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Abstract

By the Shepherd–Leedham-Green–McKay theorem on finite p-groups of maximal
class, if a finite p-group of order pn has nilpotency class n−1, then it has a subgroup
of nilpotency class at most 2 with index bounded in terms of p. Counterexamples
to a rank analogue of this theorem are constructed, which give a negative solution
to Problem 16.103 in Kourovka Notebook. Moreover, it is shown that there are no
functions r(p) and l(p) such that any 2-generator finite p-group all of whose factors
of the lower central series, starting from the second, are cyclic would necessarily have
a normal subgroup of derived length at most l(p) with quotient of rank at most r(p).
The required examples of finite p-groups are constructed as quotients of torsion-free
nilpotent groups, which are abstract 2-generator subgroups of nilpotent divisible
torsion-free groups that are in the Mal’cev correspondence with “truncated” Witt
algebras.

1 Introduction

A finite p-group P is said to have maximal class if it has order pn and maximal possible
nilpotency class n− 1; this obviously means that |P/γ2(P )| = p2 and |γi(P )/γi+1(P )| = p
for all i > 2, where γj(P ) are terms of the lower central series. The theory of p-groups of
maximal class was founded by Blackburn [1]. Alperin [2] proved that the derived length of
a p-group of maximal class of bounded in terms of p only. A result that is in a sense best-
possible was obtained (among other results) independently by Shepherd [3] and Leedham-
Green and McKay [4]: a p-group of maximal class has a subgroup of nilpotency class at
most 2 (even abelian for p = 2) with index bounded in terms of p only. As generalizations
of finite p-groups of maximal class there appeared finite p-groups of given co-class, for
which similar results were proved (by Donkin, Kiming, Leedham-Green, Mann, McKay,
Newman, Plesken, Shalev, Zelmanov, et al.). Natural generalizations in terms of pro-p-
groups were considered in parallel, for which certain definitive results were also obtained
(mainly by the same authors).
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I have posed Problem 16.103 in Kourovka Notebook [5] on the validity of a rank
analogue of the Shepherd–Leedham-Green–McKay theorem: suppose that in a finite 2-
generated p-group P all factors of the lower central series, starting from the second, are
cyclic; must P have a normal subgroup of nilpotency class at most 2 with quotient of
rank bounded in terms of p only?

The purpose of this note is a negative answer to this question. Moreover, one can-
not even guarantee the existence of a normal subgroup of bounded derived length with
quotient of bounded rank.

Theorem. There are no functions r(p) and l(p) such that any finite 2-generator p-group
all of whose factors of the lower central series, starting from the second, are cyclic would
necessarily have a normal subgroup of derived length at most l(p) with quotient of rank at
most r(p).

The required examples of finite p-groups are constructed as quotients of torsion-free
nilpotent groups, which are abstract 2-generator subgroups of nilpotent divisible torsion-
free groups that are in the Mal’cev correspondence with “truncated” Witt algebras.

We point out that “truncated” Witt algebras were also used earlier [6, 7] for construct-
ing examples of p-groups of maximal class with unbounded derived length — of course,
for various values of p; therein algebras in characteristic p were used, and the Lazard
correspondence, which works only for nilpotency class at most p − 1. But our examples
are “unbounded” for any fixed prime number p, and therefore their construction required
an approach via torsion-free nilpotent groups and the Mal’cev correspondence.

It is interesting to compare the situation with related problems on p-automorphisms of
finite p-groups with few fixed points. The theory of p-groups of maximal class is virtually
equivalent to the theory of finite p-groups G admitting an automorphism φ of order p
having exactly p fixed points, |CG(φ)| = p. The so-called uncovered case of p-groups of
given coclass has a strong relation to finite p-groups G admitting an automorphism φ of
order pn with |CG(φ)| = p.

Now suppose that a finite p-group G admits an automorphism φ of order pn with
|CG(φ)| = pm. For |φ| = p Alperin [2] proved that the derived length of G is (p,m)-
bounded, and I proved in [8] that G has a subgroup of (p,m)-bounded index that has
p-bounded nilpotency class (which, as noted by Makarenko [9], can even be bounded by
h(p), where h(p) is Higman’s function bounding the nilpotency class of a nilpotent group
with a fixed-point-free automorphism of order p).

Henceforth we say for short that a certain quantity is, say, (a, b, . . . )-bounded if it is
bounded above by some function depending only on a, b, . . . .

In the general case, Shalev [10] proved that the derived length of G is (p, n,m)-
bounded, and I proved in [11] that G has a subgroup of (p, n,m)-bounded index that has
derived length at most 2k(pn), where k(pn) is Kreknin’s function bounding the derived
length of a Lie algebra with a fixed-point-free automorphism of order pn. In an alterna-
tive direction, for |φ| = p Medvedev [12] proved that G has a subgroup of (p,m)-bounded
index that has m-bounded nilpotency class, and in the general case Jaikin-Zapirain [13]
proved that G has a subgroup of (p, n,m)-bounded index that has m-bounded derived
length.
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These general results on p-automorphisms of finite p-groups have rather trivial rank
analogues in the sense that if a finite p-group G admits an automorphism φ of order pn

with CG(φ) of rank m, then the rank of the whole group G is bounded in terms of p,
n, and m. This result is well known in folklore; the proof is based on considering the
Jordan normal form of φ as a linear transformation of any φ-invariant elementary abelian
section. Since the number of fixed points in such a section is at most pm, the number of
Jordan blocks is at most m. Since the size of each block is at most pn × pn, the rank of
every such section is at most mpn. Then one can apply the theory of powerful p-groups,
or the fact that the rank of a p-group of automorphisms of an abelian p-group is bounded
in terms of the rank of the latter.

