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ON p-SOLUBLE GROUPS WITH A GENERALIZED p-CENTRAL OR

POWERFUL SYLOW p-SUBGROUP

E. I. KHUKHRO

Communicated by

Abstract. Let G be a finite p-soluble group, and P a Sylow p-subgroup of G. It is proved that if

all elements of P of order p (or of order 6 4 for p = 2) are contained in the k-th term of the upper

central series of P , then the p-length of G is at most 2m+ 1, where m is the greatest integer such that

pm − pm−1 6 k, and the exponent of the image of P in G/Op′,p(G) is at most pm. It is also proved

that if P is a powerful p-group, then the p-length of G is equal to 1.

1. Introduction

A finite p-group P is called p-central if all its elements of order p are contained in the centre:

Ω1(P ) 6 Z(P ). Sometimes this definition is modified in the case of p = 2 to require that all elements

of order 6 4 belong to Z(P ). Such p-groups are in many respects dual to powerful p-groups (and

the above-mentioned modification for p = 2 reflects the definition of powerful 2-groups). Although

p-central p-groups received less attention in the literature than the very important case of powerful

p-groups, there are several papers devoted to p-central p-groups and properties of their embeddings

in finite groups; the reader can find relevant references in [3].

González-Sánchez and Weigel [3] initiated the study of more general classes: a finite p-group P is

called pi-central of height k if all its elements of order dividing pi are contained in the k-th term of

the upper central series: Ωi(P ) 6 ζk(P ). In particular, they proved [3, Theorem E] that if, for an

odd prime p, a Sylow p-subgroup of a finite p-soluble group G is p-central of height p− 2, then G has

p-length 1.

In this note we generalize this result to arbitrary height (including the case p = 2 with the above-

mentioned proviso). Namely, we obtain a bound for the p-length of a p-soluble group G whose Sylow

p-subgroup is p-central of height k (Theorem 3.1). This result is derived from a bound for the exponent
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of a Sylow p-subgroup of G/Op′,p(G) (Theorem 3.2), which is proved on the basis of Hall–Higman

theorems.

We also prove the result “dual” to [3, Theorem E], that if a finite p-soluble group G has a powerful

Sylow p-subgroup, then the p-length of G is equal to 1 (Theorem 4.1).

2. Preliminaries

We shall need the following well-known property of coprime action by automorphisms. Recall that

for a finite p-group P by definition Ωi(P ) = 〈g ∈ P | gpi = 1〉.

Lemma 2.1 ([5, Kap. IV, Satz 5.12]). Suppose that a finite p′-group A acts by automorphisms on a

finite p-group P . If A acts trivially on Ω1(P ) for p 6= 2, or on Ω2(P ) for p = 2, then A acts trivially

on P .

Some other well-known properties of coprime actions of groups of automorphisms will be used

without special references.

Recall that if a finite group G acts by automorphisms on an elementary abelian p-group V , then V

can be regarded as a vector space over the field of p elements Fp and the action of G by conjugation on

V can be regarded as action by linear transformations of this vector space. The linear transformation

of V induced by an element g ∈ G is denoted by T (g). We use the right operator notation for this

action: for v ∈ V and g ∈ G the image of v under T (g) is denoted by vT (g). For example, if V is a

normal elementary abelian section of G, then G acts on V by conjugation and vT (g) is equal to the

image of the group element v̂g, where v̂ is an inverse image of v in G. Note that v(T (g)− 1V ), where

1V is the identity transformation of V , is equal to the image of the group commutator [v̂, g], which is

also equal to [v, g] in the natural semidirect product V oG.

We also recall Theorem B from the celebrated Hall–Higman paper [4].

Theorem 2.2 ([4, Theorem B]). Let H be a p-soluble linear group over a field of characteristic p,

with no normal p-subgroup greater than 1. If h is an element of order pm in H, then the minimal

equation of h is (x− 1)r = 0, where r = pm, unless there is an integer m0, not greater than m, such

that pm0 − 1 is a power of a prime q for which a Sylow q-subgroup of H is non-abelian, in which case,

if m0 is the least such integer, pm − pm−m0 6 r 6 pm.

