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VECTOR SPACES OF LINEARIZATIONS FOR MATRIX
POLYNOMIALS: A BIVARIATE POLYNOMIAL APPROACH

ALEX TOWNSEND∗, VANNI NOFERINI† , AND YUJI NAKATSUKASA‡

Abstract. We revisit the important paper [D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann,
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004] and, by viewing matrices as coefficients for
bivariate polynomials, we provide concise proofs for key properties of linearizations for matrix poly-
nomials. We also show that every pencil in the double ansatz space is intrinsically connected to a
Bézout matrix, which we use to prove the eigenvalue exclusion theorem. In addition our exposition
allows for any degree-graded basis, the monomials being a special case. Matlab code is given to
construct the pencils in the double ansatz space for matrix polynomials expressed in any orthogonal
basis.
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1. Introduction. The landmark paper by Mackey, Mackey, Mehl, and
Mehrmann [11] introduced three important vector spaces of pencils for matrix poly-
nomials: L1(P ), L2(P ), and DL(P ). In [11] the spaces L1(P ) and L2(P ) generalize
the companion forms of the first and second kind, respectively, and the double ansatz
space is the intersection, DL(P ) = L1(P ) ∩ L2(P ).

In this article we introduce new viewpoints for these vector spaces, which are im-
portant for polynomial eigenvalue problems. The classic approach is linearization, i.e.,
computing the eigenvalues of a matrix polynomial P (λ) by solving a generalized linear
eigenvalue problem. The vector spaces we study provide a family of candidate gener-
alized eigenvalue problems for computing the eigenvalues of a matrix polynomial. We
regard a block matrix as coefficients for a bivariate matrix polynomial (see section 3),
and point out that every pencil in DL(P ) is a (generalized) Bézout matrix [10] (see sec-
tion 4). These novel viewpoints allow us to obtain remarkably elegant proofs for many
properties of DL(P ) and the eigenvalue exclusion theorem, which previously required
rather tedious derivations. Furthermore, our exposition includes matrix polynomials
expressed in any degree-graded basis, such as the Chebyshev polynomial basis, which
are beginning to become important [6].

Let us recall some basic definitions in the theory of matrix polynomials. Let
P (λ) =

∑k
i=0 Aiφi(λ), where Ak 6= 0 and Ai ∈ Cn×n, be a matrix polynomial ex-

pressed in a degree-graded basis, i.e., {φ0, . . . , φk} is a polynomial basis with φj of
degree exactly j, 0 ≤ j ≤ k. We assume throughout that P (λ) is regular, i.e.,
detP (λ) 6≡ 0, which ensures the eigenvalues of P (λ) are the roots of the scalar poly-
nomial det(P (λ)). We note that, although we use the field C for simplicity, the
elements of Ai can be in any field F, provided we work with the closure of F.

A matrix pencil L(λ) = λX + Y where X,Y ∈ Cnk×nk is a linearization for
P (λ) if there exist unimodular matrix polynomials U(λ), V (λ) such that L(λ) =
U(λ) diag(P (λ), In(k−1))V (λ) and hence, L(λ) shares its finite eigenvalues and their
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partial multiplicities with P (λ). If P (λ) has a singular leading coefficient then it has
an eigenvalue at infinity and to preserve any infinite eigenvalues the matrix pencil L(λ)
needs to be a strong linearization, i.e., L(λ) is a linearization for P (λ) and λY +X a
linearization for λkP (1/λ).

In the next section we extend the definitions of L1(P ), L2(P ) and DL(P ) to allow
for matrix polynomials expressed in a degree-graded basis. In section 3 we consider
the same space from a new viewpoint, based on bivariate matrix polynomials, and
provide concise proofs for properties of DL(P ). Section 4 shows that every pencil
in DL(P ) is a (generalized) Bézout matrix and gives an alternative proof for the
eigenvalue exclusion theorem. In section 5 we provide Matlab code to construct the
block symmetric pencils in DL(P ) when the matrix polynomial is expressed in any
orthogonal basis. In section 6 we discuss a few related observations.

