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Automorphisms of finite p-groups
admitting a partition

E. I. Khukhro

Abstract

For a finite p-group P the following three conditions are equivalent: (a) to have
a (proper) partition, that is, to be the union of some proper subgroups with trivial
pairwise intersections; (b) to have a proper subgroup outside of which all elements
have order p; (c) to be a semidirect product P = P1o ⟨φ⟩ where P1 is a subgroup of
index p and φ is a splitting automorphism of order p of P1. It is proved that if a finite
p-group P with a partition admits a soluble group of automorphisms A of coprime
order such that the fixed-point subgroup CP (A) is soluble of derived length d, then
P has a maximal subgroup that is nilpotent of class bounded in terms of p, d, and
|A|. The proof is based on a similar result of the author and Shumyatsky for the case
where P has exponent p and on the method of “elimination of automorphisms by
nilpotency”, which was earlier developed by the author, in particular, for studying
finite p-groups with a partition. It is also proved that if a finite p-group P with
a partition admits a group of automorphisms A that acts faithfully on P/Hp(P ),
then the exponent of P is bounded in terms of the exponent of CP (A). The proof
of this result is based on the author’s positive solution of the analogue of Restricted
Burnside Problem for finite p-groups with a splitting automorphism of order p.
Both theorems yield corollaries on finite groups admitting a Frobenius group of
automorphisms whose kernel is generated by a splitting automorphism of prime
order.

1 Introduction

A finite group G is said to have a (proper) partition if it is the union of some proper
subgroups with trivial pairwise intersections: G =

∪
iGi with Gj ∩ Gk = 1. The theory

of such groups reflects many aspects of the theory of finite groups; for example, non-
soluble finite groups with this property were characterized by Zassenhaus and Suzuki as
an important part of the classification program. The monograph [1] contains a description
of finite groups with a partition “modulo finite p-groups”.

For a finite p-group P the following three conditions are equivalent:
(a) to have a (proper) partition;
(b) to have a proper subgroup outside of which all elements have order p; this obviously

means that P has proper Hughes subgroup: Hp(P ) = ⟨g ∈ P | gp ̸= 1⟩ ̸= P ;
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(c) to be a semidirect product P = P1 o ⟨φ⟩, where P1 is a subgroup of index p and
φ is a splitting automorphism of order p of P1, that is,

φp = 1 and xxφxφ2 · · · xφp−1

= 1 for all x ∈ P1. (1)

Note that in (1) in condition (c) we deliberately do not exclude the case where φ acts
trivially on P1, when, of course, P1 must be a group of exponent p. Experience shows
that in many respects the approach related to splitting automorphisms (condition (c)) is
most efficient in the study of finite p-groups with a partition. In particular, note that all
groups admitting a splitting automorphism of order p constitute a variety of groups with
operators defined by the laws (1).

Finite p-groups P with a partition can be regarded as close to groups of exponent
p: either because all elements outside a proper subgroup are of order p, or because the
operator law xxφxφ2 · · · xφp−1

= 1 turns into the law xp = 1 when φ = 1. (Note, however,
that there is no bound for the exponent of a p-group with a partition.) Many properties of
groups of exponent p have been extended to finite p-groups with a partition. For example,
in [2] it was proved that if the subgroup P1 in condition (c) is soluble of derived length
d, then P1 is nilpotent of class bounded in terms of p and d (for short, (p, d)-bounded),
which is an analogue of the corresponding result for groups of exponent p. Furthermore,
based on the celebrated theorem of Kostrikin for groups of exponent p, an analogue of the
affirmative solution of the Restricted Burnside Problem was obtained for such groups: it
was proved in [3] that the nilpotency class of P1 is bounded in terms of p and the number
of generators. These and other results can be found in [4, Ch. 6, 7].

In this note we extend to finite p-groups with a partition the following result on groups
of prime exponent p due to the author and Shumyatsky [5]: if a finite group G of exponent
p admits a soluble group of automorphisms A of coprime order such that the fixed-point
subgroup CG(A) is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded
class.

Theorem 1. Suppose that a finite p-group P with a partition admits a soluble group of
automorphisms A of coprime order such that the fixed-point subgroup CP (A) is soluble of
derived length d. Then any maximal subgroup of P containing Hp(P ) is nilpotent of class
bounded in terms of p, d, and |A|.