Yet the examples in the present paper show that there is no rank analogue of the
original Shepherd–Leedham-Green–McKay theorem, which corresponds to the case of
|φ| = |CG(φ)| = p in terms of automorphisms, not even with a subgroup of p-bounded
“co-rank” and p-bounded derived length.

In § 1 we recall the properties of the Mal’cev correspondence between divisible torsion-
free nilpotent groups and nilpotent Lie algebras over Q. In § 2 the Mal’cev correspondence
is applied to “truncated” Witt algebras, which are nilpotent Lie algebras; these algebras
and resulting groups G are considered for various values of the nilpotency class. Then
abstract 2-generator subgroups F are chosen in the groups G in such a way that all factors
of the lower central series of F , starting from the second, are infinite cyclic. In § 3 it is
shown that finite p-groups that are quotients of F provide the required examples.

2 Mal’cev correspondence

In this section we recall the properties of the Mal’cev correspondence.
Let L be a nilpotent Lie algebra L over Q (for short, Q-algebra). We denote Lie com-

mutators (products) in L by parentheses, in order to distinguish them from group com-
mutators, which will be defined on the same elements. The Baker–Campbell–Hausdorff
formula defines the structure of a Q-powered group (that is, a divisible, or radicable,
group with unique roots, so that rational powers of elements are well defined). The group
can be assumed to have the same underlying set G = L, so that the group operation is
defined by a fixed formula in terms of the Lie algebra operations of L:

xy = x+ y +
1

2
(x, y) +

1

12
((x, y), y)− 1

12
((x, y), x)− 1

24
(((x, y), x), y) + · · · , (1)

where commutators on the right are Lie commutators in L depending on x and y. A
commutator of two elements in G is also given by a fixed formula in terms of Lie algebra
operations in L:

[x, y] = (x, y) + · · · , (2)

where dots on the right-hand side denote a linear combination of Lie commutators in x
and y of weight at least three.

The Lie operations in L can be reconstructed from the Q-powered group operations in
G by the inversions of the Baker–Campbell–Hausdorff formulae (1), (2). This correspon-
dence between G and L is known as the Mal’cev correspondence. It is well known that
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this is an equivalence of categories of nilpotent Lie Q-algebras and nilpotent Q-powered
groups.

In particular, the group G has the same nilpotency class as L; the terms the lower
central series of G are Q-powered subgroups and coincide as sets with the corresponding
terms of the lower central series of the Lie algebra L. For any α ∈ Q the αth power of
g ∈ G is equal to αg in L, and we shall freely write gα = αg for g ∈ G = L and α ∈ Q.
Note that 1 = 0, where 1 is the identity elements of G and 0 is the zero element of L.
For an abstract subgroup S of G (that is, S is a subgroup of G as an ordinary group)
owe denote by

√
S the set of all roots of elements of S; this is the Q-powered subgroup

generated by S; obviously,
√
S = QS with multiplication by scalars in L on the right.

We shall need some technical properties of the Mal’cev correspondence, which are also
known in folklore. However, in order to give precise references, it is convenient to cite
some lemmas in [14].

Let L be a free nilpotent Lie Q-algebra of nilpotency class c on free generators
x1, x2, . . . . Then the Q-powered group G that is in the Mal’cev correspondence with
L as described above is a free nilpotent Q-powered group of nilpotency class c on free
generators x1, x2, . . . .

Lemma 1 ([14, Lemma 1]). There is a c-bounded positive integer d = d(c) such that any
element of any abstract subgroup ⟨g1, g2, . . . ⟩ of G is equal to a linear combination of Lie
commutators in g1, g2, . . . with rational coefficients whose denominators divide d.

(Henceforth “abstract” means generated as an ordinary group, without taking roots,
that is, without fractional powers.)

Let L0 be the Lie ring (Z-algebra) generated by the elements x1, x2, . . . (so its additive
group is generated by commutators in x1, x2, . . . ). Let G0 be the abstract subgroup of G
generated by x1, x2, . . . . Then G0 is an (abstract) free nilpotent group of nilpotency class c
on free generators x1, x2, . . . . Lemma 1 is actually equivalent to the inclusion G0 ⊆ d−1L0.

Lemma 2 ([14, Lemma 2]). There is a c-bounded positive integer D = D(c) such that
for any positive integer k the subgroup G k

0 generated by all kth powers of elements of G0

is contained in D−1kL0.

Although these lemmas are stated in terms of free nilpotent Lie Q-algebras and Q-
powered groups, we shall be able to apply their consequences to other situations where
the Mal’cev correspondence is applied.

