
An Improved Schur–PadÃ© Algorithm for
Fractional Powers of a Matrix and their FrÃ©chet

Derivatives

Higham, Nicholas J. and Lin, Lijing

2013

MIMS EPrint: 2013.1

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

AN IMPROVED SCHUR–PADÉ ALGORITHM FOR FRACTIONAL
POWERS OF A MATRIX AND THEIR FRÉCHET DERIVATIVES∗

NICHOLAS J. HIGHAM† AND LIJING LIN†

Abstract. The Schur–Padé algorithm [N. J. Higham and L. Lin, A Schur–Padé algorithm
for fractional powers of a matrix, SIAM J. Matrix Anal. Appl., 32(3):1056–1078, 2011] computes
arbitrary real powers At of a matrix A ∈ Cn×n using the building blocks of Schur decomposition,
matrix square roots, and Padé approximants. We improve the algorithm by basing the underlying
error analysis on the quantities ‖(I − A)k‖1/k, for several small k, instead of ‖I − A‖. We extend
the algorithm so that it computes along with At one or more Fréchet derivatives, with reuse of
information when more than one Fréchet derivative is required, as is the case in condition number
estimation. We also derive a version of the extended algorithm that works entirely in real arithmetic
when the data is real. Our numerical experiments show the new algorithms to be superior in accuracy
to, and often faster than, the original Schur–Padé algorithm for computing matrix powers and more
accurate than several alternative methods for computing the Fréchet derivative. They also show that
reliable estimates of the condition number of At are obtained by combining the algorithms with a
matrix norm estimator.

Key words. matrix power, fractional power, matrix root, Fréchet derivative, condition number,
condition estimate, Schur decomposition, Padé approximation, Padé approximant, matrix logarithm,
matrix exponential, MATLAB

AMS subject classifications. 65F30

1. Introduction. We recently developed a Schur–Padé algorithm [25] for com-
puting arbitrary real powers At of a matrix A ∈ Cn×n. The algorithm combines a
Schur decomposition with the evaluation of a Padé approximant at a suitably trans-
formed Schur factor. That work was motivated by the increasing appearance of frac-
tional matrix powers in a variety of applications. In addition to the literature cited
in [25], we mention relevant recent work on fractional PDEs by Burrage, Hale, and
Kay [11] and Garrappa and Popolizio [18].

We recall that for A ∈ Cn×n having no eigenvalues on the closed negative real axis
R−, At is defined as exp(t logA), where log is the principal logarithm (the one whose
eigenvalues have imaginary parts in the interval (−π, π) [24, Thm. 1.31]). Without
loss of generality we assume throughout that t ∈ (−1, 1). For general t ∈ R we can
write t = m+ f , where m ∈ Z and f ∈ (−1, 1), and then At = AmAf . How to choose
between the two possible pairs (m, f) is explained in [25, Sec. 6].

This work has three aims: to improve the accuracy and efficiency of the Schur–
Padé algorithm by sharpening the underlying error analysis, to extend the algorithm
so that it computes the Fréchet derivative, and to develop a version of the extended
algorithm that works entirely in real arithmetic when the data is real. The need for
a more sophisticated error analysis is illustrated by the upper triangular matrix

A =

 1 1016 0
0 1 1016

0 0 1

 . (1.1)

∗Version of January 15, 2013. This work was supported by European Research Council Advanced
Grant MATFUN (267526).
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(higham@maths.man.ac.uk, http://www.maths.man.ac.uk/˜higham, lijing.lin@manchester.ac.uk,
http://www.maths.manchester.ac.uk/˜lijing).

1

For any t ∈ (−1, 1) the Schur–Padé algorithm of [25] takes 108 square roots of A
then evaluates rm(I − A) for some m ≤ 7, where rm(x) denotes the [m/m] Padé
approximant to (1− x)t. However, no square roots are necessary: since (I −A)k = 0
for k ≥ 3, the error in rm(I −A) is zero for any m ≥ 1. By estimating the quantities
‖(I − A)k‖1/k for a few k, our new Algorithm 3.1 requires no square roots for this
matrix, and returns a result with the same (high) accuracy as that from the original
algorithm.

The Fréchet derivative of a general matrix function f on Cn×n is a linear operator
Lf (·, E) satisfying

f(A+ E) = f(A) + Lf (A,E) + o(‖E‖)

for all E ∈ Cn×n. The Fréchet derivative therefore describes the sensitivity of f to
small perturbations, and can be used to define a condition number

cond(f,A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖

=
‖Lf (A)‖‖A‖
‖f(A)‖

, (1.2)

where

‖Lf (A)‖ := max
Z 6=0

‖Lf (X,Z)‖
‖Z‖

(1.3)

[24, Sec. 3.1]. We develop an algorithm for computing Lxt by Fréchet differentiating
our algorithm for At. We then use the algorithm in conjunction with a matrix norm
estimator to estimate cond(xt, A). By replacing the Schur decomposition with a real
Schur decomposition in the case where A and E are real, we derive an algorithm that
works entirely in real arithmetic, thereby halving the required intermediate storage
and halving the number of (real) arithmetic operations required.

In section 2 we extend the analysis of [25] for the error in Padé approximants of
(1 − x)t evaluated at a matrix argument X ∈ Cn×n to use the quantities ‖Xk‖1/k
instead of ‖X‖. In section 3 we develop a Schur–Padé algorithm based on these
bounds. In section 4 we extend the algorithm to compute both At and the Fréchet
derivative Lxt(A,E) and make comparisons with other approaches to computing the
Fréchet derivative. In section 5 we modify the algorithms so that they use only real
arithmetic when A and E are real. In section 6 we explain how to use the algorithms
to estimate the condition number of At, based on evaluations of Lxt(A,E) for several
E. Numerical experiments that compare the new algorithms with existing ones are
given in section 7 and conclusions are given in section 8.

2. Forward error analysis. The Schur–Padé algorithm of Higham and Lin
[25] computes a Schur decomposition A = QTQ∗ (Q unitary, T upper triangular),
takes s square roots of T , evaluates the [m/m] Padé approximant rm(x) of (1−x)t at
I−T 1/2s , squares the result s times, then transforms back. The algorithm is based on
the forward error bound in the following theorem. The norm here is any subordinate
matrix norm and rkm(x) denotes the [k/m] Padé approximant to (1− x)t.