2. Vector spaces and degree-graded bases. Given a matrix polynomial P (λ)
we can define a vector space L1(P ) [11, Def. 3.1]

L1(P ) =
{
L(λ) = λX + Y : X,Y ∈ Cnk×nk, L(λ) · (Λ(λ)⊗ In) = v ⊗ P (λ), v ∈ Ck

}
,

where Λ(λ) = [φk−1(λ), φk−2(λ), . . . , φ0(λ)]
T

and ⊗ is the Kronecker product. An
ansatz vector v ∈ Ck can be selected to generate a family of pencils in L1(P ), which
are generically linearizations for P (λ) [11, Thm. 4.7]. If {φ0, . . . , φk} is an orthogonal

basis then the comrade form [13] belongs to L1(P ) with v = [1, 0, . . . , 0]
T
.

The action of L(λ) = λX + Y ∈ L1(P ) on (Λ(λ) ⊗ In) can be characterized by
the column shift sum operator, denoted by �→ [11, Lemma 3.4],

L(λ) · (Λ(λ)⊗ In) = v ⊗ P (λ) ⇐⇒ X �→Y = v ⊗ [Ak, Ak−1, . . . , A0] .

In the monomial basis X �→Y can be paraphrased as “insert a zero column on the
right of X and a zero column on the left of Y then add them together”, i.e.,

X �→Y =
[
X 0

]
+
[
0 Y

]
,

where 0 ∈ Cnk×n. More generally, for degree-graded bases we define the column shift
sum operator as

X �→Y = XM +
[
0 Y

]
, (2.1)

where M ∈ Cnk×n(k+1) and 0 ∈ Cnk×n. Suppose the degree-graded basis {φ0, . . . , φk}
satisfies the recurrence relations

xφi−1 =
i∑

j=0

mk+1−i,k+1−jφj , 1 ≤ i ≤ k.

Then the matrix M in (2.1) is given by

M =


M11 M12 . . . M1k M1(k+1)

0 M22
. . .

. . . M2(k+1)

...
. . .

. . .
. . .

...
0 . . . 0 Mkk Mk(k+1)

 ,

where Mpq = mpqIn, 1 ≤ p ≤ q ≤ k + 1, p 6= k + 1 and In is the n × n identity
matrix. An orthogonal basis satisfies a three term recurrence and in this case the
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matrix M has only three nonzero block diagonals. For example, if P (λ) is expressed
in the Chebyshev basis {T0(x), . . . , Tk(x)}, Tj(x) = cos

(
j cos−1(x)

)
for x ∈ [−1, 1],

we have

M =


1
2In 0 1

2In
. . .

. . .
. . .

1
2In 0 1

2In
In 0

 ∈ Rnk×n(k+1).

The properties of the vector space L2(P ) are analogous to L1(P ) [8]. If L(λ) =
λX + Y is in L2(P ) then L(λ) = λXB + Y B belongs to L1(P ), where the superscript
B represents blockwise transpose1. This connection means the action of L(λ) ∈ L2(P )
is characterized by a row shift sum operator, denoted by �↓ ,

X �↓ Y =
(
XB �→Y B)B = MBX + Y.

2.1. Extending results to general bases. Many of the derivations in [11] are
specifically for when P (λ) is expressed in a monomial basis, though the lemmas and
theorems can be generalized to any degree-graded bases. One approach to generalize
[11] is to use the change of basis matrix S such that Λ(λ) = S[λk−1, . . . , λ, 1]T and to
define the mapping (see also [5])

C
(
L̂(λ)

)
= L̂(λ)(S−1 ⊗ In) = L(λ), (2.2)

where L̂(λ) is a pencil in L1 for the matrix polynomial P (λ) expressed in the monomial
basis. In particular, the strong linearization theorem holds for any degree-graded
basis.

Theorem 2.1 (Strong Linearization Theorem). Let P (λ) be a regular matrix
polynomial (expressed in any degree-graded basis), and let L(λ) ∈ L1(P ). Then the
following statements are equivalent:

1. L(λ) is a linearization for P (λ).
2. L(λ) is a regular pencil.
3. L(λ) is a strong linearization for P (λ).
Proof. It is a corollary of [11, Theorem 4.3]. In fact, the mapping C in (2.2)

is a strict equivalence between L1(P ) expressed in the monomial basis and L1(P )
expressed in a degree-graded basis. Therefore, L(λ) has one of the three properties
above if and only if L̂(λ) has the corresponding property. The properties are equivalent
for L̂(λ) because they are equivalent for L(λ).