3 Torsion-free groups

In this section first we construct torsion-freeQ-powered groups that are in the Mal’cev cor-
respondence with certain nilpotent Lie Q-algebras. Then we choose abstract 2-generator
subgroups which have cyclic factors of the lower central series, starting from the second.

For n > 2, let L = L(n) be a “truncated” Witt algebra over Q which is a Lie algebra
with basis e1, . . . , en and structure constants

(ei, ej) =

{
(i− j)ei+j for i+ j 6 n

0 otherwise.
(3)
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Note that any Lie commutator in the ei is a multiple of es, where s is the sum of indices
of all elements involved in the commutator with account for multiplicities. For example,
(e2, e1, . . . , e1︸ ︷︷ ︸

k−2

) = (k− 2)!ek. Henceforth simple (left-normed) commutators are denoted as

(a1, a2, a3, . . . , ak) = (...((a1, a2), a3), . . . , ak).
Obviously, L is a nilpotent Lie algebra of nilpotency class n − 1, with terms of the

lower central series γi(L) = ⟨ei+1, . . . , en⟩ for i > 2. It follows from the structure constants
that L/γi(L) ∼= L(i) for every i = 3, 4, . . . , with the images of e1, . . . , ei playing the role
of the basis in the definition of L(i).

Let G = G(n) be the nilpotent group in the Mal’cev correspondence with L = L(n).
As described in § 2, we assume that G has the same underlying set G = L with the group
operations defined in terms of the Lie algebra operations of L by the Baker–Campbell–
Hausdorff formulae (1) and (2) for products and commutators. Note that G/γi(G) ∼= G(i)
for every i = 3, 4, . . . in accordance with the above-mentioned property of L.

Lemma 3. Any (repeated) group commutator in elements ecii , ci ∈ Q, is equal to a linear
combination of Lie commutators in the same elements ecii = ciei each having at least the
same multiplicity of occurrence of each element cjej as the original group commutator.

Proof. This follows directly from the repeated application of the commutator formula
(2).

Every element of L (and therefore of G) is a linear combination of the basis elements ei.
The first term with nonzero coefficient, with the least index, is called the leading term:
if g = ciei + ci+1ei+1 + · · · with ci ̸= 0, then the leading term of g is ciei. Writing
g = ciei + · · · we shall always mean that ciei is the leading term of g.

Lemma 4. If g = ciei + · · · and h = djej + · · · for i ̸= j, then

[g, h] =

{
(i− j)cidjei+j + · · · if i+ j 6 n, and

1 = 0 if i+ j > n.

Proof. This immediately follows from the structure constants (3) and the commutator
formula (2).

We now consider certain abstract 2-generator subgroups of G.

Proposition 1. There is an n-bounded positive integer M(n) such that for any positive
integer M divisible by M(n) the group F = F (M) generated as an abstract group by e1
and eM2 has the following properties :

(a) the factors γi(F )/γi+1(F ) are infinite cyclic for all i > 2;
(b) γi(F ) = F ∩ γi(G) for every i = 1, 2, . . . ;
(c) γi(F )/γi+1(F ) is generated by the image of [eM2 , e1, . . . , e1︸ ︷︷ ︸

i−1

] for every i > 2.

(We shall actually need just one M(n) for each n, but in the proof of the proposition
by induction on n it is convenient to have the formally stronger assertion with divisibility.)
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Proof. By Lemma 4 and structure constants formulae (3),

[eM2 , e1, . . . , e1︸ ︷︷ ︸
i−1

] = (Me2, e1, . . . , e1︸ ︷︷ ︸
i−1

) + · · · = M(i− 1)!ei+1 + · · · ,

so that clearly the Q-linear span of these elements together with e1 and eM2 = Me2
coincides with L. In other words,

√
F = G is the Mal’cev completion of F . Hence,√

γi(F ) = γi(G). Therefore,
√
γi(F )/

√
γi+1(F ) ∼= Q for i > 2. Since the γi(F ) are finitely

generated, part (a) will follow if we show that γi(F )/γi+1(F ) is torsion-free for i > 2. Since
G/γi+1(G) are torsion-free, it suffices to prove part (b), that is, γi(F ) = F ∩ γi(G) for all
i = 1, 2, . . . . We proceed by induction simultaneously proving part (c) and constructing
the required positive integer M(n) in the process. The key lemma deals with γn−1(F ).

Lemma 5. There is an n-bounded positive integer N(n) such that for any N divisible by
N(n) the group F generated as an abstract group by e1 and eN2 has torsion-free quotient
F/γn−1(F ) and, moreover, γn−1(F ) = F ∩ γn−1(G) = ⟨[eN2 , e1, . . . , e1︸ ︷︷ ︸

n−2

]⟩.

Proof. Since G/γn−1(G) is torsion-free, we only need to prove the second assertion. From
the structure constants (3) and Lemma 3 it is clear that

γn−1(F ) = ⟨[eN2 , e1, . . . , e1︸ ︷︷ ︸
n−2

]⟩ = ⟨(n− 2)!Nen⟩

(where angle brackets denote subgroups generated as abstract groups). Since
√
γn−1(F ) =

γn−1(G) = Q⟨en⟩, it is also clear that we simply need to find N(n) such that for any N
divisible by N(n) the following holds: for any element αen ∈ F the coefficient α is an
integer divisible by (n− 2)!N .

