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Groups with an automorphism of prime order
that is almost regular in the sense of rank

E. I. Khukhro

Abstract

Let ϕ be an automorphism of prime order p of a finite group G, and let r be the
(Prüfer) rank of the fixed-point subgroup CG(ϕ). It is proved that if G is nilpotent,
then there exists a characteristic subgroup C of nilpotency class bounded in terms of
p such that the rank of G/C is bounded in terms of p and r.

For infinite (locally) nilpotent groups a similar result holds if the group is torsion-
free (due to Makarenko), or periodic, or finitely generated; but examples show that
these additional conditions cannot be dropped, even for nilpotent groups.

As a corollary when G is an arbitrary finite group, the combination with the recent
theorems of the author and Mazurov gives characteristic subgroups R 6 N 6 G such
that N/R is nilpotent of class bounded in terms of p, while the ranks of R and G/N
are bounded in terms of p and r (under the additional unavoidable assumption that
p - |G| if G is insoluble); in general it is impossible to get rid of the subgroup R. The
inverse limit argument yields corresponding consequences for locally finite groups.

1 Introduction

Let ϕ be an automorphism of prime order p of a finite group G, and let CG(ϕ) be the
fixed-point subgroup, which we also call the centralizer of ϕ in G. If ϕ is regular, that is,
CG(ϕ) = 1, then G is nilpotent by Thompson’s theorem [34] and the nilpotency class is
bounded in terms of p (for short, “p-bounded”) by Higman’s theorem [9] (an explicit bound
for Higman’s function was obtained by Kreknin and Kostrikin [20, 21]). It is natural to expect
that if ϕ is in some sense almost regular, then G must be in a sense almost nilpotent. For
example, if |CG(ϕ)| = n, then G has a subgroup of (p, n)-bounded index that is nilpotent of
p-bounded class. This result is a combination of the work of Fong [1], who bounded the index
of the soluble radical using the classification of finite simple groups, the works of Hartley
and Meixner [8] and Pettet [31], where (independently) the index of the Fitting subgroup
was bounded for soluble groups, and the author’s theorems [10, 11], where a subgroup of
(p, n)-bounded index and p-bounded class was produced for nilpotent groups. The latter
results were also extended to infinite (locally) nilpotent groups by Medvedev [29].

Regarding the automorphism ϕ as almost regular in the sense of rank means seeking
restrictions on the structure of G depending on the rank of CG(ϕ) and |ϕ| = p. (Throughout
the paper, a group has rank at most r if every finitely generated subgroup can be generated by
r elements.) The author and Mazurov [17] proved a rank analogue of the Hartley–Meixner–
Pettet theorem for soluble groups, as well as a rank analogue of Fong’s theorem in the case

1



where the orders of G and ϕ are coprime (examples show that the coprimeness condition
cannot be dropped in a rank analogue of Fong’s theorem).

In the present paper we in a sense complete the study of finite groups with an auto-
morphism of prime order that is almost regular in the sense of rank, by proving a rank
generalization of the Higman–Kreknin–Kostrikin theorem for nilpotent groups.

Theorem 1. Suppose that a finite nilpotent group G admits an automorphism ϕ of prime
order p with centralizer CG(ϕ) of rank r. Then G has a characteristic subgroup C of p-
bounded nilpotency class such that G/C has (p, r)-bounded rank.

Earlier the case |ϕ| = 2 was settled by Shumyatsky [33]. We produce examples showing
that Theorem 1 cannot be extended to infinite nilpotent groups, even for |ϕ| = 2. Nev-
ertheless, such extensions can be proved for some classes of (locally) nilpotent groups, in
particular, giving a positive solution to Problem 13.58 in the Kourovka Notebook [28].

Corollary 1. Suppose that a locally nilpotent group G admits an automorphism ϕ of prime
order p with centralizer CG(ϕ) of finite rank r. Let T = T (G) be the periodic part of G.

(a) Then G/T and T have characteristic nilpotent subgroups C0 and C1 of p-bounded class
such that (G/T )/C0 and T/C1 have finite (p, r)-bounded ranks.

(b) If G is in addition finitely generated, then G has a characteristic nilpotent subgroup C
of p-bounded class such that G/C has finite (p, r)-bounded rank.

The torsion-free case of this corollary is mainly due to Makarenko [22, Theorem 2], while
the periodic case readily follows from Theorem 1 by the inverse limit argument.

Theorem 1 strengthens the results of the author and Mazurov [17] as follows.

Corollary 2. Suppose that a finite group G admits an automorphism ϕ of prime order p
with centralizer CG(ϕ) of rank r. If G is insoluble, then suppose in addition that p - |G|.
Then G has characteristic subgroups R 6 N 6 G such that N/R is nilpotent of p-bounded
class, while R and G/N have (p, r)-bounded ranks.

The improvement in comparison with [17] is the bound for the nilpotency class of N/R.
Examples in [17] show that the coprimeness condition cannot be dropped for insoluble groups,
and that one cannot get rid of the subgroup R (nor of the quotients G/C or G/N , of course)
in results of this kind. The inverse limit argument allows us to derive consequences for locally
finite groups.

