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FREE CENTRE-BY-METABELIAN LIE ALGEBRAS IN

CHARACTERISTIC 2

L. G. KOVÁCS AND RALPH STÖHR

Abstract. We study free centre-by-metabelian Lie algebras over a field of

characteristic 2. By using homological methods, we determine the dimensions

of the fine homogeneous components of the second derived algebra. In con-

junction with earlier results by Mansuroǧlu and the second author, this leads

to a complete description of the additive structure of the second derived ideal

in the free centre-by-metabelian Lie ring.

1. Introduction

Let G denote the free centre-by-metabelian Lie algebra of finite rank r > 1 over

a commutative ring K with 1, and let X be a free generating set for G. Then G

is a central extension of the free metabelian Lie algebra G/G′′ with kernel G′′. Of

course, G/G′′ is well-understood: It is a free K-module and the simple basic Lie

monomials form a basis of it (see, for example, [1]). The second derived ideal G′′

is much more complicated. When K = Z, this ideal contains elements of order 2,

and the 2-torsion occurring in even degrees is very different from the 2-torsion in

odd degrees. This was discovered by Yu. V. Kuz’min in his pioneering paper [2].

Much later it turned out (see [7], [4]) that some of the details on Lie rings given

in [2] required modification. The results in [4] were conclusive in the case where

K is a field of characteristic other than 2, and also for the torsion-free part of G′′

when K = Z. Most of the present paper is devoted to calculating the dimensions of

the fine homogeneous components of G′′ under the assumption that K is a field of

characteristic 2. Combined with the results in [4], these dimensions determine the

full additive structure of G′′ in the K = Z case as well. We give nontrivial elements

in each fine homogeneous component such that the component is the direct sum of

the cyclic groups generated by these elements. The approach to the problem offered

here seems to be new. It is based on ideas developed in [4], but makes essential use

of homological methods.

The paper is organized as follows. Notation and some preliminary notions are

introduced in Section 2. In Section 3 we record some facts about the homology

of modules over polynomial rings. In Section 4 we discuss tensor products and

symmetric and exterior squares of such modules, and in the next two Sections 5

and 6 we determine some low-dimensional homology groups with coefficients in

such modules. Our main result, giving the dimensions of the fine homogeneous
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components of G′′, is proved in Section 7, and the application to free centre-by-

metabelian Lie rings is carried out in the final Section 8.

2. Preliminaries

In what follows K denotes a field or the ring of integers, X = {x1, x2, . . . , xr} is

a finite set with r > 1. The free centre-by-metabelian Lie algebra on X over K is

defined as the quotient

G = L/[L′′, L]

where L is the (absolutely) free Lie algebra on X over K and L′′ is its second

derived ideal. Thus G is a central extension of the free metabelian Lie algebra

G/G′′ = L/L′′ with kernel G′′ = L′′/[L′′, L]. Let M = G′/G′′ = L′/L′′. The

adjoint representation in G induces on M the structure of a module for the abelian

Lie algebra G/G′, and hence for the universal envelope U of G/G′. In fact, this

universal envelope is U = K[X], the ring of polynomials in X. The starting point

of our investigation is the isomorphism

(2.1) G′′ ∼= (M ∧M)⊗U K

where the exterior square M ∧M of the module M is considered as a U -module

with derivation action, i.e. for u, v ∈ M and x ∈ X the action is given by

(u ∧ v)x = ux ∧ v + u ∧ vx, and K is regarded as a trivial U -module (see [4,

(2.7)]). More generally, tensor products of U -modules as well as exterior and sym-

metric powers will always be regarded as U -modules with derivation action. The

exterior, tensor and symmetric squares of any U -module A fit into the short exact

sequence

(2.2) 0→ A ∧A→ A⊗A→ A ◦A→ 0

where the relevant maps are given by a∧b 7→ a⊗b−b⊗a and a⊗b 7→ a◦b (a, b ∈ A).

If K is a field of characteristic 2, then the exterior square is a homomorphic image

of the symmetric square, and there is a short exact sequence

(2.3) 0→ D(A)→ A ◦A→ A ∧A→ 0

where the map on the right is the natural projection given by a ◦ b 7→ a ∧ b, and

D(A) is the kernel of this map. If A is a K-basis of A, then D(A) is precisely the

span of all squares a◦a with a ∈ A. Note that D(A) is a trivial U -module. Indeed,

for any x ∈ X we have (a ◦ a)x = ax ◦ a+ a ◦ ax = 0 as we are in characteristic 2.

