case, which are accurate for
“fewnomials” or when the tropical roots are well separated.
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1. Introduction. Let p(x) =
∑n
j=0 ajx

j , aj ∈ C be a polynomial of degree
n in a complex variable x. Let ζ1, . . . , ζn denote the roots of p(x) arranged by non-
decreasing modulus (i.e., |ζ1| 6 . . . 6 |ζn|). We associate to p the tropical polynomial
t p(x), defined for all nonnegative numbers x by

t p(x) := max
06j6n

|aj |xj .

The tropical roots of t p, α1, . . . , αn, ordered by non-decreasing value (i.e., α1 6 . . . 6
αn), are defined as the non-differentiability points of the function t p, counted with
certain multiplicities. They coincide with the exponential of the opposite of the
slopes of the edges of a Newton polygon, defined by Hadamard [Had93] and Os-
trowski [Ost40a, Ost40b] as the upper boundary of the convex hull of the set of points
{(j, log |aj |) | 0 6 j 6 n}. The logarithms of these roots were called the inclinaisons
numériques by Ostrowski. One interest of these roots is that they can be easily com-
puted (linear number of arithmetic operations and comparisons). See Section 3 below
for details.

Hadamard was probably the first to prove a log-majorization type inequality for
the modulus of the roots of a scalar polynomial by using what we call today the
tropical roots. His result (page 201 of [Had93], third inequality) can be restated as
follows in tropical terms:

|ζ1ζ2 . . . ζk|
α1 · · ·αk

>
1

k + 1
. (1.1)

This bound, proved in passing in a memoir devoted to the Riemann zeta function,
remained apparently not so well known. In particular, the special case |ζ1|/α1 > 1/2
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CMAP, Ecole Polytechnique. The last two authors were partly supported by the Arpege programme
of the French National Agency of Research (ANR), project “ASOPT”, number ANR-08-SEGI-005.

1



2 M. Akian , S. Gaubert and M. Sharify

is equivalent to the homogeneous form of the classical bound of Cauchy, established
later on by Fujiwara [Fuj16], and a weaker inequality, with αk1 at the denominator
instead of α1 · · ·αk, appeared later on in the work of Specht [Spe38].

Ostrowski proved several bounds on the roots of a polynomial in his work on
the method of Graeffe [Ost40a, Ost40b], in which he used again the Newton poly-
gon considered by Hadamard. In particular, he obtained the following upper bound
(see [Ost40a, §7]),

|ζ1ζ2 · · · ζk|
α1 · · ·αk

6

(
n

k

)
, (1.2)

which can be thought of as a generalization of a “reverse” of the Cauchy inequality
due to Birkhoff [Bir15] (corresponding to the case k = 1 in (1.2)). He also gave a
different proof of a variant of (1.1), with the constant 1/(2k) instead of 1/(k+1), and
reported a private communication of Pólya, leading to a tighter constant

|ζ1ζ2 · · · ζk|
α1 · · ·αk

>
1√

E(k)(k + 1)
, (1.3)

with

E(k) :=

(
k + 1

k

)k
< e . (1.4)

In this paper, we generalize the bounds of Hadamard, Ostrowski, and Pólya, to
the case of a matrix polynomial

P (λ) = A0 +A1λ+ · · ·+Adλ
d, Aj ∈ Cn×n, 0 6 j 6 d . (1.5)

We now associate to the matrix polynomial P the tropical polynomial

t p(x) := max
06j6d

‖Aj‖xj , (1.6)

where ‖ · ‖ is a norm on the space of matrices, and show that the moduli of the roots
ζ1, . . . , ζnd of P can still be controlled in terms of the tropical roots α1, . . . , αn of t p.
Our results give bounds on the ratio |ζ1 . . . ζnk|/(α1 . . . αk)n, which extend and refine
the above bounds. In particular, in Theorem 2.4, we extend the lower bound (1.3)
of Pólya to the matrix polynomial case, and in Theorem 2.12, we extend the upper
bound (1.2) of Ostrowski. Moreover, we obtain other lower bounds that are new even
in the case of scalar polynomials. In particular, in Theorem 2.1, we obtain a lower
bound which may be tighter for “fewnomials”. In Theorems 2.5 and 2.6, we obtain
general lower bounds, which extend the bound of Polya and its extension to the matrix
case, and which may be much tighter when the tropical roots are sufficiently separated.
Then, all together our results show that the tropical roots give tight estimates of the
moduli of the eigenvalues if the tropical roots are sufficiently separated and if certain
matrices are sufficiently well conditioned.

The results of the present paper combine ideas from max-plus algebra and trop-
ical geometry, and numerical linear algebra. In [ABG98, ABG04, ABG05], Akian,
Bapat, and Gaubert studied the eigenvalues and eigenvectors of matrices and ma-
trix polynomials which entries (the Aj) are functions, for instance Puiseux series, of a
(perturbation) parameter. It is shown there that the leading exponents of the Puiseux
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series representing the different eigenvalues (resp. eigenvectors) coincide, under some
genericity conditions, with certain “tropical eigenvalues” (resp. eigenvectors). This
can be interpreted in the light of tropical geometry (see [Vir01, IMS07, RGST05] for
introductions), where one defines the amoeba of an algebraic variety V ⊂ Kn over a
field K, equipped with a valuation ν, as the image of V by the map which applies the
valuation ν entrywise. When ν is non-archimedean, in particular for the usual valu-
ation (leading exponent) on the field of Puiseux series, Kapranov theorem [EKL06]
characterizes the amoeba of a hypersurface q = 0 as the set of “roots” (nondiffer-
entiability points) of the tropical polynomial function with coefficients equal to the
valuations of the coefficients of q. Some of the results of [ABG98, ABG04, ABG05]
may be interpreted in terms of nonarchimedean amoebas, by considering the hyper-
surface defined by the characteristic equation (the eigenvalue λ and the entries of the
matrices Ai appearing in the matrix polynomial being thought of as variables).

Results of tropical geometry suggest that amoebas obtained by taking the val-
uation z 7→ log |z| on the field of complex numbers C can be approximated by
non-archimedean amoebas. Hence, somehow similar results to the ones of [ABG98,
ABG04, ABG05] can be expected to hold when using this latter valuation, instead of
the usual non-archimedean valuation, with equalities replaced by bounds, due to the
approximation nature. Indeed, the above bounds of Hadamard, Ostrowski, and Pólya
can be seen as the (archimedean) analogue of the results of [ABG04] in the particular
one dimensional case (n = 1). Moreover, in the case of a matrix with non-negative
coefficients, Friedland [Fri86] established a bound for its spectral radius (or its Perron
eigenvalue) in terms of a certain maximal circuit mean, which can be interpreted as
a bound of the maximal eigenvalue of A by the maximal tropical eigenvalue of the
valuation of A [ABG06].

Here we rather replaced the valuation on C by the “valuation” A 7→ log ‖A‖ on
the ring of n× n matrices over C, which leads to (1.6). The idea of using this valua-
tion was inspired by several works in numerical linear algebra, which suggested that
the information of the norms is relevant. For instance, Higham and Tisseur [HT03]
extended to matrix polynomials the bound of Cauchy (related to the special case
k = 1 in the Hadamard-Ostrowski-Pólya inequality), by using the norms of A−1

0 Aj
and A−1

d Aj . Fan, Lin and Van Dooren [FLVD04] introduced a scaling based on the
norms of the matrix coefficients of a matrix quadratic polynomial. In [GS09], the
tropical polynomial of (1.6) was initially introduced to refine the results of [FLVD04].
It was shown there (see also [Sha11]) that the tropical roots of t p can be used to
perform scalings allowing one to improve the backward stability of eigenvalue compu-
tations for a matrix quadratic polynomial P (d = 2). Some bounds on the modulus
of the eigenvalues of P , involving the tropical roots of t p, also appeared in [GS09]
in the case in which d = 2, and in [Sha11] for the smallest and largest tropical roots
when d > 2, which may be seen as particular cases of the lower bounds of the present
paper.

Let us finally point out some further related works. Bini used in [Bin96] what we
call the tropical roots (from the Newton polygon technique) to initialize the Aberth
method of computation of the roots of a scalar polynomial. Also, Malajovich and
Zubelli applied Ostrowski’s analysis to effective root solving [MZ01]. Finally, Bini,
Noferini, and Sharify used recently the tropical roots of (1.6) to generalize Pellet’s
theorem [BNS12].

The paper is organized as follows. The main results are stated in Section 2. In
Section 3, we recall the construction of the Newton polygon and give details of the
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definition of the tropical roots. In Section 4, we establish the main lower bounds in
the case of scalar polynomials, since the proof arguments are more transparent in this
case. The extension to matrices, and the other results of Section 2, are proved in
Section 5. In Section 6 we provide examples showing the tightness of the bounds.

2. Statement of the main results. The inequalities we present here depend
on the choice of a norm ‖ · ‖ on the space of matrices. We shall in particular consider
the following assumption:

(A1) |detA| 6 ‖A‖n, for all A ∈ Cn×n.
Moreover, the normalized Frobenius norm,

‖A‖nF :=

 1

n

n∑
i,j=1

|Aij |2
 1

2

, ∀A ∈ Cn×n ,

will allow us to generalize Pólya’s inequality. Therefore, the next assumption will also
be considered:

(A2) There exists Q,Q′ ∈ Cn×n, such that detQ = detQ′ = 1 and ‖QAQ′‖nF 6
‖A‖, for all A ∈ Cn×n.

We shall see in Section 5 that Assumption (A2) implies Assumption (A1), and that
a number of commonly used norms satisfy Assumption (A1) or Assumption (A2).

Our first theorem provides a lower bound involving the number of nonzero co-
efficients of a matrix polynomial. This bound is specially useful when the matrix
polynomial is a “fewnomial”. Recall that the definition of the tropical roots can be
found in Section 3, see also Figure 2.1.

