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Let L be a free Lie algebra of finite rank over a field K and let Ln denote the degree
n homogeneous component of L. Formulae for the dimension of the subspaces [Lm, Ln]
for all m and n were obtained by the second author and Michael Vaughan-Lee. In
this note we consider subspaces of the form [Lm, Ln, Lk] = [[Lm, Ln], Lk]. Surprisingly,
in contrast to the case of a product of two homogeneous components, the dimension
of such products may depend on the characteristic of the field K. For example, the
dimension of [L2, L2, L1] over fields of characteristic 2 is different from the dimension
over fields of characteristic other than 2. Our main results are formulae for the dimension
of [Lm, Ln, Lk]. Under certain conditions on m, n and k they lead to explicit formulae
that do not depend on the characteristic of K, and express the dimension of [Lm, Ln, Lk ]
in terms of Witt’s dimension function.

Keywords: Free Lie algebras; homogeneous subspaces.

Mathematics Subject Classification: 17B01

1. Introduction

Let L be a free Lie algebra of rank r over a field K. We let Ln denote the degree
n homogeneous component of L, that is the subspace spanned by Lie products of
degree n in the free generators of L. Then

L = L1 ⊕ L2 ⊕ · · · ⊕ Ln ⊕ · · · .

The dimension of Ln is given by Witt’s formula

dim Ln = f(n, r) =
1
n

∑
d|n

µ(d)rn/d,
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where µ is the Möbius function (see [8; 4, Theorem 5.11]). In [7] the second author
and Vaughan-Lee obtained formulae for the dimensions of the subspaces [Lm, Ln] ≤
Lm+n for all m, n ≥ 1. They proved that, if m > n and n � m, then

dim([Lm, Ln]) = dimLm dim Ln, (1.1)

and if m = sn with s ≥ 1, then

dim([Lm, Ln]) = (dim Lm − f(s, dimLn)) dim Ln + f(s + 1, dim Ln). (1.2)

In this paper we investigate the dimension of subspaces of the form [Lm, Ln, Lk].
Throughout the paper we use the left-normed convention for Lie brackets,
that is [a1, a2, . . . , ai] = [[a1, a2, . . . , ai−1], ai] for a1, . . . , ai ∈ L, in particular,
[Lm, Ln, Lk] = [[Lm, Ln], Lk]. It turns out that, somewhat surprisingly and in con-
trast to products of two homogeneous components, the dimension of [Lm, Ln, Lk]
may depend on the field K. In Sec. 4 we use a result of Kuz’min’s [3] to show that
for r ≥ 5 the dimension of [L2, L2, L1] over a field of characteristic 2 is different
from the dimension over a field of characteristic other than 2. Moreover, we deduce
explicit formulae for the dimension of this space. Before that, in Sec. 3, we derive
formulae for the dimension of [Lm, Ln, Lk] under certain conditions on m, n and k.
In some cases they lead to explicit formulae that do not depend on the character-
istic of K and express the dimension of [Lm, Ln, Lk] in terms of Witt’s dimension
function f(n, r). In Sec. 2 we prove our main lemma, a result about the dimension
of a product of two arbitrary homogeneous subspaces in L. This is a generalization
of the main result of [7], and the formulae (1.1) and (1.2) follow easily from it (see
Corollary 2.1).

2. Products of Two Homogeneous Subspaces

For a subset Y ⊆ L we let L(Y ) denote the Lie subalgebra generated by Y in L.
By the Shirshov–Witt theorem, any subalgebra of L is itself a free Lie algebra
[5, 9]. We write Ln(Y ) for the degree n homogeneous component of L(Y ) (with
the degree defined with respect to some free generating set of L(Y )). The main
ingredient of the proof of our main lemma below is a powerful result of Shirshov’s.
This result, commonly referred to as Shirshov’s Lemma, was in fact the key step in
Shirshov’s original proof of the Shirshov–Witt theorem [5]. An English translation
of this celebrated paper is now available in [6]. We record a special case of Shirshov’s
lemma. A set Y of homogeneous elements in L is called reduced if no element of Y

is contained in the subalgebra of L generated by the other elements of Y .

