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Abstract

Suppose that a finite group G admits a Frobenius group of automorphisms FH of
coprime order with kernel F and complement H. In the case where G is a finite p-group
such that G = [G,F ] it is proved that the order of G is bounded above in terms of
the order of H and the order of the fixed-point subgroup CG(H) of the complement,
and the rank of G is bounded above in terms of |H| and the rank of CG(H). Earlier
such results were known under the stronger assumption that the kernel F acts on G
fixed-point-freely. As a corollary, in the case where G is an arbitrary finite group
with a Frobenius group of automorphisms FH of coprime order with kernel F and
complement H, estimates are obtained of the form |G| 6 |CG(F )| · f(|H|, |CG(H)|) for
the order, and r(G) 6 r(CG(F )) + g(|H|, r(CG(H))) for the rank, where f and g are
some functions of two variables.

to Victor Danilovich Mazurov on his 70th birthday

1 Introduction

Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel
F and complement H. Mazurov’s problem 17.72 in Kourovka Notebook [1] generated several
recent papers, which considered the case where the kernel F acts fixed-point-freely, CG(F ) =
1. The purpose of these results [2, 3, 4, 5, 6, 7, 8, 9, 10] is bounding the order, the rank,
the Fitting height, the nilpotency class, and the exponent of the group G in terms of the
corresponding properties and parameters of CG(H) and |H|.

The purpose of this note is to show that as far as the order and rank of G are concerned,
similar results hold without this strong condition CG(F ) = 1, at least when the orders of G
and FH are coprime. The proofs are essentially reduced to studying Sylow p-subgroups of
G, for various primes p. Moreover, in the case where G is a p-group satisfying G = [G,F ]
the results are most strong and depend only on CG(H) and H. Therefore it is convenient to
state a separate theorem for p-groups.

Theorem 1. Suppose that a finite p-group P admits a Frobenius group of automorphisms
FH with kernel F and complement H such that the orders of G and FH are coprime:
(|G|, |FH|) = 1. If P = [P, F ], then
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(a) the nilpotency class of P is at most 2 logp |CP (H)|;
(b) the order of P is bounded above in terms of the orders of CP (H) and H ;
(c) the rank of P is bounded above in terms of |H| and the rank of CP (H).

In the present paper the rank of a finite group is the minimum number r such that every
subgroup can be generated by r elements.

As a corollary we obtain a result on rank and order of an arbitrary finite group with a
Frobenius group of automorphisms of coprime order. Let r(K) denote the rank of a finite
group K.

Theorem 2. Suppose that a finite group G admits a Frobenius group of automorphisms
FH with kernel F and complement H such that the orders of G and FH are coprime:
(|G|, |FH|) = 1. Then

(a) |G| 6 |CG(F )| · f(|H|, |CG(H)|) for some function f of two variables ;
(b) r(G) 6 r(CG(F )) + g(|H|, r(CG(H))) for some function g of two variables.

Under the hypothses of Theorem 2 weaker bounds for the order and rank in terms of some
functions depending on |CG(F )|, |H|, |CG(H)|) and r(CG(F )), |H|, r(CG(H))), respectively,
could be obtained just by considering the action of FH on Thompson’s critical subgroups in
FH-invariant Sylow p-subgroups for various p. The new information is that the dependence
on CG(F ) is now in the form of a separate factor |CG(F )| or summand r(CG(F )).

All the functions mentioned in the theorems can be easily given explicit upper estimates.
The induced group of automorphisms of an invariant section is often denoted by the same

letter. We use the abbreviation, say, “(m,n)-bounded” for “bounded above in terms of m, n
only”, that is, bounded above by a function depending only on m and n.

2 Preliminaries

Recall that if a group A is acting by automorphisms on a finite group G of coprime order,
(|A|, |G|) = 1, then the fixed points of the induced action of A on the quotient G/N by an
A-invariant normal subgroup are covered by fixed points of A in G:

CG/N(A) = CG(A)N/N.