We shall only need the fact that we always have pm − pm−1 6 r 6 pm.

When an element g ∈ GL(V ) of order pm acts as a linear transformation on a vector space V

over a field of characteristic p, its minimal polynomial always has the form (x − 1)r = 0, because

xp
m − 1 = (x − 1)p

m
in characteristic p. It follows that V has a basis in which the matrix of g has

Jordan normal form, since the only eigenvalue is 1. The maximum size of Jordan blocks is pm × pm.

It is well known that the natural semidirect product V 〈g〉 of groups V and 〈g〉 contains an element of

order pm+1 if and only if there is at least one Jordan block of size pm × pm.
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3. Generalized p-central Sylow p-subgroup

Recall that Op′(G) is the maximal normal p′-subgroup of a finite group G; then Op′,p(G) is the full

inverse image of the maximal normal p-subgroup of G/Op′(G), and so on, defining by induction the

terms of the upper p-series Op′,p,p′,p,...(G). A finite group G is p-soluble if G = Op′,p,p′,p,...,p,p′(G) and

the minimum number of symbols p in this equation is called the p-length of G.

Theorem 3.1. Let P be a Sylow p-subgroup of a finite p-soluble group G. Suppose that Ω1(P ) 6 ζk(P )

for p 6= 2, or Ω2(P ) 6 ζk(P ) for p = 2. Then the p-length of G is at most 2m + 1, where m is the

maximum integer such that pm − pm−1 6 k.

In particular, as a rough estimate, the p-length is at most 1 + logp k.

Theorem 3.1 will follow from a bound for the exponent of a Sylow p-subgroup of G/Op′,p(G).

Theorem 3.2. Let P be a Sylow p-subgroup of a finite p-soluble group G. Suppose that Ω1(P ) 6 ζk(P )

for p 6= 2, or Ω2(P ) 6 ζk(P ) for p = 2. Then the exponent of a Sylow p-subgroup of G/Op′,p(G) is at

most pm, where m is the maximum integer such that pm − pm−1 6 k.

Proof. We can obviously assume that Op′(G) = 1.

Let Q be a Hall p′-subgroup of Op,p′(G), so that Op,p′(G) = Op(G)Q. By the generalized Frattini

argument,

G = Op,p′(G)NG(Q) = Op(G)NG(Q),

so we need to obtain a bound for the exponent of the image of a Sylow p-subgroup of NG(Q) in

G/Op(G).

Let g be an element of a Sylow p-subgroup of NG(Q) and let ḡ be its image in G/Op(G). Let

|ḡ| = pn. We must show that pn − pn−1 6 k.

The element ḡ acts faithfully on Q; in other words, [Q, ḡp
n−1

] 6= 1.

Let Ω denote Ω1(Op(G)) if p 6= 2, and Ω2(Op(G)) if p = 2.

Consider a series of normal subgroups of G

(3.1) 1 = U0 < U1 < · · · < Un = Ω

in which each factor Ui+1/Ui is an elementary abelian p-group contained in the centre of Op(G)/Ui.

Then the action of the semidirect product Q〈ḡ〉 on each factor Ui+1/Ui is well defined.

Since Op′(G) = 1, the p′-subgroup [Q, ḡp
n−1

] 6= 1 acts faithfully on Op(G). By Lemma 2.1, moreover,

[Q, ḡp
n−1

] acts faithfully on Ω. Since the action is coprime, we obtain that [Q, ḡp
n−1

] acts nontrivially

on at least one of the factors V of the series (3.1). Let H denote the image of Q〈ḡ〉 in the group of

linear transformations of the vector space V over Fp, which consists of elements T (u) for u ∈ Q〈ḡ〉 in

accordance with our notation.

