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A continuum model of a channelized, free-surface granular flow is developed to calculate the rate at which it
expands into an initially grain-free region when lateral constraints are removed. The spreading is driven by
cross-stream pressure gradients and resisted by basal drag. The boundary between the granular vacuum and the
flowing grains is elucidated both in the near and far fields.

1 INTRODUCTION

Whenever a confined granular material flows into an
unbounded region, there is a well defined boundary to
the flowing grains, as the material moves into initially
grain-free domain. For example, such granular vacua
are found in the lee of obstacles placed in free-surface
chute flows; particles are deflected around the station-
ary obstacle and do not infill the region immediately
downstream of it, forming a grain-free region in its
wake. Infact such deflection patterns often underlie
the design of many avalanche defence barriers (Gray
et al. 2003). Also large-scale natural rockfalls and
avalanches are often initiated in gulleys from which
the flows may spread laterally when they are no longer
confined. In this paper we examine the generic pro-
cesses by which free-surface granular flows expand
into grain-free regions by studying in detail the lateral
spreading of a channelised flow when the boundaries
that confine it are removed.

We analyse rapid, shallow flows for which the
steady lateral, cross-slope spreading is driven by the
generation of normal stresses and resisted by basal
drag. Using a shallow layer continuum model we cal-
culate the shape of the boundary between the flowing
grains and the grain-free region. First we show that
close to the point at which the flow becomes uncon-
fined, it spreads laterally at a constant rate that is de-
termined only by the upstream Froude number. This
expansion is analogous to the Prandtl-Meyer expan-
sion of a high speed flow of gas into a vacuum (Chap-
man 2000). Further downslope, however, the rate of

lateral spreading enters a different dynamical regime
and becomes dependent upon the gravitational accel-
eration and basal resistance.

In this paper we formulate a shallow-layer model
of rapid granular flows (§2) and then analyse the ex-
pansion into the grain-free region in the near (§3.1)
and far field (§3.2). Finally we draw some brief con-
clusions (§4).

2 SHALLOW LAYER MODELS
The granular material flows steadily down a rigid
plane, inclined at an angle θ to the the horizontal. We
align the coordinate axes such that the z-axis is per-
pendicular to the plane, the x-axis is parallel to the
direction of steepest descent and the y-axis is perpen-
dicular to these two (see figures 1,2). The flow is lat-
erally constrained for x < 0, but is unconstrained for
x > 0 and we analyse its expansion into the granular
vacuum. The depth and bulk density of the flowing
layer of grains are denoted by h and ρ and thus the
steady-state conservation of mass is given by

∂

∂x

∫ h

0
ρu dz +

∂

∂y

∫ h

0
ρv dz = 0, (1)

where u & v are the components of the velocity field
along the x & y axes, respectively.

The depth of the flow is assumed to be much less
than the lengthscales over which the flow varies in the
plane. This implies that vertical accelerations are neg-
ligible and the vertical momentum equation is consid-
erably simplified. Denoting the pressure tensor by pij ,



this implies that to leading order

pzz =
∫ h

z
ρg cos θ dη, (2)

where it has been further assumed that the upper sur-
face of the flow is stress-free. The steady momentum
equations parallel with the plane are then given by

∂

∂x

∫ h

0
ρu2 dz +

∂

∂y

∫ h

0
ρuv dz = − ∂

∂x

∫ h

0
pxx dz

− ∂

∂y

∫ h

0
pxy dz − τx +

∫ h

0
ρg sin θ dz, (3)

∂

∂x

∫ h

0
ρuv dz +

∂

∂y

∫ h

0
ρv2 dz = − ∂

∂x

∫ h

0
pxy dz

− ∂

∂y

∫ h

0
pyy dz − τy. (4)

In these expressions the basal shear stress has compo-
nents τx and τy, which are equal to pxz and pyz evalu-
ated at the boundary z = 0.

To close this mathematical model of the motion we
make a series of further assumptions. First, we as-
sume that the bulk density of the flowing material is
uniform. Although granular materials must dilate in
order to flow, once mobilised, their bulk density varies
only negligibly (Savage & Hutter (1989), Pouliquen
& Forterre (2002), Gray et al. (2003)). Thus, we treat
the material as incompressible. In addition, we as-
sume that the velocity fields, u and v are vertically
uniform; such an assumption underlies most depth-
averaged, hydraulic models of river, estuarine, de-
bris and avalanche flows. Current understanding of
the wide range of dynamical behaviours that may
be exhibited by granular flows remains incomplete
and there is no widely accepted constitutive law for
the internal stresses developed by these flows. How-
ever, we may simplify the depth-averaged equations
by invoking two further assumptions. First we assume
that the ratio of the shear to normal stresses is small
(pxx, pyy � pxy) and that to leading order the normal
stresses are equal, pxx = pyy = pzz (Gray et al. 2003).
This diverges from the approach of Savage & Hutter
(1989) who introduced an earth pressure coefficient
that measures the ratio pxx/pzz and is different from
unity. However, normal stress differences have been
found to be small in simulations Ertas et al. (2001)
and both Pouliquen & Forterre (2002) and Gray et al.
(2003) suggest that for chute flows they should be ne-
glected. Thus we find that the steady governing equa-
tions are given by