In particular, [[G,A], A] = [G,A]. For every prime p, the group G has an A-invariant Sylow
p-subgroup. We shall use these well-known properties of coprime action without special
references.

For a group A acting by linear transformations on a vector space V we use the right
operator notation va for the image of v ∈ V under a ∈ A. We also use the centralizer
notation for the fixed-point subspace CV (A) = {v ∈ V | va = v for all a ∈ A} (just like for
fixed-point subgroups). Recall that for a group A and a field k, a free kA-module of rank
n is a direct sum of n copies of the group algebra kA each of which is regarded as a vector
space over k of dimension |A| with a basis {vg | g ∈ A} labelled by elements of A on which
A acts in a regular permutation representation: vgh = vgh. Clearly, every free kA-module
has nontrivial fixed-point for A given by the ‘diagonal’ elements — sums over A-orbits on
these bases.

The following lemma is an easy consequence of Clifford’s theorem.
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Lemma 2.1 ([5, Lemma 2.5]). If a Frobenius group FH with kernel F and complement
H acts by linear transformations on a vector space V over a field k in such a way that
CV (F ) = 0, then V is a free kH-module.

We immediately obtain the following.

Lemma 2.2. If a Frobenius group FH with kernel F and complement H acts by automor-
phisms on a finite group G of coprime order in such a way that [G,F ] 6= 1, then CG(H) 6= 1.

Proof. Choose an FH-invariant nontrivial Sylow p-subgroup P of G on which F acts non-
trivially. Then F acts nontrivially also on the Frattini quotient U = P/Φ(P ), which can be
regarded as an FpFH-module. Then V = [U, F ] 6= 0 is a free FpFH-module by Lemma 2.1.
Hence there is a nontrivial fixed point of H in V , and therefore also in P .

A finite p-group P is said to be powerful if [P, P ] 6 P p for p 6= 2, or [P, P ] 6 P 4 for p = 2.
(Here, An = 〈an | a ∈ A〉.) Powerful p-groups is an indispensable tool in the study of ranks
of finite p-groups.

Lemma 2.3 ([11]). (a) If a powerful p-group P is generated by d elements, then the rank
of P is at most d and P is a product of d cyclic subgroups.

(b) If P is a finite p-group of rank r, then P contains a characteristic powerful subgroup
of index at most pr(log2 r+2).

Lemma 2.4. If a finite p-group P has rank r and exponent pn, then |P | 6 pnf(r) for some
r-bounded number f(r).

Proof. By Lemma 2.3(b) the group P can be assumed to be powerful; Lemma 2.3(a) com-
pletes the proof.

The following result was obtained by Kovács [12] for soluble groups on the basis of Hall–
Higman type theorems and extended, with the use of the classification, to arbitrary finite
groups by Longobardi and Maj [13] (with the bound 2d) and Guralnik [14].

Lemma 2.5. If d is the maximum of the ranks of the Sylow p-subgroups of a finite group
(over all primes p), then the rank of this group is at most d+ 1.

We also record the following well-known fact about nilpotent groups.

Lemma 2.6. Let G be a nilpotent group of nilpotency class c.
(a) The order of G is bounded in terms of c and the order of G/[G,G].
(b) The rank of G is bounded in terms of c and the rank of G/[G,G].

Proof. Let γi = γi(G) denote terms of the lower central series of G. Both statements are
consequences of the well-known fact that there is a homomorphism

γ1/γ2 ⊗ · · · ⊗ γ1/γ2︸ ︷︷ ︸
k

→ γk/γk+1

from the tensor power onto γk/γk+1.
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3 Finite p-groups

Here we prove Theorem 1. Recall that P is a finite p-group admitting a Frobenius group FH
of automorphisms of coprime order with kernel F and complement H such that P = [P, F ].