By the usual collecting process arguments, such an element αen ∈ F is a product
of (integer) powers of (basic) commutators in the generators e1 and eN2 in some order
compatible with the increase of the weight:

αen = ek11 (eN2 )
k2 [eN2 , e1]

k3 [eN2 , e1, e1]
k4 [eN2 , e1, e

N
2 ]

k5 · · · [eN2 , e1, . . . , e1]kz , (4)

where ki ∈ Z.
We transform the right-hand side into a linear combination of Lie commutators in e1

and eN2 = Ne2. First we expand the (repeated) group commutators by repeatedly using
the commutator formula (2), and then we apply the product formula (1). As a result, the
right-hand side of (4) becomes a linear combination of Lie commutators in eN2 = Ne2 and
e1,

αen = k1e1 + k2Ne2 +
n−2∑
i=1

λi(Ne2, e1, . . . , e1︸ ︷︷ ︸
i

) +
∑
i

µiκi, (5)

where, apart from the “linear part” k1e1 + k2e2, we also distinguished the commutators
(Ne2, e1, . . . , e1︸ ︷︷ ︸

i

) with exactly one occurrence of Ne2, while the κi are other Lie commu-

tators in Ne2 and e1 containing at least two occurrences of Ne2. It does not matter for
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us whether the coefficients of the κi are collected or not, as long as this expansion arose
from applying the commutator and product formulae to the right-hand side of (4), — as
we shall see soon enough the κi can be easily dealt with.

Note that for the moment we keep the coefficientN of e2 “inside” the Lie commutators,
regarding both group commutators in (4) and Lie commutators in (5) as commutators in
these two elements eN2 = Ne2 and e1.

Of course, each Lie commutator in (5) is equal to a multiple of one of the basis
elements ei by the structure constants (3), where the index i is equal to the sum of indices
of all the entries of the commutator. For example, (Ne2, e1, e1, e1, Ne2) = 18N2e7. After
collecting terms in the resulting linear combination of e1, . . . , en, we must of course have
all coefficients of ei become zero for i < n, and the coefficient of en become equal to α.
Therefore all terms in (5) with sums of indices less than n must cancel out.

We observe straight away that when the structure constants formulae (3) are applied
to the right-hand side of (5), the only contribution to the coefficients of e1 and e2 is
k1e1 + k2Ne2. Since n > 3 in our construction, we must have k1 = 0 and k2 = 0.

Our task is to show that after application of the structure constant formulae and
collecting all terms — which must result in a multiple of en — the resulting coefficient α
of en is an integer divisible by (n − 2)!N , as long as N is divisible by a certain positive
integer N(n), which we shall determine in the course of the proof. We shall do this step
by step, by analysing separately the coefficients λi and µi, with λi being the difficult part,
and the µi being easier to handle.

We should bear in mind that the coefficients of the Lie commutators in (5) are, gener-
ally speaking, rational numbers rather than integers. However, the denominators of these
coefficients are bounded. This fact is not quite obvious, since the product and commuta-
tor formulae (1), (2) are applied repeatedly; we derive it here from Lemma 1, which was
stated for free nilpotent Lie Q-algebra and Q-powered group.

Lemma 6. There is an n-bounded positive integer d = d(n) such that any element of any
abstract subgroup ⟨g1, g2, . . . ⟩ of G is equal to a linear combination of Lie commutators in
g1, g2, . . . with rational coefficients whose denominators divide d.

Proof. We apply Lemma 1 to the abstract subgroup G0 of G generated by x1, x2, . . . with
c = n − 1. This subgroup is an abstract free nilpotent group of class n − 1. The same
number d = d(n) given by that lemma has the required property, in view of the homo-
morphism of L into L extending the mapping xi → gi, which is also a homomorphism of
G into G.

Let κ = κi be one of the Lie commutators in Ne2 and e1 in (5) with at least two
occurrences of Ne2. By Lemma 6, the coefficient µ = µi of κ is equal to a/d for some
a ∈ Z. Indeed, this term µκ appeared in the expansion of the right-hand side of (4), an
element of the abstract group generated by Ne2 and e1.

Using the linearity of κ and two occurrences of Ne2 in it, we see that

µκ =
bN2

d
es for some b ∈ Z, (6)

where s is the sum of indices of the entries of κ, because the structure constants are
integers. In particular, if N is divisible by (n − 2)!d, then after application of structure
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constant formulae all contributions of the κi to the coefficient of en will be integers divisible
by (n− 2)!N , which is what we need.

It remains to consider the coefficient λn−2 of the Lie commutator (Ne2, e1, . . . , e1︸ ︷︷ ︸
n−2

),

to which contributions are made not only by the power of the same group commutator
[eN2 , e1, . . . , e1︸ ︷︷ ︸

n−2

] in (4) (which, of course, causes no problems as it contributes (n−2)!Nkzen),

but also by the “tails” of other powers of group commutators. Here, by the tail of a power
of a group commutator of some weight we mean the linear combination of Lie commutators
of greater weight appearing in the expansion by repeated application of the commutator
formula (2). We approach λn−2 by induction analysing the properties of all λi in (5).

