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FREE CENTRE-BY-METABELIAN LIE RINGS

NIL MANSUROǦLU AND RALPH STÖHR

Abstract. We study the free centre-by-metabelian Lie ring, that is, the free

Lie ring with the property that the second derived ideal is contained in the

centre. We exhibit explicit generating sets for the homogeneous and fine homo-

geneous components of the second derived ideal. Each of these components is

a direct sum of a free abelian group and a (possibly trivial) elementary abelian

2-group. Our generating sets are such that some of their elements generate

the torsion subgroup while the remaining ones freely generate a free abelian

group. A key ingredient of our approach is the determination of the dimensions

of the corresponding homogeneous and fine homogeneous components of the

free centre-by-metabelian Lie algebra over fields of characteristic other than 2.

For that we exploit a 6-term exact sequence of modules over a polynomial ring

that is originally defined over the integers, but turns into a sequence whose

terms are projective modules after tensoring with a suitable field. Our results

correct a partly erroneous theorem in the literature.

1. Introduction

The free centre-by-metabelian Lie rings are curious structures with a number of

unusual properties: Unlike free nilpotent or free soluble Lie rings, their underlying

abelian groups are not free, but contain elements of order 2. Moreover, the 2-

torsion occurring in odd degrees is drastically different from the 2-torsion in even

degrees. Another peculiar feature is that the free centre-by-metabelian Lie ring

is not isomorphic to the Lie ring of the free centre-by-metabelian group (of the

same rank). More precisely, let G = G(X) denote the free centre-by-metabelian

Lie ring of finite rank r on a free generating set X, |X| = r > 1. Then G is a central

extension of the free metabelian Lie ring G/G′′. The additive structure of the latter

is well understood: It is a free abelian group and the simple basic monomials form a

Z-basis for it, see, for example, [1, 4.7.1]. In fact, this basis appeared already in [2]

where, moreover, a formula for the number of such basis elements in every degree

was derived. When studying G itself it is therefore natural to focus on the second

derived ideal G′′. Let Gn, n > 1 denote the degree n homogeneous component of

G, and set G′′n = G′′ ∩ Gn. Then G′′4 is easily seen to be isomorphic to G2 ∧ G2,

a free abelian group, and the situation gets interesting when n > 5. Namely, for

n > 5 there is a direct decomposition

(1.1) G′′n = Fn ⊕ Tn

where Tn is a (possibly trivial) elementary abelian 2-group and Fn is a free abelian

group. This, together with explicit bases for Tn as a free Z/2Z-module and for Fn
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as a free Z-module, is the main result (Theorem 4) in the section on Lie rings in

Yu.V. Kuz’min’s ground-breaking paper [6]. However, it turned out later that some

of the details in [6] are in need of correction. Zerck [13] pointed out that the sets

asserted to be bases for the torsion subgroups Tn for even n > 6 in [6] are actually

not sufficient to generate those groups. Unfortunately, Zerck’s preprint [13] was

never published properly and is not easily accessible. Moreover, Zerck did not give

full proofs, but refered in certain instances to the methods in [6], which is hardly

satisfactory as some of the arguments in that paper are compromised. Now it turns

out that, apart from the shortcomings related to Tn, the sets claimed in [6] to be

bases of Fn for even n > 6 fail to be linearly independent over Z. The aim of the

present paper is to put this right.

Closely related to free centre-by-metabelian Lie rings are the lower central quo-

tients of the free centre-by-metabelian groups. These groups are themselves highly

curious objects. In 1974 C.K. Gupta [3] discovered that, from rank 4 onwards, they

contain elements of order 2 in the centre, a very surprising result at the time. Let

G denote the free centre-by-metabelian group of rank r on a free generating set X,

|X| = r > 1, and let γnG denote the nth term of the lower central series of G.

The Lie ring L(G) of the group G is the direct sum of the lower central quotients

γnG/γn+1G (n = 1, 2, 3, . . .) with Lie bracket induced by the commutator in G (see

[1, 8.2.4]). Now, L(G) is a centre-by-metabelian Lie ring. Hence it is a homomorphic

image of the free centre-by-metabelian Lie ring G, and the lower central quotients

γnG/γn+1G are homomorphic images of the respective homogeneous components

Gn. Again, in contrast to free nilpotent or free soluble groups and Lie rings, the

canonical map G→ L(G) is not an isomorphism [7, Theorem 2]. However, there are

isomorphisms Ln ⊗Q ∼= (γnG/γn+1G)⊗Q for all n > 1 [7, Theorem 1]. The lower

central quotients of G were studied in [4]. Let G′′n = (γnG ∩G′′)γn+1G/γn+1G, in

other words, G′′n is the image of G′′n under the canonical epimorphism G → L(G).

It was shown that G′′n
∼= Fn⊕Tn where Tn is an elementary abelian 2-group and Fn

is a free abelian group. Moreover, explicit generating sets for both Tn and Fn were

obtained [4, Theorems 1 and 4]. For odd n, the generating sets for Fn in [4] are

exactly the canonical images of the basis for Fn given in [6]. For even n, however,

the generating sets for Fn in [4] have fewer elements that the alleged bases for Fn

given in [6]. We mention that in their Theorem 1 of [4] the authors use the word

basis, rather than generating set. It appears, though, that this is used in the sense

of generating set as the question of linear independence over Z is not addressed in

the proof. Also, in [4] no proof is given for part (ii) of Theorem 4, the part relating

to Fn.

In this paper we focus on the torsion-free part of G′′. We obtain Z-bases for

the free abelian parts of the fine homogeneous components of G′′, and we also

derive formulae for the ranks of these groups as free Z-modules. Our approach is

as follows. First we obtain generating sets for the fine homogeneous components

of G′′. Then we show that certain subsets of those generating sets span torsion

subgroups, more precisely, elementary abelian 2-groups. Finally, we show that the

remaining elements in those generating sets are linearly independent over Z, that
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is, they actually freely generate the components modulo their torsion subgroups as

free Z-modules. This yields our main result, Theorem 7.1, which gives a detailed

description of the fine homogeneous components of G′′. Our approach is based

on an isomorphism, due to Kuz’min [6], between G′′ and a certain tensor product.

More precisely, the adjoint representation of G induces on the quotient M = G′/G′′

the structure of a module for the polynomial ring U = Z[X], which is, in fact, the

universal envelope for the abelian Lie algebra G/G′. Then G′′ is isomorphic to

(M ∧M)⊗U Z where the exterior square M ∧M is regarded as a U -module with

derivation action and Z is the trivial U -module. Most of the work in this paper is

carried out in that tensor product. The methods we employ to find spanning sets

for the fine homogeneous components, and to prove that part of the spanning sets

generate elementary abelian 2-groups are essentially the same as in [6], except that

we take advantage of the fine homogeneous structure. This makes it possible to

obtain very simple generating sets for fine homogeneous components in which at

least one of the free generators occurs with multiplicity greater than one. Where our

approach significantly differs from [6] is our method for proving that the generating

sets we obtain for the torsion-free part are linearly independent over Z. Here we use

homological methods: The exterior square M ∧M fits into a 6-term exact sequence.

This sequence enables us to work out the dimensions of the fine homogeneous

components of G′′ ⊗K, where K is a field of characteristic other than 2. It turns

out that these dimensions coincide with the number of non-torsion elements in

our generating sets for the corresponding fine homogeneous components of G′′,

which implies that these elements freely generate free Z-modules. Our main result

confirms the results in [6] on the torsion-free part of G′′n for odd n > 5, see Theorem

7.2 below, and corrects the results for even n > 6. Our results also show that the

generating sets for the torsion-free part of G′′n given in [4] are linearly independent

over Z. Finally, we give a short direct proof for the fact that G′′ is a direct sum of

a free abelian group and an elementary abelian 2-group.

The paper is organized as follows. Notation and some preliminary notions are

set up in Section 2. Section 3 is devoted to deriving generating sets for the fine

homogeneous components of G′′, and in Section 4 we examine torsion elements in

G′′. In Section 5 we introduce a 6-term exact sequence that includes the exterior

square M ∧M , and we examine the modules occurring in that sequence. Some of

the results in this section require to work over a field rather than over the ring of

integers. These results are then exploited in Section 6 to work out the dimensions of

the fine homogeneous components ofG′′⊗K for an arbitrary fieldK of characteristic

other than 2. Our main result is stated and proved in Section 7, where we also

discuss how our results relate to those in [6] and [4]. In the concluding Section 8

we give the above mentioned direct proof of the fact that the torsion subgroup of

G′′ is annihilated by 2, and that the quotient by it is free abelian.
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2. Preliminaries

Let L = L(X) be the free Lie ring of rank r > 1 on a set X = {x1, x2, . . . , xr}.
We assume the set X to be ordered by x1 < x2 < · · · < xr. The free centre-

by-metabelian Lie ring G = G(X) of rank r is the quotient G = L/[L′′, L] where

L′′ is the second derived ideal of L. Our aim is to study the second derived ideal

G′′ = L′′/[L′′, L].