Theorem 2.1 ([25, Thm. 3.5]). Let X ∈ Cn×n with ‖X‖ < 1. For k ≥ m and
−1 < t < 1,

‖(I −X)t − rkm(X)‖ ≤ |(1− ‖X‖)t − rkm(‖X‖)|. (2.1)

In particular, when −1 < t < 0, (2.1) holds for k ≥ m− 1.

2

The bound in Theorem 2.1 can be sharpened by applying the technique of Al-
Mohy and Higham [3] in order to base the error bound on the quantities

αp(X) = max
(
‖Xp‖1/p, ‖Xp+1‖1/(p+1)

)
, (2.2)

where the integer p ≥ 1. As explained in [3], ρ(X) ≤ αp(X) ≤ ‖X‖, where ρ is
the spectral radius, and αp(X) � ‖X‖ is possible for nonnormal X. Moreover,
if h`(x) =

∑∞
i=` cix

i is a power series with radius of convergence ω then, from [3,
Thm. 4.2(a)], for any X ∈ Cn×n with ρ(X) < ω we have ‖h`(X)‖ ≤

∑∞
i=` |ci|αp(X)i

for p satisfying p(p− 1) ≤ `.
Theorem 2.2. Let X ∈ Cn×n with ρ(X) < 1. For k ≥ m and −1 < t < 1, and

for k ≥ m− 1 and −1 < t < 0,

(I −X)t − rkm(X) =

∞∑
i=k+m+1

ψiX
i, (2.3)

where every coefficient ψi ≡ ψi(t, k,m) has the same sign. Moreover,

‖(I −X)t − rkm(X)‖ ≤ |(1− αp(X))t − rkm(αp(X))|, (2.4)

where αp is defined in (2.2) and p satisfies

k +m+ 1 ≥ p(p− 1). (2.5)

Proof. The error in the [k/m] Padé approximant rkm(x) to (1−x)t can be written
[25, Lem. 3.4]

(1− x)t − rkm(x) = qkm(1)qkm(x)−1
∞∑

i=k+m+1

(−t)i(i− (k +m))m
i!(i− t−m)m

xi, |x| < 1,

where qkm is the denominator of rkm with qkm(0) = 1 and (a)i ≡ a(a+1) . . . (a+i−1)
with (a)0 = 1. We can write qkm(x) = c

∏m
i=1(xi − x), where xi, i = 1: m, are the

zeros of qkm(x) and c =
∏m
i=1 x

−1
i . Assuming k ≥ m, from [25, Cor. 3.3], [32, Cor. 1]

we have xi > 1, for all i. Hence if |x| < 1,

qkm(x)−1 =

m∏
i=1

(
1− x

xi

)−1
=

m∏
i=1

(
1 +

x

xi
+
x2

x2i
+ · · ·

)
=:

∞∑
i=0

dix
i,

where di > 0. (That di > 0 also follows when t ∈ (−1, 0) from a more general result
of Gomilko, Greco, and Ziȩtak [19, Cor. 5.6].)

It follows that for any t ∈ (−1, 1), in the error expansion (1 − x)t − rkm(x) =∑∞
i=k+m+1 ψix

i each ψi has the same sign. Therefore (2.3) holds for ρ(X) < 1.
Finally, by applying [3, Thm. 4.2(a)] to (2.3), we obtain

‖(I −X)t − rkm(X)‖ ≤
∞∑

i=k+m+1

|ψi|αp(X)i

=

∣∣∣∣∣
∞∑

i=k+m+1

ψiαp(X)i

∣∣∣∣∣ =
∣∣(1− αp(X))t − rkm(αp(X))

∣∣
for p satisfying (2.5).

If −1 < t < 0, it follows from [25, Cor. 3.3], [32, Cor. 1] that the roots xi of qkm
satisfy xi > 1 for k ≥ m − 1, so the conclusion of the theorem holds for k ≥ m − 1.

3

Table 3.1
Values of θm in (3.2) and ηm in (4.7).

m 1 2 3 4 5 6 7 8 9

θm 1.51e-5 2.24e-3 1.88e-2 6.04e-2 1.24e-1 2.00e-1 2.79e-1 3.55e-1 4.25e-1
ηm 2.57e-7 3.26e-4 7.07e-3 3.28e-2 8.10e-2 1.45e-1 2.17e-1 2.89e-1 3.58e-1

m 10 11 12 13 14 15 16 32 64

θm 4.87e-1 5.42e-1 5.90e-1 6.32e-1 6.69e-1 7.00e-1 7.28e-1 9.15e-1 9.76e-1
ηm 4.21e-1 4.78e-1 5.28e-1 5.73e-1 6.12e-1 6.47e-1 6.77e-1 8.93e-1 9.68e-1

Table 3.2
Values of p for which 2m+ 1 ≥ p(p− 1) is satisfied, for m = 1: 7, and corresponding required

αi and di = ‖Xi‖1/i (in view of α3 ≤ a2 ≤ α1).

m 1 2 3, 4, 5 6, 7
p 1, 2 1, 2 1, 2, 3 1, 2, 3, 4

Required αi α2 α2 α3 α3, α4

Required di d2, d3 d2, d3 d3, d4 d3, d4, d5

3. Improved Schur–Padé algorithm. Whereas the Schur–Padé algorithm of
[25] is based on the norm of I − T 1/2s , through the use of (2.1), here we will exploit
(2.4), which uses the generally smaller quantities αp(I − T 1/2s), p ≥ 1. We require
that αp ≡ αp(I − T 1/2s) satisfies

|(1− αp)t − rm(αp)| ≤ u, (3.1)

where u = 2−53 ≈ 1.1 × 10−16 is the unit roundoff for IEEE double precision arith-
metic, which by (2.4) ensures double precision accuracy of the Padé approximant.

Denote the largest such αp by θ
(t)
m for given t and m, and define

θm = min{ θ(t)m : t ∈ [−1, 1] }. (3.2)

The values of θm, determined in [25], are shown in Table 3.1. Our algorithm requires
that αp(I − T 1/2s) ≤ θm for some p satisfying p(p− 1) ≤ 2m+ 1.

As in [25] we compute square roots of triangular matrices by the Björck and
Hammarling recurrence [10], [24, Alg. 6.3], which costs n3/3 flops, and we compute
rm by evaluating its continued fraction form in bottom-up fashion (see section 4.2),
which costs 2mn3/3 flops.

Our overall aim is to choose the parameters s and m to minimize the total cost
subject to (3.1). The following reasoning is adapted from that used to derive an
inverse scaling and squaring algorithm for the matrix logarithm that is also based on
the αp [4]. Although the θm and the cost of evaluating the Padé approximant are
different than in the logarithm case, the algorithm turns out (perhaps surprisingly)
to have exactly the same form.