Note that characteristic 2 is essential here. If the characteristic of K is not 2, the

exact sequence (2.3) is not available.

The augmentation map ε : U → K takes every polynomial in X to its constant

term. Its kernel is the augmentation ideal ∆, which consists of the polynomials

with zero constant term. The corresponding short exact sequence

0→ ∆→ U
ε−→ K → 0

is referred to as the augmentation sequence. We will assume that the set X is

ordered by x1 < x2 < · · · < xr. The module M has a K-basis consisting of the left

normed Lie products [y1, y2, . . . , yn] with yi ∈ X, y1 > y2 6 y3 6 · · · 6 yn, n > 2,
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and as a U -module it is generated by the Lie products [xi, xj ] with 1 6 j < i 6 r.

Let P denote the free U -module of rank r with free generators e1, e2, . . . , er. The

map [xi, xj ] 7→ eixj − ejxi extends to an embedding µ : M → P . Moreover, if

σ : P → ∆ is the map determined by ei 7→ xi, then

0→M
µ−→ P

σ−→ ∆→ 0

is an exact sequence of U -modules (see [6]). This yields a 4-term exact sequence

(2.4) 0→M ∧M → P ∧ P → ∆⊗ P → ∆ ◦∆→ 0,

where the maps are (from left to right) given by

m1 ∧m2 7→ m1µ ∧m2µ (m1,m2 ∈M)

p1 ∧ p2 7→ p1σ ⊗ p2 − p2σ ⊗ p1 (p1, p2 ∈ P )

δ ⊗ p 7→ δ ◦ pσ (δ ∈ ∆, p ∈ P )

with µ and σ as defined above. A proof of the exactness can be found in [4, Proof of

Lemma 5.1]. The exact sequence (2.4) will be one of the main tools in our approach

to G′′.

The free centre-by-metabelian Lie algebra G, the polynomial ring U = K[X],

and all the modules considered so far (such as M , P , ∆), as well as all tensor,

exterior or symmetric products of such modules have natural gradings by degree

and, moreover, fine gradings by multidegree with respect to the generating set X.

The multidegree of a Lie monomial w ∈ G with factors from X is the r-tuple

q = (q1, q2, . . . , qr) where qi is the partial degree of w with respect to xi ∈ X. The

partial degrees add up to the total degree of w, say n = q1 + · · · + qr. We also

refer to q as a composition of n, q � n, in r parts. By Gn we denote the degree n

homogeneous component of G, that is the K-span of all Lie monomials of degree

n in G, and we write Gq for the span of all Lie monomials of multidegree q. The

latter is the fine homogeneous component of multidegree q. A fine homogeneous

component Gq and the corresponding multidegree q are called multilinear, if all

non-zero parts of q are equal to 1. It is clear that each Gn is the direct sum

of the fine homogeneous components Gq where q runs over all compositions of

n. It is also plain that if a composition q′ can be obtained from q by permuting

the parts, then Gq and Gq′ are isomorphic as K-spaces. In particular, any fine

homogeneous component Gq is isomorphic to Gq̃ where q̃ is the unique partition of

n that can be obtained from q by permuting the parts. (Recall that a partition of

n is a composition q = (q1, q2, . . . , qr) � n such that q1 > q2 > · · · > qr.) We set

G′′q = Gq ∩G′′.
The fine homogeneous components of the polynomial ring U = K[X] and of

the various U -modules considered so far are defined in a natural way, given that

each free generator ei of the module P is assigned the same partial degree as the

matching xi. For example, the element e1x1x2 ∈ P has degree 3 and multidegree

(2, 1, 0 . . . , 0) and the element e2x1 ⊗ e3 ∈ P ⊗ P has degree 3 and multidegree

(1, 1, 1, 0, . . . , 0). Note that all the maps considered in this paper respect the fine

homogeneous structures, in that they map fine homogeneous components into fine
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homogeneous components, albeit sometimes with a shifted multidegree: in this

sense, they are morphisms of finely gradedK-modules. In the case of the polynomial

ring U = K[X], all fine homogeneous components are one-dimensional, and Uq is

spanned by the unique (commutative and associative) monomial of mutidegree q in

U . We write U for the set

U = {y1y2 . . . yk; yi ∈ X, y1 6 y2 6 · · · 6 yk, k > 0}

of all monomials in U , with the convention that 1 is the only monomial of degree

zero. Of course, U is a K-basis of U , and U \ {1} is a K-basis of ∆.

It is easily seen that the smallest non-zero homogeneous component of G′′ is

G′′4
∼= G2 ∧G2. Most of the rest of this paper is devoted to finding the dimensions

of G′′q for q � n with n > 5.

