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A SUFFICIENT CONDITION FOR THE EXISTENCE OF

HAMILTONIAN BIFURCATIONS WITH CONTINUOUS

ISOTROPY

JAMES MONTALDI AND MIGUEL RODRÍGUEZ-OLMOS

Abstract. We present a framework for the study of the local qualitative dy-
namics of equivariant Hamiltonian flows specially designed for points in phase
space with nontrivial isotropy. This is based on the classical construction of
structure-preserving tubular neighborhoods for Hamiltonian Lie group actions
on symplectic manifolds. This framework is applied to obtaining concrete and
testable conditions guaranteeing the existence of bifurcations from symmetric
branches of Hamiltonian relative equilibria.

1. Introduction

In this short note we will outline a method for studying the qualitative dynamics
of symmetric Hamiltonian systems near relative equilibria, with emphasis in those
which lie in singular leaves of the momentum map, or equivalently, have continuous
isotropy. Using this method we will state a sufficient, easily testable condition
for the existence of a bifurcation from a continuous family of relative equilibria
parametrized by momentum. For reasons of space this paper is of an expository
nature and an announcement of some of the results contained in [5] where a more
detailed analysis is carried out.

Recall that a G-Hamiltonian system is a quintuple (P , ω,G,J, h), where (P , ω)
is a smooth symplectic manifold, G is a Lie group acting on P by symplectomor-
phisms, h ∈ C∞(P) is a G-invariant Hamiltonian function and J : P → g∗ is a
Ad∗-equivariant momentum map satisfying

ιξPω = d〈J(·), ξ〉, ∀ξ ∈ g.

Here g denotes the Lie algebra of G and ξP(z) =
d
dt t = 0

exp tξ · (z) is the evaluation
at z of the fundamental vector field associated to the Lie algebra element ξ ∈ g.
Throughout this paper we will assume that G is compact.

The associated dynamical system on P is the flow of the Hamiltonian vector field
defined implicitly by

ιXh
ω = dh.

This flow is G-invariant, thus sending group orbits to group orbits for all times.
A well known theorem by Noether states that J is constant along integral curves
of Xh.
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A relative equilibrium is an integral curve of the dynamical system that is con-
tained in a group orbit. They can be characterized (see [3]) as those points z ∈ P
for which there exists an element ξ ∈ g such that

(1) Xh(z) = ξP(z).

The Lie algebra element ξ, which depends on z, is called a velocity for the relative
equilibrium z. Notice that it follows from the definition that if z is a relative
equilibrium with velocity ξ, then every point in the integral curve of Xh through z

is also a relative equilibrium admitting ξ as a velocity. Moreover, it can be proved
that ξ is an element of gµ, the Lie algebra of the stabilizer of µ = J(z) under the
coadjoint representation of G.

From (1) we obtain a key observation that will be crucial for this paper. Sup-
pose that the stabilizer of z, denoted Gz, has a non-trivial Lie algebra gz (which is
equivalent to Gz not being discrete); if z is a relative equilibrium with velocity ξ,
then for any γ ∈ gz the element ξ+γ is also a velocity for the same relative equilib-
rium. This non-uniqueness in the assignment of a velocity to a relative equilibrium
will have important consequences for the local dynamics of G-Hamiltonian systems
near relative equilibria. Another standard fact is that if z is a relative equilibrium
with velocity ξ then for any group element g, the point g ·z is a relative equilibrium
with velocity Adgξ. We will consider all relative equilibria related in this way as
equivalent.

Another important characterization of Hamiltonian relative equilibria is the fol-
lowing (see [3]). A point z ∈ P is a relative equilibrium with velocity ξ if and only
if

(2) dhξ(z) = 0,

where the function hξ is the augmented Hamiltonian, defined by

hξ(z) = h(z)− 〈J(z), ξ〉.

By the previous considerations we have that if z is a relative equilibrium with
velocity ξ then also dhξ+γ(z) = 0 for every element γ ∈ gz.

The organization of the article is as follows: Section 2 contains some generalities
about Hamiltonian actions and Hamiltonian relative equilibria, including a brief
review of the construction of the Marle-Guillemin-Sternberg form (MGS). Then
we introduce the so-called bundle equations as introduced in [8] and [9], which
can be thought as Hamilton’s equation for an invariant Hamiltonian function on
the tubular model provided by the MGS form. Next, we show the main novelty
of our approach which consists in including the explicit role of the isotropy of
the group action into the bundle equations, obtaining our main tool, the system
of equations (11) (12) and (13). Section 3 contains the main result of this note,
Theorem 3.1 which gives a test for the existence of bifurcations from a branch of
relative equilibria parametrized by momentum values. This test is illustrated with
an example in Section 4.