For any putative s and m satisfying αp(I − T 1/2s) ≤ θm for some p, it is worth
taking one more square root (costing n3/3 flops) if it allows a reduction in the Padé
degree m by more than one (resulting in a saving of at least 2n3/3 flops once the

extra squarings are taken into account), that is, if αp(I − T 1/2s+1

) ≤ θm−2 for some

p. Since (I − T 1/2s+1

)(I + T 1/2s+1

) = I − T 1/2s , we have that αp(I − T 1/2s+1

) ≈
1
2αp(I − T 1/2s), for suitably large s. Since θm/2 < θm−2 for m > 7, the cost
of computing T t will be minimized if we take square roots of T repeatedly until
αp(I − T 1/2s) ≤ θ7 for some p ∈ {1, 2, 3, 4} (see Table 3.2). We use the 1-norm,

4

so αp(X) = max{‖Xp‖1/p1 , ‖Xp+1‖1/(p+1)
1 }, but instead of computing ‖Xp‖1, we es-

timate it without forming Xp by using the block 1-norm estimation algorithm of
Higham and Tisseur [28], so that we obtain an estimate of αp(X) in O(n2) flops. The
1-norm estimator estimates ‖B‖1 by sampling a small number of products BY and
B∗Z for Y, Z ∈ Rn×r, where r is a parameter that we set to 2. It requires 4r products
on average and is rarely more than a factor of 3 away from the true 1-norm [24, p. 67].

Some work can be saved by using the fact that ρ(I −D) = ρ(I −T) ≤ αp(I −T),
where D = diag(T), and so there is no need to estimate αp(I − T 1/2s) until ρ(I −
D1/2s) ≤ θ7; let us denote the smallest such s by s0.

After obtaining s0 and computing T ← T 1/2s0 , we first check if m = 1 or m = 2
can be used, since no more square roots need to be taken in this case. If m = 1 and
m = 2 are ruled out we now determine whether more square roots are needed and
which Padé degree m to use. By the analysis above, m does not exceed 7, so only
α3 and α4 will be needed, as can be seen from Table 3.2. We next check whether
α3(I − T) ≤ θ7. If α3(I − T) > θ7, we check whether α4(I − T) > θ7, and if it is we
set T ← T 1/2 and repeat the process; if α3(I − T) > θ7 and α4(I − T) ≤ θ7 then it is
necessary to check whether α4(I − T) ≤ θ6 to determine whether m = 7 or m = 6 is
to be used. We now consider the case where α3(I − T) ≤ θ7. If α3(I − T) > θ6 and
1
2α3(I − T) ≤ θ5 then the above analysis predicts that one more square root should

be taken to reduce the cost and so the process is repeated with T ← T 1/2. Since it is
not guaranteed that α3(I − T 1/2) ≤ θ5, we will allow at most two extra square roots
to be taken to avoid unnecessary square roots. If 1

2α3(I − T) > θ5, then no extra
square root is needed and again α4(I − T) needs to be checked to determine whether
m = 7 or m = 6 is to be used. Consider now the case where α3(I −T) ≤ θ6: an extra
square root is not necessary since θk <

1
2x for all x ∈ (θk+1, θk+2] for k = 2, 3, 4; we

find the smallest m ∈ {3, 4, 5, 6} such that α3(I − T) ≤ θm and evaluate rm(I − T).

We are now ready to state the improved algorithm. Note that we take the oppor-
tunity on lines 37, 41, and 42 to recompute quantities for which there is an explicit
formula that can be evaluated accurately.

Algorithm 3.1 (Schur–Padé algorithm). Given A ∈ Cn×n with no eigenvalues
on R− and a nonzero t ∈ (−1, 1) this algorithm computes X = At via a Schur
decomposition and Padé approximation. It uses the constants θm in Table 3.1 and
the function normest(A,m), which produces an estimate of ‖Am‖1. The algorithm is
intended for IEEE double precision arithmetic.

1 Compute a (complex) Schur decomposition A = QTQ∗.
2 If T is diagonal, X = QT tQ∗, quit, end
3 T0 = T
4 Find s0, the smallest s such that ρ(I −D1/2s) ≤ θ7, where D = diag(T).
5 for i = 1: s0
6 T ← T 1/2 using [10], [24, Alg. 6.3].
7 end
8 s = s0, q = 0
9 d2 = normest(I − T, 2)1/2, d3 = normest(I − T, 3)1/3

10 α2 = max(d2, d3)
11 for i = 1: 2
12 if α2 ≤ θi, m = i, goto line 38, end
13 end
14 while true
15 if s > s0, d3 = normest(I − T, 3)1/3, end

5

16 d4 = normest(I − T, 4)1/4, α3 = max(d3, d4)
17 if α3 ≤ θ7
18 j1 = min{ i:α3 ≤ θi, i = 3: 7 }
19 if j1 ≤ 6
20 m = j1, goto line 38
21 else
22 if 1

2α3 ≤ θ5 and q < 2
23 q = q + 1
24 goto line 33
25 end
26 end
27 end
28 d5 = normest(I − T, 5)1/5, α4 = max(d4, d5)
29 η = min(α3, α4)
30 for i = 6: 7
31 if η ≤ θi, m = i, goto line 38
32 end
33 T ← T 1/2 using [10], [24, Alg. 6.3].
34 s = s+ 1
35 end
36 R = I − T
37 Replace the diagonal and first superdiagonal of R by the diagonal and

first superdiagonal of I − T 1/2s

0 computed via [1, Alg. 2] and [25, (5.6)],
respectively.

38 Evaluate U = rm(R) using the continued fraction in bottom-up fashion
[25, Alg. 4.1].

39 for i = s:−1: 0
40 if i < s, U ← U2, end

41 Replace diag(U) by diag(T0)t/2
i

.

42 Replace first superdiagonal of U by first superdiagonal of T
t/2i

0

obtained from [25, (5.6)] with the power t/2i.
43 end
44 X = QUQ∗

Cost: 25n3 flops for the Schur decomposition plus (2s+ 2m− 1)n3/3 flops for U
and 3n3 for X: about (28 + (2s+ 2m− 1)/3)n3 flops in total.

4. Computing the Fréchet derivative. We now turn to the computation of
Lxt(A,E), the Fréchet derivative of At at A in the direction E. The idea we pursue is
to simultaneously compute At and Lxt(A,E) in a way that reuses matrix operations
from the computation of At in the computation of Lxt(A,E).

