

Local Fusion Graphs for Symmetric Groups

Ballantyne, John J and Greer, Nicholas M and Rowley, Peter J

2012

MIMS EPrint: 2012.7

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Local Fusion Graphs for Symmetric Groups

John Ballantyne, Nicholas Greer, Peter Rowley

Abstract

For a group G, π a set of odd positive integers and X a set of involutions of G we define a graph $\mathcal{F}_{\pi}(G,X)$. This graph, called a π -local fusion graph, has vertex set X with $x,y\in X$ joined by an edge provided $x\neq y$ and the order of xy is in π . In this paper we investigate $\mathcal{F}_{\pi}(G,X)$ when G is a finite symmetric group for various choices of X and π .

1 Introduction

There is a long and rich history of conjuring up various types of important combinatorial structures from a group. For example Cayley graphs, constructed from a group together with a generating set for that group, have had a considerable presence in such areas as geometric group theory and the study of expander graphs [22]. While groups with a BN-pair (such as groups of Lie-type) via their parabolic subgroups give rise to buildings (see Chapter 15 of [15]). For a group G and X a subset of G we have the commuting graph, $\mathcal{C}(G,X)$, whose vertices are the elements of X with two distinct elements of X adjacent whenever they commute (for recent work on commuting graphs see [7], [8], [9], [10], [11], [12], [13], [18] and [19]). Such graphs have had an important impact in the study of finite simple groups, the commuting graphs associated with the Fischer groups [20], which featured in their construction, being a prime example. Variations on this theme have also played a role – see for example the so called root 4-subgroups of the Held group, on page 230 of [2]. For yet another variety of graph consult [14].

We now discuss a recent combinatorial structure of this genre. Suppose that G is a group, π is a set of positive integers and X is a subset of G. The graph $\mathcal{C}_{\pi}(G,X)$ is defined to be the graph with X as its vertex set and for $x,y\in X$ x and y are adjacent if $x\neq y$ and the order of xy is in π . We observe, as xy and yx are conjugate elements of G, that the graph $\mathcal{C}_{\pi}(G,X)$ is undirected. Further, we observe that $\mathcal{C}_{\{2\}}(G,X)$ when X is a set of involutions in G is exactly the commuting involution graph $\mathcal{C}(G,X)$. When the orders of the elements in X are coprime to all the integers in π , we shall call $\mathcal{C}_{\pi}(G,X)$ a π -coprimality graph (or just coprimality graph if π is understood).

An important type of coprimality graph arises when X is a set of involutions. For π a set of odd positive integers, we write $\mathcal{F}_{\pi}(G, X)$ instead of $\mathcal{C}_{\pi}(G, X)$, and refer to $\mathcal{F}_{\pi}(G, X)$ as the π -local fusion graph for X. In the case when π consists of all odd positive integers, we just write $\mathcal{F}(G, X)$ instead of $\mathcal{F}_{\pi}(G, X)$, and call

 $\mathcal{F}(G,X)$ the local fusion graph for X. The name 'local fusion' comes from the fact that if $x=x_0,x_1,x_2,\ldots,x_m=y$ is a path in the graph $\mathcal{F}(G,X)$, then $g=g_1g_2\ldots g_m$ conjugates x to y where each $g_i,\ 1\leqslant i\leqslant m$, is an element of the dihedral group $\langle g_{i-1},g_i\rangle$. In [17] {3}-local fusion graphs, $\mathcal{F}_{\{3\}}(G,X)$ are investigated for X a G-conjugacy class of involutions. There issues, such as connectedness and what kind of triangles the graph contains, are examined. Further, the case when $G\cong PSL_2(q)$ (q a prime power) is analysed in detail, the work in [17] being prompted by a tower of graphs associated with a subgroup chain $Alt(5) \leq PSL_2(11) \leq M_{11} \leq M_{12}$. Each of the graphs in this tower may be viewed as being a restricted type of {3}-local fusion graph.