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (5)
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Figure 1. Side of the flow.
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Figure 2. Plan view of the flow and its expansion.

∂

∂x

(

u2h
)

+
∂

∂y
(uvh) +

∂

∂x

(

g cos θh2

2

)

= −τx

ρ

+gh sin θ, (6)

∂

∂x
(uvh) +

∂

∂y

(

v2h
)

+
∂

∂y

(

g cos θh2

2

)

= −τy

ρ
. (7)

With the exception of the drag and downslope acceler-
ation terms on the right-hand side of (6) & (7), these
equations are equivalent to those that express mass
and momentum conservation for the steady flow of a
polytropic gas with index 2 (Chapman 2000). Further-
more they are identical to the shallow-water equations
used to model hydraulic phenomena (Whitham 1974).
We consider a uniform channelized flow upstream of
the expansion, that is purely downslope (u = (U1,0))
and of depth h1. A constant flow depth and velocity
are possible if the basal drag, τx is equal to the downs-
lope gravitational force (ρgh1 sin θ) and recent lab-
oratory experiments have found that steady uniform
flows can exist for a range of chute inclinations (see,
for example, Pouliquen & Forterre (2002)). We intro-
duce dimensionless variables by scaling velocities by
U1, lengths by h1, stresses by ρU 2

1 and henceforth will
assume that variables are dimensionless, unless indi-
cated otherwise. An important dimensionless param-
eter is the upstream Froude number, F , which is given
by

F 2 =
U2

1

gh1 cos θ
. (8)

2



This is equivalent to the Mach number in gas flows
and measures the speed of the flow relative to the
speed of the small amplitude surface waves. Gener-
ally for snow avalanches, F � 1; for example, Issler
(2003) suggests that for dry-snow avalanches, F lies
between 5 and 10.

3 EXPANSION INTO A GRANULAR VACUUM
3.1 Local Analysis
Sufficiently close to the point at which the flow is no
longer laterally constrained (x = 0), the flow expands
and its motion is independent of the gravitational ac-
celeration down the slope and the effects of basal drag
(see figure 2). Thus the local behaviour may be ex-
amined by analysing the governing equations (5)-(7)
in the absence of ‘source’ terms; in other words the
right-hand sides of (6) and (7) may be neglected. The
behaviour then becomes akin to Prandtl-Meyer ex-
pansions in gas dynamics (Chapman 2000).

To analyse the flow we adopt plane polar coordi-
nates, (r,φ) in the vicinity of the origin as shown in
figure 2. Furthermore we seek solution for u, v and h
that are dependent only upon the polar angle φ. This
ansatz implies that the flow is irrotational. Denot-
ing u = U sinφ + V cosφ and v = U cosφ− V sinφ,
where U(φ) and V (φ) are velocities in the radial and
angular directions, respectively, we find that the gov-
erning equations are given by

Uh +
d

dφ
(V h) = 0, (9)

−V 2 + V
dU

dφ
= 0, (10)

V
dV

dφ
+ UV +

dh

dφ
= 0. (11)

These equations represent conservation of mass, ra-
dial and angular momentum, respectively. We observe
from (10) that V = dU/dφ and from (9) & (11) that
V =

√
h. Thus substituting these into (9), we find that

d2U

dφ2
+

1

3
U = 0, (12)

with solutions U = R sin(φ/
√

3 + α) and V =
R/

√
3 cos(φ/

√
3 + α), where R and α are constants

to be evaluated.
This solution must be matched to the upstream uni-

form flow. We introduce an angle φ0, such that for
φ < φ0 the flow is the upstream uniform flow, but for
φ > φ0 the flow is given by the solution above. Also
the upstream Froude number may be related to the an-
gle φ0 and is given by cosφ0 = F−1/2. Thus we may
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Figure 3. The angle at which the flow initially expands into the
granular vacuum, φm, as a function of the upstream Froude num-
ber, F . Exact ( ) and asymptotic ( ) evaluations of
φm.

solve these simultaneous equations to find that

α = tan−1





(

F 2 − 1

3

)
1

2



− 1√
3

tan−1
[

(

F 2 − 1
)

1

2

]

.