Recall that At is approximated by (ignoring the Schur decomposition for simplic-
ity)

At = (A1/2s)t·2
s

= (I −X)t·2
s

≈ rm(X)2
s

,

where I−X = A1/2s and ρ(X) < 1. Differentiating At = ((A1/2)t)2 and applying the
chain rule [24, Thm. 3.4], we obtain

Lxt(A,E) = At/2Lxt(A1/2, E1) + Lxt(A1/2, E1)At/2, (4.1)

where E1 = Lx1/2(A,E) and so A1/2E1 + E1A
1/2 = E. Using this relation we can

6

construct the following recurrences for computing Lxt(A,E). First we form

E0 = E, X0 = A,

Xi = X
1/2
i−1

Solve XiEi + EiXi = Ei−1 for Ei

}
i = 1: s, (4.2)

after which Es = Lx1/2s (A,E) and Xs = A1/2s , and then

Ys = rm(I −Xs), Ls ≈ Lxt(Xs, Es), (4.3)

Li−1 = YiLi + LiYi

Yi−1 = Y 2
i

}
i = s : −1 : 1, (4.4)

after which L0 ≈ Lxt(A,E).
To approximate Lxt(Xs, Es) in (4.3) we simply differentiate the Padé approxima-

tion (note that Lxt(X,E) = L(1−x)t(I −X,−E)):

Lxt(Xs, Es) ≈ Lrm(I −Xs,−Es). (4.5)

We now bound the error in this approximation.

4.1. Error analysis. From Theorem 2.2, the error in rm(X) has the form

(I −X)t − rm(X) =

∞∑
i=2m+1

ψiX
i =: h2m+1(X). (4.6)

Differentiating both sides of (4.6), we have

L(1−x)t(X,E)− Lrm(X,E) = Lh2m+1
(X,E) =

∞∑
i=2m+1

ψi

i∑
j=1

Xj−1EXi−j ,

where the second equality is from [24, Prob. 3.6]. Therefore

‖L(1−x)t(X,E)− Lrm(X,E)‖ ≤
∞∑

i=2m+1

|ψi|
i∑

j=1

‖Xj−1EXi−j‖

≤

∣∣∣∣∣
∞∑

i=2m+1

iψi‖X‖i−1‖E‖

∣∣∣∣∣
=
∣∣h′2m+1(‖X‖)

∣∣ ‖E‖.
Define η

(t)
m = max{x : |h′2m+1(x)| ≤ u } and

ηm = min{ η(t)m : t ∈ [−1, 1] }. (4.7)

With u = 2−53, we determined ηm empirically in MATLAB, using high precision
computations with the Symbolic Math Toolbox for a range of m ∈ [1, 64]. Table 3.1
reports the results to three significant figures. Notice that for all m we have ηm < θm.

Our error bound for the Fréchet derivative of rm is based on ‖X‖, whereas the
error bound for rm itself is based on αp(X). The same situation holds in the work
of Al-Mohy, Higham, and Relton [5] for the matrix logarithm, and the arguments
used there apply here, too, to show that an αp-based bound for ‖L(1−x)t(X,E) −
Lrm(X,E)‖ is not possible. Despite the fact that ηm < θm, we will base our algorithm
for computing At and Lxt(A,E) on the condition αp(I−A1/2s) ≤ θm (analogously to
[5]) and will test experimentally whether this produces accurate Fréchet derivatives.

7

4.2. Evaluating the Fréchet derivative of rm. In [25], rm(X) is computed
by evaluating the continued fraction [6, p. 66], [7, p. 174]

rm(x) = 1 +
c1x

1 +
c2x

1 +
c3x

· · ·
1 +

c2m−1x

1 + c2mx

, (4.8)

where

c1 = −t, c2j =
−j + t

2(2j − 1)
, c2j+1 =

−j − t
2(2j + 1)

, j = 1, 2, . . . ,

in bottom-up fashion. Denote

y2m(x) = c2mx,

yj(x) =
cjx

1 + yj+1(x)
, j = 2m− 1 : −1 : 1. (4.9)

Then we have rm(x) = 1+y1(x). From (4.9), (1+yj+1(x))yj(x) = cjx. Differentiating
the matrix analogue, we have

Lyj+1
(X,E)yj(X) + (I + yj+1(X))Lyj (X,E) = cjE,

which, together with Lym(X,E) = c2mE, provide a recurrence for computing Lrm(X,E) =
Ly1(X,E). We obtain the following algorithm for evaluating both rm and Lrm .

Algorithm 4.1 (continued fraction, bottom-up). This algorithm evaluates rm(X)
and Lrm(X,E) for X,E ∈ Cn×n.

1 Y2m = c2mX, Z2m = c2mE
2 for j = 2m− 1:−1: 1
3 Solve (I + Yj+1)Yj = cjX for Yj .
4 Solve (I + Yj+1)Zj = cjE − Zj+1Yj for Zj .
5 end
6 rm = I + Y1
7 Lrm = Z1

Cost: In the case where X is a triangular matrix and E is full, the total cost is
(2m− 1)(n3/3 + 2n3) flops.

We are now ready to state the overall algorithm for computing both At and
Lxt(A,E). In lines 3–8 we employ an explicit formula for the Fréchet derivative that
applies in the case of normal A [24, Thm. 3.11].

Algorithm 4.2 (Schur–Padé algorithm for matrix power and Fréchet deriva-
tive). Given A ∈ Cn×n with no eigenvalues on R− and a nonzero t ∈ (−1, 1) this
algorithm computes X = At and its Fréchet derivative Lxt(A,E) via a Schur de-
composition and Padé approximation. It uses the constants θm in Table 3.1. The
algorithm is intended for IEEE double precision arithmetic.

1 Compute a (complex) Schur decomposition A = QTQ∗.
2 E ← Q∗EQ
3 If T is diagonal
4 X = QT tQ∗

5 Form K, where kij is the divided difference f [tii, tjj] for f(x) = xt

computed from [25, (5.6)].

8

6 L = Q(K ◦ E)Q∗, where ◦ is the Hadamard product
7 quit
8 end
9 T0 = T

10 Find s0, the smallest s such that ρ(I −D1/2s) ≤ θ7, where D = diag(T).
11 E0 = E
12 for i = 1: s0
13 T ← T 1/2 using [10], [24, Alg. 6.3].
14 Solve TEi + EiT = Ei−1 for Ei by substitution.
15 end
16 ... Execute lines 8–44 in Algorithm 3.1 but with the following changes:

Immediately after line 33 execute
“Solve TEs+1 + Es+1T = Es for Es+1 by substitution.”