The famous Baer-Suzuki Theorem (see (39.6) in [1] or Theorem 3.8.2 in [21]), when X is a G-conjugacy class of involutions, may be rephrased using the local fusion graph in the following way. The graph $\mathcal{F}(G,X)$ is totally disconnected if and only if $\langle X \rangle$ is a 2-subgroup of G. For suppose $\mathcal{F}(G,X)$ is totally disconnected, and let $x,y \in X$, with $x \neq y$. Assume that the order of xy is $2^k m$, where m is odd. If m > 1, then $(xy)^{2^k} = x(yx \cdots xy) = xx^g$ has odd order m and $x \neq x^g$. Hence x and x^g are adjacent in $\mathcal{F}(G,X)$, a contradiction. Therefore xy has order 2^k . Since, as is well known, $\langle x,y \rangle$ is a dihedral group of order twice that of xy, $\langle x,y \rangle$ is a 2-group, and so $\langle X \rangle$ is a 2-group by the Baer-Suzuki Theorem.

The aim of the present paper is to begin the investigation of π -local fusion graphs for finite symmetric groups.

Theorem 1.1. Suppose that $G = \operatorname{Sym}(n)$ with $n \geq 5$ and X is a G-conjugacy class of involutions. Then $\mathcal{F}(G,X)$ is connected with $\operatorname{Diam}(\mathcal{F}(G,X)) = 2$.

For n=2, $\mathcal{F}(G,X)$ consists of just one vertex and for n=3, $\mathcal{F}(G,X)$ is the complete graph on 3 vertices. While for n=4 and X the conjugacy class of (1,2)(3,4) in $\mathrm{Sym}(4)$, $\mathcal{F}(G,X)$ consists of three vertices with no edges – if X is the conjugacy class of transpositions in $\mathrm{Sym}(4)$, then $\mathcal{F}(G,X)$ is connected of diameter 2. There are π -local fusion graphs where we do encounter larger diameters. For example with $G=\mathrm{Sym}(9)$ and X the G-conjugacy class of (1,2)(3,4)(5,6) we have $\mathrm{Diam}(\mathcal{F}_{\{3\}}(G,X))=\mathrm{Diam}(\mathcal{F}_{\{7\}}(G,X))=3$. This all prompts the question as to whether there are groups in which the diameter of local fusion graphs can be arbitrarily large – the answer is yes, and we direct the reader to [3]. For further work on coprimality graphs and symmetric groups see [5], and for more recent developments on local fusion graphs see [4] and [6].

The question of connectivity for π -local fusion graphs is the subject of our second theorem.

Theorem 1.2. Suppose that $G = \operatorname{Sym}(n)$, X is a G-conjugacy class of involutions and π is a set of odd positive integers. Then $\mathcal{F}_{\pi}(G,X)$ is either totally disconnected or connected.

This paper is arranged as follows. Section 2 is mostly concerned with the notion of an 'x-graph' which, for $G \cong \operatorname{Sym}(n)$, encodes the $C_G(t)$ -orbits on the

conjugacy class of t where t is an involution. Then in Section 3 the x-graphs are put to work in establishing the diameter of local fusion graphs thereby proving Theorem 1.1. The proof of Theorem 1.2, which also employs x-graphs, is to be found in Section 4. Our group theoretic notation is standard as given, for example, in [1].

2 Background Results

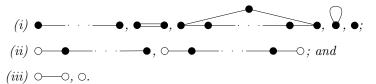
Throughout this paper t will denote a fixed involution of X, a conjugacy class of $\operatorname{Sym}(n)$. We will sometimes denote $\operatorname{Sym}(m)$ ($m \in \mathbb{N}$) by $\operatorname{Sym}(\Omega)$ where Ω is an m-element set upon which the permutations act. For $g \in \operatorname{Sym}(\Omega)$, the support of g, $\operatorname{supp}(g)$, is $\Omega \setminus \operatorname{fix}(g)$, where $\operatorname{fix}(g) = \{\alpha \in \Omega \mid \alpha^g = \alpha\}$. We use $d(\ ,\)$ to denote the standard graph theoretic distance on $\mathcal{F}_{\pi}(G,X)$.