Theorem 2.1 (Bounds involving the number of nonzero coefficients). Consider
the matrix polynomial P with degree d defined in (1.5), and let ζ1, . . . , ζnd denote its
eigenvalues, arranged by non-decreasing modulus. Assume that ‖·‖ is any norm on the

space of matrices satisfying (A1), that detA0 6= 0 and let c = | detA0|
‖A0‖n . Let α1, . . . , αd

be the tropical roots of the tropical polynomial of (1.6), arranged in non-decreasing
order. Also let monP denote the number of nonzero monomials of P . Then, for all
1 6 k 6 d, we have

|ζ1 . . . ζnk|
(α1 . . . αk)n

> c(Lk)n , (2.1)

with

Lk =
1

monP
. (2.2)

Moreover, when ‖·‖ satisfies (A2), the constant Lk can be replaced by the greater one:

Lk =
1√

monP
. (2.3)

Remark 2.2. When n = 1 (thus the matrices A0, . . . , Ad are scalars), any norm
is proportional to the normalized Frobenius norm which is nothing but the modulus
map | · |, satisfies (A2), and for which c = 1. Therefore the tropical roots of t p are
the same for all norms, the best possible inequality (2.1) is

|ζ1 . . . ζk|
α1 . . . αk

> Lk , (2.4)
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and this inequality holds with Lk as in (2.3).
Remark 2.3. If a norm ‖ · ‖ on the space of matrices satisfies (A1) but not (A2),

we can still obtain a bound of the form (2.3) by changing the constant c. Indeed,
by the equivalence between norms on Cn×n, for any norm ‖ · ‖ on Cn×n, there exists
a constant η > 0 (which depend on n) such that ‖A‖nF 6 η‖A‖ for all A ∈ Cn×n.
Then, the norm obtained by multiplying ‖ · ‖ by η satisfies (A2), hence (2.3). Since
the tropical roots of t p and η t p are the same, we deduce that (2.3) holds for ‖ · ‖
with c replaced by c/ηn. However, if ‖ · ‖ satisfies (A1) but not (A2), then η > 1, so
that Inequality (2.3) with c/ηn may be weaker than Inequality (2.2): this is indeed
the case if and only if η >

√
monP . The same type of conclusions can be obtained

for the lower bounds that are stated in the next theorems.
The following theorem provides a lower bound generalizing the lower bound of

Pólya to the matrix case (since, as said in Remark 2.2, when n = 1, the modulus
map is a norm satisfying (A2), and for which Inequality (2.1) reduces to (2.4)). Up to
the constant c, the following bounds are independent of the coefficients of the matrix
polynomial P .

Theorem 2.4 (Universal bound). Let A0,. . . , Ad, P , ζ1, . . . , ζnd, ‖ · ‖, c, and
α1, . . . , αd be as in the first part of Theorem 2.1. Then, for all 1 6 k 6 d, Inequal-
ity (2.1) holds with Lk defined as follows:

Lk =
1

E(k)(k + 1)
, (2.5)

where E is defined as in (1.4). Moreover, when ‖ · ‖ satisfies (A2), Inequality (2.1)
holds with the greater constant:

Lk =
1√

E(k)(k + 1)
. (2.6)

The lower bound of Pólya, and its matrix version given above, are tight only for k
small. By symmetry, one can obtain a tight lower bound when k is close to d (this was
already noted by Ostrowski in the scalar case [Ost40a]). Theorem 2.5 below will allow
us to obtain a tight lower bound when k lies “in the middle” of the interval [0, d], by
using the comparison between the tropical roots. Unlike the lower bound of Pólya,
this theorem gives a bound which is not anymore independent of the coefficients of
the polynomial P , although it depends only on a small information, namely a ratio
measuring the seperation between some tropical roots. Thus, the bound will involve a
coefficient U(k, δ) depending both on the index k and on the parameter δ (the ratio).
This coefficient is defined as follows:

U(k, δ) := E(k)

(
1 + δ +

√
k2(1− δ)2 + 4δ

1− δ

)
, for k > 0 and 0 6 δ 6 1 , (2.7)

where E(k) is defined by (1.4) for k > 1, and E(0) := 1, and with the convention that
1/0 = +∞, so that U(k, 1) = +∞. It is easy to check that

k +
1 + δ

1− δ
6 U(k, δ) < e

(
k +

1 +
√
δ

1−
√
δ

)
. (2.8)

We shall consider specially situations in which δ is small. Then, the following asymp-
totic regime should be kept in mind:

U(k, δ) ∼ E(k)(k + 1) < e(k + 1), δ → 0 .
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Theorem 2.5 (Master lower bound). Let A0,. . . , Ad, P , ζ1, . . . , ζnd, ‖ ·‖, c, and
α1, . . . , αd be as in the first part of Theorem 2.1, and denote α0 = 0 and αd+1 = +∞.

Let 0 6 k− < k < k+ 6 d + 1, and denote δ− :=
αk−
αk

6 1 and δ+ := αk
αk+

6 1.

Then, Inequality (2.1) holds with

Lk := max(L±k ), L+
k :=

1

U(k+ − k − 1, δ+)
, L−k :=

1

U(k − k−, δ−)
, (2.9)

with the convention that 1/∞ = 0. Moreover, when ‖ · ‖ satisfies (A2), the constant
Lk of (2.1) can be replaced by the greater constant L∗k:

L∗k := max(L±∗k ), L+∗
k :=

1√
U(k+ − k − 1, δ2

+)
, L−∗k :=

1√
U(k − k−, δ2

−)
. (2.10)

Theorem 2.5 generalizes Theorem 2.4, and thus the lower bound of Pólya. Indeed,
taking k− = 0, k+ = d + 1, and using that U(k, 0) = E(k)(k + 1), we get that the
constants L−k 6 Lk and L−∗k 6 L∗k of Theorem 2.5 are exactly the constants Lk of (2.5)
and (2.6) of Theorem 2.4 respectively. Moreover, Theorem 2.5 is already new in the
scalar case (n = 1).

Note that when δ− = 1 in Theorem 2.5, U(k − k−, δ−) = +∞, so that L−k = 0
and Lk = L+

k . Similarly when δ+ = 1, we get L+
k = 0. Hence, if δ− = 1 = δ+, we get

Lk = 0 so that (2.1) does not provide any information, although it is true. However,
if for instance δ− = 1 and δ+ < 1, we get that Lk = L+

k > 0, which gives a positive
lower bound in (2.1).

Applying Theorem 2.5 to the particular case when k = k− + 1 = k+ − 1 lead to
the following formula for the constants of (2.9) and (2.10):

Lk := max(L±k ), L+
k :=

1−
√
δ+

1 +
√
δ+
, L−k :=

1− δ−
4(1 + δ−)

, (2.11)

and

L∗k := max(L±∗k ), L+∗
k :=

√
1− δ+
1 + δ+

, L−∗k :=
1

2

√
1− δ2

−
1 + δ2

−
. (2.12)

But in this case, one can obtain the following stronger lower bounds.
Theorem 2.6. Let us use the notations of Theorem 2.5, and assume that k =

k− + 1 = k+ − 1. Then, the statements of Theorem 2.5 hold with the constants Lk
and L∗k (given in (2.9) and (2.10), or (2.11) and (2.12)) replaced respectively by the

greater constants L]k and L∗]k given by:

L]k :=
1− δ−δ+

(1 +
√
δ+)2

, (2.13)

and

L∗]k :=

√
1− δ2

−δ
2
+

1 + δ+
. (2.14)
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We next indicate how the indices k+ and k− should be chosen, for each 1 6 k 6 d,
in order to get the best lower bound Lk.

Let k0 = 0, k1, . . . , kq = d be the sequence of abscissæ of the vertices of the Newton
polygon of t p(x), as shown in Figure 2.1 (details on the construction of this polygon
can be found in Section 3). For j = 1, . . . , q, we have, αkj−1+1 = · · · = αkj < αkj+1,
with the convention αd+1 = +∞. We also denote by

δj =
αkj
αkj+1

, (2.15)

for j = 0, . . . , q, the parameters measuring the separation between the tropical roots,
in particular δ0 = δq = 0.

k0 = 0 k1

− logα1

k2 kj−1 kj kq−1

− logαd

− logαkj

log ‖Ak‖

kq = d

k

Fig. 2.1. Newton polygon corresponding to t p(x).

Proposition 2.7. Each of the constants Lk and L∗k appearing in Theorem 2.5, is
maximized by choosing k− = kr for some 0 6 r 6 q such that kr < k and k+ = ks + 1
for some 0 6 s 6 q such that ks > k. This proposition shows that, to apply
Theorem 2.5, we may always require k− and k+ − 1 to be abscissæ of vertices of the
Newton polygon. Optimizing the choice of k± , we readily arrive at the following
corollary.

Corollary 2.8. Let us use the notations of Theorem 2.5, and let k0 =
0, k1, . . . , kq = d be the sequence of abscissæ of the vertices of the Newton polygon
of t p(x), as shown in Figure 2.1. Then, the statements of Theorem 2.5 hold with the
constants Lk, L±k , L∗k and L±∗k (given in (2.9) and (2.10)) replaced respectively by the
following optimal ones:

Lopt
k := max(L±,optk ), (2.16a)

L+,opt
k := max

j: kj>k

1

U(kj − k, αk
αkj+1

)
, (2.16b)

L−,optk := max
j: kj−1<k

1

U(k − kj−1,
αkj−1

αk
)
, (2.16c)
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and

L∗,optk := max(L±∗,optk ), (2.17a)

L+∗,opt
k := max

j: kj>k

1√
U(kj − k, ( αk

αkj+1
)2)

, (2.17b)

L−∗,optk := max
j: kj−1<k

1√
U(k − kj−1, (

αkj−1

αk
)2)

. (2.17c)

However, a simpler choice of k± consists in taking the nearest vertices of the
Newton polygon in (2.16) and (2.17), which lead to the following corollary.

Corollary 2.9. Let us use the notations of Theorem 2.5, let k0 = 0, k1, . . . , kq =
d be the sequence of abscissæ of the vertices of the Newton polygon of t p(x), as shown
in Figure 2.1, and let δ0, . . . , δq be defined by (2.15). For 0 6 k 6 d, let us consider
the unique j ∈ {1, . . . , q} such that kj−1 < k 6 kj, so that αk = αkj−1+1 = αkj . Then,

the statements of Theorem 2.5 hold with the constants Lk, L±k , L∗k and L±∗k (given
in (2.9) and (2.10)) replaced respectively by the following ones:

Lprox
k := max(L±,proxk ), (2.18a)

L+,prox
k :=

1

U(kj − k, δj)
, L−,proxk :=

1

U(k − kj−1, δj−1)
, (2.18b)

and

L∗,proxk := max(L±∗,proxk ), (2.19a)

L+∗,prox
k :=

1√
U(kj − k, δ2

j )
, L−∗,proxk :=

1√
U(k − kj−1, δ2

j−1)
. (2.19b)

Moreover, in the particular case where k = kj, we have

Lprox
k > L+,prox

k =
1−

√
δj

1 +
√
δj
, L∗,proxk > L+∗,prox

k =

√
1− δj
1 + δj

.