Changing notation, let sm be the integer exponent of [eN2 , e1, . . . , e1︸ ︷︷ ︸
m

] in (4), so that

[eN2 , e1, . . . , e1︸ ︷︷ ︸
m

]sm is the corresponding factor in (4).

Lemma 7. The coefficient λm of the commutator (Ne2, e1, . . . , e1︸ ︷︷ ︸
m

) in (5) is equal to the

sum of sm and the coefficients of this commutator in the tails of [eN2 , e1, . . . , e1︸ ︷︷ ︸
i

]si for i < m.

Proof. When the commutator formula (2) is (repeatedly) applied to every factor in (4), by
Lemma 3 it is only commutators [eN2 , e1, . . . , e1︸ ︷︷ ︸

j

]si for i 6 m that have (Ne2, e1, . . . , e1︸ ︷︷ ︸
m

) in

their decompositions. By the same lemma, the corresponding term in the decomposition
of [eN2 , e1, . . . , e1︸ ︷︷ ︸

m

]sm is sm(Ne2, e1, . . . , e1︸ ︷︷ ︸
m

).

Since k1 = k2 = 0, we are dealing only with commutators in x1 andNe2 = eN2 , which all
involve e2, so that any commutator in such commutators involves at least two occurrences
of Ne2. Therefore subsequent application of the product formula (1) obviously only sums
up contributions to the coefficient of (Ne2, e1, . . . , e1︸ ︷︷ ︸

m

).

We claim that these exponents sm must be “almost divisible” by N , since only then the
cancellations will be possible that are necessary for the coefficients of em+2 for m+2 < n
to become zero after application of the structure constants formulae.

Lemma 8. For m+ 2 < n the exponent sm can be written in the form

sm =
umN

m!dm−3
for some um ∈ Z,

where d is the positive integer in Lemma 6.

(Of course, the sm are integers, but we need the factor N to appear in the numerator
of a fraction with denominator bounded in terms of n.)

Proof. Since k1 = k2 = 0, the only contribution to the coefficient of e3 when the structure
constants formulae (3) are applied to (5) comes from the leading term of the factor
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[eN2 , e1]
k3 in (4), and this contribution isNk3e3. Henceforth we apply repeatedly Lemmas 3

and 4 without special references. Hence, s1 = k3 = 0, too (unless n 6 3, when there is
nothing to prove about s1).

Next, it follows that the only contribution to the coefficient of e4 after the structure
constants formulae are applied to the right-hand side of (5) comes from the leading term
of the factor [eN2 , e1, e1]

k4 in (4), and this contribution is 2Nk4e4. By Lemma 7 we also
have a contribution from the tail of [eN2 , e1]

s1 , but we already know that s1 = 0. Hence,
s2 = k4 = 0 (unless n 6 4, when there is nothing to prove about s2).

The situation becomes different starting from the coefficient of e5. After the struc-
ture constants formulae are applied to the right-hand side of (5), the coefficient of e5 is
equal to the sum of 3!s3N , which is the contribution of the summand s3(Ne2, e1, e1, e1),
the leading term of the factor [eN2 , e1, e1, e1]

s3 in (4), and the only other contribution of
k5(Ne2, e1, Ne2) = k5N

2(e2, e1, e2) = k5N
2e5 arising as the leading term of [eN2 , e1, e

N
2 ]

k5 in
(4). (By Lemma 7 we would also need to consider the tails of [eN2 , e1]

s1 and [eN2 , e1, e1]
s2 ,

but we already know that s1 = s2 = 0.) Thus, assuming that n > 5, we must have
3!s3N + k5N

2 = 0, whence

s3 =
−k5N

3!
=

u3N

3!d3−3
(7)

with u3 = −k5 ∈ Z, as required.
We make one more step before proving the step of induction on m. After the structure

constants formulae are applied to the right-hand side of (5), the coefficient of e6 is the
sum of λ44!N and the coefficients resulting from some Lie commutators with at least
two occurrences of Ne2. The latter together contribute b4N

2/d for b4 ∈ Z by (6). By
Lemma 7, we have λ4 = s4+c43s3, where c43(Ne2, e1, e1, e1, e1) is a summand in the tail of
[eN2 , e1, e1, e1] (while s3 is the exponent of the factor [eN2 , e1, e1, e1]

s3 in (4)). By Lemma 6
we have c43 = t43/d for t43 ∈ Z. Assuming that n > 6 we must have the coefficient of e6
be zero. Therefore, using the previous formula (7), we obtain

(s4 + c43s3)4!N +
b4N

2

d
=

(
s4 +

t43u3N

3!d

)
4!N +

b4N
2

d
= 0,

whence

s4 = −b4N

4!d
− t43u3N

3!d
=

u4N

4!d
for u4 ∈ Z, as required.