The proofs of Theorems 1.1 and 1.2 feature another graph \mathcal{G}_x referred to as the x-graph. Assuming that $G = \operatorname{Sym}(n)$ acts upon $\Omega = \{1, 2, \dots, n\}$ and that $t = (1, 2)(3, 4) \dots (2b - 1, 2b)$, we set

$$\mathcal{V} = \{\{1,2\},\{3,4\},\dots,\{2b-1,2b\},\{2b+1\},\dots,\{n\}\}.$$

Thus the elements of \mathcal{V} are just the orbits of $\langle t \rangle$ upon Ω . For each $x \in X$, we define the x-graph \mathcal{G}_x to be the graph with \mathcal{V} as vertex set, and $v_1, v_2 \in \mathcal{V}$ are joined by an edge whenever there exist $\alpha \in v_1$ and $\beta \in v_2$ with $\alpha \neq \beta$ for which $\{\alpha, \beta\}$ is a $\langle x \rangle$ -orbit. Additionally the vertices of \mathcal{G}_x corresponding to 2-cycles of t will be coloured black (\bullet) and the other vertices white (\circ) . Therefore \mathcal{G}_x has b black vertices and n-2b white vertices. Note that the edges in \mathcal{G}_x are in one-to-one correspondence with the 2-cycles of x. So the number of edges in \mathcal{G}_x is the same as the number of black vertices. As an example, taking $n=16,\ t=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)$ and x=(1,3)(2,4)(5,6)(9,11)(12,13)(14,15), \mathcal{G}_x looks like

Lemma 2.1. For $x \in X$, the possible connected components of \mathcal{G}_x are



Proof. This follows from observing that a black vertex can have valency at most two while a white vertex has valency at most one. \Box

Lemma 2.2. (i) Every graph with b black vertices of valency at most two, n-2b white vertices of valency at most one, and exactly b edges is the x-graph for some $x \in X$.

- (ii) If $x, y \in X$, then x and y are in the same $C_G(t)$ -orbit if and only if \mathcal{G}_x and \mathcal{G}_y are isomorphic graphs (where isomorphisms preserve the colour of vertices).
- (iii) Let C_1, C_2, \ldots, C_ℓ be the connected components of \mathcal{G}_x . Assume that x_i and t_i are the corresponding parts of x and t, and let b_i , w_i and c_i be, respectively, the number of black vertices, white vertices and cycles in C_i . Then
 - (a) the order of tx is the least common multiple of the orders of t_ix_i , $i = 1, ..., \ell$; and

(b) for $i = 1, ..., \ell$, the order of $t_i x_i$ is $(2b_i + w_i)/(c_i + 1)$.

Proof. See Lemma 2.1 and Proposition 2.2 of [7].

Suppose for $x \in X$ the connected components of \mathcal{G}_x are C_1, C_2, \ldots, C_ℓ , and for each such component let x_i and t_i be the corresponding parts of x and t. Observe that for $i \neq j$ both t_i and x_i commute with both t_j and x_j . So in the above example, $\ell = 6$ with $t_1 = (1, 2)(3, 4)$, $t_2 = (5, 6)$, $t_3 = (7, 8)$, $t_4 = (9, 10)(11, 12)(13)$, $t_5 = (14)(15)$, $t_6 = (16)$, and $x_1 = (1, 3)(2, 4)$, $x_2 = (5, 6)$, $x_3 = (7)(8)$, $x_4 = (9, 11)(12, 13)(10)$, $x_5 = (14, 15)$, $x_6 = (16)$.

We remark that, as \mathcal{G}_x has b edges, the number of connected components of type \bullet — \bullet and of type \circ — \bullet — \circ must be equal (including \circ — \circ in the latter type). This is an important observation for part of the proof of Theorem 1.1. Consider the following simple situation: t = (1,2)(3,4)(5,6)(7)(8,9)(10) and x = (1)(2,3)(4,5)(6)(7,8)(9,10), with n = 10. Then \mathcal{G}_x is

with $t_1 = (1,2)(3,4)(5,6)$, $t_2 = (7)(8,9)(10)$, $x_1 = (1)(2,3)(4,5)(6)$ and $x_2 = (1,2)(3,4)(5,6)$ (7,8)(9,10) being the parts of t and x corresponding to the two connected components. In our proof of Theorem 1.1 we argue by induction on n, and seek to exploit the symmetric subgroups $Sym(\Lambda)$, where Λ is the support of a connected part of t. But as we see in this small example, t_1 and x_1 are not conjugate in Sym($\{1, 2, 3, 4, 5, 6\}$), nor are t_2 and x_2 in Sym($\{7, 8, 9, 10\}$), and so our inductive strategy will fail. However, this obstacle may be overcome by pairing up connected components • • • • and O • • • • • of \mathcal{G}_x and applying induction to $\operatorname{Sym}(\Lambda)$ where Λ is the union of the support of t on these two connected components. This kind of issue does not arise with any of the other types of connected components of \mathcal{G}_x . While on the subject of potential pitfalls in the proof of Theorem 1.1 we mention the connected components $\bullet = \bullet$ of \mathcal{G}_x . Let t_i and x_i be the parts of t and x corresponding to this connected component, and set $\Lambda = \text{supp}(t_i)$. Then $\text{Sym}(\Lambda) \cong \text{Sym}(4)$ with t_i and x_i having cycle type 2^2 in Sym(Λ), and there is no path between t_i and x_i in the $Sym(\Lambda)$ local fusion graph. To deal with such connected components of \mathcal{G}_x we are forced to bring all of \mathcal{G}_x into play - this turns out to be a substantial part of the proof of Theorem 1.1.