The derived ideal L′ is a free Lie ring, and the Lie monomials

(2.1) [y1, y2, . . . , yn] with yi ∈ X, n > 2 and y1 > y2 6 y3 6 · · · 6 yn

(using the left-normed convention for Lie products) form a free generating set for

L′ (see, for example, [1, Section 4.2.2]). It follows that the elements (2.1) (more

precisely, their cosets modulo L′′) form a basis of the quotient M = L′/L′′. The

adjoint representation of L induces on M the structure of an L/L′-module, and

hence of a module for the universal envelope U of the abelian Lie ring L/L′. This

universal envelope is in fact the ring of polynomials on X with integer coefficients:

U = Z[X]. At this point we introduce some notation relating to this polynomial

ring. We let ∆ denote the augmentation ideal of U , that is the ideal of all poly-

nomials with zero constant term. Hence ∆ is the kernel of the augmentation map

ε : U → Z that maps every polynomial to its constant term. The short exact

sequence

(2.2) 0→ ∆→ U
ε−→ Z→ 0

is known as the augmentation sequence. The ring of integers Z will be regarded as a

trivial U -module, and then the augmentation sequence is a sequence of U -modules.

For a (commutative and associative) monomial u = y1y2 . . . yk ∈ U with yi ∈ X,

we let l(u) denote the smallest of the elements y1, y2, . . . , yk with respect to the

ordering of X, and we write deg u for the degree of u. By U we denote the set of

all monomials,

U = {y1y2 . . . yk; yi ∈ X, y1 6 y2 6 · · · 6 yk, k > 0} ,

in U with the convention that 1 is the only monomial of degree 0. The set U is a

basis for U as a free Z-module. Now we return to our free Lie rings. The quotient

M is, as a U -module, generated by the elements [xi, xj ] with xi, xj ∈ X. Using

module notation, the images of the elements (2.1) in M can be written as

(2.3) [y1, y2]u with yi ∈ X, u ∈ U and y1 > y2 6 l(u).

These elements form a Z-basis of M . Let P be a free U -module with free generators

e1, e2, . . . , er. Then the map [xi, xj ] 7→ eixj − ejxi extends to an embedding µ :

M → P . Moreover, if σ : P → ∆ is the map determined by ei 7→ xi, then

(2.4) 0→M
µ−→ P

σ−→ ∆→ 0

is a short exact sequence of U -modules. A proof of this can be found in [11]. For

U -modules A and B, the tensor product A ⊗ B (over Z) will be regarded as a
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U -module with derivation action, that is for a ∈ A, b ∈ B and y ∈ X we have

(a⊗ b)y = ay ⊗ b+ a⊗ by.

Likewise, the exterior and symmetric squares of a U -module A, denoted by A ∧ A
and A ◦A, respectively, will be regarded as U -modules with derivation action. The

adjoint representation of L induces on the lower central quotients of the derived ideal

L′ the structure of a U -module. For the first lower central quotient γ1(L′)/γ2(L′) =

L′/L′′ this is precisely the U -module M discussed above. For the second lower

central quotient γ2(L′)/γ3(L′) the module action is, for m1,m2 ∈ L′ and y ∈ X,

given by

(2.5) ([m1,m2] + γ3(L′))y = [[m1, y],m2] + [m1, [m2, y]] + γ3(L′).

As an abelian group, γ2(L′)/γ3(L′) is isomorphic to the exterior square of M =

L′/L′′,

(2.6) γ2(L′)/γ3(L′) ∼= M ∧M,

via the map ([m1,m2] + γ3(L′)) 7→ (m1 + γ2(L′)) ∧ (m2 + γ2(L′)). In view of

(2.5) this is, in fact, an isomorphism of U -modules (where M ∧M is regarded as

a U -module with derivation action). Since (γ2(L′)/γ3(L′))∆ = [γ2(L′), L]/γ3(L′),

and

(γ2(L′)/γ3(L′))⊗U Z = (γ2(L′)/γ3(L′))/(γ2(L′)/γ3(L′))∆

= (γ2(L′)/γ3(L′))/([γ2(L′), L]/γ3(L′))

∼= γ2(L′)/[γ2(L′), L]

= L′′/[L′′, L]

= G′′,

trivializing the U -action on both sides of the isomorphism (2.6) yields an isomor-

phism

(2.7) G′′ ∼= (M ∧M)⊗U Z

([6, Lemma 2]). The free centre-by-metabelian Lie ring G has a natural grading by

degree. We let Gn denote the degree n homogeneous component of G, and write G′′n
for the degree n homogeneous component of the second derived ideal: G′′n = G′′∩Gn.

We are also interested in the fine homogeneous components of G. These are the

Z-submodules of G spanned by all Lie monomials of the same multidegree in the

free generators. More precisely, a composition q of n in r parts (q � n) is a sequence

q = (q1, q2, . . . , qr) of non-negative integers such that
∑r
j=1 qj = n. Note that we

do allow zero parts and that throughout we assume the number of parts to be r.

For a fixed composition q = (q1, q2, . . . , qr) of n, let Gq be the Z-submodule of G

generated by all Lie products of partial degree qj with respect to xj for 1 6 j 6 r.

Then

Gn =
⊕
q�n

Gq.
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We writeG′′q forG′′∩Gq. A fine homogeneous componentGq with q = (q1, q2, . . . , qr)

is called multilinear if qi 6 1 for all i. The module M is also graded by degree, and

so are the exterior square M ∧M and the tensor product (M ∧M)⊗U K. We write

((M ∧M) ⊗U K)n, ((M ∧M) ⊗U K)q for the various homogeneous components.

The isomorphism (2.7) is an isomorphism of graded U -modules.

We conclude this section by recording some easy facts about the fine homoge-

neous structure of G. For any map f : X → X of the free generating set X to itself

we let πf : G→ G denote the unique endomorphism of G that extends f . It is clear

that the image of a fine homogeneous component Gq with q = (q1, q2, . . . , qr) � n

under an endomorphism of the form πf is itself a fine homogeneous component. In

fact,

Gqπf = Gq′ where q′ = (q′1, q
′
2, . . . , q

′
r) with q′i =

∑
j:f(j)=i

qj .

It is plain that Gqπf ∼= Gq if f is a bijection. Consequently, each fine homogeneous

component is isomorphic to a fine homogeneous component of the form Gq where

q = (q1, q2, . . . , qr) is a partition of n, that is, a composition with the additional

condition that q1 > q2 > · · · > qr. Finally, note that every fine homogeneous

component Gq, q � n 6 r is a homomorphic image of the multilinear fine homo-

geneous component q = (1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0) under some endomorphism of the form

πf . Moreover, it is easily seen that f can be chosen in such a way that it preserves

the order of the free generators, i.e. if xi 6 xj then xif 6 xjf . All the easy facts

recorded in this paragraph remain true if Gq is replaced by G′′q .

3. Generating sets

We have seen that the elements (2.3) form a generating set of M as a free Z-

module. It follows that the exterior square M ∧M is generated by all elements

(3.1) [y1, y2]u1 ∧ [y3, y4]u2 (yi ∈ X, u1, u2 ∈ U).

In this section we obtain generating sets for the tensor product (M ∧M) ⊗U Z =

(M ∧ M)/(M ∧ M)∆. To simplify notation and to save space, we denote the

canonical image of an exterior product m1 ∧ m2 ∈ M ∧ M (m1,m2 ∈ M) in

(M ∧M) ⊗U Z in what follows by m1 ∧∗ m2 rather than (m1 ∧m2) ⊗ 1. We now

record a number of relations that are satisfied in (M ∧M)⊗U Z. First of all, there

are the relations coming from anticommutativity and the Jacobi identity in M :

(3.2) [xi, xi] = 0, [xi, xj ] = −[xj , xi]

and

(3.3) [xi, xj ]xk = −[xj , xk]xi + [xi, xk]xj

for all xi, xj , xk ∈ X. Then there is anticommutativity coming from the exterior

square M ∧M :

(3.4) m ∧∗ m = 0, m1 ∧∗ m2 = −(m2 ∧∗ m1)
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for all m,m1,m2 ∈ M . Finally, there are relations coming from the trivialization

of the U -action:

(3.5) m1y ∧∗ m2 = −(m1 ∧∗ m2y)

for all m1,m2 ∈ M,y ∈ X. Indeed, since (m1 ∧m2)y = m1y ∧m2 + m1 ∧m2y ∈
(M ∧M)∆, it follows that m1y ∧∗ m2 +m1 ∧∗ m2y = 0 in (M ∧M)⊗U Z. It will

be useful to record the following obvious consequence of (3.4) and (3.5):

(3.6) m1 ∧∗ m2u = (−1)deg u+1(m2 ∧∗ m1u) (m1,m2 ∈M,u ∈ U).