This strict equivalence can be used to generalize many other properties of L1(P ),
L2(P ) and DL(P ), though we use an approach based on bivariate polynomials result-
ing in concise derivations.

3. Recasting to bivariate matrix polynomials. A block matrix X ∈ Cnk×nk

with n×n blocks can provide the coefficients for a bivariate matrix polynomial of de-
gree k. For example, the bivariate matrix polynomial corresponding to the coefficients
X is F (x, y), where

X =

X11 . . . X1k

...
. . .

...
Xk1 . . . Xkk

 , Xij ∈ Cn×n, F (x, y) =
k−1∑
i=0

k−1∑
j=0

Xk−i,k−jφi(y)φj(x).

1If X = (Xij)1≤i,j≤k, Xij ∈ Cn×n then XB = (Xji)1≤i,j≤k.
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The matrix M in (2.1) is such that the bivariate matrix polynomial corresponding
to the coefficients XM is F (x, y)x, i.e., M applied on the right of X represents
multiplication of F (x, y) by x. This gives an equivalent definition for the column
shift sum operator: if the block matrices X and Y are the coefficients for F (x, y) and
G(x, y) then the coefficients of H(x, y) are Z, where

Z = X �→Y, H(x, y) = F (x, y)x+G(x, y).

Therefore, in terms of bivariate matrix polynomials, we can define L1(P ) as

L1(P ) = {L(λ) = λX + Y : F (x, y)x+G(x, y) = v(y)P (x), v ∈ Πk−1(C)} ,

where Πk−1(C) is the space of polynomials in C[x] of degree k − 1, or less.

Regarding the space L2(P ), the coefficient matrix MBX corresponds to the bi-
variate matrix polynomial yF (x, y), i.e., MB applied on the left of X represents
multiplication of F (x, y) by y. Hence, we can define L2(P ) as

L2(P ) = {L(λ) = λX + Y : yF (x, y) +G(x, y) = P (y)w(x), w ∈ Πk−1(C)} .

The space DL(P ) is the intersection of L1(P ) and L2(P ), and is of importance
because it contains block symmetric linearizations. A pencil L(λ) = λX + Y belongs
to DL(P ) with ansätze v(y) and w(x) if the following L1(P ) and L2(P ) conditions
are satisfied:

F (x, y)x+G(x, y) = v(y)P (x), yF (x, y) +G(x, y) = P (y)w(x). (3.1)

It appears that v(y) and w(x) could be chosen independently; however, if we substitute
y = x into (3.1) we obtain the compatibility condition

v(x)P (x) = F (x, x)x+G(x, x) = xF (x, x) +G(x, x) = P (x)w(x)

and hence, v = w as elements of Πk−1(C) since P (x)(v(x)−w(x)) is the zero matrix.
This shows the double ansatz space is actually a single ansatz space; a fact that
required two quite technical proofs in [11, Prop. 5.2, Thm. 5.3].

The bivariate matrix polynomials F (x, y) and G(x, y) are uniquely defined by the
ansatz v(x) since they satisfy the explicit formulas

yF (x, y)− F (x, y)x = P (y)v(x)− v(y)P (x), (3.2)

yG(x, y)−G(x, y)x = yv(y)P (x)− P (y)v(x)x. (3.3)

In other words, there is an isomorphism between Πk(C) and DL(P ). It also follows
from (3.2) and (3.3) that F (x, y) = F (y, x) and G(x, y) = G(y, x). This shows
that all the pencils in DL(P ) are block symmetric. Furthermore, if F (x, y) and
G(x, y) are symmetric and satisfy F (x, y)x + G(x, y) = P (x)v(y) then we also have
F (y, x)x+G(y, x) = P (x)v(y), and by swapping x and y we obtain the L2(P ) condi-
tion, yF (x, y)+G(x, y) = P (y)v(x). This shows all block symmetric pencils in L1(P )
belong to L2(P ) and hence, also belong to DL(P ). Thus, DL(P ) can be defined as
the space of block symmetric pencils in L1(P ) [8, Thm. 3.4].
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4. Eigenvalue exclusion theorem. The eigenvalue exclusion theorem
[11, Thm. 6.9] shows that if L(λ) ∈ DL(P ) with ansatz v ∈ Πk−1(C) then L(λ)
is a linearization for the matrix polynomial P (λ) if and only if v(λ)In and P (λ) do
not share an eigenvalue. This theorem is important because, generically, v(λ)In and
P (λ) do not share eigenvalues and almost all choices for v ∈ Πk−1(C) correspond to
linearizations in DL(P ) for P (λ). This theorem also includes infinite eigenvalues.