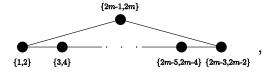
Suppose $x, y \in X$. We shall use \mathcal{G}_x^y to denote the x-graph where y plays the role of t - so the vertices of \mathcal{G}_x^y are the orbits of $\langle y \rangle$ on Ω with vertices w_1, w_2 joined if there exists α in w_1 and β in w_2 with $\alpha \neq \beta$ and $\{\alpha, \beta\}$ an $\langle x \rangle$ -orbit. So \mathcal{G}_x^t is just \mathcal{G}_x . For more on x-graphs, see Section 2.1 of [7].

3 The Diameter of $\mathcal{F}(G,X)$

In this section we prove Theorem 1.1. So we have $G = \operatorname{Sym}(n)$ with $n \geq 5$, X a G-conjugacy class of involutions and t a fixed element of X. For $n \leq 16$, MAGMA [16] makes relatively short work of checking that $\mathcal{F}(G,X)$ is connected and has diameter 2. So we may assume n > 16.

(3.1) If
$$\mathcal{G}_x$$
 is $\bullet \bullet \bullet$, then $d(t,x) \leq 2$.

Assume, without loss of generality, that $t = (1, 2)(3, 4), \ldots, (2m - 1, 2m)$. So \mathcal{G}_x has m black vertices. If m is odd, then tx has odd order by Lemma 2.2(iii)(b), and so $d(t, x) \leq 1$. While if m is even, we assume that \mathcal{G}_x is labelled like so



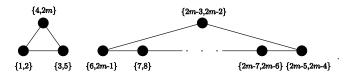
and that

$$x = (1, 2m)(2, 3)(4, 5) \dots (2m - 4, 2m - 3)(2m - 2, 2m - 1).$$

Note that we have m > 4. We select

$$y = (1,2)(3,5)(4,2m)(6,2m-1)(7,8)(9,10)\dots(2m-3,2m-2).$$

Then $y \in X$ and ty = (3, 2m, 6)(4, 5, 2m - 1), and hence $d(t, y) \leq 1$. Now \mathcal{G}_x^y is seen to be



Since the two connected components of \mathcal{G}_x^y have sizes 3 and m-3, both of which are odd, Lemma 2.2(iii) implies that yx has odd order. Therefore $d(x,y) \leq 1$ and so (3.1) holds.

(3.2) If
$$\mathcal{G}_x$$
 is \bigcirc \bullet , then $d(t,x)=1$.

Since \mathcal{G}_x is a connected component with one white vertex, (3.2) follows from Lemma 2.2(iii).

Without loss we may label \mathcal{G}_x as follows

where

$$t = (1, 2)(3, 4)(5, 6) \dots (2r-1, 2r)(2r+1)(2r+2, 2r+3) \dots (2m-2, 2m-1)(2m).$$

We may assume that

$$x = (2,3)(4,5)\dots(2r-2,2r-1)(2r+1,2r+2)\dots(2m-1,2m).$$

Set $t_0 = (1,2)t$ and $x_0 = x(2m-1,2m)$. Then t_0 and x_0 are H-conjugate, where $H = \operatorname{Sym}(\Omega \setminus \{1,2m\})$. Observing that $\mathcal{G}_{x_0}^{t_0}$ (thinking of t_0 , x_0 as involutions in H) has two connected components of type \bigcirc \bullet \bullet we deduce from Lemma 2.2(iii) that t_0x_0 has odd order. Let $y = (1,2m)t_0$. Then $y \in X$ and

$$ty = (1,2)t_0(1,2m)t_0 = (1,2)(1,2m) = (1,2,2m),$$

whence $d(t, y) \leq 1$. Also, as t_0 and x_0 fix 1 and 2m,

$$yx = (1,2m)t_0x_0(2m-1,2m)$$

= $t_0x_0(1,2m)(2m-1,2m)$
= $t_0x_0(1,2m-1,2m)$.