A criterion for determining the stability of these relative equilibria with contin-
uous isotropy was developed in a recent paper by the authors [4].

2. The Bundle Equations around Relative Equilibria

We will assume from now on that z ∈ P is a relative equilibrium with velocity
ξ and momentum µ = J(z). We are interested in studying the local dynamics
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around z and in obtaining conditions characterizing nearby relative equilibria. For
that we will use the usual approach which consists in replacing P by the MGS
normal form at z. This provides a tubular neighborhood of the group orbit G · z
adapted to the existing geometry and symmetries ([2, 1]). We will now briefly
recall its construction. Note that by the equivariance of J we have the inclusions
gz ⊂ gµ ⊂ g. Therefore, by the compactness hypothesis on G we can define Gz-
invariant subspaces m ⊂ gµ, q ⊂ g and N ⊂ kerTzJ satisfying

(3) gµ = gz ⊕m, g = gz ⊕m⊕ q and kerTzJ = Tz(Gµ · z)⊕N.

These splittings are chosen to be Gz-invariant and have associated dual ones. In
particular we will use the induced splitting of g∗µ

(4) g∗µ = g∗z ⊕m∗.

It is a standard fact that (N,Ω), where Ω is the restriction to N of ω(z), is a
symplectic vector space and that the linear action of Gz on N is Hamiltonian, with
associated equivariant momentum map JN : N → g∗z defined by

(5) 〈JN (v), η〉 =
1

2
Ω(η · v, v), ∀η ∈ gz, v ∈ N.

The linear space N is called the symplectic normal space at z for the G-action on
P .

Let Y := G×Gz
(m∗×N) be the quotient space for the action of Gz on G×m∗×N

given by

(6) h · (g, ρ, v) = (gh−1,Ad∗h−1ρ, h · v).

This quotient happens to be equipped with a symplectic 2-form ωY in a neigh-
borhood of the zero section G ×Gz

({0} × {0}). Moreover, the Lie group G has a
natural Hamiltonian action on Y given by

(7) g′ · [g, ρ, v] = [g′g, ρ, v],

which admits the momentum map JY : Y → g∗ given by

(8) JY ([g, ρ, v]) = Ad∗

g−1(µ+ ρ+ JN (v)).

Notice also that from (7) and (6) we have that the stabilizer of a point in Y is

(9) G[g,ρ,v] = g((Gz)ρ ∩ (Gz)v)g
−1,

where the right hand term is the stabilizer of v under the linear representation of
Gz on N .

The Hamiltonian Tube Theorem guarantees the existence of a map ϕ : Y =
G×Gz

(m∗ ×N) → P which sends [e, 0, 0] to z, and which is a symplectomorphism
between a G-invariant neighborhood of the zero section of Y and a G-invariant
neighborhood of the group orbit G · z, and intertwines the Hamiltonian actions
of G on the domain and the target, thereby satisfying JY = J ◦ ϕ wherever this
expression is defined.

The idea exploited in [8] and [9] consists in taking the pullback by ϕ of the
Hamiltonian vector field Xh to Y and then lift it to G × m∗ × N . In these two
references the differential equations for the flow of a particular choice of the lifted
vector field are obtained, providing a general framework to study the local dynamics
of Xh near G · z. These are called the bundle equations, and we now reproduce
them.
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Note that h ◦ϕ is a G-invariant function on Y , so it can be identified with a Gz-
invariant function h̄ on m∗×N . Notice also that a vector field X ∈ X(G×m∗×N)
which is the lift of a vector field on Y can be expressed as

X(g, ρ, v) = (g · (Xg(g, ρ, v)), Xm∗(g, ρ, v), XN(g, ρ, v)),

where Xg(g, ρ, v) ∈ g, Xm∗(g, ρ, v) ∈ m∗, and XN (g, ρ, v) ∈ N . The bundle equa-
tions on G×m∗ ×N are then given by:

Xg(g, ρ, v) = Dm∗ h̄(ρ, v)

Xm∗(g, ρ, v) = Pm∗

(

ad∗D
m

∗ h̄(ρ,v)(ρ+ JN (v))
)

XN (g, ρ, v) = Ω♯(DN h̄(ρ, v)).