Replace line 38 with
“Evaluate U = rm(R) and V = Lrm(R,−Es) using Algorithm 4.1.”

Replace line 40 with
“if i < s, V ← UV + V U , U ← U2, end ”

Replace line 44 with
“X = QUQ∗, L = QV Q∗”

Cost: The cost is the (28 + (2s + 2m − 1)/3)n3 flops cost of Algorithm 3.1 plus
the extra cost for computing Lxt(A,E) of s solves of triangular Sylvester equations,
2m−1 full-triangular matrix multiplications and 2m−1 solves of multiple right-hand
side triangular systems (in Algorithm 4.1), 2s full-triangular matrix multiplications,
and 2 full matrix multiplications, namely an extra cost of (4s+ 4m+ 2)n3 flops.

In some situations, such as in condition estimation (see section 6), several Fréchet
derivatives Lxt(A,E) are needed for a fixed A and different E. The parameters s and
m depend only on A so we need only compute them once; moreover, we can save and
reuse the Schur decomposition, the square roots T 1/2i , and the powers U2i ≈ T 2i−st.

4.3. Alternative algorithms. We describe several alternative ways to compute
the Fréchet derivative of At.

By applying the chain rule to the expression At = exp(t logA) we obtain [25,
Sec. 2]

Lxt(A,E) = tLexp

(
t logA,Llog(A,E)

)
.

The first method evaluates this formula using the inverse scaling and squaring algo-
rithm of Al-Mohy, Higham, and Relton [5] to evaluate Llog and the scaling and squar-
ing algorithm of Al-Mohy and Higham [2] to evaluate Lexp. Both these algorithms
are based on Padé approximation. The total cost, assuming a Schur decomposition
is initially computed and used for both the Llog and Lexp computations and that
the maximal Padé degree is chosen in each algorithm, is about (68 2

3 + 7
3 (s1 + s2))n3

flops, where s1 and s2 are the scaling parameters for the Llog and Lexp computations,
respectively. This is to be compared with (62 1

3 + 4 2
3s)n

3 flops for Algorithm 4.2, and
since s will be of similar size to s1 these two approaches will be of broadly similar
cost.

A second method is based on the property, for arbitrary f [24, (3.16)],

f

([
A E
0 A

])
=

[
f(A) Lf (A,E)

0 f(A)

]
, (4.10)

9

which shows that by applying Algorithm 3.1 to the 2n × 2n matrix [A E
0 A] we obtain

At and Lxt(A,E) simultaneously. This method has two drawbacks. First, it has eight
times the cost and four times the storage requirement of Algorithm 3.1 (both of which
can be reduced by exploiting the block triangular structure). Second, since Lf (A,E)
is linear in E the norm of E should not affect an algorithm for computing Lf (A,E),
but Algorithm 3.1 applied to [A E

0 A] will be affected by ‖E‖ and the best way to scale
E is not clear.

The other approaches that we consider are applicable only when q = 1/t is an
integer. The problem is then to compute the Fréchet derivative for the matrix qth
root. This can be done by exploring the relation [24, Thm. 3.5]

Lxq (A1/q, Lx1/q (A,E)) = E. (4.11)

Since Lxq (X,E) =
∑q
j=1X

j−1EXq−j , L
x1/q (A,E) can be obtained by solving the

generalized Sylvester equation
∑q
j=1(A1/q)j−1Y (A1/q)q−j = E for Y . An explicit for-

mula expressing the solution of the more general equation
∑m
i=1A

m−iXBi = Y as an
infinite integral is given by Bhatia and Uchiyama [8]. However, currently no efficient
algorithm is known for solving this equation. Another way to compute Lx1/q (A,E) is
proposed by Cardoso [12]. The idea is first to write the Fréchet derivative Lxq (A,E)
in terms of the solution of a set of q recursive Sylvester equations and then reverse
the procedure (in view of (4.11)) to get L

x1/q . The matrix A1/q must be computed by
some other method before applying this procedure. To save computation in solving
the Sylvester equations, an initial Schur decomposition is used, which makes the co-
efficients of the Sylvester equations triangular. This method costs (4q + 31 1

3)n3 flops

plus the cost of computing A1/q and always requires complex arithmetic, even when
A and E are real. Recall that the extra cost in Algorithm 4.2 in addition to that for
computing At is (4s + 4m + 2)n3 flops. The values of of q, s, and m depend on the
problem but m ≤ 7, so Cardoso’s algorithm will be competitive in cost only if q ≤ s.

Another method for the qth root case is proposed by Cardoso [13], who applies
the repeated trapezium rule to an integral representation of the Fréchet derivative.
This method is competitive in cost only when low accuracy is required (relative errors
≥ u1/2, say), and its cost increases rough linearly with q, so we will not consider it
further.

5. Algorithm for real data. In the case where A and E are real both At

and Lxt(A,E) are real, so an algorithm that avoids complex arithmetic is desired to
increase the efficiency of the computation and guarantee a real result in floating point
arithmetic. We summarize the changes that can be made to Algorithms 4.1 and 4.2
so that they work entirely in real arithmetic for real inputs.

1. Use the real Schur decomposition instead of the Schur decomposition.
2. Compute real square roots of real quasi-triangular matrices using the recur-

rence of Higham [23], [24, Alg. 6.7].
3. Instead of updating the diagonal and the first superdiagonal elements before

the squaring stage by using an explicit formula for the tth power of a 2× 2 triangular
matrix, update the (full) 2× 2 diagonal blocks. Assume the 2× 2 diagonal blocks are
of the form

B =

[
a b
c a

]
with bc < 0, which is the case when the real Schur decomposition is computed by
MATLAB. Then B has eigenvalues λ± = a ± iβ, where β = (−bc)1/2. Let θ =

10

arg(λ+) ∈ (0, π) and r = |λ+|. It can be shown that

Bt =
rt

β

[
β cos(tθ) b sin(tθ)
c sin(tθ) β cos(tθ)

]
,

which can be evaluated to high relative accuracy as long as we are able to compute
θ, cos, and sin accurately. The explicit formula for 2× 2 triangular matrices can still
be used to update the first superdiagonal elements when two or more successive 1× 1
diagonal blocks are found.

With these changes we will gain a halving of the storage required for interme-
diate matrices and an approximate halving of the operation count measured in real
arithmetic operations. Fortran experiments reported in [5] with the inverse scaling
and squaring algorithm for the matrix logarithm show that use of the real instead of
complex Schur form halves the run time, and the same will be true here since exactly
the same computational kernels are used.