Examples show that the nilpotency class of the whole group P cannot be bounded.
The bound for the nilpotency class of that maximal subgroup can be chosen to be the
same as the bound in the aforementioned result of [5] for groups of exponent p. The proof
is based on the theorem in [5] for groups of exponent p and the method of “elimination of
automorphisms by nilpotency”, which was developed earlier by the author, in particular,
for studying finite p-groups with a splitting automorphism of order p; see [6] and [4, Ch. 6].

Another result concerns bounding the exponent.

Theorem 2. If a finite p-group P with a partition admits a group of automorphisms
A that acts faithfully on P/Hp(P ), then the exponent of P is bounded in terms of the
exponent of CP (A).
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The proof of this result is based on the author’s positive solution of the analogue of
Restricted Burnside Problem for finite p-groups with a splitting automorphism of order
p.

Both theorems yield corollaries for finite groups with certain Frobenius groups of
automorphisms.

Corollary. Suppose that a finite group G admits a Frobenius group of automorphisms
FH with complement H and with cyclic kernel F = ⟨φ⟩ of prime order p such that φ is
a splitting automorphism, that is, xxφxφ2 · · · xφp−1

= 1 for all x ∈ G.

(a) If CG(H) is soluble of derived length d, then G is nilpotent of (p, d)-bounded class.

(b) The exponent of G is bounded in terms of p and the exponent of CG(H).

Proof. The group G is nilpotent by the Kegel–Thompson–Hughes theorem [7, 8]. The
automorphism φ acts fixed-point-freely on its Hall p′-subgroup Gp′ : for any g ∈ CG(φ)
we have 1 = ggφgφ

2 · · · gφp−1
= gp. Hence Gp′ is nilpotent of p-bounded class by the

Higman–Kreknin–Kostrikin theorem [9, 10, 11]. To complete the proof of part (a) it now
remains to consider the Sylow p-subgroup Gp of G. The result for Gp follow from Theorem
1 applied to P = Gp⟨φ⟩ and A = H.

By Lemma 2.4 in [12] (see also [13, Lemma 2]) we have Gp′ = ⟨CGp′ (H)f | f ∈ F ⟩.
This implies that Gp′ is generated by elements of orders dividing the exponent of CG(H).
Together with the bound in terms of p for the nilpotency class of Gp′ , this gives a bound
for the exponent of Gp′ in terms of p and the exponent of CG(H). Thus, in part (b) it
remains to consider the Sylow p-subgroup Gp of G. The result for Gp follow from Theorem
2 applied to P = Gp⟨φ⟩ and A = H.

Examples show that one cannot get rid of the dependence of the nilpotency class on
p in part (a) of the corollary (which is obviously also true for the exponent in part (b)).
Note that there are other recent papers [12, 13, 14, 15, 16, 17, 18] on finite groups G with
a Frobenius group of automorphisms FH with fixed-point-free kernel F . In particular,
V.D. Mazurov’s problem 17.72(a) from Kourovka Notebook [19] on double Frobenius
groups was solved in the affirmative in [15], and then in [12], for any metacyclic Frobenius
groups of automorphisms FH, a bound for the nilpotency class of G was obtained in terms
of |H| and the nilpotency class of CG(H), as well as a bound for the exponent of G in terms
of |FH| and the exponent of CG(H). The question arises whether similar results, of the
type of the above corollary, can be obtained for Frobenius groups of automorphisms with
kernel generated by a splitting automorphism of composite order. It is easy to produce
examples of finite p-groups of unbounded nilpotency class admitting a Frobenius group
of automorphisms with cyclic kernel of order p2 generated by a splitting automorphism
and with complement of order 2 having abelian fixed-point subgroup. But the question
remains open on bounding the exponent in such situations with kernel of composite order.

2 Preliminaries

The induced group of automorphisms of an invariant section is often denoted by the same
letter. Both the group and a group of its automorphisms are regarded as subgroups of

3



their semidirect product, so the fixed-point subgroup is denoted as the centralizer, and
commutator subgroups can be formed. The actions of homomorphisms and automor-
phisms are denoted by exponent notation: aϑ is the image of a under ϑ. A subgroup H
is said to be invariant under an endomorphism ϑ if Hϑ 6 H.

We use the standard notation for simple (left-normed) commutators: [x1, x2, . . . , xk] =
[...[[x1, x2], x3], . . . , xk].