Corollary 3. Suppose that a locally finite group G admits an automorphism ϕ of prime order
p such that p is coprime to the orders of elements of G. If the centralizer CG(ϕ) has finite
rank r, then G has normal subgroups R 6 N 6 G such that N/R is nilpotent of p-bounded
class, while both G/N and R have finite (p, r)-bounded rank.

Since for soluble groups no coprimeness condition is required in Corollary 2, we have the
following.

Corollary 4. Suppose that a periodic locally soluble group G has an element g of prime order
p with centralizer CG(g) of finite rank r. Then G has normal subgroups R 6 N 6 G such that
N/R is nilpotent of p-bounded class, while both G/N and R have finite (p, r)-bounded rank.
If in addition G is locally nilpotent, then one can choose N to be characteristic and R = 1.
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All the functions of p and r occurring in these results can be given explicit upper esti-
mates, although we do not write them out.

The proof of Theorem 1 stems from the following sources. The first is the author’s [11]
theorem on Lie rings with an almost regular automorphism of prime order, which generalized
the Higman–Kreknin–Kostrikin theorem. The proof in [11] is based on the so-called method
of graded centralizers. This Lie ring result was applied in [11] to the associated Lie ring of
a nilpotent periodic group G having an automorphism ϕ of prime order with centralizer of
given order, to yield a similar group-theoretic result, albeit by quite a complicated argument.

However, for an almost regular automorphism in the sense of the rank of CG(ϕ), the
associated Lie ring does not adequately reflect the hypothesis: the rank of the fixed-point
subring of the induced automorphism may become much larger, with the fixed points being
“scattered” over the factors of the lower central series. Only for torsion-free locally nilpotent
groups do Lie algebra results yield immediate consequences in the rank problem (via the
Mal’cev correspondence). Such a result was obtained by Makarenko [22], who improved the
Lie algebra result of [11] for automorphism of prime order by producing a nilpotent ideal,
rather than a subalgebra, with bounds for the class and codimension; this result is also used
in the present paper.

Therefore, for dealing with restrictions on the rank r of CG(ϕ), a different technique of
graded centralizers in group rings was developed by the author in [13]. This technique, how-
ever, works only for the action on an abelian normal subgroup and therefore originally only
a “weak” conclusion was obtained in [13] depending on the derived length d of G. Namely,
using also the aforementioned Lie ring theorem [11] we constructed in [13] a subnormal
subgroup of p-bounded nilpotency class connected with the group by a subnormal series of
(p, r, d)-bounded length with quotients of (p, r, d)-bounded rank.

Another ingredient in the proof of Theorem 1 is the recent theorem of the author and
Makarenko [16] on nilpotent characteristic subgroups of bounded co-rank. This result was
used in [16] to convert the aforementioned subnormal subgroup into a normal one with
quotient of (p, r, d)-bounded rank. In the present paper the ‘weak’ bound for the rank of the
quotient is miraculously transformed into a ‘strong’ one, independent of d.

The method of graded centralizers in Lie rings and algebras has now been fairly well
covered in the literature; see the book [12] and the more recent applications of this method
in the papers by the author and Makarenko on almost regular automorphisms [14, 22, 23,
24, 25, 26]. In contrast, graded centralizers in group rings previously appeared only in a
less accessible publication [13]. We present this group-ring technique in § 3 by giving a new
proof of the “weak” result depending on the derived length of the group. This proof is
simplified compared with [13] due to the same Khukhro–Makarenko result on characteristic
subgroups [16]. This result on characteristic subgroups is also instrumental in finishing
the proof of Theorem 1 in § 4. The reader who is familiar with the technique of graded
centralizers in group rings in [13], or simply not much interested in it, may jump from § 2,
which contains all the relevant statements, directly to § 4.

Finally we briefly describe the situation with finite groups G admitting an almost reg-
ular automorphism ϕ of arbitrary finite order n. The natural conjecture is that there is a
subgroup of n-bounded derived length with quotient bounded either in terms of |CG(ϕ)| or
the rank of CG(ϕ). (For Lie algebras, a similar generalization of Kreknin’s theorem [20] was
proved by the author and Makarenko [14].) There is already a reduction to nilpotent groups,
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giving subgroups of n-bounded Fitting height with bounded quotient. Hartley [6] used the
classification to prove that the index of the soluble radical of a finite group is bounded in
terms of the order of the centralizer of an element. Numerous papers initiated by Thomp-
son [35] culminated in virtually best-possible bounds for the Fitting height of a subgroup of
bounded index in the papers of Turull [36] and Hartley–Isaacs [7]. There are also similar
results for non-cyclic groups of automorphisms under unavoidable additional coprimeness
conditions. For ranks, the corresponding reduction to nilpotent groups was carried out by
the author and Mazurov [18]. However, so far even a group analogue of Kreknin’s theorem
itself, for a regular automorphism, has not been proved. The only progress for composite n
is the case of |ϕ| = 4: regular ϕ was done by Kovács [19], and the almost regular case in the
sense of the order |CG(ϕ)| was done by the author and Makarenko [15].