6. Condition number estimation. From (1.2) and (1.3) it is clear that the
essential task in computing or estimating the condition number is to compute or
estimate the norm ‖Lxt(A)‖ of the Fréchet derivative.

Denoting by vec the operator that stacks the columns of a matrix into one long
vector, for a general f we have vec(Lf (A,Z)) = Kf (A)z, where z = vec(Z), for a

certain matrix Kf (A) ∈ Cn2×n2

called the Kronecker representation of the Fréchet
derivative. Moreover [24, Lem. 3.18],

‖Lf (A)‖1
n

≤ ‖Kf (A)‖1 ≤ n‖Lf (A)‖1. (6.1)

We will therefore apply the block matrix 1-norm estimation algorithm of [28] to
Kxt(A), which requires the computation of Kxt(A)y and Kxt(A)∗z for given vectors
y and z. In order to avoid forming the n2 × n2 matrix Kxt(A) we compute Kxt(A)y
as vec(Lxt(A, Y)), where vec(Y) = y. How to compute Kxt(A)∗z is less clear. The
following results provide an answer for a general function f .

Our analysis makes use of the adjoint L?f of the Fréchet derivative Lf , which is
defined by the condition

〈Lf (A,G), H〉 = 〈G,L?f (A,H)〉 (6.2)

for all G,H ∈ Cn×n, where 〈X,Y 〉 = trace(Y ∗X) = vec(Y)∗vec(X).
Lemma 6.1. Kf (A)∗vec(H) = vec(L?f (A,H)).
Proof. We have 〈Lf (A,G), H〉 = vec(H)∗vec(Lf (A,G)) = vec(H)∗Kf (A)vec(G)

and 〈G,L?f (A,H)〉 = vec(L?f (A,H))∗vec(G). By the definition (6.2) of adjoint these

expressions are equal for all G and so vec(H)∗Kf (A) = vec(L?f (A,H))∗, which yields
the result.

Lemma 6.2. Let f be 2n−1 times continuously differentiable on an open subset D
of R or C such that each connected component of D is closed under conjugation, and
suppose that f(A)∗ = f(A∗) for all A ∈ Cn×n with spectrum in D, where f(z) := f(z).
Then

L?f (A,E) = Lf (A∗, E) = Lf (A,E∗)∗. (6.3)

11

Proof. Suppose, first, that f has the form f(x) = αxk, so that Lf (A,G) =

α
∑k
i=1A

i−1GAk−i. Then

〈Lf (A,G), H〉 = trace
(
H∗α

k∑
i=1

Ai−1GAk−i
)

= trace
(
α

k∑
i=1

Ak−iH∗Ai−1G
)

=
〈
G,α

k∑
i=1

(A∗)i−1H(A∗)k−i
〉

= 〈G,Lf (A∗, H)〉,

and so L?f (A,H) = Lf (A∗, H), which is the first equality in (6.3). By the linearity of
Lf it follows that this equality holds for any polynomial. Finally, the equality holds
for all f satisfying the conditions of the theorem because the Fréchet derivative of f
is the same as that of the polynomial that interpolates f and its derivatives at the
zeros of the characteristic polynomial of diag(A,A) [24, Thm. 3.7], [29, Thm. 6.6.14].

Let g = f . By the definition of Fréchet derivative, Lg(A,E) = g(A+E)− g(A) +
o(‖E‖). Taking the conjugate transpose gives Lg(A,E)∗ = g(A + E)∗ − g(A)∗ +
o(‖E‖) = g(A∗ +E∗)− g(A∗) + o(‖E‖) = Lg(A

∗, E∗) + o(‖E‖), and by the linearity
of the Fréchet derivative it follows that Lg(A,E)∗ = Lg(A

∗, E∗), which is equivalent
to the second equality in (6.3).

If f is n− 1 times continuously differentiable on D (so that f(A) is a continuous
matrix function on the set of matrices with spectrum in D [24, Thm. 1.19]), then
f(A∗) = f(A)∗ for all A with spectrum in D is equivalent to f ≡ f [26, Proof of
Thm. 3.2]. Some other equivalent conditions for f(A∗) = f(A)∗ are given in [24,
Thm. 1.18], [26, Thm. 3.2].

Combining Lemmas 6.1 and 6.2 gives Kf (A)∗vec(H) = vec(Lf (A,H∗)∗). For our

function f(x) = xt we have f ≡ f and so to implement the condition estimation we
just need to evaluate Lf (A),

7. Numerical experiments. Our numerical experiments were carried out in
MATLAB R2012b in IEEE double precision arithmetic. We use the same set of 45
test matrices that was used in [25] to test the original Schur–Padé algorithm. This
set includes a selection of 10 × 10 nonsingular matrices taken from the MATLAB
gallery function and from the Matrix Computation Toolbox [22]. Any matrix found
to have an eigenvalue on R− was squared; if it still had an eigenvalue on R− it was
discarded. We report experiments using the matrices in the test set and their complex
Schur factors T . Our previous experience [2], [5], [25] is that for methods that begin
with a reduction to Schur form, differences in accuracy between different methods are
greater when the original matrix is triangular, as errors in the transformations to and
from Schur form are avoided.

We test each matrix with each of the 14 t-values in the vector constructed by

v = [1/52 1/12 1/3 1/2] , v = [v 1− v(1 : 3)] , v = [v −v] .

For the computation of At alone we tested:
1. SPade: Algorithm 3.1.

12

2. SPade-real: the real version of Algorithm 3.1, as described in section 5.
3. SPade-old: the original Schur–Padé algorithm [25, Alg 5.1], which is based

on the error analysis in Theorem 2.1 expressed in terms of ‖A‖.
Relative errors are measured in the 1-norm. To compute the “exact” At we run
powerm [25, Fig. 8.1] (which uses the eigendecomposition of A) in 300 digit precision
with the VPA arithmetic of the Symbolic Math Toolbox, but we subject A to a random
perturbation of relative norm 10−150 in order to ensure it is diagonalizable, following
the approximate diagonalization approach of Davis [14]. All errors are postprocessed
using the transformation in [16] to lessen the influence of tiny relative errors on the
performance profiles.