Of course, the images of the elements (3.1) in (M ∧M)⊗U Z generate that tensor

product as a Z-module. In view of (3.5), each of those images is, up to sign, equal

to an element of the form

(3.7) [y1, y2] ∧∗ [y3, y4](y5y6 · · · yn) (yi ∈ X).

Hence the elements (3.7) form a generating set of (M ∧ M) ⊗U Z. Our task is

to further reduce this generating set. We call elements of the form (3.7) Kuz’min

elements if y1 > y2, y3 > y4, y1 > y3, y2 > y4 and y2 6 l(u). We will show that the

multilinear Kuz’min elements of degree n > 5 together with one additional element

form a generating set for the degree n multilinear fine homogeneous components of

(M ∧M)⊗U Z. We start with a simple observation.

Lemma 3.1. Let n > 4 and a, b ∈ X. Any element (3.7) with yi = a, yj = b for

some i, j with 1 6 i, j 6 n, i 6= j, belongs to the span of the elements

(3.8) [z1, z2] ∧∗ [b, a](z3 · · · zn−2) and [z1, b] ∧∗ [z2, a](z3 · · · zn−2)

of the same multidegree with z1, z2, . . . , zn−2 ∈ X.

Proof. First we show that under our assumptions the element (3.7) is in the span

of the elements

(3.9) [z1, z2] ∧∗ [z3, a](z4 · · · zn−1)

where z1, z2, . . . , zn−1 ∈ X. In view of the relations (3.6) and the anticommutativity

of the Lie bracket this is obvious if a is one of y1, y2, y3, y4 since in this case the

element (3.7) is (up to sign) actually equal to one of the elements (3.9). If a is one

of y5, . . . , yn, we may assume that a = y5, and then, by using (3.3) we get

[y1, y2] ∧∗ [y3, y4](ay6 · · · yn) = −[y1, y2] ∧∗ [y4, a](y3y6 · · · yn)

+ [y1, y2] ∧∗ [y3, a](y4y6 · · · yn),

as required. It remains to show that any element of the form (3.9) such that b is

equal to one of the elements z1, z2, . . . , zn−1 is in the span of the elements (3.8).

Again, this is clear if b is one of z1, z2, z3. Otherwise b will be one of z4, . . . , zn−1,

and we may assume that b = z4. Then we find, using the relations (3.5) and (3.3),

[z1, z2] ∧∗ [z3, a](bz5 · · · zn−1)

= −[z1, z2]b ∧∗ [z3, a](z5 · · · zn−1)

= +[z2, b]z1 ∧∗ [z3, a](z5 · · · zn−1)− [z1, b]z2 ∧∗ [z3, a](z5 · · · zn−1)

= −[z2, b] ∧∗ [z3, a](z1z5 · · · zn−1) + [z1, b] ∧∗ [z3, a](z2z5 · · · zn−1),
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as required. �

Armed with Lemma 3.1 it is very easy to obtain efficient generating sets for the

fine homogeneous components ((M ∧M)⊗U Z)q for partitions q � n with at least

one part > 2. We will see later that these generating sets are actually minimal if n

is odd, and that they can easily be reduced to minimal generating sets if n is even.

Lemma 3.2. Let n > 5 and let q = (q1, q2, . . . , qr) be a composition of n in r parts

such that qi > 2 for some i. Then the elements

[z1, xi] ∧∗ [z2, xi](z3z4 · · · zn−2),

z1, z2, . . . , zn−2 ∈ X, of multidegree q with z1 > z2 and z1, z2 6= xi form a generating

set for the fine homogeneous component ((M ∧M)⊗U Z)q.

Proof. By Lemma 3.1 with a = b = xi, each element (3.7) of multidegree q

in ((M ∧ M) ⊗U Z) is a linear combination of elements of the form [z1, xi] ∧∗
[z2, xi](z3 · · · zn−2), and because of the relation (3.6) it is sufficient to take those

elements with z1 > z2. �

Now we deal with multilinear homogeneous components.

Lemma 3.3. Suppose |X| = n > 5. Then every element (3.7) of multidegree

q = (1, 1, . . . , 1) � n is a linear combination of Kuz’min elements of multidegree

(1, 1, . . . , 1) and the element h = [x3, x2] ∧∗ [x4, x1](x5 · · ·xn).

Proof. Suppose we are given an arbitrary element g of the form (3.7) of multidegree

(1, 1, . . . , 1), i.e. each of the elements x1, x2, . . . , xn appears exactly once. By

Lemma 3.1 with a = x1 and b = x2, we may assume that g is either

(3.10) [z1, z2] ∧∗ [x2, x1](z3 · · · zn−2)

or

(3.11) [z1, x2] ∧∗ [z2, x1](z3 · · · zn−2)

where z1, z2, . . . , zn−2 ∈ X. In the former case (3.10) the element is a Kuz’min

element if z2 = x3. Also, if z1 = x3, we swap z1 and z2 at the expense of a sign

change to obtain a Kuz’min element. If neither z1 nor z2 are equal to x3, then x3

must be one of z3, . . . , zn−2, and we may assume that z3 = x3. Let v = z4 · · · zn−2.

Then we have, by using the relations (3.5) and (3.3),

[z2, z1] ∧∗ [x2, x1]x3v = −[z2, z1]x3 ∧∗ [x2, x1]v

= ([z1, x3]z2 − [z2, x3]z1) ∧∗ [x2, x1]v(3.12)

= −[z1, x3] ∧∗ [x2, x1]z2v + [z2, x3] ∧∗ [x2, x1]z1v.

The two elements at the bottom are Kuz’min, as required. Now consider the latter

case (3.11). Such elements are Kuz’min if z2 = x3. If this is not the case, then

either z1 = x3 (Case 1) or x3 is one of z3, . . . , zn−2 (Case 2). In Case 1, if z2 = x4,

we get the element h. If this is not the case, x4 must be one of z3, . . . , zn−2, and

we may assume that z3 = x4. Then the element in question is of the form

(3.13) [x3, x2] ∧∗ [z2, x1]x4v
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where v = z4 · · · zn−2. Using the relations (3.3) and (3.2) we get

[x3, x2] ∧∗ [z2, x1]x4v = [x3, x2] ∧∗ [x4, x1]z2v + [x3, x2] ∧∗ [z2, x4]x1v.

The first element on the right hand side is the element h. It remains to show that

the second element on the right hand side is of the required form. By using the

relations (3.2)-(3.5) we get

[x3, x2] ∧∗ [z2, x4]x1v

= −[x3, x2]x1 ∧∗ [z2, x4]v

= [x2, x1]x3 ∧∗ [z2, x4]v − [x3, x1]x2 ∧∗ [z2, x4]v

= −[z2, x4]v ∧∗ [x2, x1]x3 + [z2, x4]v ∧∗ [x3, x1]x2

= (−1)deg v+1[z2, x4] ∧∗ [x2, x1]x3v + (−1)deg v[z2, x4] ∧∗ [x3, x1]x2v.

We have already seen that the first of the two elements at the bottom can be written

as a linear combination of Kuz’min elements (see (3.12)). For the second of these

elements we have, again by using the relation (3.2),(3.3) and (3.5)

(−1)deg v[z2, x4] ∧∗ [x3, x1]x2v

= (−1)deg v+1[z2, x4]x2 ∧∗ [x3, x1]v

= (−1)deg v+1[z2, x2]x4 ∧∗ [x3, x1]v + (−1)deg v[x4, x2]z2 ∧∗ [x3, x1]v

= (−1)deg v[z2, x2] ∧∗ [x3, x1]x4v + (−1)deg v+1[x4, x2] ∧∗ [x3, x1]z2v.

The two elements at the bottom are Kuz’min elements.

It remains to deal with Case 2, where x3 is one of z3, . . . , zn−2. We may assume

that x3 = z3. Then the element in question is of the form

[z1, x2] ∧∗ [z2, x1]x3v

where v = z4 · · · zn−2. If z1 > z2, this element is Kuz’min. If z1 < z2, we use (3.3)

and (3.2) to get

[z1, x2] ∧∗ [z2, x1]x3v = [z1, x2] ∧∗ [x3, x1]z2v + [z1, x2] ∧∗ [z2, x3]x1v.