3. Homology

In this section we recall some facts about the homology of U -modules. For details

we refer to [3, Chapter VII]. Recall the U = K[X] is the ring of polynomials in X

with coefficients in K, and that P is a free U -module of rank r with free generators

e1, e2, . . . , er. We let Pk denote the k-th exterior power of P . Thus Pk is a free

U -module with free generators ei1 ∧ ei2 ∧ · · · ∧ eik where 1 6 i1 < i2 < · · · < ik 6 r,

with the convention that P0 = U and Pk = 0 for k > r. It is well-known that the

complex

P : 0→ Pr
∂r−→ Pr−1

∂r−1−−−→ · · · ∂3−→ P2
∂2−→ P1

∂1−→ P0 → K → 0

with differentials given by

∂k : ei1 ∧ ei2 ∧ · · · ∧ eik 7→
k∑
j=1

(−1)j+1(ei1 ∧ · · · ∧ êij ∧ · · · ∧ eik)xij ,

where the circumflex indicates that eij is to be omitted, is a free resolution of

the trivial U -module K. The complex P is often called the Koszul complex. Of

course, if K is a field of characteristic 2, the factor (−1)k+1 becomes redundant in

the definition of the differential. The homology groups of U with coefficients in a

U -module A are defined by

Hk(A) = Hk(P⊗U A).

As in the previous section, we assign to each free generator ei of P the same

partial degree as that of the matching xi. Then the free resolution P becomes a

complex of finely graded U -modules. For example, the element (e2 ∧ e3)x2
1 ∈ P2

has degree 4 and multidegree (2, 1, 1, 0, . . . , 0). Moreover, if A is a finely graded

U -module, then the tensor product P⊗ A too becomes a complex of finely graded

U -modules. This induces a fine homogeneous structure on the homology groups

Hk(A): The homogeneous and fine homogeneous components of those homology

groups are defined in the obvious way, and we use (Hk(A))n for n > 0 and (Hk(A))q

for q � n to denote them.

If A = K, all differentials in the complex P⊗U K are zero maps, and hence the

homology groups Hk(K) of the trivial module K are free K-modules with K-bases
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consisting of the elements (ei1 ∧ ei2 ∧ · · · ∧ eik)⊗ 1 with 1 6 i1 < i2 < · · · < ik 6 r.

This means that the fine homogeneous components of the homology groups are as

follows: For a composition q � n, we have

(3.1) (Hk(K))q =

{
K, if k 6 r, n = k and q is multilinear;

0, otherwise.

4. Tensor products, symmetric and exterior squares

Recall that tensor products of U -modules as well as exterior and symmetric

powers will always be regarded as U -modules with derivation action. The following

lemma is well-known. It is, in fact, a special case of a very general result on Hopf

algebras (see [5, Theorem 1.9.4]). An elementary proof, tailored to the needs of the

present paper, can be found in [4].

Lemma 4.1. Let N be an arbitrary U -module that is free as a K-module with

K-basis N . Then the tensor product N ⊗ U is a free U -module and the elements

m⊗ 1 with m ∈ N form a free generating set for N ⊗ U as a U -module.

In particular, the tensor square U ⊗ U is a free U -module with free generators

u⊗1 where u ∈ U . If K is a field of characteristic other than 2, then the symmetric

and exterior squares U ◦ U and U ∧ U are also free U -modules. Things, however, are

different in characteristic 2, where neither U ◦ U nor U ∧ U are free as U -modules.

As before, let P be a free U -module with free generators e1, . . . , er. Thus

P =
⊕

i eiU , and then P ∧P ∼=
⊕

i(eiU∧eiU) ⊕
⊕

i<j(eiU⊗ejU). Here eiU∧eiU
is isomorphic to U ∧ U and eiU⊗ejU is isomorphic to U ⊗ U , but it must be noted

that these isomorphisms do not preserve the fine gradings. They respect them in

the sense previously indicated: for example, given a multidegree q, the U -module

isomorphism between U ∧ U and eiU ∧ eiU matches the fine homogeneous com-

ponent (U ∧ U)q to (eiU ∧ eiU)q′ where q′ agrees with q except that q′i = qi + 2.

Similar comments apply to the tensor product eiU⊗ejU and the symmetric square

eiU ◦ eiU . We record these simple facts for further reference.

Lemma 4.2. Let P be a free U -module with free generators e1, . . . , er.