The matrix polynomial P (λ) expressed in a degree-graded basis has an infinite
eigenvalue if its leading matrix coefficient is singular. In order to correctly take care of
infinite eigenvalues we write P (λ) =

∑g
i=0 Aiφi(λ), where the integer g ≥ k is called

the grade [12]. If the grade of P (λ) is larger than the degree then P (λ) has at least
one infinite eigenvalue. Usually, and unless stated otherwise, the grade is equal to the
degree.

We prove the eigenvalue exclusion theorem by noting that a DL(P ) pencil is a
(generalized) Bézout matrix. We first recall the definition of a Bézout matrix and
Bézoutian function [3, p. 277], [4, sec. 2.9].

Definition 4.1 (Bézout matrix and Bézoutian function). Let p1(x), p2(x) be
scalar polynomials

p1(x) =
k∑

i=0

aiφi(x), p2(x) =
k−1∑
i=0

ciφi(x)

with ak 6= 0 (ck−1 can be zero, i.e., we regard p2(x) as a polynomial of grade k − 1),
then the Bézoutian function is the bivariate function

B(p1, p2) =
p1(y)p2(x)− p2(y)p1(x)

x− y
=

k∑
i,j=1

bijφk−i(y)φk−j(x).

The k × k Bézout matrix associated to p1(x) and p2(x) is defined via the coefficients
of the Bézoutian function

B(p1, p2) = (bij)1≤i,j≤k .

Similarly, for n×n regular matrix polynomials P1(x), P2(x) of grades k and k−1
respectively, the associated Bézoutian function BM2,M1 is defined by [2, 10]

BM2,M1(P1, P2) =
M2(y)P2(x)−M1(y)P1(x)

x− y
=

k∑
i,j=1

Bijφk−i(y)φk−j(x), (4.1)

where M1(x) and M2(x) are regular matrix polynomials such that M1(x)P1(x) =
M2(x)P2(x), [7, Ch. 9]. The nk × nk Bézout block matrix is defined by
BM2,M1(P1, P2) = (Bij)1≤i,j≤k .

Note that for matrix polynomials the Bézoutian function and the Bézout block
matrix are not unique as there are many choices of M1 and M2. However, when P1(x)
and P2(x) commute, i.e., P2(x)P1(x) = P1(x)P2(x), the natural choice is M1 = P2

and M2 = P1 and we write B(P1, P2) = BP1,P2(P1, P2).
Here are some standard properties of a Bézoutian function and Bézout matrix:
1. The Bézoutian function is skew-symmetric with respect to its polynomial

arguments: B(P1, P2) = −B(P2, P1).
2. B(P1, P2) is bilinear with respect to its polynomial arguments.
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3. In the scalar case, B(p1, p2) is nonsingular if and only if p1 and p2 have no
common roots.

4. B(P1, P2) is a (block) symmetric matrix.
Theorem 4.2 (Eigenvalue Exclusion Theorem). Suppose that P (λ) is a regular

matrix polynomial of degree k and L(λ) is in DL(P ) with a nonzero ansatz polynomial
v(λ). Then L(λ) is a linearization for P (λ) if and only if v(λ)In (with grade k − 1)
and P (λ) do not share an eigenvalue.

Proof. To highlight the connection with the classic Bézout matrix we first consider
scalar polynomials, where n = 1. Let P (λ) be a scalar polynomial of degree (and
grade) k and v(λ) a scalar polynomial of grade k − 1. We first solve the relations in
(3.2) and (3.3) to obtain

F (x, y) =
P (y)v(x)− v(y)P (x)

x− y
, G(x, y) =

yv(y)P (x)− P (y)v(x)x

x− y

and thus, by Definition 4.1, F (x, y) = B(v, P ) and G(x, y) = B(P, vx). Moreover, B
is skew-symmetric and bilinear with respect to its polynomial arguments so we have

L(λ) = λX + Y = λB(v, P ) +B(P, xv) = −λB(P, v) +B(P, xv) = B(P, (x− λ)v).