The first element on the right hand side is Kuz’min. For the second element we get

by using (3.5), (3.3) and (3.6), respectively,

[z1, x2] ∧∗ [z2, x3]x1v

= −[z1, x2]x1 ∧∗ [z2, z3]v

= [x2, x1]z1 ∧∗ [z2, x3]v + [x1, z1]x2 ∧∗ [z2, x3]v

= (−1)deg v+1[z2, x3] ∧∗ [x2, x1]z1v + (−1)deg v[z2, x3] ∧∗ [z1, x1]x2v.
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The first element on the bottom line is Kuz’min (up to sign), and the second element

can be rewritten by using (3.5), (3.3) and (3.6) as

(−1)deg v[z2, x3] ∧∗ [z1, x1]x2v

= (−1)deg v+1[z2, x3]x2 ∧∗ [z1, x1]v

= (−1)deg v[x3, x2]z2 ∧∗ [z1, x1]v + (−1)deg v+1[z2, x2]x3 ∧∗ [z1, x1]v

= (−1)deg v+1[x3, x2] ∧∗ [z1, x1]z2v + (−1)deg v[z2, x2] ∧∗ [z1, x1]x3v.

Now the second summand on the bottom line is a Kuz’min element (up to sign).

As to the first summand, if z1 = x4 then this is h. If z1 6= x4, then x4 is one of the

elements z2, z4, z5, . . . , zn−2, and in this case the first summand is (up to sign) of

the form (3.13). Such elements have been dealt with in Case 1. This completes the

proof of the lemma. �

4. t-elements

Apart from the Kuz’min elements, there is a second kind of elements that will

play a crucial role in studying the homogeneous components of (M ∧M)⊗U Z = G′′

in odd degree n > 5. We call elements of the form

w(y1, y2, y3, y4;u) = [y1, y2] ∧∗ [y3, y4]u+ [y2, y3] ∧∗ [y1, y4]u+ [y3, y1] ∧∗ [y2, y4]u,

where y1, . . . , y4 ∈ X and u ∈ U , t-elements. These elements feature prominently in

[6], where they are called Jacobian elements, and, slightly earlier, in [5]. The results

in this section are due to Kuz’min [6], and some have been obtained independently

in [5].

Lemma 4.1. Let n > 5 be an odd integer, y1, . . . , yn ∈ X and u = y5 · · · yn. Then

the following holds for the t-element w = w(y1, y2, y3, y4;u) ∈ (M ∧M)⊗U Z.

(i) If any two of the elements y1, y2, y3, y4 are equal, then w = 0. In particular,

w is antisymmetric in y1, y2, y3, y4.

(ii) w(y1, y2, y3, y4; y5y6 · · · yn) = w(y1, y2, y3, y5; y4y6 · · · yn).

Proof. Suppose y1 = y2. Then

w(y1, y1, y3, y4;u)

= [y1, y1] ∧∗ [y3, y4]u+ [y1, y3] ∧∗ [y1, y4]u+ [y3, y1] ∧∗ [y1, y4]u

= 0.

The proof for the cases where y1 = y3 and y2 = y3 is similar. Hence w is anti-

symmetric with respect to the first three entries y1, y2, y3. To complete the proof

of part (i) it is now sufficient to show that w = 0 if y3 = y4. We mention that

so far we have not used the assumption that n is odd. This condition, however, is

required for the case where y3 = y4. If this holds we have

w(y1, y2, y3, y3;u)

= [y1, y2] ∧∗ [y3, y3]u+ [y2, y3] ∧∗ [y1, y3]u+ [y3, y1] ∧∗ [y2, y3]u

= 0.
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Indeed, the first summand is zero by anticommutativity, and the sum of the second

and third is zero by anticommutativity and by (3.6) since deg u is odd. This proves

(i). For (ii), set u = y5v where v = y6 · · · yn. Then

w(y1, y2, y3, y4; y5v)

= [y1, y2] ∧∗ [y3, y4]y5v + [y2, y3] ∧∗ [y1, y4]y5v + [y3, y1] ∧∗ [y2, y4]y5v

= −[y1, y2] ∧∗ [y4, y5]y3v + [y1, y2] ∧∗ [y3, y5]y4v

−[y2, y3] ∧∗ [y4, y5]y1v + [y2, y3] ∧∗ [y1, y5]y4v

−[y3, y1] ∧∗ [y4, y5]y2v + [y3, y1] ∧∗ [y2, y5]y4v.

The sum of the second summands in the last three rows is equal to w(y1, y2, y3, y5; y4v),

and the sum of the first summands in these rows is zero. Indeed, by using (3.5) we

get

−[y1, y2] ∧∗ [y4, y5]y3v − [y2, y3] ∧∗ [y4, y5]y1v − [y3, y1] ∧∗ [y4, y5]y2v

= [y1, y2]y3 ∧∗ [y4, y5]v + [y2, y3]y1 ∧∗ [y4, y5]v + [y3, y1]y2 ∧∗ [y4, y5]v

= 0

(by the Jacobi identity). This completes the proof of part (ii). �

Corollary 4.1. ([6, Lemma 29]) For any t-element w(y1, y2, y3, y4;u) with u =

y5 · · · yn of odd degree,

2w(y1, y2, y3, y4;u) = 0.

Moreover, if any two of the elements y1, . . . , yn are equal, then

w(y1, y2, y3, y4;u) = 0.

Proof. Let u = y5v where v = y6 · · · yn. By using parts (i) and (ii) of Lemma 4.1

we have

w(y1, y2, y3, y4; y5v) = w(y1, y2, y3, y5; y4v) = −w(y1, y2, y5, y3; y4v)

=− w(y1, y2, y5, y4; y3v) = w(y1, y2, y4, y5; y3v) = w(y1, y2, y4, y3; y5v)

=− w(y1, y2, y3, y4; y5v).

Hence 2w(y1, y2, y3, y4;u) = 0, as required. Finally, suppose that yi = yj for

1 6 i < j 6 n. Then Lemma 4.1 implies that

w(y1, y2, y3, y4;u) = ±w(yi, yj , . . . ;u
′)

for some suitable u′ ∈ U . But the right hand side is zero by part (i) of Lemma

4.1. �

5. The 6-term exact sequence

In this Section we introduce a 6-term exact sequence that will be our main tool

for working out dimensions of the homogeneous components of G′′ ⊗K where K

is a field of characteristic other than 2. This exact sequence is very similar to the

exact sequence obtained in Section 7.1 of [12]. However, for the convenience of the
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reader we include full details. Recall the short exact sequences (2.4) and (2.2) from

Section 2:

M � P � ∆ and ∆� U � Z.

These two short exact sequences give rise to a chain complex

(5.1) 0→M ∧M → P ∧ P → ∆⊗ P → U ◦ U → U → Z/2Z→ 0

of abelian groups. The maps in (5.1) are (from left to right) given by

m1 ∧m2 7→ m1µ ∧m2µ (m1,m2 ∈M)

p1 ∧ p2 7→ p1σ ⊗ p2 − p2σ ⊗ p1 (p1, p2 ∈ P )

δ ⊗ p 7→ δ ◦ pσ (δ ∈ ∆, p ∈ P )

f ◦ g 7→ (fε)g + (gε)f (f, g ∈ U)

f 7→ fε+ 2Z (f ∈ U)

with µ, σ and ε as defined in Section 2.

Lemma 5.1. The chain complex (5.1) is an exact sequence of U -modules.

Proof. The short exact sequence (2.4) splits over Z. Let ι : ∆ → P be a splitting

map. Then P = Mµ⊕∆ι as a Z-module. Consequently,

P ∧ P = (Mµ ∧Mµ)⊕ (∆ι⊗Mµ)⊕ (∆ι ∧∆ι)

and

∆⊗ P = (∆⊗Mµ)⊕ (∆⊗∆ι).

Now, the map M ∧ M → P ∧ P maps M ∧ M isomorphically onto the direct

summand Mµ ∧Mµ of P ∧ P , while the map P ∧ P → ∆ ⊗ P maps the direct

summand ∆ι⊗Mµ of P ∧ P isomorphically onto the direct summand ∆⊗Mµ of

∆⊗P , and it maps the direct summand ∆ι∧∆ι injectively into the direct summand

∆⊗∆ι of ∆⊗ P : For δ1, δ2 ∈ ∆ we get

δ1ι ∧ δ2ι 7→ δ1 ⊗ δ2ι− δ2 ⊗ δ1ι.

In fact, the image of ∆ι ∧ ∆ι in ∆ι ⊗ ∆ι is exactly the kernel of the canonical

projection ∆ι⊗∆ι→ ∆ ◦∆. It follows that we have a 4-term exact sequence

0→M ∧M → P ∧ P → ∆⊗ P → ∆ ◦∆→ 0,

where the first two maps are as in (5.1) and the third, ∆⊗ P → ∆ ◦∆ is given by

δ ⊗ p 7→ δ ◦ pσ (δ ∈ ∆, p ∈ P ).