For the Fréchet derivative Lxt(A,E), we tested six algorithms:

1. SPade-Fre: Algorithm 4.2.
2. SPade-Fre-real: the real version of Algorithm 4.2, as described in section 5.
3. SPade-Fre-mod: Algorithm 4.2 modified so as to call SPade-old instead of

SPade.
4. explog-Fre: reduction to Schur form T = Q∗AQ followed by evaluation

of Lxt(A,E) = tQLexp(t log T, Llog(T,Q∗EQ))Q∗ by the inverse scaling and
squaring method for the Fréchet derivative of the logarithm [5] and the scaling
and squaring method for the Fréchet derivative of the exponential [2].

5. SPade-2by2: SPade applied to the block 2× 2 matrix in (4.10).
6. rootm-Fre (applied when t = 1/q for some integer q): reduction to Schur

form T with T 1/q computed by SPade and Lx1/q (T,Q∗EQ) computed by [12,
Alg. 3.5].

To obtain the “exact” Fréchet derivative we apply the same approach as above
to (4.10).

We note that for an efficient implementation, which is not our concern here, it is
important to implement carefully the computation of square roots of (quasi-) trian-
gular matrices and the solution of (quasi-) triangular Sylvester equations. Efficient
blocked and recursive ways to carry out these operations are described by Deadman,
Higham, and Ralha [15] and Jonsson and K̊agström [31], respectively.

Experiment 1. In this experiment, we compute At by SPade and SPade-old for
the Schur factors of the matrices in the test set and for all values of t in the vector
v. Figure 7.1 shows the relative errors, with the problems sorted by decreasing con-
dition number. The solid line is cond(xt, A)u. Figure 7.2 shows the corresponding
performance profile [17], [21, Sec. 22.4]. Figure 7.3 shows the ratios of the costs of
the algorithms, where the cost is measured by the n3 terms in the operation counts.
The results show that SPade and SPade-old both perform in a stable manner but
that SPade outperforms SPade-old and has a cost that is no larger and up to around
40 percent less than that of SPade-old. In some of the test problems SPade requires
only half as many matrix square roots as SPade-old.

When the experiment is repeated with the full (un-Schur-reduced) matrices, the
same trends are seen but they are less pronounced.

Experiment 2. In this experiment, we compute Lxt(A,E) for the Schur factors of
the matrices in the test set using a different E, generated as randn(n), for each pair
of A and t. Note that rootm-Fre is only applicable for the problems where t = 1/q
for some integer q (the qth root problem). Figures 7.4 and 7.5 show the results from
the qth root problems and Figures 7.6 and 7.7 show the results from the rest of the
problems: those where t ∈ [±51/52 ±11/12 ±2/3]. In each case we show the relative
errors and the corresponding performance profile. The solid line in Figures 7.4 and 7.6

13

0 100 200 300 400 500

10
−17

10
−16

10
−15

10
−14

10
−13

SPade

SPade−old

Fig. 7.1. Experiment 1: relative errors in At for a selection of 10× 10 triangular matrices and
several t.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.7

0.75

0.8

0.85

0.9

0.95

1

α

π

SPade

SPade−old

Fig. 7.2. Experiment 1: performance profile for the data in Figure 7.1.

is condL(A,E)u, where condL(A,E) is the condition number of the Fréchet derivative,
defined as

condL(A,E) = lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆E‖≤ε‖E‖

‖Lxt(A+∆A,E +∆E)− Lxt(A,E)‖
ε‖Lxt(A,E)‖

.

We estimated condL(A,E) using an algorithm from [27].

14

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1

Fig. 7.3. Experiment 1: ratios “cost of SPade/cost of SPade-old”.

0 50 100 150 200 250 300

10
−16

10
−14

10
−12

10
−10

SPade−2by2

SPade−Fre

SPade−Fre−mod

explog−Fre

rootm−Fre

Fig. 7.4. Experiment 2: relative errors in L
xt (A,E) for the problems with t = 1/q for an

integer q.

Some observations can be made. First, all the methods behave stably, but the
errors for rootm-Fre and explog-Fre are significantly larger than those for the other
algorithms. SPade-Fre, SPade-Fre-mod, and (the very expensive) SPade-2by2 per-
form very similarly. However, for the non-qth root problems, SPade-Fre is the clear
winner.

Again, similar results, but with less pronounced differences, are obtained when
working with the full test matrices.

Experiment 3. In this experiment, we test the real-arithmetic algorithms SPade-real
and SPade-Fre-real on the (un-Schur-reduced) real matrices from the test set and
we show just performance profiles. Figure 7.8 compares SPade with SPade-real and
SPade-old for computing At. Figure 7.9 compares SPade-Fre-real, SPade-Fre,
SPade-2by2, and explog-Fre for all values of t in the vector v (rootm-Fre is omitted
due to its poor performance in the previous experiment). For these real problems,
SPade-real and SPade-Fre-real show a significant improvement in accuracy over
the algorithms working in complex arithmetic.

Finally, we mention that we used SPade-Fre with the block 1-norm estimator to

15

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

π

SPade−2by2

SPade−Fre

SPade−Fre−mod

explog−Fre

rootm−Fre

Fig. 7.5. Experiment 2: performance profile for the data in Figure 7.4.

0 50 100 150 200 250

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

SPade−Fre

SPade−Fre−mod

SPade−2by2

explog−Fre

Fig. 7.6. Experiment 2: relative errors in L
xt (A,E) for the problems where t 6= 1/q for an

integer q.

estimate the condition numbers of matrices in the test set and found the estimate of
‖Kxt(A)‖1 always to be within a factor 2 of the true quantity.

16

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

α

π

SPade−Fre

SPade−Fre−mod

SPade−2by2

explog−Fre

Fig. 7.7. Experiment 2: performance profile for the data in Figure 7.6.

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

π

SPade−real

SPade

Spade−old

Fig. 7.8. Experiment 3: performance profile for the relative errors in At for the real test
problems.

17

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

π

SPade−Fre−real

SPade−Fre

SPade−2by2

explog−Fre

Fig. 7.9. Experiment 3: performance profile for the relative errors in L
xt (A,E) for the real

test problems.

18

8. Conclusions. This work provides three main contributions.

1. The improved Schur–Padé algorithm with sharper underlying error analysis.
Our experiments show that the improved algorithm is more accurate and often more
efficient (by up to 40 percent for our test problems) than the original algorithm of [25].

2. An extension of the improved Schur–Padé algorithm that also computes the
Fréchet derivative. We have shown this algorithm to be superior in accuracy to and
at least as efficient as alternative techniques. The fact that the Fréchet derivative
computation in Algorithm 4.2 is based on an error bound that is strictly valid only
for the At computation itself (see section 4.1) does not affect the accuracy of the
computed Fréchet derivatives in our experiments (as was found analogously for the
matrix logarithm in [5]).