Remark 2.10. When all the ratios δ1, . . . , δq are small, the maxima in (2.16)
and (2.17) are attained by taking j as in Corollary 2.9, that is Lopt

k = Lprox
k and

L∗,opt
k = L∗,prox

k for all 0 6 k 6 d.
Remark 2.11. Since U(k, δ) is increasing in k and δ, the maximizing j in the

definition of L+∗,opt
k arises from a compromise between keeping kj > k close to k and

δj small. In particular, when k belongs to an edge of the Newton polygon such that
several consecutive edges have almost the same slope than this edge, the maximiz-
ing j may be the one corresponding to the first vertex at which the slope changes
significantly, i.e., the first one such that δj is small. Similar considerations apply to
L−∗,opt
k

The previous results provide lower bounds for the ratio between minimal products
of modulus of eigenvalues and minimal products of tropical roots. We next state a
reverse inequality.

Theorem 2.12 (Upper bound). Let ‖ · ‖ be any norm on the space of matrices
Cn×n. For all i = 1, . . . , n, we denote by A(i) the i-th column of A, by ηi the least
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positive constant such that ‖A(i)‖2 6 ηi‖A‖ for all A ∈ Cn×n where ‖ · ‖2 is the
Euclidean norm of Cn, and we set η := η1 · · · ηn. Let A0,. . . , Ad, P , ζ1, . . . , ζnd, c,
t p, α1, . . . , αd, be as in Theorem 2.4, let k0 = 0, k1, . . . , kq = d be the sequence of all
abscissæ of the vertices of the Newton polygon of t p(x), and define δ0, . . . , δq be as
in (2.15). Denote by Cn,d,k the number of maps φ : {1, . . . , n} → {0, . . . , d} such that∑n
j=1 φ(j) = k, so that Cn,d,k 6 (min(d, k, nd− k) + 1)n−1.

Then, for every j = 1, . . . , q, if

cj :=
|detAkj |
‖Akj‖n

− (Cn,d,nkj − 1)ηδj > 0 , (2.20)

we have

|ζ1 . . . ζnkj |
(α1 . . . αkj )

n
6

c

cj

(
nd

nkj

)
.

Condition (2.20) in this theorem holds if the matrix Akj is nonsingular and if the
tropical roots αkj and αkj+1 are sufficiently separated, so that δj = αkj/αkj+1 � 1.

Using the results of Corollary 2.9 and Theorem 2.12, we are able to show that the
modulus of a group of eigenvalues corresponding to an edge of the Newton polygon
of t p is bounded from above and below by the corresponding tropical roots. The
following immediate corollary gives an example of such bounds.

Corollary 2.13. Under the assumptions and notations of Theorem 2.12, to-
gether with (A2), we have, for all 1 6 j 6 q, such that cj > 0 and cj−1 > 0,

cj−1(
nd

nkj−1

) (1− δj
1 + δj

)n/2
6
|ζnkj−1+1 . . . ζnkj |
(αkj )

n(kj−kj−1)
6

(
nd
nkj

)
cj

(
1 + δj−1

1− δj−1

)n/2
.

Similar results can be written when ‖ · ‖ only satisfies (A1), and also for general
1 6 k 6 d. The tightness of the bounds in the above corollary depends on the
parameters δj−1, δj and on the condition number of the matrices Akj−1

, Akj . Note
also that these bounds do not depend on the constant c, except if j = 1 (in which case
cj−1 = c0 = c). Hence, by an argument of continuity, the assumption that detA0 6= 0,
which is present there (since the notations and assumptions of Theorem 2.12 include
the ones of the first part of Theorem 2.1), can be dispensed with, except when j = 1.

3. Tropical polynomials and numerical Newton polygons. We recall here
basic results on tropical polynomials of one variable. See for instance [BCOQ92, Vir01,
IMS07] for more background on tropical polynomials from different perspectives.

Let Rmax denotes the set R ∪ {−∞}. A (max-plus) tropical polynomial f is a
function of a variable x ∈ Rmax of the form

f(x) = max
06j6d

(fj + jx) , (3.1)

where d is an integer, and f0, . . . , fd are given elements of Rmax. We say that f is of
degree d if fd 6= −∞. We shall assume that at least one of the coefficients f0, . . . , fd
is finite (i.e., that f is not the tropical “zero polynomial”). Then, f is a real valued
convex function, piecewise affine, with integer slopes.

Cuninghame-Green and Meijer showed [CGM80] that the analogue of the fun-
damental theorem of algebra holds in the tropical setting, i.e., f(x) can be written
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uniquely as

f(x) = fd +

d∑
j=1

max(x, αj) ,

where α1 6 · · · 6 αd ∈ Rmax. The numbers α1, . . . , αd are called the tropical roots.
The finite tropical roots can be checked to be the points at which the maximum in
the expression (3.1) of f(x) is attained at least twice, whereas −∞ arises as a tropical
root if f0 = −∞. The multiplicity of a root α is defined as the cardinality of the set
{j ∈ {1, . . . , j} | αj = α}.

The multiplicity of finite root α can be checked to coincide with the variation
of the derivative of the map f at point α, whereas the multiplicity of the root −∞
is given by inf{j | fj 6= −∞} or by the slope of the map f at −∞. The notion of
tropical roots is an elementary special case of the notion of tropical variety which has
arisen recently in tropical geometry [IMS07].

The tropical roots can be computed by the following variant of the classical New-
ton polygon construction. Define the Newton polygon ∆(f) of f to be the upper
boundary of the convex hull of the region

{(j, λ) ∈ N× R | λ 6 fj , 0 6 j 6 d} ⊂ R2 .

This boundary consists of (linear) segments.

The following result was established in [ABG05], it relies on standard Legendre-
Fenchel duality argument.

Proposition 3.1 ([ABG05, Proposition 2.10]). There is a bijection between the
set of finite tropical roots of f and the set of segments of the Newton polygon ∆(f): the
tropical root corresponding to a segment is the opposite of its slope, and the multiplicity
of this root is the length of this segment (measured by the difference of the abscissæ of
its endpoints). (Actually, min-plus polynomials are considered in [ABG05], but the
max-plus case reduces to the min-plus case by an obvious change of variable.)

Since the Graham scan algorithm [Gra72] allows one to compute the convex hull
of a finite set of points by making O(n) arithmetical operations and comparisons,
provided that the given set of points is already arranged by abscissæ, it follows that
the tropical roots, counted with multiplicities, can be computed in linear time (see
also [GS09, Proposition 1]). In particular, the maximal tropical root is given by

αd = max
06j6d

fj − fd
d− j

.

Example 3.2. Consider

f(x) = max(0, 1 + x, 6 + 2x, 4 + 4x, 9 + 8x, 5 + 10x, 1 + 16x) .

The graph of f and the Newton polygon of f are shown in Figure 3.1. The tropical
roots are −3, −1/2, and 1, with respective multiplicities 2, 6 and 8.

The notion of root also applies with trivial changes to the “max-times” model of
the tropical structure, in which polynomial functions now have the form

t p(x) = max
06j6d

ajx
j ,
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Fig. 3.1. Graph of the tropical polynomial function f on left, and of its Newton polygon on right.

where a0, . . . , ad are nonnegative numbers, and the variable x now takes nonneg-
ative values. Then, the tropical roots of t p(x) are, by definition, the exponen-
tials of the tropical roots of its log-exp transformation f(x) := log t p(exp(x)) =
max06j6d(log aj + jx).

In the sequel we shall consider max-times polynomials associated to usual scalar
or matrix polynomials. We shall need the following result which follows from the
above definitions and properties.

Proposition 3.3. Let t p(x) = max06j6d ajx
j be a max-times polynomial of

degree d, with aj > 0, j = 0, . . . d. Assume that a0 6= 0. Let 0 < α1 6 · · · 6 αd denote
the tropical roots of t p arranged in non-decreasing order. Then,

aj 6 a0

j∏
`=1

α−1
` , j = 0, . . . d .

Moreover, let k be the abscissa of a vertex of the Newton polygon of p, then ak > 0
and

aj 6 ak
∏j
`=k+1 α

−1
` , for j = k, . . . d ,

aj 6 ak
∏k
`=j+1 α`, for j = 0, . . . k .

Proof. Let f(x) := max06j6d(log aj + jx). By definition logαj , j = 1, . . . d, are
the tropical roots of f . The upper boundary of the Newton polygon of f coincides
with the graph of the concave hull â of the map j ∈ {0, . . . , d} 7→ log aj ∈ R. By
Proposition 3.1, the tropical roots are the opposites of the slopes of â and their
multiplicities are the lengths of the segments where â has this slope. This means that
logαj = âj−1 − âj , hence âj = â0 −

∑j
`=1 logα`, and using that â is above the map

j 7→ log aj , and that both maps coincide at the boundary point j = 0, we get the
first inequality of the proposition. If now k is the abscissa of a vertex of the Newton
polygon of p, then (k, âk) is an exposed point of the Newton polygon, which implies

that âk = log ak. Since âj = âk −
∑j
`=k+1 logα`, for all j > k, we get the two last

inequalities of the proposition.

4. Tropical bounds for the modulus of the roots of a scalar polynomial.
In this section, we prove the main lower bounds of Section 2 for scalar polynomials,
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since the arguments are more transparent in this case. The generalization to the
matrix case, as well as the proof of the upper bound, will be given in the next section.

From Remark 2.2, in the scalar case, all lower bounds reduce to (2.4) with the
constant Lk obtained under Assumption (A2), that is (2.3) in Theorem 2.1, (2.6) in
Theorem 2.4, (2.10) in Theorem 2.5, and (2.14) in Theorem 2.6. The proof of these
lower bounds is based on the next result proved by Landau in [Lan05], building on
an earlier observation of Lindelöf [Lin02]. This result is one key step of the proof of
Pólya’s inequality [Ost40a].