(i) For P ∧ P there is a direct decomposition

P ∧ P ∼=
⊕
i

(eiU ∧ eiU) ⊕
⊕
i<j

(eiU ⊗ ejU).

Here each of the direct summands eiU ∧eiU is isomorphic to U ∧ U , and each

eiU ⊗ ejU is a free U -module with free generators eiu⊗ ej (u ∈ U).

(ii) For P ◦ P there is a direct decomposition

P ◦ P ∼=
⊕
i

(eiU ◦ eiU) ⊕
⊕
i<j

(eiU ⊗ ejU).

Here each of the direct summands eiU ◦ eiU is isomorphic to U ◦U , and each

eiU ⊗ ejU is a free U -module with free generators eiu⊗ ej (u ∈ U).
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The lemma implies that the multilinear components of the homology groups of

P ∧ P and P ◦ P are zero in all positive dimensions. Namely, all free modules,

whether graded or not, have zero homology in all positive dimensions. On the

other hand, the fine gradings of the eiU ∧ eiU and eiU ◦ eiU being as indicated, the

ith partial degree involved in any nonzero fine homogeneous component of such a

module is at least 2: so these modules have no multilinear components and hence

no multilinear homology. This will be very useful later.

Corollary 4.3. If q is multilinear, then (Hk(P ∧ P ))q = 0 and (Hk(P ◦ P ))q = 0

for all k > 1. �

5. Trivialization of tensor, symmetric and exterior squares

In this section we work out the trivialization of the tensor, symmetric and ex-

terior squares of free U -modules and of the augmentation ideal ∆. For an arbi-

trary U -module A, the trivialization of A is the zero-dimensional homology group

H0(A) = A ⊗U K = A/A∆. For the tensor square, H0(A ⊗ A) is obtained by

forming the quotient of the tensor product A ⊗ A by the K-submodule generated

by the elements of the form (a⊗ b)x, that is, by the elements

ax⊗ b+ b⊗ ax (a, b ∈ A, x ∈ X).

For simplicity, we denote by a ⊗∗ b the image of the element a ⊗ b of A ⊗ A in

H0(A ⊗ A). Similarly, we use a ◦∗ b and a ∧∗ b for images in the trivializations of

the symmetric and exterior squares. In particular, in H0(A⊗A) the relation

(5.1) a⊗∗ bx = − ax⊗∗ b

holds for all a, b ∈ A, x ∈ X, and similar relations hold in the trivializations of the

exterior and symmetric squares of A. Further, trivialization yields from (2.2) an

exact sequence

(5.2) H0(A ∧A)→ H0(A⊗A)→ H0(A ◦A)→ 0

with the first map a ∧∗ b 7→ a⊗∗ b− b⊗∗ a and the second a⊗∗ b 7→ a ◦∗ b.
By Lemma 4.1, the tensor product U⊗U is a free U -module with free generators

u ⊗ 1 (u ∈ U). Hence the trivialization H0(U ⊗ U) is a free K-module with free

generators u⊗∗ 1 (u ∈ U). In view of (5.1), we have u⊗∗ v = (−1)deg v uv⊗∗ 1 and

v ⊗∗ u = (−1)deg u uv ⊗∗ 1 whenever u, v ∈ U .

When K is a field of characteristic 2, this implies that the first map in the

exact sequence (5.2) with A = U is the zero map. Then the second map is an

isomorphism, and we may conclude that in this case H0(U ◦ U) is a K-space with

basis {u ◦∗ 1 | u ∈ U }. Moreover, now the sequence (2.3) is also available: take it

with A = U . Then there is an exact sequence

H0(D(U))→ H0(U ◦ U)→ H0(U ∧ U)→ 0.

As D(A) is always a trivial U -module, H0(D(U)) = D(U). Hence the term on

the left has a K-basis consisting of the u ◦∗ u with u ∈ U . The map on the left

takes such a basis element to u ◦∗ u = u2 ◦∗ 1 ∈ H0(U ◦U). We may conclude that
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H0(U ∧U) has a K-basis consisting of the elements u ∧∗ 1 with u ranging through

the non-square elements of U .

We summarize our discussion as follows.

Lemma 5.1. If K is a field of characteristic 2, then

(i) H0(U ⊗ U) is a K-space with basis consisting of the elements u ⊗∗ 1 where

u ∈ U ,

(ii) H0(U ◦ U) is a K-space with basis consisting of the elements u ◦∗ 1 where

u ∈ U ,

(iii) H0(U ∧ U) is a K-space with basis consisting of the elements u ∧∗ 1 where

u ∈ U but u is not a square. �

In view of Lemma 4.2, the following is an easy consequence of this lemma.