Furthermore, the short exact sequence (2.2) too splits over Z. Here U = ∆⊕ Z
where we identify Z with the constant polynomials in U = Z[X]. Consequently,

U ◦ U = (∆ ◦∆)⊕ (∆⊗ Z)⊕ (Z ◦ Z) ∼= (∆ ◦∆)⊕∆⊕ Z.

It is easily seen that the map U ◦ U → U in (5.1) maps the direct summand

∆ ⊗ Z ∼= ∆ of U ◦ U isomorphically onto the Z-direct summand ∆ of U , while

Z ◦ Z ∼= Z is mapped isomorphically onto 2Z. This yields a 4-term exact sequence

0→ ∆ ◦∆→ U ◦ U → U → Z/2Z→ 0.
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By combining this sequence with the 4-term exact sequence obtained above, we get

the 6-term exact sequence (5.1). This is an exact sequence of abelian groups, but

since all the maps in (5.1) agree with the derivation module action, we have actually

an exact sequence of U -modules. This completes the proof of the lemma. �

Next we examine the modules in that exact sequence. Of course U itself is a

free U -module. It turns out that the same is true for ∆ ⊗ P . In fact, the tensor

product of a Z-free U -module and free U -module under derivation action is always

a free module. This is a well-known general fact. It holds for both tensor products

of modules for groups with diagonal action and tensor products of modules for Lie

algebras with derivation action (see [10, Theorem 1.9.4]). For the convenience of the

reader we include an elementary proof for the current setting. The proof provides

an explicit free generating set that will be useful later.

Lemma 5.2. Let N be an arbitrary U -module that is free as a Z-module with Z-

basis N . Then the tensor product N⊗U is a free U -module and the elements m⊗1

with m ∈ N form a free generating set for N ⊗ U as a U -module.

Proof. Recall that U denotes the Z-basis of U consisting of all monomials. Then

the elements n⊗ u with n ∈ N and u ∈ U form a Z-basis of N ⊗ U . To prove that

the elements m⊗1 form a generating set of N ⊗U as a U -module, it is sufficient to

show that each basis element n⊗ u is a linear combination of those elements with

coefficients in U . This is obviously the case when deg u = 0, that is u = 1. Now let

deg u = k > 0. Then u = vy for some v ∈ U with deg v = k − 1 and some y ∈ X.

Now,

n⊗ vy = (n⊗ v)y − ny ⊗ v,
and by the inductive hypothesis both n⊗ v and ny⊗ v can be expressed as a linear

combination of the elements m ⊗ 1 (m ∈ N ) with coefficients in U . Consequently

n⊗vy can be expressed in this way. Hence the elements m⊗1 are a generating set.

It remains to show that this set is actually a free generating set. Suppose that this

is not the case. Then there exists a finite subset {n1, n2, . . . , nk} of N and non-zero

polynomials f1, f2, . . . , fk ∈ U such that

(5.2)
∑
i

(ni ⊗ 1)fi = 0.

Observe that for any monomial u ∈ U and any n ∈ N we have

(5.3) (n⊗ 1)u = n⊗ u+
∑

cm,vm⊗ v

where the sum runs over some basis elements m ⊗ v with m ∈ N , v ∈ U with

deg v < deg u, and cm,v ∈ Z. Note that the U-components of the basis elements

under the sum in (5.3) are of degree strictly less than the degree of u. Now consider

the dependence (5.2). We may assume that f1 is of maximal degree among the fi.

Let w ∈ U be a monomial that occurs with non-zero coefficient a1,w in the leading

term of f1. Then, if we expand the left hand side of (5.2) as a Z-linear combination

of the basis elements n ⊗ u, (5.3) implies that the coefficient at the basis element

n1 ⊗ w is precisely a1,w. But this gives that the left hand side of (5.2) is not zero,

and the resulting contradiction completes the proof of the lemma. �
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Corollary 5.1. Let N be an arbitrary U -module that is free as a Z-module with

Z-basis N , and let P be a free U -module with free generators e1, e2, . . . , er. Then

the tensor product N ⊗ P is a free U -module and the elements m⊗ ei with m ∈ N
and i = 1, 2, . . . , r form a free generating set for N ⊗ P as a U -module.

Proof. Since

N ⊗ P ∼=
⊕
i

N ⊗ eiU,

this follows immediately from Lemma 5.2. �

The exterior and symmetric squares in (5.1) are not free U -modules. This gen-

erates considerable problems with using (5.1) for obtaining information about the

tensor product (M ∧M) ⊗U Z = G′′. However, if we tensor these squares with a

field K of characteristic other than 2, then both become free modules for the poly-

nomial ring K[X]. This, in turn, allows us to exploit the exact sequence (5.1) to

obtain information on the second derived algebra of the free centre-by-metabelian

Lie algebra over the field K. In order to take advantage of this approach, we now

work with the free centre-by-metabelian algebra over a field K. We keep the no-

tation introduced so far, but for the rest of this section and the next section we

adopt the standing assumption that the ring of integers Z has been replaced as the

ground ring by a field K. Thus L is now the free Lie algebra over K with free

generating set X, G = L/[L′′, L] is the free centre-by-metabelian Lie algebra over

K, U = K[X] etc. It is plain that all the results proved so far in this paper remain

valid after tensoring with K, that is for the free centre-by-metabelian Lie algebra

and associated structures over K.

Proposition 5.1. If K is a field of characteristic other than 2, then the exterior

and symmetric squares U ∧ U and U ◦ U are free U -modules. The elements u ∧ 1

with u ∈ U and deg u odd form a free generating set for U ∧ U , and the elements

u ◦ 1 with u ∈ U and deg u even form a free generating set for U ◦ U .

Proof. The exterior square U∧U is a homomorphic image of the tensor square U⊗U
via the projection map π : U ⊗U → U ∧U given by f1⊗ f2 7→ f1 ∧ f2 (f1, f2 ∈ U).

By Lemma 5.2 the elements u⊗ 1 with u ∈ U form a generating set of U ⊗ U as a

U -module. Consequently, the elements u ∧ 1 form a generating set of U ∧ U as a

U -module. Consider the trivialization homomorphism U ∧ U → (U ∧ U)⊗U K. In

the tensor product (U ∧ U)⊗U K we have the relations

(f1x ∧∗ f2) = −(f1 ∧∗ f2x) (f1, f2 ∈ U, x ∈ X),

and, consequently, for a monomial u ∈ U we have

u ∧∗ 1 = (−1)deg u(1 ∧∗ u) = (−1)deg u+1(u ∧∗ 1).

Since the characteristic of the ground field K is not 2, this implies that (u∧∗ 1) = 0

in (U ∧ U) ⊗U K if deg u is even. Hence in this case u ∧ 1 ∈ (U ∧ U)∆. But this

means that the elements u ∧ 1 with u of even degree belong to the submodule of

U ∧ U that is generated by the elements v ∧ 1 with deg v < deg u. It follows that

these elements can be removed from the generating set of U ∧U as a U -module. In
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other words, the elements u ∧ 1 with u ∈ U and deg u odd form a generating set of

U ∧ U as a U -module. Now we show that this is actually a free generating set. To

this end we consider the images of these generators in U ⊗U under the embedding

ν : U ∧ U → U ⊗ U that is given by (f1 ∧ f2) 7→ f1 ⊗ f2 − f2 ⊗ f1 (f1, f2 ∈ U).

Suppose u = y1y2 . . . yk. Then

1⊗ u = 1⊗ y1y2 · · · yk
= (1⊗ y1y2 · · · yk−1)yk − (yk ⊗ y1y2 · · · yk−2)yk−1

+ (yk−1yk ⊗ y1y2 · · · yk−3)yk−2 − · · ·

· · ·+ (−1)k−1(y2 · · · yk ⊗ 1)y1 + (−1)ky1y2 · · · yk ⊗ 1.

Consequently, if k, the degree of u, is odd, we have

(5.4) (u ∧ 1)ν = u⊗ 1− 1⊗ u = 2(u⊗ 1) + w

where w belongs to the submodule of U ⊗ U that is generated by the elements

v ⊗ 1 with v ∈ U and deg v < deg u. Since the elements u⊗ 1 as free generators of

U⊗U are linearly independent over U , it follows easily from (5.4) that the elements

u ∧ 1 with deg u odd are also linearly independent over U , and hence they are free

generators for U ∧ U as a U -module.

The proof for U ◦ U is similar with the embedding U ◦ U → U ⊗ U given by

(f1 ◦ f2) 7→ f1 ⊗ f2 + f2 ⊗ f1 (f1, f2 ∈ U) being used instead of ν.