Lemma 4.1 ([Lan05]). Let ζ1, . . . , ζd be the roots of a polynomial p(x) =
∑d
j=0 ajx

j,
arranged by non-decreasing modulus, and assume that a0 6= 0. For all 1 6 k 6 d, we
have

log |ζ1 . . . ζk| > − inf
r>0

1

2
log

 d∑
j=0

|aj |2

|a0|2
r2(j−k)

 . (4.1)

We include the short proof, as its idea will be used in the extension to the matrix
case given in the next section.

Proof. The formula of Jensen [Jen99] shows that if ζ1, . . . , ζk are the roots of p(z)
in the closed disk of C of radius r, counted with multiplicities, then

log |ζ1 . . . ζk| = k log r + log |p(0)| − 1

2π

∫ 2π

0

log |p(reiθ)|dθ .

It follows that, for all r > 0, and k = 1, . . . , d:

log |ζ1 . . . ζk| > k log r + log |p(0)| − 1

2π

∫ 2π

0

log |p(reiθ)|dθ . (4.2)

Using the comparison between the geometric and the L2 mean, together with Parse-
val’s identity, we get

1

2π

∫ 2π

0

log |p(reiθ)|dθ 6 1

2
log
( 1

2π

∫ 2π

0

|p(reiθ)|2dθ
)

=
1

2
log
( 1

2π

∫ 2π

0

|
d∑
j=0

ajr
jeijθ)|2dθ

)
=

1

2
log
( n∑
j=0

|aj |2r2j
)
.

Gathering this inequality with (4.2) yields

log |ζ1 . . . ζk| > k log r + log |a0| −
1

2
log
( n∑
j=0

|aj |2r2j
)
.

Since this holds for all r > 0, this shows the inequality of the lemma.

Using the same arguments as in the proof of Pólya’s inequality reproduced in [Ost40a],
we obtain the following result which involves now the constants αk instead of the mod-
ulus |ak| of the coefficients of p.

Corollary 4.2. Let ζ1, . . . , ζd be the roots of a univariate scalar polynomial p
of degree d, p(x) =

∑d
j=0 ajx

j, arranged by non-decreasing modulus, and assume that
a0 6= 0. Let α1, . . . , αd denote the tropical roots of the associated tropical polynomial
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t p(x) = max06j6d |aj |xj, arranged in non-decreasing order. Then, for all 1 6 k 6 d,
Inequality (2.4) holds with Lk such that:

(Lk)−2 = inf
ξ>0

 d∑
j=0,aj 6=0

β2
k,jξ

j−k

 , (4.3)

with

βk,j :=


∏k
`=j+1

(
α`
αk

)
if j < k ,∏j

`=k+1

(
αk
α`

)
if j > k ,

1 if j = k ,

(4.4)

which satisfies in particular βk,j 6 1 for all k, j = 0, . . . , d.
Proof. By applying the change of variable r = αk

√
ξ in the inequality of Lemma 4.1,

we get

log |ζ1 . . . ζk| > sup
ξ>0

−1

2
log

 d∑
j=0

|aj |2

|a0|2
(α2
kξ)

j−k


> log(α1 · · ·αk) + sup

ξ>0

−1

2
log

 k∏
`=1

α2
`

 d∑
j=0

|aj |2

|a0|2
(α2
kξ)

j−k

 .

Applying Proposition 3.3 to the max-times polynomial t p, we get |aj | 6 |a0|
∏j
`=1 α

−1
`

for all j = 0, . . . , d, which with the above inequality yields (2.4) with

(Lk)−2 := inf
ξ>0

 d∑
j=0,aj 6=0

( (
∏k
`=1 α`)(

∏j
`=1 α

−1
` )

αk−jk

)2
ξj−k


which can be written in the form (4.3) with βk,j as in (4.4). Moreover, since αj is
nondecreasing with respect to j, we get that all the βk,j are less than or equal to 1.

Pólya’s inequality is then an immediate consequence of Corollary 4.2. Indeed,
using the property that all the βk,j are less than or equal to 1, we obtain:

(Lk)−2 6
d∑
j=0

ξj−k 6
∞∑
j=0

ξj−k =
1

ξk(1− ξ)
,

for all ξ > 0. The minimum of the right hand side of the previous inequality for
0 < ξ < 1, is attained for ξ = k/(k + 1), from which we deduce (1.3), which is also
the scalar version of Theorem 2.4.

We can now deduce similarly, from Corollary 4.2, the scalar versions of the lower
bounds of Theorems 2.1, 2.5, and 2.6. Since in the scalar case, we are reduced to
show (2.4) for some constants Lk, and that this inequality is precisely the statement
of Corollary 4.2, we only need to show that these constants Lk are lower bounds of
the constant Lk of (4.3).

Proof of the scalar version of Theorem 2.1. Using the property that βk,j 6 1 for

all k, j, we obtain that the constant Lk of (4.3) satisfies (Lk)−2 6
∑d
j=0,aj 6=0 ξ

j−k for
all ξ > 0. When ξ = 1, the right hand side of this inequality is equal to the number of
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non-zero coefficients of p, which shows that the constant Lk of (4.3) is lower bounded
by the constant Lk of (2.3), which implies (2.4) with this lower bound Lk.

Proof of the scalar version of Theorem 2.5. Assume that 0 6 k− < k < k+ 6 d+1.
Denote δ− = αk−/αk and δ+ = αk/αk+ . Then, for all 1 6 ` 6 k, α` 6 αk, and for

all 1 6 ` 6 k−, α` 6 αk− = αkδ−. This implies that βk,j 6 δk
−−j
− , for all j 6 k−.

Similarly, for all ` > k, α` > αk, and for all ` > k+, α` > αk+ = αk/δ+, hence, for all

j > k+, βk,j 6 δj−k
++1

+ . Since we also have βk,j 6 1 for all j, k, we obtain that the

constant Lk of (4.3) satisfies, for all δ2
− < ξ < δ−2

+ , ξ 6= 1,

(Lk)−2 6

 k−∑
j=0

δ
2(k−−j)
− ξj−k

+

 k+−1∑
j=k−+1

ξj−k

+

 d∑
j=k+

δ
2(j−k++1)
+ ξj−k


6 ξk

−−k+1 1

ξ − δ2
−

+
ξk
−−k+1 − ξk+−k

1− ξ
+ ξk

+−k−1 δ2
+ξ

1− δ2
+ξ

.

Since
δ2+ξ

1−δ2+ξ
6 ξ

1−δ2+ξ
the later inequality can be written as

(Lk)−2 6 g(ξ), ∀δ2
− < ξ < δ−2

+ , ξ 6= 1, (4.5)

with

g(ξ) := g−(ξ) + g+(ξ) ,

g−(ξ) := ξk
−−k+1

(
1

ξ − δ2
−

+
1

1− ξ

)
,

g+(ξ) := ξk
+−k−1

(
1

ξ − 1
+

1

1− δ2
+ξ

)
.

Note that (4.5) also holds when k− = 0 or k+ = d + 1, since then δ− = 0 or δ+ = 0
respectively. When δ− = 1 and δ+ < 1, the conditions on ξ in (4.5) are equivalent to
1 < ξ < δ−2

+ , whereas when δ− = δ+ = 1, these conditions are never satisfied, but in
this case the constant Lk of (2.10) is equal to 0 so there is nothing to prove.

The functions g− and g+ satisfy g−(ξ) = gk−k−,δ2−(ξ−1) and g+(ξ) = gk+−k−1,δ2+
(ξ)

where gk,δ is defined for ξ 6= 1 and δ−1 by:

gk,δ(ξ) := ξk
(

1

ξ − 1
+

1

1− δξ

)
= ξk+1 1− δ

(ξ − 1)(1− δξ)
.

We have gk,δ(ξ) 6 0 for ξ < 1, hence g−(ξ) 6 0 for all ξ > 1, and g+(ξ) 6 0 for all
ξ < 1. When δ < 1, the minimum of gk,δ on (1, δ−1) is attained at

ξk,δ :=


k(δ+1)−

√
k2(δ+1)2−4δ(k2−1)

2(k−1)δ when k 6= 1, δ 6= 0 ,
2

1+δ when k = 1 ,
k+1
k when δ = 0 .

The last formula gives ξk,δ =∞ when δ = 0 and k = 0, which is the point of infimum
of gk,δ for 1 < ξ <∞ = δ−1, since gk,δ is decreasing. It also gives ξk,1 = 1 for all k > 0.
Hence extending gk,δ, g− and g+ by +∞ at point 1, we get that the infimum of gk,δ
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on (1, δ−1) equals gk,δ(ξk,δ), and denoting ξ− = (ξk−k−,δ2−)−1 and ξ+ = ξk+−k−1,δ2+
,

we obtain

(Lk)−2 6 min(g(ξ−), g(ξ+)) 6 min(g−(ξ−), g+(ξ+)) . (4.6)

In order to simplify this bound, we need to find good estimates of ξk,δ.
When k 6= 1 and δ 6= 0, we have:

ξk,δ =
k(δ + 1)−

√
k2(1− δ)2 + 4δ

2(k − 1)δ
=

2(k + 1)

k(δ + 1) +
√
k2(1− δ)2 + 4δ

.

Using the property that δ > 0 in the last formula, we get that ξk,δ 6 k+1
k = ξk,0.

Moreover, this inequality also holds for k = 1. In particular (ξk,δ)
k 6 E(k), for all

k > 0 and δ > 0 (taking the convention that ξ0 = 1 for all ξ ∈ (1,∞]). We also have,
for k > 0 and 0 6 δ < 1,

1

ξk,δ − 1
+

1

1− δξk,δ
=

1 + δ +
√
k2(1− δ)2 + 4δ

1− δ
6 k +

1 +
√
δ

1−
√
δ
.

This yields

gk,δ(ξk,δ) 6 U(k, δ) ∀k > 0, 0 6 δ 6 1,

with U as in (2.7). Indeed, this inequality holds for δ < 1 by the above arguments.
It also holds for δ = 1 since U(k, 1) = +∞. This implies in particular that g+(ξ+) 6
U(k+ − k − 1, δ2

+) and g−(ξ−) 6 U(k − k−, δ2
−). Combining these two inequalities

with (4.6), we obtain that the constant Lk of (4.3) is lower bounded by the constant
L∗k of (2.10), which implies (2.4) with this lower bound L∗k instead of Lk.