Throughout the paper we shall need the following well-known property of coprime
action.

Lemma 1. If A is group of automorphisms of a finite group G of coprime order, (|G|, |A|) =
1, then CG/N(A) = CG(A)N/N for any A-invariant normal subgroup N .

In other words, CGϑ(A) = (CG(A))
ϑ for any homomorphism ϑ of G with A-invariant

kernel.

We state for convenience of the reader two main results of [5]. Recall that a quantity
is said to be (a, b, . . . )-bounded if it is bounded above by a function depending only on
a, b, . . . .

Theorem 3 ([5, Theorem 4]). If a finite group G of prime exponent p admits a soluble
group of automorphisms A of coprime order such that the fixed-point subgroup CG(A) is
soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

This theorem was proved on the basis of a similar result for (p−1)-Engel Lie algebras,
which we also need in this paper. Recall that a Lie algebra L is said to be (p− 1)-Engel
if [x, y, . . . , y︸ ︷︷ ︸

p−1

] = 0 for all x, y ∈ L.

Theorem 4 ([5, Theorem 3]). If a (p− 1)-Engel Lie algebra L of characteristic p (or 0)
admits a finite soluble group of automorphisms A of order coprime to the characteristic
such that the fixed point subalgebra CL(A) is soluble of derived length d, then the Lie
algebra L is nilpotent of (p, d, |A|)-bounded class.

In the main cases in the proofs of both Theorems 1 and 2 it is required that the group
of automorphisms A normalizes a cyclic subgroup ⟨φ⟩ 6 P outside the Hughes subgroup
Hp(P ) and the semidirect product ⟨φ⟩oA acts on a maximal A-invariant subgroup of P
in such a way that φ is a splitting automorphism. If |P : Hp(P )| = p, then the maximal
subgroup in question is simply Hp(P ) and an element φ can be found without difficulty,
by an analogue of Maschke’s theorem, see Lemma 2 below. Fortunately, in the situation
where |P : Hp(P )| > p2 there is a lot more information about the group P : then P is
even closer to being of exponent p, in a certain precise sense, and both theorems are easily
derived from known results.

Reduction to the case |P : Hp(P )| = p in Theorem 1. Recall that the associated
Lie ring L(P ) is defined on the direct sum of additively written factors of the lower central
series of P

L(P ) =
⊕
i

γi/γi+1,
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with Lie products defined for the summands via group commutators as

[a+ γi+1, b+ γj+1] = [a, b] + γi+j+1 for a ∈ γi, b ∈ γj,

and extended to L(P ) by linearity. It is important that the nilpotency class of L(P ) is
equal to the nilpotency class of P .

Suppose that P is a finite p-group with |P : Hp(P )| > p2. It was proved in [20]
(see also [4, Theorem 7.3.7]) that then the associated Lie ring L(P ) is a (p − 1)-Engel
Lie algebra of characteristic p. Suppose that in addition P satisfies the hypotheses of
Theorem 1. Consider the induced group of automorphisms A of L = L(P ). By Lemma 1,
the fixed-point subalgebra CL(A) is the sum of the images of CP (A) in the factors of the
lower central series due to the coprimeness of the action. Therefore it is easy to show that
CL(A) is soluble of derived length not higher than the derived length d of CP (A).

By applying Theorem 4 to L we obtain that L is nilpotent of (p, d, |A|)-bounded class.
Hence P is also nilpotent of the same nilpotency class, and Theorem 1 is proved in the
case |P : Hp(P )| > p2.

Reduction to the case |P : Hp(P )| = p in Theorem 2. Furthermore, it was
proved in [21] (see also [4, Corollary 7.3.8]) that if |P : Hp(P )| > p2, then the exponent
of P is bounded in terms of p alone.

Thus, in both Theorems 1 and 2 it remains to consider the main cases where |P :
Hp(P )| = p, to which the next sections are devoted.

Maschke type lemma. Of course, Hp(P ) is A-invariant, being a characteristic sub-
group. The following lemma produces an A-invariant complement of Hp(P ); it is more
convenient to prove it in a greater generality.

Lemma 2. Suppose that A is p′-group of automorphisms of a finite p-group P and P has
an A-invariant subgroup P1 of index p. Then there is an A-invariant cyclic subgroup ⟨f⟩
such that P = P1⟨f⟩.