We now prove the step of induction on m. After the structure constants formulae are
applied to the right-hand side of (5), the coefficient of em+2 is the sum of λmm!N and the
coefficients resulting from some Lie commutators with at least two occurrences of Ne2.
The latter together contribute bmN

2/d for bm ∈ Z by (6).
By Lemma 7,

λm = sm +
m−1∑
i=1

cmisi,

where cmi(Ne2, e1, . . . , e1︸ ︷︷ ︸
m

) is a summand in the tail of the commutator [eN2 , e1, . . . , e1︸ ︷︷ ︸
i

]

(while si is the exponent of the factor [eN2 , e1, . . . , e1︸ ︷︷ ︸
i

]si in (4)). By Lemma 6, we have
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cmi = tmi/d for tmi ∈ Z, and by the induction hypothesis, si = uiN/i!di−3 for ui ∈ Z.
Since the coefficient of em+2 on the left of (5) is zero (unless m + 2 = n, when there is
nothing to prove), we must have

(
sm +

m−1∑
i=1

cmisi

)
m!N +

bmN
2

d
=

(
sm +

m−1∑
i=1

tmiuiN

i!di−2

)
m!N +

bmN
2

d
= 0,

whence

sm = −bmN

m!d
−

m−1∑
i=1

tmiuiN

i!di−2
=

umN

m!dm−3

for um ∈ Z, as required.

We now finish the proof of Lemma 5. We already saw that if N is divisible by (n−2)!d,
then (n − 2)!N divides the contribution to the coefficient of en given by the terms µjκj

in (5), where Lie commutators κi in Ne2 and e1 have at least two occurrences of Ne2.
It remains to consider λn−2. By Lemma 7,

λn−2 = sn−2 +
n−3∑
i=1

cisi,

where ci(Ne2, e1, . . . , e1︸ ︷︷ ︸
m

) is a summand in the tail of the commutator [eN2 , e1, . . . , e1︸ ︷︷ ︸
i

] (while

si is the exponent of the factor [eN2 , e1, . . . , e1︸ ︷︷ ︸
i

]si in (4)). By Lemma 6 we have ci = ti/d

for ti ∈ Z, and by Lemma 8 we have si = uiN/i!di−3 for ui ∈ Z. Therefore,

λn−2(Ne2, e1, . . . , e1︸ ︷︷ ︸
n−2

) =
(
sn−2 +

n−3∑
i=1

cisi

)
(n− 2)!Nen

=
(
sn−2 +

n−3∑
i=1

tiuiN

i!di−2

)
(n− 2)!Nen

=
(
sn−2(n− 2)!N +

uN

(n− 3)!dn−5
(n− 2)!N

)
en,

where u ∈ Z. Hence this contribution to the coefficient of en will be divisible by (n−2)!N
if N is divisible by (n − 3)!dn−5. Thus, as long as N is divisible by (n − 3)!dn−5 and by
(n− 2)!d, the coefficient α in (5) is divisible by (n− 2)!N , as required.

To finish the proof of Proposition 1 we set M(n) to be the product of the numbers
N(3), N(4), . . . , N(n) given by Lemma 5. We use induction on n to prove that this number
M(n) has the required properties. Let M be any positive integer divisible by M(n).

In the basis of induction for n = 3 all three parts follow from Lemma 5.
For n > 3 the quotient of the Q-powered group G by γn−1(G) = Qen is isomorphic to

G(n−1) and is in the Mal’cev correspondence with L(n−1) ∼= L(n)/γi(L(n)) = L(n)/Qen.
Let the bar denote images in G/γn−1(G). Since M is also divisible by M(n − 1), by
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induction the abstract group F̄ = ⟨ē1, ēM2 ⟩ has infinite cyclic factors of the lower central
series starting from the second. These factors are isomorphic to the lower central factors
γi(F )/γi+1(F ) of F for i = 1, . . . , n − 2, since F ∩ γn−1(G) = γn−1(F ) by Lemma 5.
Furthermore, γn−1(F ) is also infinite cyclic by the same lemma. Thus, part (a) is proved.

Furthermore, by induction γi(F̄ ) = F̄ ∩ γi(Ḡ), which is equivalent to

γi(F )γn−1(G) = (F ∩ γi(G))γn−1(G) (8)

because γi(G) > γn−1(G). Since F ∩ γn−1(G) = γn−1(F ) by Lemma 5, this implies that
γi(F ) = F ∩ γi(G). Indeed, we only need to prove that γi(F ) > F ∩ γi(G). For any
f ∈ F ∩ γi(G) by (8) there is z ∈ γn−1(G) and g ∈ γi(F ) such that gz = f , whence
z = g−1f ∈ F ∩ γn−1(G) = γn−1(F ) 6 γi(F ) by Lemma 5, so that f = gz ∈ γi(F ). This
proves (b).

Finally, part (c) follows from part (b) and the induction hypothesis for γi(F )/γi+1(F )
for 2 6 i < n− 1, and from Lemma 5 for γn−1(F ).

4 Finite p-groups

In the preceding section we proved that the abstract subgroup F = ⟨e1, eM2 ⟩ of the Q-
powered group G = G(n) for any M divisible by a certain n-bounded number M(n) is
a 2-generator torsion-free nilpotent group of class n − 1 with cyclic factors of the lower
central series starting from the second. In this section for any given prime number p
we consider finite p-groups that are quotients of these groups F (for various n). These
quotients form a family of required examples of 2-generator finite p-groups with cyclic
factors of the lower central series, stating from the second, that do not have a subgroup
of p-bounded derived length with quotient of p-bounded rank.