Remark 4.3. In the previous proof, obtaining the minimum of g instead of g−
and g+ would have led to a better lower bound for Lk than the one of Theorem 2.5.
However, such a bound is more difficult to estimate for general values of k+−k−. We
can use for instance the first inequality in (4.6), which will give better estimates in
some particular cases. For instance, when k = 0, we get that gk,δ(ξk,δ) = U(k, δ) =

(1 +
√
δ)/(1−

√
δ). In particular, when k = k+− 1, the bound (Lk)−2 6 g+(ξ+) gives

the lower bound L+
k of (2.12), with δ = δ+. However (4.6) gives the slightly better

bound:

(Lk)−2 6 g(ξ+) =
1 + δ+
1− δ+

−
1− δ2

−
(1− δ+δ2

−)(1− δ+)
δk

+−k−
+ .

Proof of the scalar version of Theorem 2.6. Let us use the notation of the previous
proof. When k = k+ − 1 = k− + 1, Inequality (4.5) is true for all ξ ∈ (δ2

−, δ
−2
+ ) since

g can be well defined at 1 (by continuity for instance). When δ−δ+ < 1, the interval
(δ2
−, δ

−2
+ ) is nonempty, the map g is convex there and its minimum is achieved at the

point ξ = (1 + δ2
−δ+)/(δ+(1 + δ+)). Then (4.5) yields (Lk)−2 6 (1 + δ+)2/(1− δ2

−δ
2
+),

which implies that the constant Lk of (4.3) is lower bounded by the constant L∗]k
of (2.14), which implies (2.4) with this lower bound L∗]k instead of Lk. Moreover,
since the minimum of g is less or equal to the right hand side of (4.6), the proof of

the scalar version of Theorem 2.5 implies that L∗]k 6 L∗k.
Example 4.4. Consider the following scalar polynomial

p(x) = 1−exp(1)x−exp(6)x2 +exp(4)x4 +exp(9)x8 +exp(5)x10 +exp(1)x16 . (4.7)



16 M. Akian , S. Gaubert and M. Sharify

The log-exp transformation of its tropical polynomial t p is the tropical polynomial f
of Example 3.2. The graph of f and the associated Newton polygon were shown in
Figure 3.1. Hence, the tropical roots of t p are the exponentials of −3, −1/2, and 1,
with multiplicities 2, 6 and 8, respectively. In Table 4.1, we are comparing the value of

the ratio |ζ1...ζk|α1...αk
, with the lower bound of Pólya given in (1.3), together with the lower

bounds obtained in Theorem 2.1 and Corollary 2.9. There, for each k = 1, . . . , d = 16,

the column ratio gives |ζ1...ζk|α1...αk
, the column pólya gives the lower bound of Pólya,

which coincides with the constant Lk of (2.6), the column fewnom gives the lower
bound Lk of (2.3), and the column separ gives the lower bound L∗,prox

k of (2.19),
based on the separation between the tropical roots.

k ratio fewnom pólya separ
1 0.93475 0.37796 0.5 0.5
2∗ 1.00034 " 0.3849 0.92102
3 0.98782 " 0.32476 0.49664
4 0.97926 " 0.28622 0.38360
5 0.98348 " 0.25880 0.32403
6 0.98771 " 0.23802 0.37508
7 0.99383 " 0.22156 0.47570
8∗ 1.00000 " 0.20810 0.79696
9 0.98811 " 0.19683 0.47570
10 0.97636 " 0.18721 0.37508
11 0.96476 " 0.17888 0.31917
12 0.95329 " 0.17158 0.28622
13 0.96476 " 0.16510 0.32476
14 0.97636 " 0.15930 0.3849
15 0.98811 " 0.15407 0.5
16∗ 1 " 0.14933 1

Table 4.1
Comparison of the lower bounds for the scalar polynomial p of (4.7). The abscissæ of the

vertices of the Newton polygon of t p are indicated by the symbol ∗.

Example 4.5. Consider now the following scalar polynomial

p(x) =1− exp(3)x− exp(6)x2 − exp(7)x4 − exp(8)x6 + exp(9)x8

+ exp(7)x10 − exp(4)x13 − exp(3)x14 + exp(1)x16 . (4.8)

The log-exp transformation of its tropical polynomial t p is again the tropical poly-
nomial f of Example 3.2, but now there are some points of the graph of the map
k 7→ log |pk|, where pk is the kth coefficient of p, that are on the edges of its New-
ton polygon, that is its concave hull. Table 4.2 is obtained on the same principle
as Table 4.1. In Figure 4.5, we plot in the same graph the values of the ratios and
lower bounds for the scalar polynomials p of (4.7) and (4.8). This indicates that the
lower bound Lk of Corollary 2.9, based on the separation between tropical roots, may
become tighter when the polynomial has non zero coefficients between the vertices of
the Newton polygon.

5. Proofs of the bounds for the modulus of the eigenvalues of a matrix
polynomial. In this section we provide the proofs of the main results which were
stated in Section 2 and check the properties given at the beginning of Section 2 on
norms on the space of matrices. For all p ∈ [1,∞], and n > 1, we shall denote by ‖ ·‖p
the `p norm of Cn: ‖v‖p := (

∑n
i=1 |vi|p)1/p for p < ∞ and ‖v‖∞ := maxi=1,...,n |vi|.

In particular as in Theorem 2.12, ‖ ·‖2 is the Euclidean norm. The norm on the space
of matrices Cn×n induced by the norm ‖ · ‖p on Cn (the same norm is used for the
domain and the range of A) will also be denoted by ‖ · ‖p. In particular the norm
‖ · ‖2 on Cn×n is the spectral norm. Moreover, for all p ∈ [1,∞), and n > 1, we shall
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k ratio fewnom pólya separ
1 0.61759 0.31623 0.5 0.5
2∗ 0.98684 " 0.3849 0.92102
3 0.84948 " 0.32476 0.49664
4 0.73124 " 0.28622 0.38360
5 0.63280 " 0.25880 0.32403
6 0.54760 " 0.23802 0.37508
7 0.72118 " 0.22156 0.47570
8∗ 0.95684 " 0.20810 0.79696
9 0.76959 " 0.19683 0.47570
10 0.61899 " 0.18721 0.37508
11 0.57724 " 0.17888 0.31917
12 0.53832 " 0.17158 0.28622
13 0.62117 " 0.16510 0.32476
14 0.71677 " 0.15930 0.3849
15 0.84662 " 0.15407 0.5
16∗ 1 " 0.14933 1

Table 4.2
Comparison of the lower bounds for the scalar polynomial p of (4.8). The abscissæ of the

vertices of the Newton polygon of t p are indicated by the symbol ∗.

0 2 4 6 8 10 12 14 161

0.0
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0.4

0.6

0.8

1.0

Fig. 4.1. Plot of ratio as a function of k for the scalar polynomials of (4.7) (blue circles)
and (4.8) (red squares), together with the lower bound fewnom (blue and red lines resp.), pólya
(plus signs) and separ (stars signs).

denote by ‖ · ‖∗p the following normalized Schatten p-norm on the space of matrices
Cn×n: ‖A‖∗p := ( 1

n

∑n
i=1 σ

p
i )1/p, where σ1, . . . , σn are the singular values of A (the

eigenvalues of
√
A∗A, where A∗ denotes the conjugate transpose of A). Then, the

normalized Schatten 2-norm coincides with the normalized Frobenius norm. Recall
that the (unnormalized) Schatten 1-norm is also called the trace norm or the Ky Fan
n-norm. We shall also denote by ‖A‖∗∞ := maxi=1,...,n σi the Schatten ∞-norm,
which coincides with the spectral norm.

Property 5.1. The normalized Frobenius norm satisfies Assumption (A1).
Therefore, Assumption (A2) implies Assumption (A1).

Proof. From Hadamard’s inequality, we get that |detA| 6 ‖A(1)‖2 · · · ‖A(n)‖2,
for all A ∈ Cn×n, where A(j) denotes the j-th column of A. Then, since the geometric
mean is less than or equal to the arithmetic mean (or simply by the concavity of
the logarithm), we get that |detA|2/n 6 1

n (‖A(1)‖22 + · · ·+ ‖A(n)‖22) = ‖A‖2nF, which
implies that the normalized Frobenius norm satisfies Assumption (A1). Since for
all Q,Q′ ∈ Cn×n such that detQ = detQ′ = 1, we get |detA| = |det(QAQ′)| 6
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‖QAQ′‖nnF for all A ∈ Cn×n, Assumption (A2) implies Assumption (A1).

Property 5.2. For all p ∈ [1,∞], the norm ‖ · ‖p on Cn×n satisfies (A2).

Proof. Indeed, let us denote by ‖A‖p,q the norm induced by the norms ‖ · ‖p
and ‖ · ‖q on the range and domain Cn of A respectively, which means that ‖A‖p,q =
max{‖Av‖q/‖v‖p, v ∈ Cn, v 6= 0}. Since (for all v ∈ Cn) p ∈ [1,∞] 7→ ‖v‖p ∈ R+

is a nonincreasing map, we get that ‖A‖p,q 6 ‖A‖p′,q′ when p 6 p′ and q > q′.
In particular ‖A‖p = ‖A‖p,p > ‖A‖2,∞ when 2 6 p, and ‖A‖p = ‖A‖p,p > ‖A‖1,2
when p 6 2. In addition, it is easy to show that ‖A‖2,∞ = max{‖(A∗)(i)‖2, i =
1, . . . , n}. Since the last expression is greater or equal to ‖A‖nF, we deduce that
‖A‖p > ‖A‖2,∞ > ‖A‖nF for all A ∈ Cn×n and 2 6 p 6 ∞. Similarly, ‖A‖1,2 =
max{‖A(i)‖2, i = 1, . . . n} > ‖A‖nF, hence ‖A‖p > ‖A‖1,2 > ‖A‖nF for all A ∈ Cn×n
and 1 6 p 6 2. This shows that ‖ · ‖p satisfies (A2) with Q = Q′ = I the identity
matrix.

This result implies that all norms induced by the norm ‖v‖d = ‖Qv‖p in the
domain of A and the norm ‖v‖r = ‖Q′v‖p in the range of A with the same p, but
possibly different matrices Q,Q′ such that detQ = detQ′ = 1, satisfy (A2).