�

Corollary 5.2. If K is a field of characteristic other than 2 and P is a free U -

module with free generators e1, . . . , er, then

(i) P ∧P is a free U -module and the elements eiu∧ ei with i = 1, 2, . . . , r, u ∈ U
and deg u odd together with the elements eiu ∧ ej with 1 6 i < j 6 r, u ∈ U
form a free generating set of P ∧ P as a U -module,

(ii) P ◦ P is a free U -module and the elements eiu ◦ ei with i = 1, 2, . . . , r, u ∈ U
and deg u even together with the elements eiu ◦ ej with 1 6 i < j 6 r, u ∈ U
form a free generating set of P ◦ P as a U -module.

Proof. We have that P =
⊕

i eiU , and then

P ∧ P ∼=
⊕
i

(eiU ∧ eiU)⊕
⊕
i<j

(eiU ⊗ ejU) ,

and the result follows. The proof for P ◦ P is similar. �

6. Dimensions

Throughout this section we work with the free centre-by-metabelian Lie algebra

over a field K of characteristic other than 2. Then K/2K = 0, and the 6-term

exact sequence (5.1) turns into

(6.1) 0→M ∧M → P ∧ P → P ⊗∆→ U ◦ U → U → 0.

Note that all the modules in (6.1) have a natural grading (stemming from the

grading by degree in U = K[X]), and that the sequence is an exact sequence of
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graded modules. Moreover, since all the modules to the right of M ∧M are free U -

modules, this exact sequence stays exact after tensoring with the trivial U -module

K:

0→(M ∧M)⊗U K → (P ∧ P )⊗U K →

→ (P ⊗∆)⊗U K → (U ◦ U)⊗U K → U ⊗U K → 0.
(6.2)

This is an exact sequence of graded K-spaces, and it can be used to work out the

dimensions of the homogeneous components of (M ∧M)⊗U K which are, in view

of (2.7), the dimensions of the homogeneous components of G′′. In fact, for any

homogeneous or fine homogeneous component ((M ∧M)⊗U K)∗ the exactness of

(6.2) yields

dim((M ∧M)⊗U K)∗ = dim((P ∧ P )⊗U K)∗ − dim((P ⊗∆)⊗U K)∗

+ dim((U ◦ U)⊗U K)∗ − dim(U ⊗U K)∗.
(6.3)

It remains to work out the terms on the right hand side of (6.3). First of all, U⊗UK
is a K-space of dimension one with free generator 1⊗1 of degree 0. Hence this term

does not contribute to homogeneous components of degree other than 0. For the

other three terms on the right hand side of (6.3), the modules in question are free

and free generating sets for them have been obtained in Section 5. Now if F is a

homogeneous free generating set for a graded U -module F , then {f ⊗ 1 : f ∈ F} is

a basis for the tensor product F ⊗U K as a K-space. Hence, in order to determine

the dimensions on the right hand side of (6.3), we need to count the number of

free module generators of a given degree or multidegree. This is carried out in the

following three lemmas.

Lemma 6.1. If K is a field of characteristic other than 2, then the following holds.

(i) If n > 3 is odd, then

dim((P ∧ P )⊗U K)n =

(
r + 1

2

)(
n+ r − 3

n− 2

)
.

Moreover, if q � n is a composition of n in r parts such that k of the parts

are non-zero and m of the parts are 1, then

dim((P ∧ P )⊗U K)q =

(
k

2

)
+ k −m.

(ii) If n > 2 is even, then

dim((P ∧ P )⊗U K)n =

(
r

2

)(
n+ r − 3

n− 2

)
.

Moreover, if q � n is a composition of n in r parts such that k of the parts

are non-zero and m of the parts are 1, then

dim((P ∧ P )⊗U K)q =

(
k

2

)
.

Proof. If n is odd, Corollary 5.2 implies that the elements eiu⊗ ej (1 6 i 6 j 6 r)

where u ∈ U with deg u = n− 2 form a basis of ((P ∧ P )⊗U K)n. The number of

monomials of degree n−2 in r variables is
(
n+r−3
n−2

)
and the number of possible pairs

ei, ej with i 6 j is
(
r+1

2

)
. This yields the dimension formula for ((P ∧ P )⊗U K)n.
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In order to determine the dimension of ((P ∧ P ) ⊗U K)q, we need to count the

number of basis elements of multidegree q. For each possible choice of the pair

ei, ej in eiu ⊗ ej there is precisely one such basis element of multidegree q. As to

the possible choices of ei, ej , there are
(
k
2

)
with ei 6= ej , and k −m with ei = ej .

This yields the dimension formula for ((P ∧ P )⊗U K)q. If n is even, Corollary 5.2

implies that the elements eiu⊗ ej (1 6 i < j 6 r) where u ∈ U with deg u = n− 2

form a basis of ((P ∧P )⊗U K)n. An easy count gives the corresponding dimension

formulae. �

Lemma 6.2. For any field K and for all n > 2,

dim((∆⊗ P )⊗U K)n = r

(
n+ r − 2

n− 1

)
.

Moreover, if q � n is a composition of n in r parts such that k of the parts are

non-zero, then

dim((∆⊗ P )⊗U K)q = k.

Proof. Corollary 5.1 implies that the elements u⊗ei with i = 1, 2, . . . , r, u ∈ U and

deg u = n − 1 form a basis of ∆ ⊗ P . An easy count of those basis elements and

such among them of a particular multidegree confirms the dimension formulae in

Lemma 6.2. �

Lemma 6.3. If K is a field of characteristic other than 2, then the following holds.

(i) If n > 1 is odd, then

((U ◦ U)⊗U K)n = {0}.

(ii) If n > 2 is even, then

dim((U ◦ U)⊗U K)n =

(
n+ r − 1

n

)
.

Moreover, if q � n is a composition of n in r parts, then

dim((U ◦ U)⊗U K)q = 1.

Proof. This follows from Proposition 5.1 by an argument similar to those used in

the proofs of the previous two lemmas. �

To get the main result of this section, it remains to substitute the dimension

formulae of the previous three lemmas into (6.3), and use the isomorphism (2.7).

Theorem 6.1. Let G be the free centre-by-metabelian Lie algebra of rank r > 1 over

a field K of characteristic other than 2. Then the dimensions of the homogeneous

and fine homogeneous components of the second derived algebra G′′ are as follows.

(i) If n > 5 is odd, then

dim(G′′)n =
r(n− 3)

2

(
n+ r − 3

n− 1

)
.

Moreover, if q � n is a composition of n in r parts such that k of the parts

are non-zero and m of the parts are 1, then

dim(G′′)q =

(
k

2

)
−m.
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(ii) If n > 6 is even, then

dim(G′′)n =

(
n− 1

2

)(
n+ r − 3

n

)
.

Moreover, if q � n is a composition of n in r parts such that k of the parts

are non-zero

dim(G′′)q =

(
k − 1

2

)
.

�

We mention that the formula for dimG′′5 has been derived in our earlier paper

[9].

7. The Basis Theorem

In this section we return to the free centre-by-metabelian Lie ring. We need

another combinatorial result.

Lemma 7.1. Let X = {x1, x2, . . . , xr} with r > 2 and let n be a positive integer

with n > 5.

(i) The number of Kuz’min elements of degree n with entries in X is

k(n, r) =
r(n− 3)

2

(
n+ r − 3

n− 1

)
.

(ii) If n = r, the number multilinear Kuz’min elements of degree n, that is

Kuz’min elements of multidegree (1, 1, . . . , 1), with entries in X is

k̃(n) =
n(n− 3)

2
.

Proof. For part (i) we use induction on r. The assertion is true for r = 2 as the

only Kuz’min elements in this case are of the form

[x2, x1] ∧∗ [x2, x1]xk1x
n−4−k
2 (k = 0, . . . , n− 4).

Hence there is n− 3 of them, which is the required number.

Now let r > 2. By induction, the number of Kuz’min polynomials of degree n

in X that do not involve x1 is k(n, r − 1). To that we need to add the number of

Kuz’min polynomials (3.7) that do involve x1. If x1 is present, we must have that

y4 = x1. Hence these polynomials are of the form

(7.1) [y1, y2] ∧∗ [y3, x1]y5 · · · yn

with

(7.2) y1 > y3 > x1, x1 6 y2 6 y5 6 · · · 6 yn

and

(7.3) y1 > y2.

First we count the polynomials satisfying condition (7.2). In these polynomials

(y1, y3) can be any pair of elements in X \ {x1} with y1 6 y3. The number of

such pairs is (r − 1)r/2. The entries y2, y5, . . . , yn can be any elements of X with
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y2 6 y5 6 · · · 6 yn. The number of such sequences of n − 3 elements is
(
n+r−4
n−3

)
.

Hence the number of polynomials (7.1) satisfying the conditions (7.2) is

(7.4)
(r − 1)r

2

(
n+ r − 4

n− 3

)
.