Proof. Induction on |P |, with obvious basis when |P | = p. In the general case, consider
the Frattini quotient P/Φ(P ) as an FpA-module, in which the image of P1 is an A-
invariant subspace of codimension 1. By Maschke’s theorem the image of P1 has an
A-invariant complement. Choose an element f1 in the inverse image of a generator of
this complement; then ⟨f1⟩P1 = P . In the A-invariant subgroup ⟨f1⟩Φ(P ), the subgroup
Φ(P ) is A-invariant and has index p. By induction, there is an A-invariant cyclic subgroup
⟨f⟩ such that ⟨f⟩Φ(P ) = ⟨f1⟩Φ(P ). Then also ⟨f⟩Φ(P )P1 = ⟨f1⟩Φ(P )P1 = P , whence
⟨f⟩P1 = P .

3 Bounding the nilpotency class

In the previous section the proof of Theorem 1 was reduced to the case where |P :
Hp(P )| = p. By Lemma 2 and due to the fact any element outside Hp(P ) induces by
conjugation a splitting automorphism of order p of Hp(P ), the proof of Theorem 1 is
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reduced to the following result (which is stated in a slightly greater generality than the
case where |P : Hp(P )| = p).

Theorem 5. Suppose that a soluble group FA with normal Sylow p-subgroup F = ⟨φ⟩
of order p and Hall p′-subgroup A acts by automorpisms on a finite p-group G in such a
manner that φ is a splitting automorphism, that is, xxφxφ2 · · · xφp−1

= 1 for all x ∈ G. If
CG(A) is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

Proof. The proof is based on the method of “elimination of automorphisms by nilpo-
tency” developed by by the author, which was used, in particular, for studying splitting
automorphisms of prime order [2], [4, Ch. 6]. If φ acts trivially on G, then the group G
has exponent p and then the theorem reduces to Theorem 3; let c = c(p, d, |A|) be the
bound for the nilpotency class given by Theorem 3 in this case. We are actually going
to prove that the nilpotency class of G in the general case is also bounded by the same
number c. Thus, we need to prove that [g1, . . . , gc+1] = 1 for any gi ∈ G. We can assume
that G = ⟨{g1, . . . , gc+1}FA⟩, that is, G is generated by the elements g1, . . . , gc+1 as an
FA-group.

Henceforth, FA-groups are groups with operators FA, that is, groups with additional
unary operations corresponding to the action of elements of the group FA by automor-
phisms. By FA-homomorphisms we mean homomorphisms in the sense of FA-groups,
that is, homomorphisms commuting with the action of FA; similarly, by (normal) sub-
groups we mean FA-invariant (normal) subgroups. We shall use the word “abstract(ly)”
to specify (normal) subgroups or other objects in the abstract sense, irrespective of an
action of FA.

Let pm be the exponent of G, and n the nilpotency class of G. (It is of course important
that the bound for the nilpotency class of P that we shall obtain will be independent of
these parameters.) Consider a (relatively) free FA-group X on free generators x1 . . . , xc+1

in the variety of nilpotent FA-groups of class n and of exponent pm. This means that X is
an abstract group that is free in the variety of nilpotent groups of class n and of exponent
pm on the free generators xy

i , where y ∈ FA, which FA permutes naturally: (xh
i )

z = xyz
i

for y, z ∈ FA. (Here the elements xi are identified with the elements xe
i , where e is the

identity element of FA.)
Note that X is a finite p-group, being a finitely generated nilpotent group of exponent

pm. Hence the semidirect product XF is also a finite p-group and is therefore nilpotent
of some class.

There is an FA-homomorphism ξ : X → G extending the mapping xi → gi, i =
1, . . . , c + 1. We simply need to show that [x1, . . . , xc+1] ∈ Ker ξ. Note that Ker ξ is an
FA-invariant normal subgroup of X.

Let C = ⟨
(
(CX(A))

(d)
)XFA⟩ be the FA-invariant normal closure of the dth term

(CX(A))
(d) of the derived series of CX(A). Since X is a finite p-group, while A is a p′-

group, we have CG(A) = (CX(A))
ξ by Lemma 1. By hypothesis, (CG(A))

(d) = 1; hence,
(CX(A))

(d) 6 Ker ξ and therefore, C 6 Ker ξ. Note also that CX/C(A) is soluble of derived
length d, being the image of CX(A) by Lemma 1.