In what follows, for a given n we choose a positive integer M = M(n) satisfying
Proposition 1. It is also easy to make sure that M(n) is divisible by M(i) for all i 6 n,
for example, by setting M(n) =

∏n
i=3N(i) for the N(i) given by Lemma 5. Then M(n)

will also satisfy Proposition 1 applied to the quotient G/γi(G) identified with the group
G(i), for any i 6 n.

As quotients of F that are the required finite p-groups we take the groups P = P (k) =
F/F pk for positive integers k, which will be chosen to be large enough in the proofs. Since
F is 2-generator and has cyclic factors of the lower central series, starting from the second,
the same properties are enjoyed by the groups P .

We shall be using the Lie algebra L for controlling subgroups and sections of P and
of F , which, recall, is the abstract subgroup of the Q-powered group G, which is in the
Mal’cev correspondence with the Lie Q-algebra L. For example, a section of P can be
viewed as a section Q/R of the abstract group G, and if R is contained as a subset in
some subset S ⊆ L and we manage to show in L that Q ̸⊆ S, then we can conclude that
Q/R ̸= 1 in P , even if S is not contained in F , say.

It is convenient to introduce also the Lie ring (Z-algebra) L0 generated by the basis
elements e1, . . . , en. In particular, since all the structure constants (3) are integers, the
additive group of L0 is a free abelian group of rank n with basis e1, . . . , en.
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Lemma 9. There is an n-bounded positive integer D = D(n) such that for any positive
integer k the subgroup F k generated by all kth powers of elements of F is contained in
D−1kL0.

Proof. This fact follows from Lemma 2 for the free nilpotent Lie Q-algebra L and Q-
powered group G with nilpotency class c = n − 1. Recall that G0 is the abstract free
nilpotent group of class n− 1 on free generators x1, x2, . . . . Let D = D(n) be the number
given by that lemma, so that

G k
0 ⊆ D−1kL0 (9)

for any positive integer k. The map x1 → e1, x2 → eM2 = Me2, xi → 1 = 0 for i > 3
extends to a homomorphism of G0 onto F , of G into G, of L0 into L0, and of L into L, and
all these homomorphisms agree on common parts of domains of definition. Applying these
homomorphisms to (9) we obtain F k ⊆ D−1kL0, as required. (In fact, the image of L0

under that homomorphism is somewhat smaller than L0, but we use L0 for simplicity.)

It is more convenient for us to have a consequence of Lemma 9 in terms of divisibility
by a given prime p. Let Qp′ denote the ring of all rational numbers with denominators
coprime to p.

Lemma 10. There is an n-bounded positive integer ε = ε(n) such that for any positive
integer k the subgroup F pk generated by all pkth powers of elements of F is contained in
pk−εQp′L0.

To lighten the notation we introduce the elements gi = [eM2 , e1, . . . , e1︸ ︷︷ ︸
i−2

] for i > 3. The

leading term of gi, in terms of L, is M(e2, e1, . . . , e1︸ ︷︷ ︸
i−2

) = (i− 2)!Mei. By Proposition 1 the

image of gi generates γi−1(F )/γi(F ).

Proposition 2. Let s be a positive integer such that s 6 n/2.
(a) The section γs(F )/γ2s(F ) is a free abelian group of rank s freely generated by the

images of gs+1, . . . , g2s.
(b) There is an s-bounded positive integer k0(s) such that for any positive integer

k > k0(s) the section γs(P )/γ2s(P ) of P = F/F pk is an abelian p-group of rank exactly s
generated by the images of gs+1, . . . , g2s.

Proof. (a) Since γ2s(F ) = F ∩ γ2s(G) by Proposition 1, we can simply assume that
γ2s(G) = 1, which is equivalent to γ2s(L) = 0, or n = 2s. Then the elements gs+1, . . . , g2s
clearly commute by Lemma 4. Considering the leading terms of gi = (i − 2)!Mei + · · ·
we see that the s × s matrix of the coefficients of gs+1, . . . , g2s with respect to the basis
es+1, . . . , e2s is triangular with nonzero elements on the diagonal. Therefore the elements
gs+1, . . . , g2s are linearly independent (in L, regarded as a vector space over Q). This in
turn of course means that the additive subgroup of L generated by gs+1, . . . , g2s is free
abelian on these free generators. It remains to use the fact that for commuting elements
the group multiplication in G coincides with the addition in L (see (1)).

(b) Since our section

γs(P )/γ2s(P ) = γs(F )F pk/γ2s(F )F pk ∼= γs(F )/(γs(F ) ∩ γ2s(F )F pk)
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is abelian by (a), it is sufficient to prove that its image in G/γ2s(G) has the required
property. Therefore we can again assume that γ2s(G) = 1, which is equivalent to γ2s(L) =
0, or n = 2s. Then our section becomes isomorphic to γs(F )/(γs(F )∩F pk), since γ2s(F ) =
F ∩ γ2s(G) by Proposition 1. We know that γs(F ) = ⟨gs+1⟩ × · · · × ⟨g2s⟩ is free abelian
by part (a). The assertion will be proved if we show that γs(F ) ∩ F pk 6 γs(F )p. As we
saw in the proof of part (a), the elements gs+1, . . . , g2s form a basis of the vector subspace
γs(L) of L, which is spanned by es+1, . . . , e2s. In addition, the elements gs+1, . . . , g2s are
expressed in terms of es+1, . . . , e2s by certain formulae depending only on n = 2s. Hence
there is an s-bounded positive integer m = m(s) such that

pmE ⊆ Qp′γs(F )p, (10)

where E is the additive subgroup of L generated by es+1, . . . , e2s.
On the other hand, by Lemma 10 we have F pk ⊆ pk−εQp′L0, whence by Proposi-

tion 1(b)

F pk ∩ γs(F ) = F pk ∩ γs(G) = F pk ∩ γs(L) ⊆ pk−εQp′L0 ∩ γs(L) = pk−εQp′E.