Proof of Theorem 1(a). We begin with a bound for the nilpotency class of P . For brevity, let
γi = γi(P ) denote terms of the lower central series of P . Let |CP (H)| = pm. By Lemma 2.2,
whenever [V, F ] 6= 1 for an FH-invariant section V , we must have CV (H) 6= 1. Hence there
are at most m factors of the lower central series of P where F acts nontrivially. Therefore, for
some i 6 2m the group F acts trivially on the two consecutive factors γi/γi+1 and γi+1/γi+2.
We have

[F, γi, P ] 6 [γi+1, P ] = γi+2

and
[γi, P, F ] = [γi+1, F ] 6 γi+2.

Hence, by the Three Subgroup Lemma,

[[P, F ], γi] = [P, γi] = γi+1 6 γi+2.

Consequently, γi+1 = 1, since P is a nilpotent group.

Proof of Theorem 1(b). Now that we have a bound for the nilpotency class of P , a bound
for the order will follow by Lemma 2.6(a) if we obtain a bound for the order of P/γ2.

Since the action is coprime, the abelian group P/γ2 decomposes as

P/γ2 = CP/γ2(F )×
[
P/γ2, F

]
= CP/γ2(F )× P/γ2,

whence CP/γ2(F ) = 1. Therefore, |P/γ2| = |CP/γ2(H)||H| by [5, Theorem 2.7(a)] (this fact
is an easy consequence of Lemma 2.1). Since the action is coprime, |CP/γ2(H)| 6 |CP (H)|.
Furthermore, the nilpotency class of P is at most 2 logp |CP (H)| 6 2 log2 |CP (H)|. Therefore
the order |P | is indeed bounded in terms of |CP (H)| and |H| only.

Proof of Theorem 1(c). We now obtain a bound for the rank of P . The crucial step is to
show that P has a powerful p-subgroup of bounded rank and ‘co-rank’. The construction of
a powerful subgroup is similar to how it was done in [15] and [16]. But first we estimate the
number of generators of P . Henceforth in this section we denote for brevity by r = r(CP (H))
the rank of CP (H).

Lemma 3.1. The group P is generated by r|H| elements.

Proof. Consider the action of FH on the Frattini quotient V = P/Φ(P ). As above in
part (b), it is easy to see that CV (F ) = 1. Therefore, |V | = |CV (H)||H| 6 pr|H| by [5,
Theorem 2.7(a)] (or as a consequence of Lemma 2.1).

Let M be some normal FH-invariant subgroup of P , which will be specified later.
Consider the quotient P = P/Mp (or P/M4 if p = 2); let the bar denote the images.
Since M = M/Mp (or M = M/M4) has exponent p (or 4), the order of CM(H) is at

most pf for some r-bounded number f = f(r) by Lemma 2.4.
As usual, we denote terms of the upper central series by ζi, starting from the centre ζ1.
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Lemma 3.2. We have M 6 ζ2f+1(P ).

Proof. Consider the following central series of P :

M1 = M > M2 > M3 > · · · > 1, where Mi = [...[M,P ], . . . ,P︸ ︷︷ ︸
i−1

].

All the Mi are normal FH-invariant subgroups of P . Let Vi = Mi/Mi+1 and consider the
action of FH on these sections.

Whenever [Vi, F ] 6= 1 we have CVi(H) 6= 1 by Lemma 2.2. Since |CM(H)| 6 pf , there
can be at most f factors Vi with [Vi, F ] 6= 1.

Therefore for some k 6 2f + 1 we must have both [Vk, F ] = 1 and [Vk+1, F ] = 1. In other
words, we have

[[F,Mk],P ] 6 [Mk+1,P ] = Mk+2

and
[[Mk,P ], F ] = [Mk+1, F ] 6Mk+2.

Hence, by the Three Subgroup Lemma,

[[P , F ],Mk] = [P ,Mk] = Mk+1 6Mk+2.

Then Mk+1 = 1, since P is nilpotent: Mk+1 6 Mk+2 implies [Mk+1,P ] 6 [Mk+2,P ], that
is, Mk+2 6 Mk+3, and so on, which becomes eventually the trivial subgroup due to the
nilpotency ofP .

The equation Mk+1 = 1 obtained above means precisely that M 6 ζk(P ) 6 ζ2f+1(P ).