Property 5.3. If ‖ · ‖ is the norm on Cn×n induced by a norm on Cn (the same
for the domain and the range of matrices), then it satisfies (A1).

Proof. Since detA is the product of the eigenvalues of A counted with multi-
plicities, we get that |detA| 6 ρ(A)n, where ρ(A) is the spectral radius of A. Since
ρ(A) 6 ‖A‖ for all A ∈ Cn×n and all induced norms ‖ · ‖ on the space of matrices, we
get the result.

Property 5.4. The normalized Schatten p-norm ‖ · ‖∗p on Cn×n satisfies (A1),
for all p ∈ [1,∞]. It satisfies (A2) if and only if p > 2. Moreover, for p ∈ [1, 2), the
least constant η such that η‖ · ‖∗p satisfies (A2) is given by η = n1/p−1/2 > 1.

Proof. Since |detA| is the product of the singular values of A counted with mul-
tiplicities, we get that |detA|p = σp1 · · ·σpn, and using that the geometric mean is less
than or equal to the arithmetic mean, we obtain that |detA|p/n 6 1

n (σp1 + · · ·+σpn) =
‖A‖p∗p, which implies that the normalized Schatten p-norm satisfies Assumption (A1).

We have that p 7→ ‖A‖∗p is a nondecreasing map. Hence, when p ∈ [2,∞],
‖A‖∗p > ‖A‖∗2 = ‖A‖nF, for all A ∈ Cn×n, which implies that ‖ · ‖∗p satisfies (A2)
when p > 2. Let η > 0 be the least constant such that η‖ · ‖∗p satisfies (A2)
and let us show that η = n1/p−1/2 when p < 2. This will implies in particu-
lar that η > 1 hence ‖ · ‖∗p does not satisfy (A2) for p < 2, which will finishes
the proof of the equivalence “‖ · ‖∗p satisfies (A2) if and only if p > 2”. Since
n1/p‖ · ‖∗p is the unnormalized Schatten norm, which is nonincreasing with respect
to p, we get that, for all p ∈ [1, 2), and A ∈ Cn×n, n1/2‖A‖nF 6 n1/p‖A‖∗p,
which implies that η 6 n1/p−1/2. Let us fix p, Q,Q′ ∈ Cn×n such that detQ =
detQ′ = 1 and ‖QAQ′‖nF 6 η‖A‖∗p, for all A ∈ Cn×n. For all i = 1, . . . , n, let
us consider the matrix A whose entries are all zero but the entry ii equal to 1.
Then, the singular values of A are all zero except one which is equal to 1, so that
‖A‖∗p = (1/n)1/p. Moreover QAQ′ = Q(i)Q′(i), where Q′(i) denotes the i-th raw

of Q′. Hence ‖QAQ′‖nF = (1/n)1/2‖Q(i)‖2‖(Q′∗)(i)‖2. From ‖QAQ′‖nF 6 η‖A‖∗p,
we deduce that ‖Q(i)‖2‖(Q′∗)(i)‖2 6 η(1/n)1/p−1/2. Since detQ = detQ′ = 1, we
get using Hadamard’s inequality, 1 6 ‖Q(1)‖2‖(Q′∗)(1)‖2 · · · ‖Q(n)‖2‖(Q′∗)(n)‖2 6
(η(1/n)1/p−1/2)n, which shows that η > n1/p−1/2. We deduce that η = n1/p−1/2 > 1
for p > 2, which completes the proof.

For the proof of lower bound results stated in Section 2, the approach is similar
to the scalar case, except that we change the application of Jensen formula to obtain
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the following matrix version of Lemma 4.1.
Lemma 5.5. Let A0,. . . , Ad, P , ζ1, . . . , ζnd, ‖ · ‖, and c be as in the first part of

Theorem 2.1. Then, for 1 6 k 6 d, we have

log |ζ1 . . . ζnk| > log c− n inf
r>0

log

 d∑
j=0

‖Aj‖
‖A0‖

rj−k

 . (5.1)

When ‖ · ‖ satisfies (A2), the previous bound can be improved as follows

log |ζ1 . . . ζnk| > log c− n inf
r>0

1

2
log

 d∑
j=0

‖Aj‖2

‖A0‖2
r2(j−k)

 . (5.2)

Proof. From Inequality (4.2) applied to p̃(λ) = detP (λ), we get, for all r > 0,

log |ζ1 . . . ζnk| > nk log r + log |detA0| −
1

2π

∫ 2π

0

log |detP (reiθ)|dθ . (5.3)

Since ‖ · ‖ satisfies (A1), we have

|detP (reiθ)| 6 ‖P (reiθ)‖n = ‖
d∑
j=0

Aj(re
iθ)j‖n 6 (

d∑
j=0

‖Aj‖rj)n , (5.4)

for all θ ∈ [0, 2π]. Gathering (5.4) with (5.3), we obtain (5.1).
Assume now that ‖ · ‖ satisfies (A2) with some matrices Q,Q′ such that detQ =

detQ′ = 1, and let us prove (5.2). Since from Property 5.1, the normalized Frobenius
norm satisfies (A1), we get that |detP (reiθ)| = |det(QP (reiθ)Q′)| 6 ‖QP (reiθ)Q′‖nnF.
Now using the comparison between geometric and L2 means, we deduce

1

2π

∫ 2π

0

log |detP (reiθ)|dθ 6 n
1

2π

∫ 2π

0

log ‖QP (reiθ)Q′‖nFdθ

6
n

2
log

(
1

2π

∫ 2π

0

‖QP (reiθ)Q′‖2nFdθ

)
. (5.5)

From the formula of the normalized Frobenius norm, we get by applying Parseval’s
identity to each coordinate (QP (reiθ)Q′)`m

1

2π

∫ 2π

0

‖QP (reiθ)Q′‖2nFdθ =
1

n

n∑
`,m=1

(
1

2π

∫ 2π

0

|(QP (reiθ)Q′)`,m|2dθ
)

=
1

n

n∑
`,m=1

 d∑
j=0

(|(QAjQ′)`,m|rj)2

 =

d∑
j=0

(‖QAjQ′‖2nFr
2j) 6

d∑
j=0

(‖Aj‖2r2j) .

Gathering this inequality with Inequalities (5.5) and (5.3), we obtain (5.2).
Using the same arguments as for Corollary 4.2, we obtain the following result.
Corollary 5.6. Let A0,. . . , Ad, P , ζ1, . . . , ζnd, ‖ · ‖, c, and α1, . . . , αd be as in

the first part of Theorem 2.1. Then, for all 1 6 k 6 d, Inequality (2.1) holds with Lk
such that:

(Lk)−1 = inf
ξ>0

 d∑
j=0,Aj 6=0

βk,jξ
j−k

 , (5.6)
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with βk,j as in (4.4).

Moreover, when ‖ · ‖ satisfies (A2), the constant Lk in (2.1) can be replaced by
the greater one:

(Lk)−2 = inf
ξ>0

 d∑
j=0,Aj 6=0

β2
k,jξ

j−k

 . (5.7)

Proof of Theorems 2.1, 2.4, 2.5, and 2.6. In Corollary 5.6, the formula (5.7) of Lk
coincides with (4.3), except that the condition aj 6= 0 is replaced by Aj 6= 0. Hence,
the lower bounds of the constant Lk of (4.3) obtained in the proofs of the scalar
versions of Theorems 2.1, 2.5, and 2.6 give similar lower bounds for the constant
Lk of (5.7), which combined with the assertion that Inequality (2.1) holds with this
constant, now provide the lower bounds of Theorems 2.1, 2.5, and 2.6 respectively,
in the case where ‖ · ‖ satisfies (A2), that is Inequality (2.1) with Lk replaced by

the constant Lk of (2.3), the constant L∗k of (2.10), and the constant L∗]K of (2.14),
respectively.

In the case of a norm satisfying only (A1), the formula (5.7) of Lk is replaced
by (5.6), which means that everything behave as if Lk were replaced by its square
and the numbers αk were replaced by their square roots in (5.7). Hence the assertions
of Theorems 2.1, 2.5, and 2.6 in the case of Assumption (A2), are still true under
Assumption (A1), up to this transformation of the constant Lk of (2.3), the constant

L∗k of (2.10), and the constant L∗]K of (2.14), respectively.

The constant Lk of (2.3) does not depend on the values of the constants αk, hence
the above transformation leads to the square of Lk, which is exactly the constant Lk
of (2.2), which finishes the proof of Theorem 2.1. The constant L∗k of (2.10) is a
function of δ− =

αk−
αk

and δ+ = αk
αk+

. Since replacing all numbers αi, i = 0, . . . , d+ 1,

by their square roots, reduces to replace the numbers δ− and δ+ by their square roots
too, the above transformation of the constant L∗k of (2.10) consists in taking its square
and replacing δ− and δ+ by their square roots, which leads to the constant Lk of (2.9),
which finishes the the proof of Theorem 2.5. Similarly, the above transformation of
the constant L∗]k of (2.14) leads to the constant L]k of (2.13), which finishes the proof
of Theorem 2.6.

Now Theorem 2.4 is an immediate corollary of Theorem 2.5. Indeed as said in
Section 2, taking k− = 0, k+ = d+ 1 in Theorem 2.5, and using L−k 6 Lk, L−∗k 6 L∗k
and U(k, 0) = E(k)(k + 1), we get Theorem 2.4.

Corollaries 2.8 and 2.9 are straightforward consequences of Theorem 2.5 and
Proposition 2.7. We only need to prove the latter proposition.

Proof of Proposition 2.7. Let us use the notations of Theorem 2.5, and let k0 =
0, k1, . . . , kq = d be the sequence of abscissæ of the vertices of the Newton polygon of
t p(x), as shown in Figure 2.1. Then, the ratio δ− does not change when k− moves
inside an interval [kr−1 + 1, kr]. Since U(·, δ) is a nondecreasing function, in order to
maximize L−k or L−∗k and thus Lk, with δ− constant (and δ+ and k+ constant), we
need to minimize k − k−, which implies that k− = kr for some 0 6 r 6 q such that
kr < k. Similarly, k+ = ks + 1 for some 0 6 s 6 q such that ks > k.