In order to find the number of Kuz’min polynomials involving x1, we need to sub-

tract from (7.4) the number of polynomials satisfying the conditions (7.2) but not

(7.3). These are precisely the polynomials (7.1) where the entries y1, y2, y3, y5, . . . , yn

satisfy the condition x1 < y3 6 y1 6 y2 6 y5 · · · 6 yn. The number of such se-

quences of n − 1 elements is
(
n+r−3
n−1

)
. Thus the number of Kuz’min polynomials

involving x1 is

(7.5)
(r − 1)r

2

(
n+ r − 4

n− 3

)
−
(
n+ r − 3

n− 1

)
.

Now we get the total number of Kuzmin polynomials in X by adding (7.5) to

k(n, r − 1):

k(n, r) =
(r − 1)(n− 3)

2

(
n+ r − 4

n− 1

)
+

(r − 1)r

2

(
n+ r − 4

n− 3

)
−
(
n+ r − 3

n− 1

)
.

An elementary calculation shows that this is equal to the number given in part (i)

of the lemma.

For part (ii), observe first that if an element of the form (3.7) is Kuz’min and

of multidegree (1, 1, . . . , 1), then we must have that y4 = x1, and either y2 = x2 or

y3 = x2. In the former case the element is of the form

[y1, x2] ∧∗ [y3, x1]y5 · · · yn.

Such elements are Kuz’min if and only if y1 > y3, and there are precisely
(
n−2

2

)
such elements of multidegree (1, 1, . . . , 1). In the latter case we must have y2 = x3,

so the element is of the form

[y1, x3] ∧∗ [x2, x1]y5 · · · yn.

All multilinear elements of this form are Kuz’min elements, and hence there are

n− 3 of them. Thus altogether we have

k̃(n) =

(
n− 2

2

)
+ n− 3 =

n(n− 3)

2
.

This completes the proof of the lemma. �

Now we are ready for our main Theorem. We find it convenient to state it in

terms of Lie rings. In this context the relevant elements are Lie monomials in X of

the form

(7.6) [[y1, y2], [y3, y4, y5, . . . , yn]] (yi ∈ X).

Then Kuz’min elements are Lie monomials of the form (7.6) such that

y1 > y2, y3 > y4, y1 > y3, y4 6 y2 6 y5 6 · · · 6 yn,
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and t-elements are defined as

w(y1, y2, y3, y4; y5 . . . yn) = [[y1, y2],[y3, y4, y5, . . . , yn]] + [[y2, y3], [y1, y4, y5, . . . , yn]]

+ [[y3, y1], [y2, y4, y5, . . . , yn]] (yi ∈ X).

These correspond under the isomorphism (2.7) to the Kuz’min and t-elements in-

troduced in Sections 3 and 4.

Theorem 7.1. Let G be the free centre-by-metabelian Lie ring of rank r > 1 on a

free generating set X = {x1, x2, . . . , xr}, let q = (q1, q2, . . . , qr) � n be a composition

of n > 5, and let G′′q denote the fine homogeneous component of multidegree q of

the second derived ideal G′′ ⊆ G.

(i) Suppose that q = (q1, . . . , qr) � n is multilinear with qi = 1 for i = i1, i2, . . . , in,

where 1 6 i1 < · · · < in 6 r. Then,

(a) if n is odd, G′′q is generated by the Kuz’min elements of multidegree q and

the t-element w(xi1 , xi2 , xi3 , xi4 ;xi5 · · ·xin). The former freely generate a

free abelian group of rank 1
2n(n−3) and the latter generates a cyclic group

of order at most 2,

(b) if n is even, then G′′q is a free abelian group of rank
(
n−1

2

)
, and the Kuz’min

elements of multidegree q together with the element

[[xi3 , xi2 ], [xi4 , xi1 , xi5 , . . . , xin ]]

form a free generating set for it.

(ii) Suppose that q = (q1, . . . , qr) � n is a composition of n with k non-zero parts,

such that qi > 2 for some i with 1 6 i 6 n, and m of the parts of q are 1.

Then

(a) if n is odd, G′′q is a free abelian group of rank
(
k
2

)
−m, and the elements

(7.6) of multidegree q with y2 = y4 = xi, y1 > y3 and y1, y3 6= xi, form a

free generating set for it,

(b) if n is even, then G′′q is a direct sum of a free abelian group of rank(
k−1

2

)
that is freely generated by the elements (7.6) of multidegree q with

y2 = y4 = xi, y1 > y3 and y1, y3 6= xi, and an elementary abelian 2-group

generated by the elements (7.6) of multidegree q such that y2 = y4 = xi,

y1 = y3 6= xi. If all parts of q are even, then all of the latter elements are

zero, and the torsion subgroup of G′′q is trivial.

Proof. It is clearly sufficient to prove part (i) in the case where r = n and q =

(1, 1, . . . , 1). Then, by Lemma 3.3, the Kuz’min elements of multidegree q together

with the element h = [[x3, x2], [x4, x1, x5, . . . , xn]] form a generating set of G′′q as a

Z-module. Assume that n is odd. Consider the t-element

w(x1, x2, x3, x4;x5 . . . xn) = [[x1, x2],[x3, x4, x5, . . . , xn]] + [[x2, x3], [x1, x4, x5, . . . , xn]]

+ [[x3, x1], [x2, x4, x5, . . . , xn]].

The second summand on the right hand side is equal to h, and the first and third

summands on the right hand side are (up to sign) equal to Kuz’min elements:

[[x1, x2], [x3, x4, x5, . . . , xn]] = [[x4, x3], [x2, x1, x5, . . . , xn]]
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[[x3, x1], [x2, x4, x5, . . . , xn]] = −[[x4, x2], [x3, x1, x5, . . . , xn]].

It follows that the element h in our generating set for G′′q can be replaced by the t-

element w(y1, y2, y3, y4; y5 · · · yn). In other words, the multilinear fine homogeneous

component G′′q is generated by the Kuz’min elements of multidegree q and the single

t-element w(x1, x2, x3, x4;x5 · · ·xn). By Lemma 4.1, this t-element is a torsion

element that is annihilated by 2. On the other hand, by Lemma 7.1 (ii), the

number of Kuz’min elements of multidegree q is 1
2n(n − 3). By Theorem 6.1 (i),

applied to the case where r = n = m, this is exactly the dimension of G′′q⊗K, where

K is a field of characteristic other than 2. It follows that the Kuz’min elements of

multidegree q in G′′q freely generate a free abelian group of rank 1
2n(n− 3). Hence

G′′q is the direct sum of this free abelian group and the torsion subgroup generated

by w. This completes the proof of (i.a).

Now assume that n is even. Again, by Lemma 3.3, G′′q is generated by the

Kuz’min elements and the element h = [[x3, x2], [x4, x1, x5, . . . , xn]]. The number

of those Kuz’min elements has been calculated in Lemma 7.1 (ii), and hence the

number of elements in our generating set is

k̃(n) + 1 =
1

2
n(n− 3) + 1 =

(
n− 1

2

)
.

By Theorem 6.1 (ii), applied to the case where r = n = k, this is exactly the

dimension of G′′q ⊗K, where K is a field of characteristic other than 2. It follows

that the elements in our generating set freely generate a free Z-module of rank(
n−1

2

)
. This proves (i.b).

Now suppose the assumptions of part (ii) are satisfied. Then, by Lemma 3.2,

the elements (7.6) of multidegree q with y2 = y4 = xi, y1 > y3 and y1, y3 6= xi,

form a generating set of G′′q . The number of such elements is
(
k
2

)
− m. If n is

odd, this is precisely the dimension of G′′q ⊗K, where K is a field of characteristic

other than 2 (see Theorem 6.1 (i)). It follows that these elements freely generate

a free abelian group of rank
(
k
2

)
−m in G′′q . There is no torsion part in this fine

homogeneous component. Now suppose that n is even. Then we split the elements

(7.6) of multidegree q with y2 = y4 = xi, y1 > y3 and y1, y3 6= xi into the disjoint

union of those with y1 = y3 and those with y1 > y3. The former generate an

elementary abelian 2-group. Indeed, in view of (3.6), translated into the setting of

G′′, we have

[[y1, xi], [y1, xi, y5, . . . , yn]] = −[[y1, xi], [y1, xi, y5, . . . , yn]],

and hence

2[[y1, xi], [y1, xi, y5, . . . , yn]] = 0.