We continue proving that P has (r, |H|)-bounded rank. We put M = γ2f+1 (where,
recall, γ2f+1 = γ2f+1(P )). It is convenient to introduce the unified notation p∗ = p if p 6= 2,
and p∗ = 4 if p = 2.

Then by Lemma 3.2 we have [M,M ] 6 [γ2f+1(P ), ζ2f+1(P )] = 1, that is, [M,M ] 6Mp∗ .
This means precisely that M = γ2f+1(P ) is a powerful p-subgroup of P .

The quotient P/γp∗2f+1 is nilpotent of class 4f + 1, since γ2f+1/γ
p∗
2f+1 6 ζ2f+1(P/γ

p∗
2f+1) by

Lemma 3.2 and by the choice of M).
Since P is generated by r|H| elements by Lemma 3.1 and P/γp∗2f+1 is nilpotent of class 4f+1,

the rank of P/γp∗2f+1 is (|H|, r)-bounded by Lemma 2.6(b).
In particular, the rank of γ2f+1/γ

p∗
2f+1 is (|H|, r)-bounded. Since γp∗2f+1 6 Φ(γ2f+1), we

obtain that the number of generators of γ2f+1 is (|H|, r)-bounded. But in a powerful p-group
the number of generators is equal to its rank (Lemma 2.3(a)), so that the rank of γ2f+1 is
(|H|, r)-bounded.

Thus, both the rank of P/γ2f+1 and the rank of γ2f+1 are (|H|, r)-bounded, whence the
rank of P is (|H|, r)-bounded, as required.

Remark. Both functions in parts (b) and (c) of Theorem 1 can of course be assumed to
be non-decreasing in each of their arguments. Indeed, any function f(x, y) of two positive
integer variables can be replaced, for example, by the function

f̄(x, y) = sup
u6x,
v6y

f(u, v),

which already satisfies the required property.
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4 General case

Let G be a finite group admitting a Frobenius group of automorphisms FH of coprime order
with kernel F and complement H. Here we prove Theorem 2 on the order and rank of G.

For each prime p, let Sp be an FH-invariant Sylow p-subgroup of G (one for each p). We
have Sp = CSp(F )[Sp, F ].

Proof of Theorem 2(a). By Theorem 1(b) we have |[Sp, F ]| 6 f1(|H|, |C[Sp,F ](H)|) for some
function f1 that is non-decreasing in each argument. Hence,

|Sp| 6 |CSp(F )| · f1(|H|, |C[Sp,F ](H)|).

Note also that Sp = CSp(F ) if [Sp, F ] = 1. Since |G| =
∏

p |Sp| and |CG(F )| =
∏

p |CSp(F )|,
we obtain

|G| 6
∏
p

|CSp(F )| ·
∏

[Sp,F ] 6=1

f1(|H|, |C[Sp,F ](H)|) = |CG(F )| ·
∏

[Sp,F ] 6=1

f1(|H|, |C[Sp,F ](H)|).

But C[Sp,F ](H) 6= 1 whenever [Sp, F ] 6= 1 by Lemma 2.2. Hence in the product on the right-
hand side the primes p divide |CG(H)|. As a rough estimate, there are at most log2 |CG(H)|
such primes. Therefore,

|G| 6 |CG(F )| · f1(|H|, |CG(H)|)log2 |CG(H)|,

which is a required upper estimate for the order with the function

f(|H|, |CG(H)|) = f1(|H|, |CG(H)|)log2 |CG(H)|.

Proof of Theorem 2(b). For each prime p, by Theorem 1(c) we have

r([Sp, F ]) 6 f2(|H|, r(C[Sp,F ](H)))

for some function f2 that is non-decreasing in each argument. Hence,

r(Sp) 6 r(CSp(F )) + f2(|H|, r(C[Sp,F ](H))) 6 r(CG(F )) + f2(|H|, r(CG(H))).

By Lemma 2.5, an upper estimate for the rank of G is obtained by adding 1 to the right-hand
side.
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