Now $t_0x_0 \in H$ is a product of two disjoint odd cycles of lengths, say, m_1 , m_2 . If 2m-1 is in say the latter cycle of t_0x_0 , then tx is a disjoint product of an m_1 -cycle and an (m_2+2) -cycle. Thus yx has odd order and so $d(x,y) \leq 1$. Therefore $d(t,x) \leq 2$, which proves (3.3).

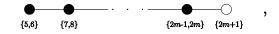
Taken together (3.1), (3.2) and (3.3) prove Theorem 1.1 when \mathcal{G}_x contains no connected components of type \bullet — \bullet . It therefore remains to analyse \mathcal{G}_x when

it has connected components of type $\bullet \longrightarrow \bullet$. If there are an even number of $\bullet \longrightarrow \bullet$ connected components, then, as the local fusion graphs for Sym(8) have diameter two, by pairing them up and using induction we obtain our result. Thus we may assume \mathcal{G}_x contains exactly one $\bullet \longrightarrow \bullet$ connected component. Let \mathcal{H}_x denote the union of all the other connected components of \mathcal{G}_x . Also we may assume $t = (1, 2)(3, 4)t_0$, $x = (1, 3)(2, 4)x_0$ where t_0 and x_0 are involutions in $H = \operatorname{Sym}(\Omega \setminus \{1, 2, 3, 4\})$.

Let C_x be a subgraph of \mathcal{H}_x , where C_x is one of \circlearrowleft , \bullet , \bullet , \bullet .

Then $t_0 = t_1t_2$, $x_0 = x_1x_2$ where t_1 , x_1 are the parts in C_x and t_2 , x_2 the parts in $\mathcal{H}_x \setminus C_x$. Then t_2 and t_2 are conjugate involutions in some symmetric subgroup of G and the x_2 -graph (with respect to t_2) is $\mathcal{H}_x \setminus C_x$. Since \mathcal{H}_x contains no subgraph \bullet — \bullet we can find y_2 in this conjugacy class such that t_2y_2 and y_2x_2 have odd order. Since y_2 commutes with both $(1,2)(3,4)t_1$ and $(1,3)(2,4)x_1$, without loss we may assume that $\mathcal{H}_x = C_x$. We now work through the possibilities for \mathcal{H}_x making repeated use of Lemma 2.2(iii) to show $d(t,x) \leq$

If \mathcal{H}_x is



2. The first three possibilities listed above do not need attention as $n \ge 16$.

then

$$t = (1,2)(3,4)(5,6)(7,8)\dots(2m-1,2m)(2m+1)$$

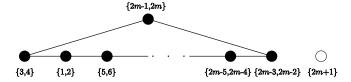
and, without loss of generality,

$$x = (1,3)(2,4)(5)(6,7)(8,9)\dots(2m,2m+1).$$

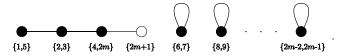
In the case when m is odd, we select

$$y = (1,5)(2,3)(4,2m)(6,7)(8,9)\dots(2m-2,2m-1)(2m+1),$$

and then \mathcal{G}_y is



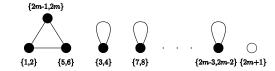
while \mathcal{G}_x^y is



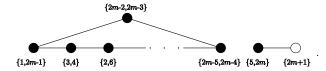
So \mathcal{G}_y consists of a cycle of m black vertices and one white vertex while \mathcal{G}_x^y has one connected component with three black vertices and one white vertex with each of the other components being a cycle with one black vertex. Consequently ty and yx both have odd order by Lemma 2.2(iii), whence $d(t,x) \leq 2$. If m were to be even, instead we choose

$$y = (1, 2m - 1)(2, 6)(3, 4)(5, 2m)(7, 8)(9, 10) \dots (2m - 3, 2m - 2)$$

which gives \mathcal{G}_y as



and \mathcal{G}_x^y as



Here the cycle of black vertices in \mathcal{G}_x^y has m-1 black vertices whence using Lemma 2.2(iii) again we deduce that $d(t,x) \leq 2$, and this settles the case when \mathcal{H}_x is \bigcirc \bullet \bullet .