Where Dm∗ h̄ and DN h̄ denote the partial derivatives of h ∈ CGz(m∗ × N) with
respect to m∗ and N respectively. Here the symbol P denotes the canonical pro-
jection onto the subspace indicated by the subscript relative to a splitting of some
vector space, which will be clear from the context. As shown in [8, 9], these are the
differential equations for the flow of the unique local vector field X on G×m∗ ×N

which is a lift of ϕ∗Xh ∈ X(Y ) and satisfies the condition

(10) Pgz
(Xg) = 0.

ϕ∗Xh = Xh◦ϕ, where Xh◦ϕ is the solution of Hamilton’s equations
The main novelty of our approach consists in studying simultaneously all the

lifts of ϕ∗Xh and not only the one prescribed by condition (10). For that, it is clear
that one has to add the set of vector fields on G×m∗ ×N that are tangent to the
Gz-orbits of the action (6). These vertical fields are generated by the set of fields
of the form

X(g, ρ, v) = (g · γ, ad∗γρ,−γ · v),

for γ ∈ gz. In [5] we show that the flow of the most general lift of ϕ∗Xh is described
by the modified bundle equations

ġ = g · (Dm∗ h̄(ρ, v) + γ)(11)

ρ̇ = Pm∗

(

ad∗D
m

∗ h̄(ρ,v)+γ(ρ+ JN (v))
)

(12)

v̇ = Ω♯(DN h̄γ(ρ, v)).(13)

for arbitrary γ ∈ gz and

h̄γ(ρ, v) = h̄(ρ, v)− 〈JN (v), γ〉.

3. A Sufficient Condition for a symmetric Hamiltonian Bifurcation

According to (11),(12) and (13), and using the non-degeneracy of the symplectic
form Ω we can see that a point [g, ρ, v] ∈ Y , or equivalently, the point ϕ([g, ρ, v]) ∈ P
near z is a relative equilibrium for the vector field ϕ∗Xh if, choosing γ appropriately
in order to take into account the directions tangent to the vertical vector fields, we
have ρ̇ = 0 and v̇ = 0. That is

Pm∗

(

ad∗D
m

∗ h̄(ρ,v)+γ(ρ+ JN (v))
)

= 0(14)

DN h̄γ(ρ, v) = 0.(15)
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In that case it follows easily from (11) that a velocity of the relative equilibrium is
given by ξ = Adg−1(Dm∗ h̄(ρ, v) + γ)).

Notice that according to the splittings (3) and (4), Dm∗ h̄(ρ, v) + γ ∈ gµ and ρ+
JN (v) ∈ g∗µ. Therefore, if we assume that Gµ is a torus, then (14) is automatically
satisfied, reducing the problem of characterizing relative equilibria to finding critical
points on N of the family of functions h̄γ(ρ, ·) parametrized by (γ, ρ) ∈ gz × m∗.
The following result is an application of this framework towards providing sufficient
conditions for the existence of Hamiltonian bifurcations from a parametrized family
of relative equilibria in a G-Hamiltonian system. Before we will fix some notation.
We say that an injective map φ : V → P , where V is a (open neighborhood of 0 in
a) vector space is a parametrized branch of relative equilibria if for every w ∈ V , the
point φ(w) is a relative equilibrium, and all the relative equilibria of the branch are
non-equivalent in the sense mentioned in the Introduction. That is, all the points
of the branch belong to different G-orbits in P . The relative equilibria of a branch
are said to be of the same type if for every w ∈ V , there is some g ∈ G such that
GJ(φ(w)) = gGµg

−1 and Gφ(w) = gHg−1 for fixed subgroups Gµ, H ⊂ G.

Theorem 3.1. Let z ∈ P be a relative equilibrium with momentum J(z) = µ

belonging to a parametrized branch z : m∗ → P of relative equilibria of the same
type such that z(0) = z. Let ξ(ρ) ∈ g be a continuous choice of velocities for z(ρ)
with ξ(0) = ξ and suppose that Gµ is a torus. Let also Nρ be a continuous choice
of symplectic normal spaces for z(ρ) with N0 = N . They are all isomorphic as
symplectic representations of Gz by construction. Suppose also that there exists
some γ ∈ gz and a subgroup L ⊂ Gz satisfying

(i) For all ρ in a neighborhood of 0, d2
z(ρ)hξ(ρ)+γ NL

ρ

has an isolated eigenvalue

σ(ρ) (possibly multiple) that crosses 0 at ρ = 0.
(ii) kerd2

zhξ+γ NL is at most two dimensional and Gz contains a subgroup iso-
morphic to SO(n) that acts effectively on this space.

Then, for every v ∈ kerd2
zhξ+η NL\{0} close enough to the origin there is a relative

equilibrium z′(v) near z with stabilizer containing L and not contained in the branch
z(ρ).