Let
S = ⟨{xxφxφ2 · · · xφp−1 | x ∈ X}XFA⟩
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be the FA-invariant normal closure of the set of all the products indicated in braces.
Since all these products are trivial in G by hypothesis, we have S 6 Ker ξ.

Thus, it is sufficient (and actually even necessary) to prove that [x1, . . . , xc+1] ∈ CS.

Lemma 3. The subgroups C and S are invariant under any FA-endomorphism ϑ of X .

Proof. Any FA-endomorphism ϑ : X → X commutes with the action of FA. In partic-
ular, CX(A) is ϑ-invariant: for any x ∈ CX(A) and a ∈ A we have (xϑ)a = (xa)ϑ = xϑ.
Then clearly CX(A)

(d) is also ϑ-invariant. Any element in C is a product of elements of
the form zxfa, where z ∈ CX(A)

(d), x ∈ X, fa ∈ FA. The image of such an element under
ϑ is (zxfa)ϑ = ((zx)ϑ)fa = ((zϑ)x

ϑ
)fa, which again has the same form, since zϑ ∈ CX(A)

(d).
Hence C is ϑ-invariant.

For S, the image under ϑ of a product of elements of the form(
xxφxφ2 · · · xφp−1)yfa

, x, y ∈ X, f ∈ F, a ∈ A,

is again a product of elements of the same form((
xxφxφ2 · · · xφp−1)yfa)ϑ

=
(
(xϑ)(xϑ)φ(xϑ)φ

2 · · · (xϑ)φ
p−1)yϑfa

,

where we used the fact that ϑ commutes with FA.

Remark 1. Lemma 3 essentially says that C and S are verbal FA-subgroups of X.
This fact is fairly obvious for S. But this is less obvious for C, since the centralizer of
a group of automorphisms in general may not be given by group words with operators.
Nevertheless, this is true in Lemma 3 due to the coprimeness of the action. An alternative
way of proving this lemma would be by using Birkhoff’s theorem. For S (or C), it is
sufficient to show that the class of FA-groups G in which xxφxφ2 · · · xφp−1

= 1 for all
x ∈ G (respectively, CG(A)

(d) = 1) is closed under taking FA-homomorphic images, FA-
subgroups, and Cartesian products. Actually, the condition CG(A)

(d) = 1 may not be
preserved under FA-homomorphic images, but if we restrict ourselves to nilpotent groups
of class n and of exponent pm, then the coprimeness of the action of A comes to the rescue.

Let T be the (abstract) normal closure of F in XF ; abstractly, T = [X,F ]F . Note
that both X and F are FA-invariant, so T is also FA-invariant. Factorization by T
amounts to “trivialization” of φ: in the quotient (XFA)/(CST ) the image of φ becomes
trivial. Hence the image of X in (XFA)/(CST ) is of exponent p, since this image also
satisfies the identity

x̄x̄φx̄φ2 · · · x̄φp−1

= 1, x̄ ∈ (XCST )/(CST ).

The centralizer of A in this quotient is the image of the centralizer of A in X/C by
Lemma 1, since the action of A on X/C is coprime. Therefore C(XCST )/(CST )(A) is also
soluble of derived length d. We can now apply Theorem 3 to (XCST )/(CST ) and A to
conclude that (XCST )/(CST ) is nilpotent of class c. This means that

[x1, . . . , xc+1] ∈ CST. (2)

All we need is to eliminate T from inclusion (2).
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We rewrite (2) as a congruence modulo CS:

[x1, . . . , xc+1] ≡ t (modCS), (3)

where t ∈ T .
As an abstract group, XF is generated by the elements φ and xa∗

i , where a∗ ∈ A denote
various elements of A. Since the semidirect product XF is a nilpotent finite p-group, we
can apply the standard collecting process arguments with respect to these generators.
Here we can avoid using any negative powers of commutators, since a−1 = a|a|−1 for any
element a of finite order. This technical remark allows us to somewhat simplify subsequent
arguments.

Every element of T = [X,F ]F is a product of commutators in these elements, including
those of weight 1, each involving at least one occurrence of φ (so in fact the only such
commutator of weight 1 is φ). Indeed, such products of commutators clearly form an
abstract normal subgroup of XF containing φ, and are contained in [X,F ]F . (Recall
that in a periodic group inverse elements are also obtained in this fashion.) Since [X,F ]F
is the minimal abstract normal subgroup of XF containing F , it must coincide with the
set of such products. Thus, we rewrite (3) as

[x1, . . . , xc+1] ≡ c1 · · · cm (modCS), (4)

where the ci are commutators in φ and xa∗
i each involving at least one occurrence of φ.