Remark 5.7. All the lower bounds in Theorems 2.1, 2.4, 2.5, and 2.6 are equiv-
alent to inequalities of the form

(|ζ1 . . . ζnk|−1|detA0|)1/nLk 6 ‖A0‖α−1
1 . . . α−1

k . (5.8)
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By definition of the tropical roots, ‖A0‖α−1
1 . . . α−1

k = exp p̂k, where p̂k is the value in
k of the concave hull of the map j ∈ {0, . . . , d} 7→ log ‖Aj‖. Hence, if ‖·‖ and ‖·‖′ are
two norms on the space of matrices such that ‖A‖ 6 ‖A‖′ for all A ∈ Cn×n, then the
right hand side in (5.8) is smaller for ‖·‖ than for ‖·‖′. Moreover, in (2.2), (2.3), (2.5),
and (2.6), Lk depends only on P or k and n, but not on the norm ‖ · ‖, so that (5.8)
is necessarily a tighter inequality for ‖ · ‖ than for ‖ · ‖′. In particular if (A2) holds
with Q and Q′, then the lower bounds (2.3) and (2.6) for ‖ · ‖ are weaker than the
corresponding ones for A 7→ ‖QAQ′‖nF. For the lower bounds (2.9), (2.10), (2.13),
and (2.14) of Theorems 2.5 and 2.6, and the ones of Corollaries 2.8 and 2.9, based on
the separation between the tropical roots, the comparison is not so simple, because
changing the norm changes the separation between the tropical roots.

To prove Theorem 2.12, we first prove the following lemma which provides a lower
bound for the modulus of the coefficients of the polynomial det(P (λ)).

Lemma 5.8. Let A0,. . . , Ad, P , ‖ · ‖, η, α1, . . . , αd, q, δ0, . . . , δq, and Cn,d,k be
as in Theorem 2.12, and denote by p̃ the polynomial:

p̃(λ) = detP (λ) =

nd∑
l=0

p̃lλ
l . (5.9)

Then, for j = 0, . . . , q, we have ‖Akj‖ > 0 and

|p̃nkj | > |detAkj | − (Cn,d,nkj − 1)η‖Akj‖nδj .

Proof. Let k = 0, . . . , d. Using the multilinearity of the determinant we get

p̃(λ) = det

d∑
j=0

Ajλ
j =

∑
φ

det(A
(1)
φ(1), A

(2)
φ(2), . . . , A

(n)
φ(n))λ

∑n
m=1 φ(m) ,

where the sum is taken over all maps φ : {1, . . . , n} → {0, . . . , d}. Denoting by Φk
the set of all such maps that satisfy

∑n
m=1 φ(m) = nk, we obtain that the nk-th

coefficient of the polynomial p̃ is equal to:

p̃nk =
∑
φ∈Φk

det(A
(1)
φ(1), A

(2)
φ(2), . . . , A

(n)
φ(n))

= detAk +
∑

φ∈Φk, φ 6≡k

det(A
(1)
φ(1), A

(2)
φ(2), . . . , A

(n)
φ(n)) .

Using Hadamard’s inequality together with the definition of η yields

|det(A
(1)
φ(1), A

(2)
φ(2), . . . , A

(n)
φ(n))| 6 ‖A

(1)
φ(1)‖2 . . . ‖A

(n)
φ(n)‖2 6 η‖Aφ(1)‖ . . . ‖Aφ(n)‖ .

Assume now that k = kj for some j = 0, . . . , q. Then, k is the abscissa of a vertex of
the Newton polygon of the tropical polynomial t p defined in Theorem 2.1. By Propo-
sition 3.3 applied to t p, we get that ‖Ak‖ > 0, ‖Am‖ 6 ‖Ak‖

∏k
`=m+1 α` 6 ‖Ak‖α

k−m
k

for all m 6 k and ‖Am‖ 6 ‖Ak‖
∏m
`=k+1 α

−1
` 6 ‖Ak‖αk−mk+1 6 ‖Ak‖αk−mk δm−kj for all

m > k. Hence

‖Aφ(1)‖ . . . ‖Aφ(n)‖ 6 ‖Ak‖nα
∑n
m=1(k−φ(m))

k δ
∑n
m=1,φ(m)>k(φ(m)−k)

j

= ‖Ak‖nδ
∑n
m=1,φ(m)>k(φ(m)−k)

j ,
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when
∑n
m=1 φ(m) = nk. When in addition φ 6≡ k, there exists m = 1, . . . , n such that

φ(m) > k, thus
∑n
m=1,φ(m)>k(φ(m)− k) > 1, which yields

‖Aφ(1)‖ . . . ‖Aφ(n)‖ 6 ‖Ak‖nδj .

From all the above inequalities, we deduce that

|p̃nk| > |detAk| −
∑

φ∈Φk, φ 6≡k

η‖Ak‖nδj .

Since by definition Cn,d,nk is the cardinality of Φk, and there exists exactly one element
of Φk such that φ ≡ k, we obtain the inequality of the lemma for k = kj .

Proof of Theorem 2.12. Consider the polynomial p̃ of (5.9) and let γ1, . . . , γnd
be the tropical roots of the tropical polynomial t p̃(x) = max06l6nd |p̃l|xl arranged in
non-decreasing order. Let j = 0, . . . , q and denote k = kj . From (1.2), we have

|ζ1 . . . ζnk| 6
(
nd

nk

)
γ1 . . . γnk , (5.10)

By the first part of Proposition 3.3 applied to the tropical polynomial t p̃, we get
|p̃nk|γ1 . . . γnk 6 |p̃0|. Applying the result of Lemma 5.8, and using the assumption of
Theorem 2.12 on cj , we get that p̃nk > cj‖Ak‖n > 0. Since p̃0 = |detA0|, we deduce
that γ1 . . . γnk 6 |detA0|/(cj‖Ak‖n). Gathering this with (5.10), we get

|ζ1 . . . ζnk| 6
(
nd
nk

)
cj

|detA0|
‖A0‖n

‖A0‖n

‖Ak‖n
.

Since k = kj is the abscissa of a vertex of the Newton polygon of the tropical polyno-

mial t p, we get from Proposition 3.3 applied to t p that ‖A0‖
‖Ak‖ = α1 . . . αk, hence the

previous inequality shows Theorem 2.12.

6. Examples. In this section we provide some examples to show that the lower
bounds stated in Section 2 can be tight when the tropical roots are well separated and
when the input matrices are well conditioned. We used the tropical scaling algorithm
introduced in [GS09] to compute the eigenvalues of a given matrix polynomial. We
warn the reader that a naive double precision numerical computation (linearization,
followed by QZ algorithm) fails to give accurate values for some eigenvalues, because
eigenvalues have different orders of magnitude (hence, either adapted scalings, or
extended precision arithmetic, must be used). All the computations were performed
in Scilab 5.3.0.

In the following tables, we are comparing the value of the ratio |ζ1...ζnk|
(α1...αk)n with

the lower bounds (2.1) of Section 2 for some matrix polynomials P . In view of Re-
mark 5.7, we computed only the lower bounds obtained under (A2) for the normalized
Frobenius norm ‖ · ‖nF, and the lower bounds obtained under (A1) for the normal-
ized Schatten 1-norm (or normalized trace norm) ‖ · ‖∗1 (which satisfies (A1) but not
(A2), see Property 5.4). Then, in each table, for each possible value of k = 1, . . . , d,

the column ratio gives |ζ1...ζnk|
(α1...αk)n , and the other columns give the lower bound cLnk

of (2.1) with different values of Lk. The column g-pólya gives the universal lower
bound, generalizing the lower bound of Pólya to the matrix case, for which Lk is given
in (2.5) or (2.6), the column fewnom gives the lower bound involving the number
of monomials, for which Lk is given in (2.2) or (2.3), and the column separ gives
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Fig. 6.1. The Newton polygon of the tropical polynomial corresponding to P1.

the lower bound based on the separation between the tropical roots, for which Lk is
replaced by the constant Lprox

k of (2.18) or L∗,prox
k of (2.19).

Example 6.1. Consider the following matrix polynomial

P1(λ) = 10−7U0 + 102λ2U2 + 107λ4U4 + 10λ7U7 + 10−8λ9U9 ,

where all the matrices Uj , j ∈ {0, 2, 4, 7, 9}, are unitary of dimension 3. Here, we
shall only consider the normalized Frobenius norm since for a unitary matrix U , we
have ‖U‖nF = ‖U‖∗1 = 1, so the tropical polynomial associated to P1 are the same
for both norms, and the lower bounds under (A1) are the same, and are thus weaker
than the lower bounds under (A2) for the normalized Frobenius norm. The Newton
polygon of the tropical polynomial corresponding to P1 (for the normalized Frobenius
norm) is shown in Figure 6.1, and its tropical roots are 10−9/2, 10−5/2, 102, and 109/2

with multiplicities 2, 2, 3, and 2, respectively. Table 6.1 shows the lower bounds for
all values of 1 6 k 6 9, and the maximum of the ratios for a sample of 1000 random
choices of the unitary matrices Uj . The ratios slightly change for different random
choices of the unitary matrices Uj , but with a difference smaller than 5.910−4. Note
that when 1 6 k 6 9 increases, the generalized lower bound of Pólya decreases, and
should be replaced by its symmetrized version with k replaced by d− k. However the
bounds using the separation between tropical roots are the best ones, and they are
tight at the vertices of the Newton polygon of the tropical polynomial associated to
P1.

k ratio fewnom g-pólya separ
1 1.00015 0.08944 0.125 0.125
2∗ 1.00029 " 0.05702 0.97044
3 1.00015 " 0.03425 0.125
4∗ 1 " 0.02345 0.99991
5 1.00000 " 0.01733 0.125
6 1.00000 " 0.01348 0.12500
7∗ 1 " 0.01088 0.99056
8 1 " 0.00901 0.125
9∗ 1 " 0.00763 1

Table 6.1
Comparison of the bounds for P1 using the normalized Frobenius norm. The abscissæ of the

vertices of the Newton polygon of corresponding tropical polynomial are indicated by the symbol ∗.