Proof. First of all, using the independence of the gz-component of the velocity of
a relative equilibrium, we can choose ξ(ρ) ∈ m∗ according to the splitting (3).

Let Y = G ×Gz
(m∗ × N) be the MGS model at the relative equilibrium z.

Since the branch of relative equilibria is parametrized by m∗ it corresponds to
the branch [g(ρ), ρ, v(ρ)] ∈ Y . After a reorganization of the points in this branch
using the freedom in the group action this can be presented as [e, ρ, v(ρ)]. And,
since Gµ is Abelian and all the points in this branch are relative equilibria of the
same type, we have that (Gz)v(ρ) = Gz for all ρ ∈ m∗ (using (9)). Moreover,
using the Gz-equivariant change of variables on N given by v 7→ v − v(ρ) we
induce the well defined G-equivariant symplectic diffeomorphism on Y [g, ρ, v] 7→
[g, ρ, v − v(ρ)] and therefore we can assume that our original branch of relative
equilibria on P corresponds on Y to the family [e, ρ, 0], with ρ ∈ m∗. And they all
satisfy DN h̄γ(ρ, 0) = 0 for every ρ ∈ m∗ and γ ∈ gz (using (15) and (5)).

We will now need the following technical result in order to prove our bifurcation
result. This is a straightforward application of the normal form of the momentum
map in the MGS model of a G-Hamiltonian system, and the proof can be found in
[5].



6 JAMES MONTALDI AND MIGUEL RODRÍGUEZ-OLMOS

Lemma 3.1. Under the previous assumptions, for every subgroup L ⊂ Gz the
m∗-parametrized families of bilinear forms D2

N h̄γ(ρ, 0)NL and d
2
ϕ([e,ρ,0])hξ(ρ)+γ NL

ρ

have the same signature.

Now, using this lemma we can reduce the problem of finding bifurcating relative
equilibria to finding elements 0 6= v ∈ N such that there exists a γ ∈ gz for which

(16) DN h̄γ(ρ, v) = 0

under the assumptions

A1. DN h̄γ(ρ, 0) = 0 for all ρ ∈ m∗, and
A2. there is an eigenvalue of the family of Hessians D2

N h̄γ(ρ, 0)NL that crosses
0 at ρ = 0.

Let us call f(ρ, ·) ∈ C∞(N) the m∗-parametrized function onN defined by f(ρ, v) =
h̄γ(ρ, v), and by fL its restriction to NL. We will restrict our attention to finding
critical points of f(ρ, ·) in NL other than the origin which according to the Principle
of Symmetric Criticality (see [6]) are exactly the critical points of fL(ρ, ·) since
f(ρ, ·) is Gz-invariant, and in particular L-invariant for any ρ ∈ m∗. Note that
those are precisely the points satisfying DN h̄γ(ρ, v) NL = 0 with 0 6= v ∈ NL. Also,

recall that using the pullback property of Hessians, D2
NLf

L(ρ, 0) = D2
Nf(ρ, 0)

NL.
With these considerations we have that conditions A1 and A2 are equivalent to

A3. DNLfL(ρ, 0) = 0 for all ρ ∈ m∗, and
A4. There is an eigenvalue of the family of Hessians D2

NLf
L(ρ, 0) that crosses

0 at ρ = 0.

We will now assume that σ(ρ), the eigenvalue that changes sign, has a one dimen-
sional eigenspace for any value of the parameter. In particular this implies that
K = kerD2

NLf(0, 0) has dimension one. Using the Splitting Lemma [7] we can find

a splitting NL = K ⊕ S such that

fL(ρ, v) = gρ(x) +Qρ(s),

where Qρ is a family of quadratic forms, y ∈ K, s ∈ S and v = y + s. Moreover,
this can be chosen such that K is the eigenspace corresponding to σ(ρ), for every
ρ.

Also, gρ satisfies

(17) g′ρ(0) = 0

for every value of ρ. Since critical points of fL(ρ, ·) must be of the form v = x+ 0
with x a critical point of gρ we have reduced the problem to finding pairs (ρ, x) ∈
m∗ ×K for which

(18) g′ρ(x) = 0.