We say for brevity that a commutator in elements φ and xa∗
i depends on φ if it involves

φ as an entry, and depends on xj (for a given j) if it involves at least one entry xa∗
j for

some a∗ ∈ A.

Lemma 4. We can assume that each commutator cs in (4) depends on φ and on all the
xi, i = 1, . . . , c+ 1.

(In other words, in addition to dependence on φ, all i = 1, . . . , c + 1 occur as lower
indices of xa∗

i in each cs, where the a∗ may be the same or different.)

Proof. This is proved similarly to the so-called Higman’s lemma, by applying the FA-
endomorphisms ϑi of X extending the mapping xi → 1, xj → xj for j ̸= i. As an abstract

endomorphism ϑi is defined by the mapping xfa
i → 1 for all fa ∈ FA and xfa

j → xfa
j for

j ̸= i. This is an FA-endomorphism of X, that is, commuting with the action of FA,
because the xk are free generators of the (relatively free) FA-group X.

By Lemma 3, both S and C are ϑi-invariant. Therefore an application of ϑi to a
congruence modulo CS produces again a congruence modulo CS. For a given i, when ϑi

is applied to (4), the left-hand side goes to 1, as do all the cs on the right that depend
on xi. As a result, the product of commutators on the right that do not depend on xi

belongs to CS and can be dropped in (4). More accurately, first all the commutators that
do not depend on xi are collected (in some order) at the beginning of the product on the
right of (4). For that we need to transpose commutators, but this gives rise only to new
commutators depending on all the variables on which either of the commutators being
transposed depended. So in such a collecting process all the dependencies are preserved,
including dependence on φ. After consecutively eliminating all commutators that do not
depend on xi for each i = 1, . . . , c+ 1, we arrive at a congruence (4) in which each of the
cs depends on all the xi (and on φ).
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Lemma 5. Every commutator in elements xa∗
i and φ depending on φ and all of the

x1, . . . xc+1 can be represented as a product of commutators of the form

[[xa∗
i1
, . . .], [xa∗

i2
, . . .], . . . [xa∗

ic+1
, . . .]], (5)

which is a simple commutator in simple subcommutators, such that {i1, i2, . . . , ic+1} =
{1, 2, . . . , c+ 1}, the dots in each simple subcommutator [xa∗

is
, . . .] denote (possibly absent)

elements φ or xa∗
i in any combination and any order, and the total number of occurrences

of φ in each commutator (5) is at least the number of occurrences of φ in the original
commutator.

Proof. This follows from the standard commutator formulae

[u, [v, w]] = [[u, v], w] · [[u,w], v]−1 · κ (6)

[[u, v], w] = [[v, u], w]−1 · κ (7)

[[u, v], w]] = [[u,w], v] · [u, [v, w]] · κ, (8)

which hold in a nilpotent group, where in each case κ is a product of powers of commu-
tators in the same elements u, v, w each involving all these elements u, v, w. In our group
XF , negative powers of commutators here can again be replaced by appropriate positive
powers of these commutators, which is always possible in a periodic group, and in what
follows we shall apply formulae (6), (7), (8) using such replacements.

In more detail: for example, firstly the commutator is represented as a product of
simple commutators by “expanding” all inner brackets by formula (6). This formula is
applied to inner brackets one at a time. When additional factors appear, the formula is
always applied to one of non-simple commutators of the lowest weight. At every step,
apart from “improved” commutators of type [[u, v], w] and [[u,w], v], only commutators of
greater weight will appear, and all the new commutators will be depending on the same
elements as the commutator that is being transformed, with at least the same multiplicity
of occurrence of each element (including φ). At each step, commutators of lower weights,
which are already simple commutators, are not affected. The process is finite, since XF
is a nilpotent group of finite exponent.