Lemma 2.1 ([5, Proof of Theorem 2]). If L is a free Lie algebra and if Y is
a reduced set of homogeneous elements in L, then Y is a set of free generators for
the subalgebra L(Y ).

We mention that the elements of Y are required to be homogeneous, but that
there is no requirement that they all have the same degree. An immediate con-
sequence of the lemma is that for any homogeneous subspace U ⊆ Lm, the Lie
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subalgebra L(U) is free of rank dimU , and any K-basis of U is a free generating
set for L(U).

Lemma 2.2. Let U and V be subspaces of L such that U ⊆ Lm, V ⊆ Ln with
m ≥ n ≥ 1. Then

dim[U, V ] = dim[U ∩ L(V ), V ] + (dimU − dim(U ∩ L(V ))) dim V. (2.1)

Proof. Let A be a K-basis of V . Then A is a reduced set, and hence a free
generating set for the subalgebra L(V ). Consider the intersection U ∩L(V ), and let
U ′ be a complement of U ∩L(V ) in U , so that U = (U ∩L(V ))⊕U ′ as a K-space.
Let B be a K-basis of U ′. We claim that the union A∪B is a reduced set. If m = n

then A∪B is a linearly independent subset of Ln, and hence reduced. Now assume
that m > n. Then the elements in B have larger degree than the elements in A, so
the only way an element a ∈ A could be in the subalgebra generated by the other
elements of A∪B would be if a was a linear combination of the other elements of A.
But this is impossible since A is linearly independent. On the other hand, the only
way an element b ∈ B could be in the subalgebra generated by the other elements
of A ∪ B would be if

b = v +
∑

bi∈B, bi �=b

αibi (2.2)

for some v ∈ L(V ) and some scalars αi. But this is impossible by the choice of B.
Indeed, (2.2) implies that v is a linear combination of the elements in B. Hence
v = 0. But then b is a linear combination of the other elements in B which is not
possible as B is linearly independent. Hence A∪ B is a reduced set. It follows that
the set {[b, a]; b ∈ B, a ∈ A} is linearly independent. Hence it is a basis for the
product [U ′, V ], and

dim[U ′, V ] = (dimU − dim(U ∩ L(V ))) dim V.

Moreover, we can write [U, V ] as

[U, V ] = [(U ∩ L(V )) ⊕ U ′, V ] = [(U ∩ L(V )), V ] + [U ′, V ]. (2.3)

But the sum on the right-hand side in (2.3) is direct since the first summand is in
L(V ) = L(A), and the second is in the ideal generated by B in the free Lie algebra
L(A∪ B). So

[U, V ] = [(U ∩ L(V )), V ] ⊕ [U ′, V ]

and this yields (2.1), as required.

The main result of [7] is an immediate consequence of this lemma.

Corollary 2.1 ([7]). Let m ≥ n ≥ 1. If n � m, then the dimension of the subspace
[Lm, Ln] is given by (1.1), and if m = sn with s ≥ 1, then the dimension of this
subspace is given by (1.2).
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Proof. Apply Lemma 2.2 with U =Lm and V =Ln. If n � m, then L(Ln)∩Lm = 0,
whence (1.1). If m = sn with s ≥ 1, then L(Ln) ∩ Lm = Ls(Ln) and, of course,
[Ls(Ln), Ln] = Ls+1(Ln), whence (1.2).

3. Products of Three Homogeneous Components

We begin this section with a technical lemma.

Lemma 3.1. Let m, n, k be positive integers.

(i) If m = sk and n = tk for some positive integers s and t, then

[Lm, Ln] ∩ L(Lk) = [Ls(Lk), Lt(Lk)].