Corollary 5.2. If K is a field of characteristic 2, then

(i) H0(P ⊗P ) is a K-space with basis consisting of the elements eiu⊗∗ ej where

1 6 i 6 j 6 r and u ∈ U ,

(ii) H0(P ◦ P ) is a K-space with basis consisting of the elements eiu ◦∗ ej where

1 6 i 6 j 6 r and u ∈ U ,

(iii) H0(P ∧ P ) is a K-space with basis consisting of the elements eiu ∧∗ ej where

1 6 i < j 6 r and u ∈ U , and the elements eiu ∧∗ ei where 1 6 i 6 r and

u ∈ U such that u is not a square. �

Next we examine the tensor, symmetric and exterior squares of the augmentation

ideal ∆. The result is very similar to Lemma 5.1.

Lemma 5.3. If K is a field of characteristic 2, then

(i) H0(∆⊗∆) is a K-space with basis consisting of the elements xi ⊗∗ xj where

1 6 i, j 6 r, together with the elements y1 ⊗∗ (y2 · · · yn) where yi ∈ X such

that y1 6 y2 6 · · · 6 yn and n > 3,

(ii) H0(∆ ◦∆) is a K-space with basis consisting of the elements y1 ◦∗ (y2 · · · yn)

where yi ∈ X such that y1 6 y2 6 · · · 6 yn and n > 2,

(iii) H0(∆∧∆) is a K-space with basis consisting of the elements y1 ∧∗ (y2 · · · yn)

where yi ∈ X such that y1 6 y2 6 · · · 6 yn and n > 2, but y1y2 · · · yn is not a

square.

Proof. The tensor square ∆⊗∆ has a K-basis consisting of all elements u⊗ v with

u, v ∈ U \{1}. Since the elements in ∆⊗∆ have degree at least 2 and the elements

in (∆ ⊗ ∆)∆ have degree at least 3, we have (H0(∆ ⊗ ∆))2 = (∆ ⊗ ∆)2. This

proves the lemma for degree 2. For a fixed n > 3, in view of the relations (5.1),

(H0(∆⊗∆))n is spanned by the elements y1 ⊗∗ (y2 · · · yn) where yi ∈ X such that

y1 6 y2 6 · · · 6 yn. Consider the embedding ∆⊗∆→ ∆⊗U . Trivializing yields a

homomorphism H0(∆⊗∆)→ H0(∆⊗U). By Lemma 4.1, H0(∆⊗U) has a K-basis

consisting of the elements u⊗∗ 1 where u ∈ U \ {1}. The image of y1 ⊗∗ (y2 · · · yn)

in H0(∆⊗U) is (y1y2 · · · yn)⊗∗ 1. It follows that the spanning set given above for

(H0(∆⊗∆))n is linearly independent. This proves part (i) of the lemma. For the
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proof of (ii), consider the exact sequence (5.2) with A = ∆, that is,

(5.3) H0(∆ ∧∆)→ H0(∆⊗∆)→ H0(∆ ◦∆)→ 0.

It is not hard to see that the image of the left map is spanned by the elements

xi ⊗∗ xj + xj ⊗∗ xi where 1 6 i, j 6 r. Indeed, the left map in (5.3) takes an

element u ∧∗ v ∈ H0(∆ ∧ ∆) with u, v ∈ U \ {1} to u ⊗∗ v + v ⊗∗ u. But if

deg u + deg v > 3, the relation (5.1) implies that u ⊗∗ v = v ⊗∗ u; as we are in

characteristic 2, this means that u⊗∗ v+ v⊗∗ u = 0. We are left with the elements

xi ⊗∗ xj + xj ⊗∗ xi where 1 6 i, j 6 r. Now (ii) follows from the exactness of the

displayed sequence. A similar argument, using the short exact sequence (2.3) with

A = ∆, proves (iii). �

In view of the explicit bases described here, it is straightforward to count the

dimensions of the fine homogeneous components of these homology groups. We shall

use the results of two such counts, the first from Lemma 5.3(ii) and the second from

Corollary 5.2(iii).

Corollary 5.4. Let K be a field of characteristic 2.

(i) If q � n > 2, then dim(H0(∆ ◦∆))q = 1.