Now we examine the case when \mathcal{H}_x is

So

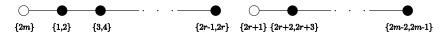
$$t = (1, 2)(3, 4)(5, 6) \dots (2r - 1, 2r)(2r + 1)(2r + 2, 2r + 3) \dots (2m - 2, 2m - 1)(2m)$$
 and

$$x = (1,3)(2,4)(5)(6,7)(8,9)\dots(2r-2,2r-1)(2r)(2r+1,2r+2)\dots(2m-1,2m).$$

Choosing

$$y = (1, 2m)(2, 3)(4, 5) \dots (2r - 2, 2r - 1)(2r + 1, 2r + 2) \dots (2m - 3, 2m - 2),$$

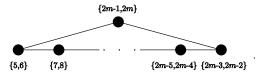
we observe that \mathcal{G}_y is



and \mathcal{G}_{x}^{y} is

Yet again Lemma 2.2(iii) shows that $d(t, y) \leq 1 \geq d(y, x)$ so dealing with this possibility for \mathcal{H}_x .

We now consider our final case which is when \mathcal{H}_x is



Thus

$$t = (1,2)(3,4)(5,6)(7,8)\dots(2m-1,2m)$$

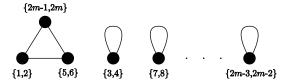
and, without loss,

$$x = (1,3)(2,4)(6,7)(8,9)\dots(2m,5).$$

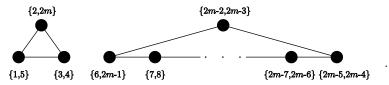
When m is even we select

$$y = (1,5)(2,2m)(3,4)(6,2m-1)(7,8)(9,10)\dots(2m-3,2m-2)$$

and as a result \mathcal{G}_y is



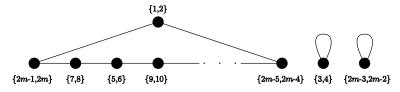
and \mathcal{G}_x^y is



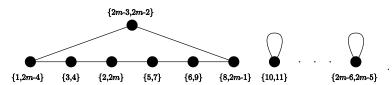
Before dealing with m odd we recall that we are assuming $n(=2m) \ge 16$. So 2m-4>10 and therefore the choice we now make gives us an element of X. Take

$$y = (1, 2m - 4)(2, 2m)(3, 4)(5, 7)(6, 9)(8, 2m - 1)(10, 11)(12, 13) \dots (2m - 6, 2m - 5)(2m - 3, 2m - 2).$$

Hence \mathcal{G}_y is



and \mathcal{G}_x^y is



Use of Lemma 2.2(iii) shows that whether m is even or odd we have $d(t, x) \leq 2$. Having successfully dealt with all the possibilities for \mathcal{H}_x , the proof of Theorem 1.1 is complete.

4 Connectedness of $\mathcal{F}_{\pi}(G,X)$

As promised here we prove Theorem 1.2 which we restate.

Theorem 4.1. Suppose that $G = \operatorname{Sym}(n)$, X is a G-conjugacy class of involutions and π is a set of odd positive integers. Then $\mathcal{F}_{\pi}(G,X)$ is either totally disconnected or connected.

Proof. We argue by induction on n, with n=1 clearly holding. Assume that $\mathcal{F}_{\pi}(G,X)$ is not totally disconnected, and let $t\in X$ be such that Y, the connected component of t in $\mathcal{F}_{\pi}(G,X)$, has |Y|>1. Put $K=\operatorname{Stab}_G(Y)$. If K=G, then Y=X and hence $\mathcal{F}_{\pi}(G,X)$ is connected. So we now suppose $K\neq G$, and argue for a contradiction.