(ii) If k � n or k � m, then

[Lm, Ln] ∩ L(Lk) = 0.

Proof. (i) Obviously, [Ls(Lk), Lt(Lk)] ⊆ [Lm, Ln] ∩ L(Lk). We need to prove the
inverse inclusion.

Consider the subalgebra

Lk = Lk ⊕ Lk+1 ⊕ Lk+2 ⊕ · · · ,
that is the kth term of the lower central series of L. It is well known that Lk has
a homogeneous free generating set of the form C = Ck ∪ Ck+1 ∪ Ck+2 ∪ · · · where
Ci ⊂ Li (i = k, k + 1, . . .). In fact, such a free generating set can easily be obtained
as follows. We take a K-basis of Lk for Ck, and, for i > k, we proceed by induction
taking a basis of a vector space complement of Li ∩ L(Ck ∪ · · · ∪ Ci−1) as the set
Ci. It is obvious that the resulting set is a generating set for Lk, and Shirshov’s
lemma guarantees that it is a free generating set. This free generating set is such
that Lk = 〈Ck〉 and L(Lk) is freely generated by Ck. Let π : Lk → L(Lk) be the
projection map given by cπ = c for c ∈ Ck and cπ = 0 for c ∈ C\Ck. Any element
in [Lm, Ln] is a linear combination of the form w =

∑
αj [uj, vj ] with uj ∈ Lm,

vj ∈ Ln and αj ∈ K. Note that ujπ ∈ Ls(Lk) and vjπ ∈ Lt(Lk). Assume that
w ∈ L(Lk). Then, since π is the identity on L(Lk) and since π is a Lie algebra
homomorphism, we have

w = wπ =
∑

j

αj [ujπ, vjπ] ∈ [Ls(Lk), Lt(Lk)].

This proves the required inclusion.
(ii) Now suppose that k � n or k � m, and let w =

∑
αj [uj , vj ] ∈ L(Lk) with

uj ∈ Lm and vj ∈ Ln. We use the projection π as introduced above. Since L(Lk)
consists entirely of linear combinations of elements of degree qk with q = 1, 2, 3, . . . ,

all homogeneous components Li with i ≥ k and k � i are in the kernel of π. Hence
[uj , vj ]π = [ujπ, vjπ] = 0 for all j since by our assumption at least one of ujπ and
vjπ is zero. Therefore [Lm, Ln] ∩ L(Lk) = 0.
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Now we are ready for our main result.

Theorem 3.1. Let m, n and k be positive integers with m ≥ n.

(i) If m + n > k and k � m or k � n, then

dim[Lm, Ln, Lk] = dim[Lm, Ln] dimLk,

(ii) if m + n > k and m = sk and n = tk with s, t ≥ 1, then

dim[Lm, Ln, Lk] = dim[Ls(Lk), Lt(Lk), Lk]

+ (dim[Lm, Ln] − dim[Ls(Lk), Lt(Lk)]) dimLk,

(iii) and if k ≥ m + n and (m + n) � k, then

dim[Lm, Ln, Lk] = dim[Lm, Ln] dimLk,

(iv) if k ≥ m + n and k = p(m + n) with p ≥ 1, then

dim[Lm, Ln, Lk] = dim Lp+1([Ln, Lm])

+ (dimLk − dim(Lp([Lm, Ln]))) dim[Lm, Ln].

Proof. (i) We apply Lemma 2.2 with U = [Lm, Ln] and V = Lk. This gives

dim[Lm, Ln, Lk] = dim[([Lm, Ln] ∩ L(Lk)), Lk]

+ (dim[Lm, Ln] − dim([Lm, Ln] ∩ L(Lk))) dim Lk,

and the result follows since [Lm, Ln] ∩ L(Lk) = 0 by Lemma 3.1(ii).
(ii) Again, we apply Lemma 2.2 with U = [Lm, Ln] = [Lsk, Ltk] and V = Lk.