Therefore, since B is a Bézout matrix, det(L(λ)) = det(B(P, (x− λ)v)) = 0 for all λ
if and only if P and v share a root. Finally, by Theorem 2.1, L(λ) is a linearization
for P (λ) if and only if P and v do not share a root.

For the matrix case n > 1, we let P1 = P (x) and P2 = (x − λ)v(x)In in (4.1).
Then P1 and P2 commute for all λ, so we take M1 = P2 and M2 = P1 and obtain

B(P (x), (x− λ)v(x)In) =
P (y)(x− λ)v(x)− (y − λ)v(y)P (x)

x− y

=
k∑

i,j=1

Bijφk−i(y)φk−j(x).

This gives the nk × nk Bézout block matrix B(P, (x − λ)vI) = (Bij)1≤i,j≤k. Com-
pletely analogously to the scalar case, we have L(λ) = B(P, (x− λ)vI).

The kernel of the Bézout block matrix is

kerB(P, (x− λ)vI) = Im

XFφk−1(TF )
...

XFφ0(TF )

⊕ Im

 X∞φ0(T∞)
...

X∞φk−1(T∞)

 , (4.2)

and does not depend on the choice of M1 and M2, as shown in Theorem 1.1 of
[10] for the monomial case. Equation (4.2) can be obtained from [10, Theorem 1.1]
via a congruence transformation involving the mapping C in (2.2). Here (XF , TF ),
(X∞, T∞) are the greatest common restrictions [7, Ch. 9] of the finite and infinite
spectral pairs of P (x) and (x − λ)v(x)In. The infinite spectral pairs are defined
regarding both polynomials as grade k. We recall that two matrix polynomials have
a nonempty greatest common restriction if and only if they share both an eigenvalue
and the corresponding eigenvector [7, Ch. 7,9].

If vIn and P share a finite eigenvalue λ0 and P (λ0)w = 0 for a nonzero w then
(λ0−λ)v(λ0)w = 0 for all λ. Hence, the kernel of L(λ) = B(P, (x−λ)v) is nonempty
for all λ and L(λ) is singular. An analogous argument holds for a shared infinite
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eigenvalue. Conversely, suppose v(λ)In and P (λ) have no common eigenvalues. If λ0

is an eigenvalue of P then (λ0−λ)v(λ0)I is nonsingular unless λ = λ0. It follows that
if λ is not an eigenvalue for P then the common restriction is empty, which means
L(λ) is nonsingular. Hence, L(λ) is regular and a linearization by Theorem 2.1.

5. Construction. The formulas (3.2) and (3.3) can be used to construct any
pencil in DL(P ) without basis conversion, which can be numerically important [1]. We
provide a Matlab code that constructs pencils in DL(P ) when the matrix polynomial
is expressed in any orthogonal basis. If P (λ) is expressed in the monomials then
a = [ones(k, 1)]; b = zeros(k, 1); c = zeros(k, 1); and if expressed in the Chebyshev
basis then a = [ones(k− 1, 1); 2]/2; b = zeros(k, 1); c = ones(k, 1)/2;.

function [X Y] = DLP(AA,v,a,b,c)

%DLP constructs the DL pencil with ansatz vector v.

% [X,Y] = DLP(AA,v,a,b,c) returns the DL pencil lambda*X + Y

% corresponding to the matrix polynomial with coefficients AA in an

% orthogonal basis defined by the recurrence relations a, b, c.

[n m] = size(AA); k=m/n-1; s=n*k; % matrix size & degree

M = spdiags([a b c],[0 1 2],k,k+1);

M = kron(M,eye(n)); % multiplication matrix

S = kron(v,AA);

for j=0:k-1, jj=n*j+1:n*j+n; AA(:,jj)=AA(:,jj)’;end % block transpose

T = kron(v.’,AA’); R=M’*S-T*M; % construct RHS

% The Bartel-Stewart algorithm on M’Y+YM=R

X = zeros(s); Y=X; ii=n+1:s+n; nn=1:n; % useful indices

Y(nn,:)=R(nn,ii)/M(1); X(nn,:)=T(nn,:)/M(1); % 1st column of X and Y

Y(nn+n,:)=(R(nn+n,ii)-M(1,n+1)*Y(nn,:)+Y(nn,:)*M(:,n+1:s+n))/M(n+1,n+1);