Let $x \in Y$ with d(t,x) = 1. Then z = tx has order in the set π , and we have

- $(4.1) \langle C_G(t), C_G(x) \rangle \leq K$, and
- $(4.2) \operatorname{supp}(t) \cup \operatorname{supp}(x) = \Omega.$

If (4.2) is false, then t and x both fix some $\alpha \in \Omega$. So $t, x \in G_{\alpha} \cong \operatorname{Sym}(n-1)$. Since t and x are G_{α} -conjugate and the order of tx is in π , by induction $\mathcal{F}_{\pi}(G_{\alpha}, X \cap G_{\alpha})$ is connected. Therefore $G_{\alpha} \leq K$, and so, as $K \neq G$ and G_{α} is a maximal subgroup of $G, K = G_{\alpha}$. If t fixes a further element of Ω , say β , then, by $(4.1), (\alpha, \beta) \in C_G(t) \leq K$, contrary to $K = G_{\alpha}$. So t (and hence also x) fixes only α . Thus G_{α} has only one white node (namely $\{\alpha\}$) with the

remaining connected components being either \bullet or \bullet or \bullet Without loss we assume $\alpha = n$.

Suppose that \mathcal{G}_x has \bullet as a component. So, without loss of generality,

$$t = (1,2)(3,4)\dots(n-2,n-1) = (1,2)t_1$$

and $x = (1,2)x_1$, where $x_1 \in \text{Sym}(\{3,4,\ldots,n-1\})$. Since $K \neq G$, we must have n > 3. Thus $t_1, x_1 \in H = \text{Sym}(\{3,4,\ldots,n-1\})$ with t_1 and x_1 being H-conjugate involutions and the order of t_1x_1 , being the same as that of tx, lies

in π . Using induction again we infer that $\mathcal{F}_{\pi}(H, t_1^H)$ is connected. Hence, in $\mathcal{F}_{\pi}(H, t_1^H)$ there is a path from t_1 to

$$s_1 = (3,4)(5,6)\dots(n-4,n-3)(n-1,n),$$

say $t_1 = y_0, y_1, \dots, y_m = s_1 \ (y_i \in t_1^H)$. Consequently

$$t = (1,2)t_1 = (1,2)y_0, (1,2)y_1, \dots, (1,2)y_m = (1,2)s_1$$

is a path in $\mathcal{F}_{\pi}(G,X)$ from t to

$$(1,2)(3,4)(5,6)\dots(n-4,n-3)(n-1,n).$$

But then $(n-1,n) \in K$, whereas $K = G_{\alpha}$. This rules out as being a connected component of \mathcal{G}_x .

Let $t = t_1 t_2 \cdots t_k$ and $x = x_1 x_2 \cdots x_k$, where

$$t_1 = (1,2)\dots(\ell_1 - 1, \ell_1),$$

$$t_2 = (\ell_1 + 1, \ell_1 + 2)\dots(\ell_1 + \ell_2 - 1, \ell_1 + \ell_2),$$

:

and

$$x_1 = (2,3)(4,5)\dots(\ell_1-2,\ell_1-1)(1,\ell_1),$$

$$x_2 = (\ell_1+2,\ell_1+3)\dots(\ell_1+\ell_2-2,\ell_1+\ell_2-1)(\ell_1+1,\ell_1+\ell_2),$$

$$\vdots$$

So the elements x_1, x_2, \ldots correspond to the connected components of \mathcal{G}_x . By Lemma 2.2(iii)(b) t_1x_1 has order $m = \ell_1/2$. Now the order of z = tx is the least common multiple of the orders of $t_1x_1, t_2x_2, \ldots, t_kx_k$, whence m must be odd. Put

$$w = (n, 1, 3, 5, \dots, m - 2, m - 1, m - 3, \dots, 6, 4, 2).$$

Then w is a cycle of length m, and so of order m. Further (by design) $w^{t_1} = w^{-1}$ and hence

$$y_1 = t_1 w = (1, n)(2, 3)(4, 5) \dots (m-3, m-2)(m, m+1)(m+2, m+3) \dots (\ell_1 - 1, \ell_1)$$

is conjugate to t_1 . Also, of course, $t_1y_1 = w$ has order m. So $y = y_1t_2 \cdots t_k \in X$ and the order of ty is the same as that of tx. Therefore $y \in Y$ and hence $(1,n) \in K$. This contradicts the earlier deduction that $K = G_{\alpha}$, and with this we have proven (4.2).

(4.3) K acts transitively and primitively on Ω .