This gives

dim[Lm, Ln, Lk] = dim[([Lsk, Ltk] ∩ L(Lk)), Lk]

+ (dim[Lm, Ln] − (dim([Lsk, Ltk] ∩ L(Lk)))) dim Lk.

By Lemma 3.1(i), [Lsk, Ltk] ∩ L(Lk) = [Ls(Lk), Lt(Lk)]. Hence

dim[Lm, Ln, Lk] = dim[[Ls(Lk), Lt(Lk)], Lk]

+ (dim[Lm, Ln] − dim[Ls(Lk), Lt(Lk)]) dim Lk,

as required.
(iii) Of course, [Lm, Ln, Lk] = [Lk, [Lm, Ln]]. We apply Lemma 2.2 with U = Lk

and V = [Lm, Ln]. This gives

dim[Lm, Ln, Lk] = dim[(Lk ∩ L([Lm, Ln])), [Lm, Ln]]

+ (dimLk − dim(Lk ∩ L([Lm, Ln]))) dim[Lm, Ln]. (3.1)

Since m +n � k, Lk ∩L([Lm, Ln]) = 0, and (3.1) turns into the formula in part (iii)
of the theorem.
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(iv) As in (iii), we apply Lemma 2.2 with U = Lk and V = [Lm, Ln]. Here we
have Lk ∩L([Lm, Ln]) = Lp(m+n) ∩L([Lm, Ln]) = Lp([Lm, Ln]), so (3.1) turns into

dim[Lm, Ln, Lk] = dim[Lp([Lm, Ln]), [Lm, Ln]]

+ (dimLk − dim Lp([Lm, Ln])) dim[Lm, Ln],

and the result follows since [Lp([Lm, Ln]), [Lm, Ln]] = Lp+1([Lm, Ln]).

4. An Example

Our main result, Theorem 3.1, gives formulae for the dimension of subspaces of the
form [Lm, Ln, Lk] under various conditions on m, n and k. Since we have explicit
formulae for the dimension of [Lm, Ln] for all m, n, namely formulae (1.1) and (1.2),
all but one of the terms on the right-hand sides of the four formulae in Theorem
3.1 can be expressed in terms of Witt’s dimension function f(n, r). The exception
is dim[Ls(Lk), Lt(Lk), Lk] in the formula in part (ii) of the theorem. It appears
to be considerably harder to work out the dimension under the conditions in part
(ii). The obstacles here are the products [Ls(Lk), Lt(Lk), Lk]. The smallest possible
instance of such a product is [L2, L2, L1]. It turns out that its dimension depends
on the characteristic of the ground field.

Proposition 4.1. Let L be the free Lie algebra of rank r over a field K. If r ≥ 5,

then the dimension of [L2, L2, L1] over a field of characteristic 2 is strictly less than
the dimension of [L2, L2, L1] over a field of characteristic other than 2.

Proof. This is an immediate consequence of a result by Kuz’min [3] on the free
center-by-metabelian Lie ring. Let L denote the free Lie ring on free generators
x1, x2, . . . , xr, r ≥ 2, and write Ln for its degree n homogeneous component. The
free center-by-metabelian Lie ring is the quotient G = L/[L′′, L], where L′′ is the
second term of the derives series of L. Then G is a graded ring, and we denote its
degree n homogeneous component by Gn. Here Gn

∼= Ln/(Ln ∩ [L′′, L]). We are
interested in G5 ∩ G′′. It is easily seen that L5 ∩ L′′ = [L3, L2] and L5 ∩ [L′′, L] =
[L2, L2, L1]. Hence

G5 ∩ G′′ ∼= [L3, L2]/[L2, L2, L1]. (4.1)

By [3, Theorem 4],

G5 ∩ G′′ = A ⊕ T (4.2)

where A is a free abelian group which is freely generated by the canonical images
in G of the Lie polynomials