So the elements (7.6) with y2 = y4 = xi and y1 = y3 generate a torsion group. If

all free generators involved in such an element occur even multiplicity, the images

of such elements in (M ∧M)⊗U Z are of the form [y1, xi]∧∗ [y1, xi](z
2
1 . . . z

2
(n−4)/2)

for some z1, . . . , z(n−4)/2 ∈ X. But then, by using (3.5),

[y1, xi]∧∗[y1, xi](z
2
1 . . . z

2
(n−4)/2) =

± [y1, xi](z1 . . . z(n−4)/2) ∧∗ [y1, xi](z1 . . . z(n−4)/2) = 0,
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and hence we can delete these elements from our generating set. The number of

elements with y1 > y3 among the elements (7.6) is
(
k−1

2

)
. By Theorem 6.1 (ii),

this is exactly the dimension of G′′q ⊗K, where K is a field of characteristic other

than 2. It follows that these elements in our generating set freely generate a free

Z-module of rank
(
k−1

2

)
. This completes the proof of the theorem. �

Our theorem asserts, inter alia, that each of the homogeneous components G′′n
(n > 5) is a direct sum of a free abelian group and a (possibly trivial) elementary

abelian 2-group, that is, we obtain the direct decomposition (1.1) in Section 1. The

rank of the free abelian group Fn in this decomposition is equal to the dimension

of G′′ ⊗ K where K is a field of characteristic other than 2. This dimension was

calculated in Section 6.

Corollary 7.1. For each n > 5, G′′n is a direct sum of a free abelian group Fn

and a (possibly trivial) elementary abelian 2-group Tn. The rank of Fn is equal to

the dimension of G′′ ⊗K, where K is a field of characteristic other than two. A

formula for this dimension is given in Theorem 6.1. �

Remark. For certain compositions q the generating sets described in part (ii) of

the main theorem turn out to be empty, and then the corresponding parts of G′′q
are zero. For example, G′′(4,1) = 0, and, more interestingly, G′′(3,1,1,1) is torsion-free

and G′′(3,3) is a torsion group.

Theorem 7.1 does not address the question of whether or not the torsion sub-

groups featuring in parts (i.a) and (ii.b) are actually non-trivial. According to [6],

the t-element in part (i.a) is a non-trivial element of order 2. This is confirmed in

[4], which in its turn relies on [5, Lemma 3.8] for the crucial fact that this element is

not zero. In fact, in [5] the relevant part of Lemma 3.8 is attributed to Hurley (un-

published). According to [13], the torsion elements described in part (ii.b) are not

only non-zero, but form a basis of Tq as a Z/2Z-module. However, no proof is given,

and instead the author says that this can be established by the methods used in [6].

The latter is hardly satisfactory since we know that some of the arguments in [6] are

flawed. However, the torsion part of G′′ is beyond the scope of the present paper.

We focus exclusively on the determination of the ranks and the construction of ex-

plicit Z-bases of the free abelian groups Fq. Our results contradict what is claimed

in parts 3) and 4) of Theorem 4 in [6]. For r = 3, for example, this theorem asserts

that the elements [[x3, x2], [x3, x1, x2, x3]] and [[x3, x2], [x2, x1, x3, x3]] are linearly

independent over Z in G′′(1,2,3), while Theorem 7.1 (ii.b) says that G′′(1,2,3) modulo

its torsion subgroup is an infinite cyclic group. Our results are in keeping with

parts 1) and 2) of Theorem 4 in [6]. Moreover, we can confirm the assertions of

this Theorem regarding the free abelian part of G′′n for odd n:

Theorem 7.2. [6, Theorem 4, Parts 1) and 2)] For G as in Theorem 7.1, and all

odd n > 5, the homogeneous component G′′n is a direct sum

G′′n = Fn ⊕ Tn,
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where Fn is a free abelian group that is freely generated by the Kuz’min elements

(7.6) of degree n and Tn is an elementary abelian 2-group generated by the multi-

linear t-elements w(xi1 , xi2 , xi3 , xi4 ;xi5 · · ·xin) with xi1 , xi2 , . . . xin ∈ X and i1 <

i2 < · · · < in.

Proof. Let n be odd with n > 5. It is sufficient to prove the theorem for the case

where n = r. In the proof of Theorem 7.1 (i.a) we have seen that the multilinear

component G′′(1,1,...,1) is generated by the multilinear Kuz’min elements and the t-

element w(x1, x2, x3, x4;x5 . . . xn) of degree n. Since n is odd, Corollary 4.1 tells us

that the t-element has order at most 2. Any other fine homogeneous component G′′q
of total degree n is a homomorphic image of the multilinear one under a suitable

endomorphism of the form πf (see Section 2). Moreover, this endomorphism can be

chosen in such a way that it preserves the order of the free generators. In this case,

the images of Kuz’min elements under πf will be either Kuz’min elements them-

selves or zero. Moreover, every Kuz’min element of multidegree q is a homomorphic

image of a multilinear Kuz’min element. Furthermore, the image of the multilinear

t-element will be a t-element. But the latter will have at least two equal entries,

and hence, by Corollary 4.1, it will be zero. It follows that for odd n > 5 every fine

homogeneous component Gq with q � n and q 6= (1, 1, . . . , 1) is generated by the

Kuz’min elements multidegree q. By Lemma 7.1 (i) and Theorem 6.1 (i), the total

number of Kuz’min elements of degree n is equal to the dimension of G′′n⊗K, where

K is an arbitrary field of characteristic other than 2. It follows that the Kuz’min

elements of odd degree are linearly independent over Z, and freely generate a free

abelian group Fn. �

Finally, our results imply that the generating sets for the free abelian part of the

lower central quotients γnG/γn+1G of the free centre-by-metabelian group G are

optimal. We use the notation introduced in Section 1.

Corollary 7.2. The generating sets for Fn, the free abelian part of the group G′′n =

(γnG ∩ G′′)γn+1G/γn+1G with n > 5 given in [4, Theorems 1 and 4] are optimal,

i.e. linearly independent over Z.

Proof. By [7, Theorem 1], we have that G′′ ⊗ Q ∼= G′′n ⊗ Q. In view of this, the

result for odd n follows immediately from Theorem 7.2 since the generating set in

Theorem 1 of [4] is exactly the set of Kuz’min commutators. For even n it is not

hard to verify that the number of commutators of a given multidegree q � n in the

generating sets in Theorem 4 of [4] is equal to the dimension of G′′ ⊗Q as given in

Theorem 6.1. The result follows. �

8. A direct decomposition

The decomposition of each homogeneous and fine homogeneous component of

G′′ into a direct sum of a free abelian group and an elementary abelian 2-group

was a by-product of the proof of Theorem 7.1. In conclusion we give a short direct

proof of this result. We mention that this is actually a special case of a far more

general result proved in [13]. However, since this paper is not easily accessible, and
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since our proof is short and does not require the full force of the arguments used in

[13], we felt it is justified to include it for completeness.

Theorem 8.1. The second derived ideal G′′ of the free centre-by-metabelian Lie

ring of rank r > 2 is a direct sum of a free abelian group and an elementary abelian

2-group.

Proof. In view of the isomorphism (2.7) it is sufficient to prove the result for the

tensor product (M∧M)⊗UZ. For the exterior square M∧M there is an embedding

ν : M ∧M → M ⊗M given by m1 ∧m2 7→ m1 ⊗m2 −m2 ⊗m1 (m1,m2 ∈ M).

On the other hand, there is the epimorphism π : M ⊗ M → M ∧ M given by

m1⊗m2 7→ m1∧m2. The composite νπ amounts to multiplication by 2 on M ∧M .

Consequently, the composite νπ ⊗ 1,

(M ∧M)⊗U Z ν⊗1−−→ (M ⊗M)⊗U Z π⊗1−−−→ (M ∧M)⊗U Z,

too amounts to multiplication by 2 on (M ∧M)⊗U Z. It follows that the kernel of

ν ⊗ 1 is annihilated by 2, i.e. it is an elementary abelian 2-group. We claim that

the tensor product (M ⊗M) ⊗U Z is a free abelian group. Once established, this

will prove the theorem, as (M ∧M) ⊗U Z will be the direct sum of the kernel of

ν ⊗ 1 and the image of ν ⊗ 1 in (M ⊗M)⊗U Z. Tensoring the exact sequence (2.4)

with M yields an exact sequence

0→M ⊗M →M ⊗ P →M ⊗∆→ 0.

Recall that M ⊗ P is a free U -module (see Corollary 5.1). Then part of the long

exact homology sequence associated with that short exact sequence looks as follows.

0→ TorU1 (M ⊗∆,Z)→ (M ⊗M)⊗U Z→ (M ⊗ P )⊗U Z→ · · · .

Here (M ⊗ P )⊗U Z, the trivialization of a free U -module, is a free abelian group.

But TorU1 (M ⊗∆,Z) too is a free abelian group. Indeed, dimension shifting using

the short exact sequences (2.4) and (2.2) gives

TorU1 (M ⊗∆,Z) = TorU4 (Z,Z),

and the latter is a free abelian group of rank
(
r
4

)
[8, Section VII.2]. Now the long

exact homology sequence gives that (M⊗M)⊗UZ is free abelian, and this completes

the proof of the theorem.

�
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