X(nn+n,:)=(T(nn+n,:)-Y(nn,:)-M(1,n+1)*X(nn,:))/M(n+1,n+1); % 2nd cols

for i = 3:k % backwards subs

ni=n*i; jj=ni-n+1:ni; j0=jj-2*n; j1=jj-n; % useful indices

M0=M(ni-2*n,ni); M1=M(ni-n,ni); m=M(ni,ni); % consts of 3-term

Y0=Y(j0,:); Y1=Y(j1,:); X0=X(j0,:); X1=X(j1,:); % vars in 3-term

Y(jj,:)=(R(jj,ii)-M1*Y1-M0*Y0+Y1*M(:,n+1:s+n))/m;

X(jj,:)=(T(jj,:)-Y1-M1*X1-M0*X0)/m; % use Y to solve for X

end

If P (λ) is expressed in the monomial basis we have (see [4, Eqn. 2.9.3] for scalar
polynomials)

L(λ) =

Ak−1 . . . A0

... . .
.

A0


v̂kIn . . . v̂1In

. . .
...

v̂kIn

−
v̂k−1In . . . v̂0In

... . .
.

v̂0In


Ak . . . A1

. . .
...
Ak

 ,

where v̂i = (vi−1 − λvi). This relation can be used to obtain expressions for the block
matrices X and Y . For other orthogonal bases the relation is more complicated.

Matrix polynomials expressed in the Legendre or Chebyshev basis are of practical
importance, for example, for a nonlinear eigenvalue solvers based on Chebyshev inter-
polation [6]. Table 5.1 depicts three DL(P ) pencils for the cubic matrix polynomial
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P (λ) = A3T3(λ) + A2T2(λ) + A1T1(λ) + A0T0(λ), where Tj(λ) is the jth Chebyshev
polynomial.

v L(λ) ∈ DL(P ) for given v Linearization condition

10
0

 λ

2A3 0 0
0 2A3 − 2A1 −2A0

0 −2A0 A3 −A1

+

 A2 A1 −A3 A0

A1 −A3 2A0 A1 −A3

A0 A1 −A3 A0

 det(A0+
−A3+A1√

2
) 6= 0

det(A0− −A3+A1√
2

) 6= 0

01
0

 λ

 0 2A3 0
2A3 2A2 2A3

0 2A3 A2 −A0

+

−A3 0 −A3

0 A1 − 3A3 A0 −A2

−A3 A0 −A2 −A3

 det(−A2 +A0) 6= 0

det(A3) 6= 0

00
1

 λ

 0 0 2A3

0 4A3 2A2

2A3 2A2 A1 +A3

+

 0 −2A3 0
−2A3 −2A2 −2A3

0 −2A3 A0 −A2

 det(A3) 6= 0

Table 5.1
Three instances of pencils in DL(P ) and their linearization condition for the cubic matrix

polynomial P (λ) = A3T3(λ) + A2T2(λ) + A1T1(λ) + A0T0(λ), expressed in the Chebyshev basis of
the first kind. These three pencils form a basis for the vector space DL(P ).

6. Further discussion. One might expect that the definition for L1(P ) could
be generalized by relaxing the L1(P ) condition to

F (x, y)x+G(x, y) = h(x, y).

However, it turns out we must still have h(x, y) = v(y)P (x), at least in the scalar case.
For example, if P is a scalar polynomial with roots λ1, . . . , λk then we still require

F (λi, y)λi +G(λi, y) = h(λi, y) = 0, i = 1, . . . , k

and hence, h(x, y) = q(x, y)P (x). Furthermore, h(x, y) must be a bivariate polynomial
of degree at most k in x so q(x, y) = v(y) for some polynomial v and hence, we must
have h(x, y) = v(y)P (x).

Matrix polynomials in general orthogonal bases are likely to become more impor-
tant when considering high degree matrix polynomials as in [6].

The exposition of this article can also be applied to study definite pencils in
DL(P ) [9] and, for instance, Lemma 4.5 in [9] can be shown using L’Hôpital’s rule.
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