Using (17) and the condition on σ(ρ) we can write

gρ(x) = gρ(0) +
1

2
x2(σ(ρ) + xlρ(x)),

for some family of functions lρ. This implies that

g′ρ(x) = x(σ(ρ) + xlρ(x)) +
1

2
x2(lρ(x) + xl′ρ(x)) = x(σ(ρ) + xbρ(x)) = xjρ(x),

with jρ(x) = σ(ρ) + xbρ(x). Notice that by hypothesis, as a function of ρ, the
function jρ(0) changes sign precisely at ρ = 0. Therefore, by continuity, for any
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0 6= x̄ ∈ K there must be at least one value ρ̄ satisfying jρ̄(x̄) = 0. We have then
that DN h̄γ(ρ̄, x̄) = 0 and therefore, for any g ∈ G and any 0 6= x̄ ∈ K the point
ϕ([g, ρ̄, x̄+v(ρ̄)] ∈ P is a relative equilibrium inequivalent to any of those contained
in the original branch.

In the case that dimkerD2
NLf(0, 0) = n ≥ 1, if Gz contains a subgroup isomor-

phic to SO(n) acting effectively on this space, then the functions fL(ρ, ·) on NL

and gρ on K are SO(n) invariant. This means in particular that g is a function of
‖x‖2 and we can reduce this to the one-dimensional problem.

�

Remark. Note that the possible bifurcations from a branch of relative equilibria
is strongly influenced by the existence of a continuous isotropy group Gz . Had Gz

been discrete, ξ(ρ) along the branch would have been completely determined, and
the freedom in γ ∈ gz would not exist in order to fullfill condition (i) of Theorem
3.1. In fact, in a typical situation a relative equilibrium z could be formally stable,
which implies that the velocity ξ can be chosen in such a way that d2

zhξ N
is definite

and still there could be a choice of γ ∈ gz such that condition (i) of Theorem 3.1 is
satisfied. This is more likely to happen the larger is Gz, i.e. the more symmetric is
the branch Gz .

4. Example.

Let z be a relative equilibrium of a G-Hamiltonian system with Gµ = T
2 and

Gz = S1. If we identify gµ with R
2 then we can identify gz and m∗ with R.

Suppose that the symplectic normal space at z, N , is isomorphic to R
4, where

in a Darboux basis the symplectic matrix Ω takes the form

Ω =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









.

Suppose that in the linear coordinates {x1, y1, x2, y2} associated to this basis we
have

h̄(ρ, v) =
ρ+ 1

2

(

x2
1 + y21

)

+
1

4

(

x2
1 + y21

)2
−

1

2

(

x2
2 − y22

)

,

where v = (x1, y1, x2, y2), and ρ ∈ m∗.
Suppose also that in this basis, the symplectic representation of Gz = S1 on N

is given by

(19) S1 ∋ θ 7→

(

Rθ 0
0 Rθ

)

,

with Rθ being the standard rotation of angle θ on R
2. The associated momentum

map has the expression

JN (v) =
1

2

(

x2
1 + y21 + x2

2 + y22
)

.

Therefore we can obtain the expression for h̄γ as

h̄γ(ρ, v) =
ρ+ 1− γ

2

(

x2
1 + y21

)

+
1

4

(

x2
1 + y21

)2
−

1 + γ

2

(

x2
2 − y22

)
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Since Gµ is Abelian, one can easily check using (15) that [e, ρ, 0] ∈ Y is a branch
of relative equilibria for any ρ in some interval in m∗ containing the origin. Also,
we can check that this is true for any choice of γ, which will be important later.

Using the freedoom in gz , we fix γ = 1, then we have that

D2
N h̄γ(ρ, 0) =









ρ 0 0 0
0 ρ 0 0
0 0 −1 0
0 0 0 1









.

In order to apply Theorem 3.1 we choose L = {e}. Then we see that ρ is the only
eigenvalue that crosses zero. Then kerD2

N h̄γ(0, 0)NL = {x1, y1}, which, from (19)

supports an effective representation of Gz = S1. Therefore, the result applies and
there exists a branch of relative equilibria of the form [e, ρ(x1, x2), (x1, x2, 0, 0)], for
every (x1, x2) 6= 0 close enough to the origin, which is not equivalent to the original
branch. It is straightforward to obtain by a direct calculation that this bifurcating
branch is characterized by ρ(x1, x2) = x2

1 + x2
2.

Notice also that in this example, as remarked after Theorem 3.1 the existence
of a bifurcating branch is a direct consequence of the existence of a continuous
isotropy group Gz . Indeed, if Gz was discrete, its Lie algebra would have been
trivial and therefore one could not choose γ other than zero. But in that case
D2

N h̄γ(0, 0) clearly is non-degenerate for any ρ near zero. The implicit function
theorem guarantees then that in the case of discreteGz the branch [e, ρ, 0] is the only
solution to (15) (apart from group translations), which means that no bifurcations
can occur.
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