Combining this with (10) we obtain that if k − ε > m, that is, k > ε+m, then

F pk ∩ γs(F ) ⊆ pk−εQp′E ⊆ pmQp′E ⊆ Qp′γs(F )p.

Then, in fact, F pk ∩ γs(F ) 6 γs(F )p, as required, since the finite p-group γs(F )/γs(F )p

has no nontrivial p′-elements.

We are now ready to show that the groups P , for varying n and k, provide required
examples, by using them in the proof of the main theorem.

Proof of the Theorem. We argue by contradiction: suppose that there are functions r(p)
and l(p) such that any finite 2-generator p-group all of whose factors of the lower central
series, starting from the second, are cyclic necessarily contains a normal subgroup of
derived length at most l(p) with quotient of rank at most r(p).

Suppose that n and s 6 n/2 are large enough so that s > r(p) + 1. Suppose also that
k is large enough in the sense of Proposition 2(b). As we know, the group P = F/F pk

constructed above is a 2-generator finite p-group with cyclic factors of the lower central
series starting from the second. By our assumption, the group P has a normal subgroupH
such that P/H has rank at most r(p) < s. By Proposition 2, the group γs+1(P )/γ2s(P )
is an abelian p-group of rank s generated by the images ḡs+1, . . . , ḡ2s of gs+1, . . . , g2s.
Therefore the image of H in P/γ2s(P ) must contain at least one element outside the
Frattini subgroup of γs(P )/γ2s(P ). This implies that H covers at least one of the cyclic
factors γt(P )/γt+1(P ) for s 6 t 6 2s−1. Indeed, choose minimal t such that s 6 t 6 2s−1
and

ḡ
αt+1

t+1 ḡ
αt+2

t+2 · · · ∈ Hγ2s(P )/γ2s(P ) for p - αt+1.

Then ḡt+1 ∈ Hγt+1(P )/γ2s(P ), and, since γt(P )/γt+1(P ) is generated by the image of gt+1

by Proposition 1(c), we obtain γt(P ) 6 Hγt+1(P ). Hence, γt(P ) 6 H, since H is a normal
subgroup of the nilpotent group P . But the derived length of γt(P ) can be made larger
than l(p) by appropriate choice of n, t, and k, which will bring us to a contradiction.
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We use the standard commutator words that define solubility of given derived length:
δ1(x1, x2) = [x1, x2] and by induction

δi+1(x1, x2, . . . , x2i+1) =
[
δi(x1, . . . , x2i), δi(x2i+1, . . . , x2i+1)

]
.

By our assumption the subgroup H is soluble of derived length at most l(p), which is
equivalent to the equality δl(p)(h1, . . . , h2l(p)) = 1 for any hi ∈ H.

On the other hand, in F the elements gi have leading terms (i−2)!Mei. By Lemma 4, if
n is large enough, then the value of the commutator δl(p) on gt, gt+1, . . . , gt+2l(p)−1 will have

leading term ζew with ew ̸= 0, where the index w is the sum of indices w =
∑i=t+2l(p)−1

i=t i
and the coefficient ζ is equal to the product of the coefficients (i − 2)!M(n) multiplied
by those differences of indices that appear by the structure constants (3) provided that

n > w =
∑i=t+2l(p)−1

i=t i, because the indices of leading terms in the subcommutators
arising in the inductive calculation of δl(p)(gt, gt+1, . . . , gt+2l(p)−1) are all different. Clearly,
the coefficient ζ = ζ(n, t, l(p)) is a positive integer bounded in terms of n, t, and l(p).

If, in addition to the condition k > k0(s) in Proposition 2(b), the number k is
also large enough so that pk−ε does not divide the coefficient ζ, then the image of
δl(p)(gt, gt+1, . . . , gt+2l(p)−1) = ζew+ · · · is nontrivial in P = F/F pk , since F pk ⊆ pk−εQp′L0

by Lemma 10.
As a result, we arrive at a contradiction, provided

• n/2 > s > r(p),

• n >
∑i=2s+2l(p)−1

i=2s i >
∑i=t+2l(p)−1

i=t i for any t 6 2s, and

• k is large enough in the sense of Proposition 2(b), that is, k > k0(s), and pk−ε(n)

does not divide the coefficient ζ(n, t, l(p)).

Clearly, these conditions can be satisfied simultaneously: first choose s = r(p) + 1,

then n >
∑i=2s+2l(p)−1

i=2s i (which also implies n > 2s), and then large enough k.
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