[[xi, xj ], [xk, xl, xm]] (4.3)

with i, j, k, l, m ∈ {1, 2, . . . , r} and i > j, k > l, i ≥ k, j ≥ l and m ≥ j, and T is an
elementary abelian 2-group of rank

(
r
5

)
if r ≥ 5 and T = 0 if r < 5. Alternatively,
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this also follows from [1, Theorem 1], which relies on [2, Lemma 4.1] for the crucial
fact that G5 ∩G′′ contains non-trivial 2-torsion for r ≥ 5. Tensoring with a field K

gives the corresponding result for free center-by-metabelian Lie algebras. In view
of (4.1) and (4.2) we find that for the free Lie algebra L of rank r over a field K

one has

dim[L2, L2, L1] =

{
dim[L3, L2] − rankA if charK 
= 2,

dim[L3, L2] − rankA − rankT if charK = 2.
(4.4)

The result follows.

In fact, it is not too difficult to work out the dimension of [L2, L2, L1] explic-
itly. First we count the number of distinct Lie products (4.3). We call these Lie
polynomials Kuz’min commutators.

Lemma 4.1. The number of distinct Kuz’min commutators is r
(

r+2
4

)
.

Proof. We use induction on r. The lemma is true for r = 2 as the only Kuz’min
commutators in this case are [[x2, x1], [x2, x1, x1]] and [[x2, x1], [x2, x1, x2]]. Now let
r > 2. By induction, the number of Kuz’min commutators that do not involve
x1 is (r − 1)

(
r+1
4

)
. To that we need to add the number of Kuz’min commutators

that do involve x1. If x1 is present, it must occur as the fourth entry. Hence these
polynomials are of the form

[[xi, xj ], [xk, x1, xm]] (4.5)

with

i ≥ k > 1, j ≤ m (4.6)

and

i > j. (4.7)

First we count the commutators (4.5) satisfying conditions (4.6). In these polyno-
mials (i, k) can be any pair of subscripts from {2, 3, . . . , r} with i ≥ k. The number
of such pairs is (r−1)r/2. The entries in the second pair of subscripts (j, m) can be
any numbers with 1 ≤ j ≤ m ≤ r. The number of such pairs is r(r + 1)/2. Hence
the number of commutators (4.5) satisfying (4.6) is

1
4
(r − 1)r2(r + 1). (4.8)

In order to find the number of Kuz’min commutators involving x1 we need to
subtract from (4.8) the number of commutators (4.3) satisfying the conditions (4.6)
but not (4.7), that is

1 < xk ≤ xi ≤ xj ≤ xm.
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The number of such elements is equal to
(
r+2
4

)
. Consequently, the number of

Kuz’min commutators involving x1 is

1
4
(r2 − 1)r2 −

(
r + 2

4

)
.

Now we get the total number of Kuz’min commutators by adding this number to
(r − 1)

(
r+1
4

)
, which is the number of Kuz’min commutators not involving x1:

(r − 1)
(

r + 1
4

)
+

1
4
(r − 1)r2(r + 1) −

(
r + 2

4

)
.

An elementary calculation shows that this is equal to r
(

r+2
4

)
, as required.

Now,

dim[L3, L2] − rankA =
1
6
(r3 − r)(r2 − r) − r

(
r + 2

4

)
,

and

dim[L2, L2] dim L1 =
1
2

(
r2 − r

2

) (
r2 − r

2
− 1

)
r.

Another elementary calculation shows that these numbers are equal:

dim[L3, L2] − rankA = dim[L2, L2] dimL1.

It remains to substitute this into (4.4) to get our final result.

Proposition 4.2. Let L be a free Lie algebra of rank r over a field K. Then

dim[L2, L2, L1] =




dim[L2, L2] dim L1 if charK 
= 2,

dim[L2, L2] dim L1 −
(

r

5

)
if charK = 2,

with the convention that
(

r
5

)
= 0 for r < 5.
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