(ii) If q � n > 2 with k denoting the number of positive parts of q and m the

number of parts that are equal to 1, then

dim(H0(P ∧ P ))q =


(
k
2

)
, if all parts of q are even;(

k
2

)
+ k −m, otherwise. �

6. Low dimensional homology of the symmetric square ∆ ◦∆

In this section we assume that K is a field of characteristic 2. By tensoring the

augmentation sequence with ∆, and combining the result with the augmentation

sequence itself, we obtain a 4-term exact sequence

0→ ∆⊗∆→ ∆⊗ U → U → K → 0.

The two modules in the middle are free, and hence, for all k > 1, there is an

isomorphism

(6.1) Hk(∆⊗∆) ∼= Hk+2(K).

Consider the long exact homology sequence stemming from the short exact sequence

(2.2) with A = ∆. Here is a part of this sequence:

· · · → H2(∆⊗∆)→H2(∆ ◦∆)→ H1(∆ ∧∆)→ H1(∆⊗∆)→

→ H1(∆ ◦∆)→ H0(∆ ∧∆)→ H0(∆⊗∆)→ · · ·
(6.2)

From (6.1) and (3.1) we see that most fine homogeneous components of H2(∆⊗∆)

and H1(∆ ⊗∆) vanish, the exceptions occurring in degrees 4 and 3, respectively.

Similarly, a step in the proof of Lemma 5.2(ii) showed that H0(∆∧∆)→ H0(∆⊗∆)
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is the zero map except in degree 2. Thus for q � n > 5, the exactness of (6.2) yields

that

(6.3) (H2(∆ ◦∆))q ∼= (H1(∆ ∧∆))q and (H1(∆ ◦∆))q ∼= (H0(∆ ∧∆))q.

In particular, as we know the fine homogeneous structure of H0(∆∧∆) from Lemma

5.2(iii), the second part of (6.2) gives the following result.

Lemma 6.1. If K is a field of characteristic 2 and q � n with n > 5, then

dim(H1(∆ ◦∆))q =

{
0, if all parts of q are even;

1, otherwise. �

Now consider the long exact homology sequence stemming from the short exact

sequence (2.3) with A = ∆:

· · · → H1(D(∆))→H1(∆ ◦∆)→ H1(∆ ∧∆)→

→ H0(D(∆))→ H0(∆ ◦∆)→ H0(∆ ∧∆)→ 0.
(6.4)

By its very nature, D(∆) has no multilinear homogeneous components. Hence

(Hk(D(∆)))q = 0 for all multilinear multidegrees q and all k > 0. Then the

exactness of (6.4) implies that for all multilinear compositions q � n with n > 5

and all k > 0 there are isomorphisms

(6.5) (Hk(∆ ◦∆))q ∼= (Hk(∆ ∧∆))q.

By Lemma 5.2(iii), dim(Hk(∆∧∆))q = 1 for all multilinear compositions q of total

degree n > 5, and by combining this with (6.3) and (6.5) we obtain the final result

of this section:

Lemma 6.2. If K is a field of characteristic 2, then, for all multilinear composi-

tions q � n with n > 5,

dim(H2(∆ ◦∆))q = dim(H1(∆ ◦∆))q = 1. �

7. Free centre-by-metabelian Lie algebras in characteristic 2

In this section we work out the dimensions of the fine homogeneous components

G′′q for q � n with n > 5, where G is the free centre-by metabelien Lie algebra of

rank r over a field K of characteristic 2. In view of the isomorphism (2.1) we can

work with the tensor product (M ∧M)⊗U K = H0(M ∧M). Consider the 4-term

exact sequence (2.4). Let W denote the kernel of the map ∆⊗ P → ∆ ◦∆. Then

(2.4) can be broken up into two short exact sequences, namely

(7.1) 0→M ∧M → P ∧ P →W → 0,

and

(7.2) 0→W → ∆⊗ P → ∆ ◦∆→ 0.

We first use (7.2) to work out the dimensions of the fine homogeneous components

of H0(W ) and H1(W ), and then we use the result and (7.1) to determine the

dimension of the fine homogeneous components of H0(M ∧M).
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Lemma 7.1. Let q � n with n > 5 such that k of the parts are non-zero.

(i) If at least one part of q is not divisible by 2, then

dim(H0(W ))q = k, dim(H1(W ))q = 1.

(ii) If all parts of q are divisible by 2, then

dim(H0(W ))q = k − 1, dim(H1(W ))q = 0.

Proof. Consider the long exact homology sequence stemming from (7.2). Since

∆ ⊗ P is a free U -module and hence Hk(∆ ⊗ P ) = 0 for all k > 1, this long

homology sequence yields isomorphisms

(7.3) Hk(W ) ∼= Hk+1(∆ ◦∆)

for all k > 1, and an exact sequence

(7.4) 0→ H1(∆ ◦∆)→ H0(W )→ H0(∆⊗ P )→ H0(∆ ◦∆)→ 0.