(13)
Finally we may calculate the maximum expansion
that occurs when the flow becomes laterally uncon-
fined. This is given by the streamline on which the
height and angular velocity vanish, which may be
evaluated as

φm =
√

3
(

π

2
− α

)

. (14)

We plot the dependence of φm on the Froude num-
ber, F , in figure 3 and note that it attains a maximum
value of π

√
3/2 when F = 1. This implies that that

flows that are critical expand at the greatest rate into
granular vacua. Furthermore when F � 1,

φm =
π

2
+

2

F
− 5

3F 3
+ O

(

1

F 5

)

, (15)

and as can be noted from figure 3, this asymptotic ap-
proximation works very well when F ≥ 3.

3.2 Far-field analysis
Far from the point at which the flow is first later-
ally unconstrained, the motion once again become
affected by the downslope gravitational acceleration
and the basal resistance. The motion differs from the
uniform flow that occurs on the confined upper part
of the chute (x < 0), because it is still able to spread
laterally. However the rate at which the granular ma-
terial spreads into the particle-free region is strongly
modified and the solution of the preceding subsection
is no longer appropriate; in particular the boundary of
the expansion is no longer at a constant angle, φm, to
the direction of steepest descent but is curved.

3



In this subsection we analyse the expansion far
from the point at which it becomes unconfined and
the asymptotic solution developed below is based on
the downslope component of the velocity field far ex-
ceeding the lateral component; i.e. |v/u| ≡ ε� 1. The
detailed structure of the motion depends strongly on
the relationship between the basal drag and the flow
speed and depth. In this paper we analyse one repre-
sentation of the basal shear stress, namely Coulomb
drag,

τττ = µρgh cos θ
u
|u| , (16)

where µ ≡ tan δ and δ is the friction angle (Savage &
Hutter 1989)1. Using this model, a steady flow is only
possible when the inclination of the chute matches the
basal friction angle (θ = δ).

The essence of the asymptotic analysis is that since
the lateral velocity is much smaller than the downs-
lope velocity, the leading order terms in the momen-
tum equations are considerably simplified; the downs-
lope equation reduces to a balance between gravi-
tational acceleration and the lateral pressure gradi-
ent is balanced by weak basal drag (ρg cos θ∂h/∂y ∼
µρg cos θv/u). However the volume flux of particles
remains constant and is given by

∫ yb

−d
uh dy = Q, (17)

where Q is the dimensionless volume flux and yb(x) is
the expanding edge of the granular material. By bal-
ancing the terms in these equation, we find the follow-
ing distinguished scaling

u = U0 + . . . , v = εV0(X,Y ) + . . .

and h = ε1/2H0(X,Y ), (18)

where X = ε3/2x and Y = ε1/2y. Then the leading
order equations are given by

U0
∂H

∂X
+

∂

∂Y
(H0V0) = 0 &

∂H0

∂Y
= −µV0

U0

,

(19)
and U0 is a constant determined by upstream condi-
tions. Combing these solutions Thus we find that the
height field satisfies the following partial differential
equation,

∂H

∂X
=

1

µ

∂

∂Y

(

H
∂H

∂Y

)

, (20)

together with the volume flux constraint

∫ Yb(X)

−ε1/2d
H dY = Q/U0. (21)

1We note that an analogous analysis may be carried out with
other friction laws.

This equation exhibits a similarity solution that pro-
vide the intermediate asymptotics for the solution
(Barenblatt 1996) and is given by

H =
µ

6x1/3





(

9Q

U0µ

)2/3

− (y + ε1/2d)2

x2/3



 . (22)

Thus sufficient far downstream so that the solution
has converged to the similarity solution, the leading
order position of vacuum boundary in the original
variables is given by

yb = [9Qx/(U0µ)]1/3. (23)

4 CONCLUSIONS
We have developed a continuum model of the rapid,
shallow flow of a granular material down an inclined
chute when the flow is no longer laterally confined.
Close to the position at which the flow becomes un-
confined, the rate of expansion depends only upon
the upstream Froude number, but further downslope
it emerges as a balance between a lateral pressure
gradient and basal drag. This motion is of funda-
mental interest because the rate of spreading reveals
some of the consequences of different mechanisms
of stress generation; indeed different representations
of the basal drag will lead to different predictions.
It is also of direct practical application in the design
of effective barriers to defend against avalanche dam-
age. Work is currently underway to compare our cal-
culations with laboratory experiments and numerical
computations of the flow.
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