Since the subgroup [Q, ḡp
n−1

] acts non-trivially on V , we must have Op(H) = 1. Indeed, otherwise

T (ḡ)p
n−1

would be in Op(H) and then the image of [Q, ḡp
n−1

] would be in Oq(H) ∩ Op(H) = 1 and

therefore trivial, contrary to the assumption. For the same reasons, T (ḡ) has the same order pn.
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By the Hall–Higman Theorem 2.2 the minimal polynomial of T (ḡ) is (x−1)r = 0, where pn−pn−1 6
r 6 pn. Therefore there is v ∈ V such that

(3.2) v(T (ḡ)− 1V )p
n−pn−1−1 6= 0.

Since the image of an element u ∈ V under the linear transformation T (ḡ)− 1V is equal to the group

commutator [u, ḡ], it follows from (3.2) that

[...[[v, ḡ], ḡ], . . . , ḡ︸ ︷︷ ︸
pn−pn−1−1

] 6= 1.

But by the hypothesis of the theorem we have Ω 6 Ω1(P ) 6 ζk(P ) for p 6= 2 (or Ω 6 Ω2(P ) 6 ζk(P )

for p = 2). Therefore we must also have

[...[[v, ḡ], ḡ], . . . , ḡ︸ ︷︷ ︸
k

] = 1.

It follows that pn − pn−1 − 1 < k, as required. �

Proof of Theorem 3.2. Once we know a bound for the exponent pe of a Sylow p-subgroup ofG/Op′,p(G),

we obtain a bound for the p-length l of G/Op′,p(G). Indeed, for p 6= 2 we have e > [(l + 1)/2] by the

Hall–Higman theorem [4, Theorem A], and for p = 2 we have e > l by Bryukhanova’s theorem [1]

(which is the best-possible improvement of the earlier estimate 2e− 2 > l by Gross [2]). Since l+ 1 is

exactly the p-length of G, the result follows from Theorem 3.2. �

Remark 3.3. The Hall–Higman Theorem A gives a better bound e > l if p is not a Fermat prime. As

noticed in the Hall–Higman paper [4], it follows from the proof that in the Hall–Higman Theorem 2.2

we have r = pm if p is odd and not a Fermat prime. Thus, the estimates can be further improved in

these cases.

Remark 3.4. Theorems 3.1 and 3.2 lend further support to the viewpoint that the “correct” definition

of 2-central 2-groups (also those of height k) must involve Ω2 rather than Ω1. May be, this definition

can also be used to extend to p = 2 some other results involving p-central p-groups of height k, which

do not hold for p = 2 without this amendment.

4. Powerful Sylow p-subgroup

Recall that a finite p-group P is powerful if P p > [P, P ] for p 6= 2, or P 4 > [P, P ] for p = 2.

Properties of powerful p-groups that we need here are well known since the original paper by Lubotzky

and Mann [6]. In particular, if P is a powerful p-group, then the subgroups P pi = 〈gpi | g ∈ P 〉 form

a central series of P , and P pi = {gpi | g ∈ P} for all i.

Theorem 4.1. If a finite p-soluble group G has a powerful Sylow p-subgroup, then the p-length of G

is equal to 1.
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Proof. We argue by contradiction. Let G be a finite p-soluble group of minimal order with a pow-

erful Sylow p-subgroup such that the p-length of G is greater than 1. By minimality we must have

Op′(G) = 1. Since homomorphic images of powerful p-groups are powerful, it follows by minimality

that V := Op(G) is an elementary abelian p-group. Then G/V acts faithfully on V , which we can also

regard as an Fp(G/V )-module.

Let Q be a Hall p′-subgroup of Op,p′(G). Then Q acts faithfully on V/CV (Q), since the action is

coprime. Clearly, CV (Q) = Z(Op,p′(G)), and therefore CV (Q) is normal in G. By minimality we must

have CV (Q) = 1.

By the generalized Frattini argument, V NG(Q) = G. Let S be a Sylow p-subgroup of NG(Q). Then

P := V S is a Sylow p-subgroup of G. Note that V ∩ S = 1, since CV (Q) = 1.

Choose an element g ∈ P of maximal possible order pn, so that pn is the exponent of P . From this

moment on we consider separately the cases p 6= 2 and p = 2.