Thus, we can assume from the outset that the commutator is simple. In such a
commutator we can locate one of the occurrences of each of the x1, . . . xc+1:

[. . . , xa∗
i1
, . . . xa∗

i2
, . . . . . . , xa∗

ic+1
, . . .],

where {i1, i2, . . . , ic+1} = {1, 2, . . . , c+ 1} and the dots denote elements φ or xa∗
i with

at least the same multiplicity of occurrence of φ. Then we can use the formula (7) to
put xa∗

i1
at the start. After that we collect all the elements denoted by dots to place

them right after the first element xa∗
i1

by moving them by formula (8) to the left one
at a time, always moving to the left the left-most of the non-collected elements. The
additional factors will of course arise, when the elements are transferred over those fixed
occurrences, or rather over the “growing” subcommutators [xa∗

ij
, . . .] that emerge in their

place. All the additional factors of higher weight will depend on φ with at least the same
multiplicity of occurrence, and on each of the x1, . . . xc+1. At each step of this process we
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shall obtain a product of commutators of the required form and commutators of greater
weight satisfying the original hypothesis of the lemma. The same process, starting from
expressing in terms of simple commutators described above, is applied to them, and so
on. Since the group XF is nilpotent and has finite exponent, this process will terminate
resulting in a required product.

By Lemmas 4 and 5, we can assume that each commutator ci in (4) has the form (5).
We now finish the proof of the theorem by an iterative “self-amplification” of the

congruence (4) when its consequences are applied to itself. At each step of this process,
assuming that all the ci on the right of (4) are of the form (5), we apply consequences of
(4) to express these ci in terms of commutators of the same form but with ever increasing
number of occurrences of φ. Since the group XF is nilpotent, this will eventually mean
that the right-hand side of (4) becomes trivial, which proves the theorem.

Let ci be one of the commutators on the right of (4); we assume that ci has the form
(5). Consider the FA-endomorphism ϑ of X extending the mapping

xj → [xa∗
ij
, . . .], j = 1, . . . , c+ 1, (9)

where [xa∗
ij
, . . .] are the subcommutators in ci of the form (5). This mapping can indeed be

extended to an FA-endomorphism of X because the xi are free generators of the relatively
free FA-group X. By Lemma 3, both C and S are ϑ-invariant. Therefore, when ϑ is
applied to (4) we obtain again a congruence modulo CS. As a result, the commutator ci
as the image of the left-hand side of (4) is expressed as the image under ϑ of the right-
hand side of (4). Note that the image cϑj of each commutator cj on the right of (4) has
at least two occurrences of φ — at least one was already there originally, and at least
another one appears in the image of one of the xk (all of which occurred in ci) under the
mapping (9), since ci of the form (5) also contains an occurrence of φ.

After expressing in this way each commutator ci on the right in (4) (of the form (5)),
we substitute their expressions into the right-hand side of the original congruence (4).
Then the resulting commutators on the right-hand side are expressed by Lemma 5 as
a product of commutators of the form (5), but now each of them involves at least two
occurrences of φ.

Then we repeat this procedure bearing in mind that in the new congruence (4) each
ci has at least two occurrences of φ. As a result, for the same reasons, we obtain a new
congruence (4) in which each ci has at least four occurrences of φ. We continue this
“auto-amplification” process, doubling the number of occurrences of φ at each step.

Since the group XF is nilpotent of some class, being a finite p-group, in the end the
right-hand side of (4) becomes trivial due to unbounded accumulation of occurrences of
φ.

4 Bounding the exponent

Here we prove Theorem 2, which has already been reduced in § 2 to the case where
|P : Hp(P )| = p. By Lemma 2 and due to the fact any element outside Hp(P ) induces
by conjugation a splitting automorphism of order p of Hp(P ), the proof of Theorem 2
reduces to the following result.
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Theorem 6. If a finite p-group G admits a Frobenius group of automorphisms FA with
kernel F = ⟨φ⟩ of order p and complement A such that φ is a splitting automorphism,
that is, xxφxφ2 · · · xφp−1

= 1 for all x ∈ G, then the exponent of P is bounded in terms of
the exponent of CP (A).

Proof. Since any element g ∈ G belongs to the FA-invariant subgroup ⟨gFA⟩, we can
obviously assume that G is (abstractly) generated by |FA| elements. By the author’s
theorem [3] giving an affirmative solution to an analogue of the Restricted Burnside
Problem for groups admitting a splitting automorphism of prime order p, the nilpotency
class of G is bounded in terms of p and the number of generators, which is at most
p(p−1). Since the exponents of the factors of the lower central series divide the exponent
of the derived quotient group, it remains to obtain a bound for the exponent of V =
G/[G,G]. We consider this abelian group as a ZFA-module, with additive notation for
the group operations and right operator notation for the action of FA. In particular,
v + vφ+ vφ2 + · · ·+ vφp−1 = 0 for all v ∈ V by hypothesis.