3. The real arithmetic versions of the improved and extended algorithms for real
data. These bring a significant improvement in accuracy over the complex versions,
run at twice the speed, and need only half the intermediate storage.

Finally, it is worth emphasizing that when 1/t = q ∈ Z, our algorithms are very
competitive with algorithms specialized to the matrix qth root problem, as is shown
here, in further tests we have conducted that are not reported here, and in [25],
[30]. Moreover, our algorithms have an operation count independent of q, unlike most
algorithms for the qth root problem [9], [20], [24, Chap. 7], [30], and this is significant
for applications requiring a large q, such as the optic applications in [33] in which
q = 105.

REFERENCES

[1] Awad H. Al-Mohy. A more accurate Briggs method for the logarithm. Numer. Algorithms,
59(3):393–402, 2012.

[2] Awad H. Al-Mohy and Nicholas J. Higham. Computing the Fréchet derivative of the matrix
exponential, with an application to condition number estimation. SIAM J. Matrix Anal.
Appl., 30(4):1639–1657, 2009.

[3] Awad H. Al-Mohy and Nicholas J. Higham. A new scaling and squaring algorithm for the
matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):970–989, 2009.

[4] Awad H. Al-Mohy and Nicholas J. Higham. Improved inverse scaling and squaring algorithms
for the matrix logarithm. SIAM J. Sci. Comput., 34(4):C152–C169, 2012.

[5] Awad H. Al-Mohy, Nicholas J. Higham, and Samuel D. Relton. Computing the Fréchet deriva-
tive of the matrix logarithm and estimating the condition number. MIMS EPrint 2012.72,
Manchester Institute for Mathematical Sciences, The University of Manchester, UK, July
2012. Revised December 2012.

[6] George A. Baker, Jr. Essentials of Padé Approximants. Academic Press, New York, 1975.
[7] George A. Baker, Jr. and Peter Graves-Morris. Padé Approximants, volume 59 of Encyclopedia

of Mathematics and Its Applications. Cambridge University Press, second edition, 1996.
[8] Rajendra Bhatia and Mitsuru Uchiyama. The operator equation

∑n
i=0 A

n−iXBi = Y . Expo-
sitiones Mathematicae, 27(3):251–255, 2009.

[9] Dario A. Bini, Nicholas J. Higham, and Beatrice Meini. Algorithms for the matrix pth root.
Numer. Algorithms, 39(4):349–378, 2005.

[10] Åke Björck and Sven Hammarling. A Schur method for the square root of a matrix. Linear
Algebra Appl., 52/53:127–140, 1983.

[11] K. Burrage, N. Hale, and D. Kay. An efficient implicit FEM scheme for fractional-in-space
reaction-diffusion equations. SIAM J. Sci. Comput., 34(4):A2145–A2172, 2012.

[12] João R. Cardoso. Evaluating the Fréchet derivative of the matrix pth root. Electron. Trans.
Numer. Anal., 38:202–217, 2011.

[13] João R. Cardoso. Computation of the matrix pth root and its Fréchet derivative by integrals.
Electron. Trans. Numer. Anal., 39:414–436, 2012.

[14] E. B. Davies. Approximate diagonalization. SIAM J. Matrix Anal. Appl., 29(4):1051–1064,
2007.

[15] Edvin Deadman, Nicholas J. Higham, and Rui Ralha. Blocked Schur algorithms for computing
the matrix square root. MIMS EPrint 2012.26, Manchester Institute for Mathematical

19

Sciences, The University of Manchester, UK, January 2012. Revised December 2012. To
appear in the Proceedings of PARA12: Workshop on the State-of-the-Art in Scientific and
Parallel Computing, Springer-Verlag.

[16] Nicholas J. Dingle and Nicholas J. Higham. Reducing the influence of tiny normwise relative er-
rors on performance profiles. MIMS EPrint 2011.90, Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, November 2011.

[17] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Programming, 91:201–213, 2002.

[18] Roberto Garrappa and Marina Popolizio. On the use of matrix functions for fractional partial
differential equations. Math. Comput. Simulation, C-25(81):1045–1056, 2011.

[19] Oleksandr Gomilko, Federico Greco, and Krystyna Ziȩtak. A Padé family of iterations for the
matrix sign function and related problems. Numer. Linear Algebra Appl., 19(3):585–605,
2012.

[20] Federico Greco and Bruno Iannazzo. A binary powering Schur algorithm for computing primary
matrix roots. Numer. Algorithms, 55(1):59–78, 2010.

[21] Desmond J. Higham and Nicholas J. Higham. MATLAB Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second edition, 2005.

[22] Nicholas J. Higham. The Matrix Computation Toolbox. http://www.ma.man.ac.uk/~higham/

mctoolbox.
[23] Nicholas J. Higham. Computing real square roots of a real matrix. Linear Algebra Appl.,

88/89:405–430, 1987.
[24] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2008.
[25] Nicholas J. Higham and Lijing Lin. A Schur–Padé algorithm for fractional powers of a matrix.

SIAM J. Matrix Anal. Appl., 32(3):1056–1078, 2011.
[26] Nicholas J. Higham, D. Steven Mackey, Niloufer Mackey, and Françoise Tisseur. Functions

preserving matrix groups and iterations for the matrix square root. SIAM J. Matrix Anal.
Appl., 26(3):849–877, 2005.

[27] Nicholas J. Higham and Samuel D. Relton. The condition number of the Fréchet derivative
of a matrix function. MIMS EPrint, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, 2013. In preparation.

[28] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm estimation,
with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4):1185–
1201, 2000.

[29] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, Cambridge, UK, 1991.

[30] Bruno Iannazzo and Carlo Manasse. A Schur logarithmic algorithm for fractional powers of
matrices. Technical report, May 2012. Manuscript.

[31] Isak Jonsson and Bo K̊agström. Recursive blocked algorithms for solving triangular systems—
Part I: One-sided and coupled Sylvester-type matrix equations. ACM Trans. Math. Soft-
ware, 28(4):392–415, 2002.

[32] Charles S. Kenney and Alan J. Laub. Padé error estimates for the logarithm of a matrix.
Internat. J. Control, 50(3):707–730, 1989.

[33] H. D. Noble and R. A. Chipman. Mueller matrix roots algorithm and computational consider-
ations. Opt. Express, 20(1):17–31, 2012.

20