The isomorphism (7.3) with k = 1 in conjunction with Lemma 6.1 implies the

assertions about H1(W ). The exact sequence (7.4) implies

dim(H0(W ))q = dim(H1(∆ ◦∆))q + dim(H0(∆⊗ P ))q − dim(H0(∆ ◦∆))q.

By Lemma 4.1, H0(∆ ⊗ P ) is a K-space with basis consisting of the elements

y1y2 . . . yj ⊗ ei with yi ∈ X, y1 6 · · · 6 yj and 1 6 i 6 r. There are exactly k such

elements of multidegree q, and hence dim(H0(∆⊗P ))q = k. Also, dim(H1(∆◦∆))q

is given in Lemma 6.1, and dim(H0(∆ ◦∆))q = 1 by Corollary 5.4(i). It remains to

put these numbers into the above equation. �

At this point, let us state our main result.

Theorem 7.2. Let G be the free centre-by metabelian Lie algebra of rank r > 1

over a field of characteristic 2, and let q � n with n > 5 be a composition of n in r

parts such that k of the parts are non-zero and m of the parts are equal to 1.

(i) If m = k, that is, if q is multilinear, then

dim(G′′)q =

(
k − 1

2

)
.

(ii) If at least one of the parts of q is greater than 1, then

dim(G′′)q =


(
k−1

2

)
, if all parts of q are even;(

k
2

)
−m, otherwise.

Proof. Consider the long exact homology sequence stemming from the short exact

sequence (7.1). Its final part is as follows:

(7.5) · · · → H1(P ∧ P )→ H1(W )→ H0(M ∧M)→ H0(P ∧ P )→ H0(W )→ 0.

First we prove (i), the case where q is multilinear. In view of Corollary 4.3, then

(7.5) yields an exact sequence

0→ (H1(W ))q → (H0(M ∧M))q → (H0(P ∧ P ))q → (H0(W ))q → 0.
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The exactness of this 4-term exact sequence together with Corollary 5.4(ii) and

Lemma 7.1 imply that

dim(H0(M ∧M))q = dim(H1(W ))q + dim(H0(P ∧ P ))q − dim(H0(W ))q

= 1 +

(
k

2

)
− k =

(
k − 1

2

)
,

as required.

Now we turn to (ii). In this case the exactness of (7.5) implies that

(7.6) dim(H0(M ∧M))q > dim(H0(P ∧ P ))q − dim(H0(W ))q.

If all parts of q are even, then the right hand side of this inequality is equal to

dim(H0(P ∧ P ))q − dim(H0(W ))q =

(
k

2

)
− (k − 1) =

(
k − 1

2

)
,

and when at least one of the parts is odd, then

dim(H0(P ∧ P ))q − dim(H0(W ))q =

(
k

2

)
+ k −m− k =

(
k

2

)
−m.

Hence

dim(H0(M ∧M))q >


(
k−1

2

)
, if all parts of q are even;(

k
2

)
−m, otherwise.

To finish the proof we appeal to Lemma 3.2 of [4] where a generating set of

(H0(M ∧M))q is obtained. More precisely, if qi is a part of q such that qi > 2, then

the elements

[z1, xi] ∧∗ [z2, xi](z3z4 . . . zn−2),

z1, z2, . . . , zn−2 ∈ X, of multidegree q with z1 > z2 and z1, z2 6= xi form a generating

set for the fine homogeneous component (H0(M ∧M))q. There are
(
k
2

)
−m such

elements, but if all parts of q are even, then k−1 of them are zero, namely the ones

with z1 = z2. Indeed, such elements are of the form [z1, xi] ∧∗ [z1, xi]u
2 for some

u ∈ U , and we have, in view of (5.1),

[z1, xi] ∧∗ [z1, xi]u
2 = [z1, xi]u ∧∗ [z1, xi]u = 0.

In either case the number of generators of (H0(M ∧M))q is precisely the number

on the right hand side of the inequality (7.6). Hence this number is equal to the

dimension of (H0(M ∧M))q, as required. �

8. The free centre-by-metabelian Lie ring

In this final section we combine our main result with that of [4] to prove a

complete structure theorem for the underlying additive group of the free centre-by-

metabelian Lie ring, that is, for the case where K = Z. Given y1, . . . , yn ∈ X with

n > 5, we follow [4] in calling the Lie monomial

(8.1) [[y1, y2], [y3, y4, y5, y6, . . . , yn]]
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a Kuz’min element if y1 > y2, y3 > y4, y1 > y3 and y4 6 y2 6 y5 6 · · · 6 yn, and

we call an element of the form

w(y1, y2, y3, y4; y5, . . . , yn) = [[y1, y2], [y3, y4, y5, . . . , yn]]

+ [[y2, y3], [y1, y4, y5, . . . , yn]]

+ [[y3, y1], [y2, y4, y5, . . . , yn]]

a t-element.