We extend the ground ring by a primitive pth root of unity ω, forming W = V ⊗ZZ[ω].
We obviously still have the identity w + wφ + wφ2 + · · · + wφp−1 = 0 for all w ∈ W .
We introduce the analogues of eigenspaces for the “linear transformation” φ, the additive
subgroups

Wi = {w ∈ W | wφ = ωiw}.

As is well known (see, for example, [4, Lemma 4.1.1]), the Z[ω]⟨φ⟩-moduleW is an “almost
direct sum” of the Wi: namely,

pW ⊆ W0 +W1 + · · ·+Wp−1 (10)

and

if w0 + w1 + · · ·+ wp−1 = 0 for wi ∈ Wi, then pwi = 0 for all i. (11)

Since φ acts trivially on W0, for x ∈ W0 we have px = x + xφ + · · · + xφp−1 = 0, so
that pW0 = 0.

We now consider the action of A. The group A acts on the set of the additive subgroups
Wi in the same way as A acts on ⟨φ⟩. Namely, since F is cyclic of order p, the group A
is also cyclic. Let A = ⟨α⟩ and let φα−1

= φr for some 1 6 r 6 p− 1. Let |α| = n; then r
is a primitive nth root of 1 in Z/pZ. Then the group A “almost permutes” the additive
subgroups Wi in the following sense: Wiα ⊆ Wri for all i ∈ Z/pZ. Indeed, if xi ∈ Wi,
then (xiα)φ = xi(αφα

−1α) = (xiφ
r)α = ωirxiα.

Given uk ∈ Wk for k ̸= 0, to lighten the notation we denote ukα
i by urik; note that

urik ∈ Wrik.
Let pe be the exponent of CG(A). We claim all the Wi are annihilated by p1+e. For

any k ̸= 0 and for any uk ∈ Wk the sum

uk + ukα+ · · ·+ ukα
n−1 = uk + urk + · · ·+ urn−1k

over the A-orbit of uk is a fixed point for A. Since the fixed-point submodule CV (A)
is annihilated by pe (as the image of CG(A) by Lemma 1 due to the coprimeness of
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the action), the fixed-point submodule CW (A) is also annihilated by pe as it is exactly
CV (A)⊗Z Z[ω]. Therefore pe annihilates this sum:

peuk + peurk + · · ·+ peurn−1k = 0. (12)

We have urik ∈ Wrik and all these indices k, rk, . . . , rn−1k are distinct modulo p. Therefore
by (11) the equation (12) implies that, in particular, ppeuk = 0.

Thus, p1+eWk = 0 for all k (recall that pW0 = 0). As a result, using (10) we obtain

p2+eW ⊆ p1+e(W0 +W1 + · · ·+Wp−1) = 0.

This also implies that p2+eV = 0.
Returning to multiplicative notation we obtain that the exponent of G/[G,G] is at

most p2+e, so the exponent of G is at most pc(2+e), where c is the nilpotency class of G,
which is bounded in terms of p.

Remark 2. If, for some reason, it is known that the derived length s of the group
G in Theorem 2 is a relatively small, then we can use the result of [2] (see also [4,
Corollary 6.4.2]) to give a possibly smaller estimate ((p−1)s−1)/(p−2) for the nilpotency
class of G, instead of the one obtained in the proof above, which stems from the estimate
in [3], which in turn relies on the estimate for the nilpotency class of a p(p− 1)-generated
(p − 1)-Engel Lie algebra of characteristic p in Kostrikin’s theorem. Correspondingly,
there may be a similar improvement in the Corollary, where the nilpotency class may also
be given a possibly smaller estimate ((p − 1)s − 1)/(p − 2), since the same number also
estimates the nilpotency class of a group admitting a fixed-point-free automorphism of
prime order p by the Kreknin–Kostrikin theorem [10]. A smaller bound for the nilpotency
class also implies a smaller bound for the exponent. A relatively small derived length
would also imply stronger bounds in Theorems 3 and 4, and therefore also in Theorem 1.
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