Example 6.2. In the following example, we perturb the previous polynomial
by adding coefficients to P1, in such a way that the Newton polygon of the tropical
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polynomial associated to P1 does not change, either for the normalized Frobenius norm
or at least for the normalized Schatten 1-norm. Here we fix the unitary matrices to
be either the identity matrix or its opposite, and we consider the following matrices:

B = b

10−15 1 1
0 1 1
1 2 3

 , C =

√
3

14

1 2 3
2 4 6
3 6 9


where b is chosen so that ‖B‖nF = 1, and C is also such that ‖C‖nF=1. The matrix
C is singular, since it has rank 1, and it satisfies ‖C‖∗1 = 1/

√
3. The matrix B is

ill-conditioned, so that ‖B‖∗1 < ‖B‖nF = 1 too.
We shall consider the two polynomials:

P2(λ) =10−7U0 + 10−5/2λC1 + 102λ2U2 + 109/2λ3C1 + 107λ4U4 + 105λ5C1

+ 103λ6B1 + 10λ7U7 + 10−7/2λ8B1 + 10−8λ9U9

P3(λ) =10−7U0 + 10−5/2λC2 + 102λ2U2 + 109/2λ3C2 + 107λ4U4 + 105λ5C2

+ 103λ6B2 + 10λ7U7 + 10−7/2λ8B2 + 10−8λ9U9 ,

with U0 = U4 = U7 = −I, U2 = U9 = I, B1 = B, C1 = C, B2 = ‖B‖−1
∗1 B,

C2 =
√

3C. Since for any unitary matrix U with dimension 3, ‖U‖∗1 = ‖U‖nF = 1,
and since for any complex matrix A of dimension 3, we have ‖A‖∗1 6 ‖A‖nF, the
tropical polynomial associated to P2 for either the normalized Frobenius norm or
the Schatten 1-norm coincides with the one associated to P1. Hence, as for P1, the
bounds for P2 with the normalized Schatten 1-norm are necessarily weaker than the
ones with the normalized Frobenius norm. Moreover, all the bounds presented in
Table 6.1 for P1 remain the same for P2 except the bounds based on the number of
nonzero coefficients. We present all these bounds in Table 6.2 together with the new
ratios. Since these ratios are different from the ones of Table 6.1, one can see that
the lower bounds based on the separation between tropical roots may be tight.

k ratio fewnom g-pólya separ
1 0.45628 0.03162 0.125 0.125
2∗ 1.03298 " 0.05702 0.97044
3 0.45627 " 0.03425 0.125
4∗ 1.00009 " 0.02345 0.99991
5 0.39258 " 0.01733 0.125
6 0.39258 " 0.01348 0.12500
7∗ 1.00867 " 0.01088 0.99056
8 0.47428 " 0.00901 0.125
9∗ 1 " 0.00763 1

Table 6.2
Comparison of the bounds for P2 using the normalized Frobenius norm. The abscissæ of the

vertices of the Newton polygon of the corresponding tropical polynomial are indicated by the symbol ∗.

Let us consider now the polynomial P3. The normalized Schatten 1-norm of the
coefficients of P3 coincide with the normalized Frobenius norm of the coefficients of
P2, hence the tropical polynomial associated to P3 for the normalized Schatten 1-norm
coincides with the one associated to P1 for the normalized Frobenius norm, so that
the tropical roots are the same. However, since the Schatten 1-norm satisfies (A1)
but not (A2), we can only get the bounds based on (A1) which are necessarily lower
than the one presented above for P1 with the normalized Frobenius norm. Finally, the
tropical polynomial associated to P3 for the normalized Frobenius norm differs from
the one associated to P1, so that the tropical roots and the bounds differ too. All
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tropical roots of this new tropical polynomial have multiplicity 1, which means that
all indices are abscissæ of vertices of its Newton polygon. We present in Table 6.3,
the ratios and the lower bounds for both normalized Frobenius and Schatten 1-norms.
Here the ratios and lower bounds for the normalized Schatten 1-norm are lower than
the ones for the normalized Frobenius norm. However, one can see that the results
for the normalized Frobenius norm are still better than the ones for the normalized
Schatten 1-norm.

norm. Frobenius norm norm. Schatten 1-norm
k ratio fewnom g-pólya separ ratio fewnom g-pólya separ
1 1.57223 0.03162 0.125 0.35355 0.30258 0.001 0.01563 0.01563
2∗ 1.11466 " 0.05702 0.91391 1.11466 " 0.00325 0.54771
3 1.57223 " 0.03425 0.35355 0.30258 " 0.00117 0.01562
4∗ 1.00028 " 0.02345 0.99972 1.00028 " 0.00055 0.96682
5 1.45041 " 0.01733 0.18345 0.27913 " 0.00030 0.01562
6 1.01082 " 0.01348 0.05989 0.27913 " 0.00018 0.01533
7∗ 1.02104 " 0.01088 0.97788 1.02104 " 0.00012 0.71337
8 1.26686 " 0.00901 0.25721 0.34983 " 0.00008 0.01563
9∗ 1 " 0.00763 1 1 " 0.00006 1

Table 6.3
Comparison of the bounds for P3 using the normalized Frobenius and Schatten 1-norms. The

abscissæ of the vertices of the Newton polygon of the tropical polynomial associated to P3 for the
normalized Frobenius norm are indicated by the symbol ∗.

Example 6.3. In order to obtain a polynomial for which the lower bounds for
the normalized Schatten 1-norm are better than the ones for the normalized Frobenius
norm, one need to take matrices Ai such that ‖Ai‖nF/‖Ai‖∗1 is as large as possible.
This means that the dimension n is large and that some of the singular values of Ai
are zero, or at least that the ratio between the maximal and minimal singular values
is large, which implies that Ai is singular or at least ill-conditioned. Moreover some
parameters of the lower bounds need to be smaller than ‖Ai‖nF/‖Ai‖∗1, which is
possible for instance for the lower bounds based on the separation between tropical
roots, when these tropical roots have a small multiplicity and are well separated. We
shall show here such examples.

We consider a matrix polynomial with degree 3 and dimension n = 10:

P4(λ) = A0 +A1λ+A2λ
2 +A3λ

3 ,

where all the matrices Ai, i = 0, . . . , 3 are diagonal matrices: Ai = diag(di) with
di ∈ Cn. We choose A0 = A3 = I, so that c = 1, α1α2α3 = 1 (for norms such that

‖I‖ = 1) and for k = 3 the ratio |ζ1...ζnk|
(α1...αk)n is equal to 1, which is equal to the lower

bound based on separation of tropical roots. We choose the diagonal elements of the
matrices A1, A2 as follows:

d1 :=
a1

1 + b/n
(1, . . . , 1, 1 + b) , d2 :=

a2

1 + b/n
(1 + b, 1, . . . , 1) ,

with a1, a2, b > 0. Then

‖A1‖∗1 =
‖d1‖1
n

= a1 , ‖A2‖∗1 =
‖d2‖1
n

= a2 ,

‖A1‖nF =
‖d1‖2√

n
= a1fb , ‖A2‖nF =

‖d2‖2√
n

= a2fb ,
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with

fb :=

√
1 + 2b+b2

n

1 + b/n
> 1 .

The constant fb is large when b is large, that is when the condition numbers of A1

and A2 are large.
When a1 = a2 > 1, the tropical polynomial associated to P4 for the normalized

Schatten 1-norm (resp. the normalized Frobenius norm) has 3 different tropical roots
equal to 1/a1, 1 and a1 (resp. 1/(a1fb), 1 and a1fb). We present in Tables 6.4 and 6.5,
the ratios and the lower bounds for both normalized Frobenius and Schatten 1-norms,
when a1 = 104, and b = 2 and b = 10 respectively. When b = 10, the matrices are

ill-conditioned, so that the ratios |ζ1...ζnk|
(α1...αk)n for k = 1 or 2 are very large. When either

b = 2 or b = 10, we see that the lower bounds based on the separation between the

tropical roots are the best ones, and that they are nearer the ratios ( |ζ1...ζnk|(α1...αk)n ) in the

case of the Schatten 1-norm than in the case of the Frobenius norm, although they
are far in the case where b = 10.

norm. Frobenius norm norm. Schatten 1-norm
k ratio fewnom g-pólya separ ratio fewnom g-pólya separ
1∗ 6.30697 0.00098 0.00098 0.99911 2.06667 9.5D-07 9.5D-07 0.81873
2∗ 6.30697 0.00098 0.00007 0.99911 2.06667 9.5D-07 5.1D-09 0.81873
3∗ 1 0.00098 0.00001 1 1 9.5D-07 1.7D-10 1

Table 6.4
Comparison of the bounds for P4 with a1 = a2 = 104 and b = 2. The abscissæ of the vertices

of the Newton polygon of corresponding tropical polynomial are indicated by the symbol ∗.

norm. Frobenius norm norm. Schatten 1-norm
k ratio fewnom g-pólya separ ratio fewnom g-pólya separ
1∗ 33882.7 0.00098 0.00098 0.99945 93.4462 9.5D-07 9.5D-07 0.81873
2∗ 33882.7 0.00098 0.00007 0.99945 93.4462 9.5D-07 5.1D-09 0.81873
3∗ 1 0.00098 0.00001 1 1 9.5D-07 1.7D-10 1

Table 6.5
Comparison of the bounds for P4 with a1 = a2 = 104 and b = 10. The abscissæ of the vertices

of the Newton polygon of corresponding tropical polynomial are indicated by the symbol ∗.

When a1 > 1 and a2 =
√
a1/fb the tropical polynomial associated to P4 for

the normalized Schatten 1-norm (resp. the normalized Frobenius norm) has only 2
different tropical roots equal to 1/a1 and

√
a1 (resp. 1/(a1fb), 1 and

√
a1fb) with

respective multiplicities 1 and 2. We present in Tables 6.6 and 6.7, the ratios and the
lower bounds for both normalized Frobenius and Schatten 1-norms, when a1 = 104,
and b = 2 and b = 10 respectively. When b = 10, the matrices are ill-conditioned, so

that for k = 1 or 2 the distances (ratios) between the ratio |ζ1...ζnk|
(α1...αk)n and its lower

bounds are very large, although for k = 2 this ratio is smaller than in the case where
a1 = a2 = 104 above. When either b = 2 or b = 10, we see that the lower bounds
based on the separation between the tropical roots are the best ones. For k = 2 which
is the abscissa of a vertex of the Newton polygon, the lower bound obtained in the

case of the Schatten 1-norm is nearer the ratio |ζ1...ζnk|
(α1...αk)n than the one obtained in the

case of the Frobenius norm, whereas for k = 3 the contrary holds.
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