Since $C_G(t)$ and $C_G(x)$ have shape $2^k \operatorname{Sym}(2k) \times \operatorname{Sym}(n-2k)$, where k=1

 $|\sup(t)|/2$, and t and x do not commute, (4.1) and (4.2) imply that K is transitive on Ω . Suppose K does not act primitively on Ω . Then we may choose a nontrivial block Λ for K with $\alpha \in \Lambda \cap \sup(t)$. If $\Lambda \not\subseteq \sup(t)$, then the action of $C_G(t)$ on Ω results in $\Lambda = \Omega$. Thus $\Lambda \subseteq \sup(t)$. Again, using the action of $C_G(t)$ on Ω we deduce that either $\Lambda = \sup(t)$ or $\Lambda = \{\alpha, \beta\}$ where $\beta = \alpha^t$. Since t and t do not commute, we may further assume that t0 is such that t2 t3. So t4 and a similar argument yields that either t4 and t5 supp(t7) or t5. In view of (4.2) this then implies that t6 contrary to t7 being a nontrivial block. Thus (4.3) holds.

Plainly $C_G(t)$, and hence K, contains transpositions. Thus Jordan's theorem [23] and (4.3) force K = G. With this contradiction the proof of the theorem is complete.

References

- [1] M. Aschbacher: *Finite group theory*, Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000.
- [2] M. Aschbacher: *Sporadic groups*, Cambridge Tracts in Mathematics, 104. Cambridge University Press, Cambridge, 1994.
- [3] J. Ballantyne: On Local Fusion Graphs of Finite Coxeter Groups, MIMS Eprint 2011.2, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
- [4] J. Ballantyne: Local Fusion Graphs of Finite Groups, PhD. Thesis, University of Manchester, 2011.
- [5] J. Ballantyne, N. Greer, P. Rowley: On Coprimality Graphs for Symmetric Groups, MIMS Eprint 2010.64, Manchester Institute for Mathematical Sciences, The University of Manchester, UK. .
- [6] J. Ballantyne, P. Rowley: A Note on Computing Involution Centralizers, MIMS Eprint 2011.32, Manchester Institute for Mathematical Sciences, The University of Manchester, UK.
- [7] C. Bates, D. Bundy, S. Perkins, P. Rowley: Commuting Involution Graphs for Symmetric Groups, J. Algebra 266 (2003), 133–153.
- [8] C. Bates, D. Bundy, S. Perkins, P. Rowley: Commuting Involution Graphs for Finite Coxeter Groups, J. Group Theory 6 (4) (2003), 461–476.
- [9] C. Bates, D. Bundy, S. Perkins, P. Rowley: Commuting involution graphs in special linear groups, Comm. Algebra 32 (2004), no. 11, 4179–4196.
- [10] C. Bates, D. Bundy, S. Perkins, P. Rowley: Commuting Involution Graphs for Sporadic Groups, J. Algebra 316(2007), 849 - 868.

- [11] C. Bates, D. Bundy, S. Perkins, P. Rowley. A Note on Commuting Graphs for Symmetric Groups, Elec. J. Combinatorics 16(2009), R6.
- [12] B. Baumeister, A. Stein: Commuting graphs of odd prime order elements in simple groups, arXiv:0908.2583.
- [13] D. Bundy: *The connectivity of commuting graphs*, J. Combin. Theory Ser. A, 113 (2006), no. 6, 995–1007.
- [14] P.J. Cameron, S. Ghosh: *The power graph of a finite group*, Discrete Math. 311 (2011), no. 13, 1220–1222.
- [15] R.W. Carter: Simple groups of Lie type, reprint of the 1972 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1989). x+335 pp.
- [16] W. Bosma, J. Cannon, C. Playoust: The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (3-4) (1997), 235-265.
- [17] A. Devillers, M. Giudici: Involution graphs where the product of two adjacent vertices has order three, J. Aust. Math. Soc. 85 (2008), no. 3, 305–322.
- [18] A. Everett: Commuting Involution Graphs for 3-dimensional unitary groups, Electron. J. Combin. 18 (2011), no.1.
- [19] A. Everett: Commuting Involution Graphs of Certain Finite Simple Classical Groups, PhD. Thesis, University of Manchester, 2011.
- [20] B. Fischer: Finite groups generated by 3-transpositions, I. Invent. Math. 13 (1971), 232–246.
- [21] D. Gorenstein: *Finite groups*, Second edition. Chelsea Publishing Co., New York (1980).
- [22] S. Hoory, N. Linial, A. Wigderson: Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–561 (electronic).
- [23] C. Jordan: Theoremes sur les groupes primitifs, J. Math. Pures Appl. 16 (1871), 383–408.