Case p 6= 2. Then n > 2. Indeed, a powerful p-group of exponent p is abelian, and if we had n = 1,

then P would be abelian and the p-length of G would be equal to 1, contrary to our assumption.

Hence the element h = gp
n−2

is well defined. By the properties of powerful p-groups, P pn−1
6 Z(P )

and P pn−2
6 ζ2(P ). Therefore, 1 6= hp ∈ Z(P ) 6 V and h ∈ ζ2(P ). Since V is elementary abelian, we

also have h 6∈ V .

Since P = V S, we can represent h as h = vs for v ∈ V and s ∈ S. Then |s| = p, because

sp ∈ V ∩ S = 1. At the same time, |vs| = |h| = p2. Hence the Jordan normal form of the linear

transformation T (s) of V induced by the action of s by conjugation must have a block of size p × p.
Therefore there is a vector x ∈ V such that

x(T (s)− 1V )p−1 6= 0.

In terms of group commutators, this means that

[...[[x, s], s], . . . , s︸ ︷︷ ︸
p−1

] 6= 1.

But the action of s on V coincides with the action of h = vs. Therefore,

[...[[x, h], h], . . . , h︸ ︷︷ ︸
p−1

] 6= 1.

This contradicts the inclusion h ∈ ζ2(P ), since p > 3.

Case p = 2. Then n > 3. Indeed, a powerful 2-group of exponent 4 is abelian, and if we had n 6 2,

then P would be abelian and the p-length of G would be equal to 1, contrary to our assumption.

Hence the element h = g2
n−3

is well defined. By the properties of powerful 2-groups, P 2n−1
6 Z(P ),

P 2n−2
6 ζ2(P ), and P 2n−3

6 ζ3(P ). Therefore, 1 6= h4 ∈ Z(P ) 6 V and h ∈ ζ3(P ). Since V is

elementary abelian, we also have h2 6∈ V .

We again represent h as h = vs for v ∈ V and s ∈ S. Then |s| = 4, since s4 ∈ V ∩ S = 1. At

the same time, |vs| = |h| = 8. Hence the Jordan normal form of the linear transformation T (s) of V

induced by the action of s by conjugation must have a block of size 4× 4. Therefore there is a vector
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x ∈ V such that

x(T (s)− 1V )3 6= 0.

In terms of group commutators, this means that

[[[x, s], s], s] 6= 1.

Since the action of s on V coincides with the action of h = vs, we also have

[[[x, h], h], h] 6= 1.

This contradicts the inclusion h ∈ ζ3(P ). �

Remark 4.2. It is not immediately clear how to generalize the definition of powerful p-groups “dually”

to the definition of p-central p-groups of height k. Probably, such a definition would also allow to prove

a bound for the p-length of p-soluble group G with a Sylow p-subgroup satisfying this definition. A

rough bound for the p-length would follow by Hall–Higman theorems if such generalized “k-power-

ful” p-groups had the following property: if the exponent is pn, then the nilpotency class is bounded

by a function of n and k that is subexponential (even linear) in n. This would of course generalize

the property of powerful p-groups, where the nilpotency class is at most n. Indeed, let pm be the

exponent of the image of a Sylow p-subgroup P of G in G/Op′,p(G). Let V be the Frattini quotient

of Op′,p(G)/Op′(G) regarded as an Fp(G/Op′,p(G))-module. As we saw in the proof of Theorem 3.2,

then by Hall–Higman theorems there are elements v ∈ V and g ∈ P such that

[...[[v, g], g], . . . , g︸ ︷︷ ︸
pm−pm−1−1

] 6= 1.

On the other hand, we would have

[...[[v, g], g], . . . , g︸ ︷︷ ︸
f(k,m)

] = 1

with the hypothetical function f(k, n) bounding the nilpotency class. Hence,

pm − pm−1 − 1 6 f(k,m).

Provided the function f(k,m) is subexponential in m (and it is most likely and natural to have this

function being linear in m), an estimate for m would follow, which would in turn give an estimate for

the p-length.
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