Theorem 8.1. Let G be the free centre-by-metabelian Lie ring of rank r > 1 on a

free generating set X = {x1, x2, . . . , xr}, let q = (q1, q2, . . . , qr) � n be a composition

of n > 5, and let G′′q denote the fine homogeneous component of multidegree q of

the second derived ideal G′′ ⊆ G.

(i) Suppose that q = (q1, . . . , qr) � n is multilinear with qi = 1 for i = i1, i2, . . . , in,

where 1 6 i1 < · · · < in 6 r. Then,

(a) if n is odd, G′′q is generated by the Kuz’min elements of multidegree q and

the t-element w(xi1 , xi2 , xi3 , xi4 ;xi5 , . . . , xin). The former freely generate

a free abelian group of rank 1
2n(n − 3) and the latter generates a cyclic

group of order 2,

(b) if n is even, then G′′q is a free abelian group of rank
(
n−1

2

)
, and the Kuz’min

elements of multidegree q together with the element

[[xi3 , xi2 ], [xi4 , xi1 , xi5 , . . . xin ]]

form a free generating set for it.

(ii) Suppose that q = (q1, . . . , qr) � n is a composition of n with k non-zero parts,

such that qi > 2 for some i with 1 6 i 6 n, and m of the parts of q are 1.

Then

(a) if n is odd, G′′q is a free abelian group of rank
(
k
2

)
−m, and the elements

(8.1) of multidegree q with y2 = y4 = xi, y1 > y3 and y1, y3 6= xi, form a

free generating set for it,

(b) if n is even, then G′′q is a direct sum of a free abelian group of rank(
k−1

2

)
that is freely generated by the elements (8.1) of multidegree q with

y2 = y4 = xi, y1 > y2 and y1, y2 6= xi, and an elementary abelian 2-

group. If at least one of the parts of q is odd, then this 2-group is of rank

k − 1−m, and it is freely generated, as a Z/2Z-module, by the elements

(8.1) of multidegree q such that y2 = y4 = xi, y1 = y3 6= xi. If all parts of

q are even, then the torsion subgroup of G′′q is zero.

Proof. A substantial part of the theorem is proved in [4, Theorem 7.1]. The only

points that were left open in [4] refer to the torsion subgroup Tq of G′′q . In part

(i.a) of Theorem 7.1 in [4] it is only proved that Tq is generated by the t-element

w(xi1 , xi2 , xi3 , xi4 ;xi5 · · ·xin). The question of whether or not this element is non-

zero remained open. Now we can answer this question affirmatively. Indeed, if

we reduce G′′q modulo 2, then Theorem 7.2 from the previous section tells us that

we obtain an elementary abelian 2-group of rank
(
n−1

2

)
= 1

2n(n − 3) + 1. By [4,

Theorem 7.1], G′′q/Tq is a free abelian group of rank 1
2n(n− 3). Hence the torsion
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subgroup must be non-trivial. In part (ii.b) of Theorem 7.1 in [4] it was proved

that if at least one part of q is odd, then the torsion subgroup of G′′q has exponent

2 and is generated by the elements (8.1) of multidegree q such that y2 = y4 = xi,

y1 = y3 6= xi. Now we can prove that these elements are in fact non-trivial and,

moreover, they are linearly independent over Z/2Z. Indeed, by Theorem 7.2 from

the previous section, reduction modulo 2 turns G′′q into an elementary abelian 2-

group of rank
(
k
2

)
−m. By [4, Theorem7.1], G′′q/Tq is a free abelian group of rank(

k−1
2

)
. Consequently, the rank of Tq as a Z/2Z-module must be k−1−m, the number

of elements (8.1) such that y2 = y4 = xi, y1 = y3 6= xi. Hence these elements are

linearly independent over Z/2Z. This completes the proof of theorem. �

While part (i) of our theorem agrees with parts 1) and 2) of Theorem 4 in [2],

part (ii) contradicts what is claimed in parts 3) and 4) of that theorem. For a more

detailed discussion of the discrepancies, see [4].
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