2 Preliminaries

First we state for convenience two results in [16], where general theorems on the existence
of characteristic subgroups were proved.

Theorem 2 ([16, Theorem 1.2]). Suppose that a group G has a nilpotent normal subgroup
H of nilpotency class c such that the quotient group G/H has finite rank r. If H is either

(a) torsion-free, or

(b) periodic,

then G has also a characteristic nilpotent subgroup C of nilpotency class at most c with
quotient group G/C of finite (r, c)-bounded rank.1

This theorem enables one to replace a subnormal nilpotent subgroup S of given class c
and of given “co-rank” by a normal one: if S is normal in G with G/S of rank r, while
G is normal in a group F , then the characteristic subgroup C of G given by Theorem 2 is
normal in F and the rank of G/C is (r, c)-bounded. An earlier result of the author in [13]
produced a subnormal subgroup of p-bounded nilpotency class connected with the group
by a subnormal series of (p, r, d)-bounded length with quotients of (p, r, d)-bounded rank.
A repeated application of Theorem 2 gives the following.

Theorem 3 ([16, Corollary 1.4]). If a finite nilpotent group G of derived length d admits
an automorphism of prime order p with centralizer of rank r, then G has a characteristic
nilpotent subgroup C of p-bounded class such that the quotient G/C has (p, r, d)-bounded
rank.

We recall some notation. If G is a p-group, then Ω1(G) := 〈g ∈ G | gp = 1〉. The
terms of the lower central series are denoted by γi(G), starting from γ1(G) = G. A simple
commutator is denoted by [a1, a2, . . . , ak] := [...[[a1, a2], a3], . . . , ak]; here the ai may also be
subgroups. If G is a group, and m a positive integer, then Gm := 〈gm | g ∈ G〉.

We also prove here a couple of technical lemmas and list several known facts.

1There are examples, produced independently by the author and H. Smith, showing that Theorem 2 is
false without conditions (a) or (b).
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Lemma 1. Suppose that A and B are normal subgroups of the group AB that is nilpotent
of class k, while for some positive integer q both ABq and B are nilpotent of class at most c.
Then for some k-bounded number h(k) the group Aqh(k)

B is nilpotent of class at most c.

Proof. Induction on k. If k 6 c, then even AB is nilpotent of class at most c.
Now let k > c. We claim that Aqk−1

B is nilpotent of class at most k − 1. It suffices
to show that every simple commutator of weight k in generators of Aqk−1

B is trivial, and
for the generators we choose elements b ∈ B and aqk−1

for a ∈ A. Since the group AB
is nilpotent of class k, commutators of weight k are linear with respect to powers of their
elements. A (simple) commutator of weight k involving only elements of B is trivial, since
B is nilpotent of class at most c 6 k − 1. Thus we can assume that there is an entry aqk−1

.
Using the linearity we can “spread” this exponent coefficient qk−1 as q-powers of all entries
of type b ∈ B, if any, by repeatedly applying formulae of the type

[. . . , uq, . . . , v, . . .] = [. . . , u, . . . , v, . . .]q = [. . . , u, . . . , vq, . . .].

The resulting commutator involves only elements of A and Bq and therefore is trivial, since
γk(ABq) 6 γc+1(ABq) = 1.

The same conditions are now satisfied with A replaced by Aqk−1
and with nilpotency class

of Aqk−1
B being at most k − 1. By the induction hypothesis, (Aqk−1

)qh(k−1)
B is nilpotent of

class at most c. We can set h(k) = h(k − 1) + k − 1, since then Aqh(k) 6 (Aqk−1
)qh(k−1)

.

Lemma 2. Let ϕ be an automorphisms of a finite group G of coprime order: (|G|, |ϕ|) = 1.
If N is a normal ϕ-invariant subgroup, then CG/N(ϕ) = CG(ϕ)N/N . ¤

We shall also need an “infinite” analogue of Lemma 2 for nilpotent groups.

Lemma 3. Let ϕ be an automorphism of prime order p of a group G. Suppose that N is a
normal ϕ-invariant subgroup of G such that [N, G, . . . , G︸ ︷︷ ︸

m

] = 1.

(a) If gN ∈ CG/N(ϕ), then gpm ∈ CG(ϕ)N .

(b) If G/N is a q-group for q 6= p, then CG/N(ϕ) = CG(ϕ)N/N .

Proof. (a) Induction on m. Let m = 1, that is, N 6 Z(G). By hypothesis, gϕi
= gni for

ni ∈ N 6 Z(G). Then the elements gϕi
commute and therefore ggϕgϕ2 · · · gϕp−1 ∈ CG(ϕ).

Hence gp ∈ ggϕgϕ2 · · · gϕp−1
N ⊆ CG(ϕ)N . For m > 1 we have gpm−1 ∈ CG/[N,G, . . . , G︸ ︷︷ ︸

m−1

](ϕ)N

by the induction hypothesis. Applying the above argument for m = 1 with [N, G, . . . , G︸ ︷︷ ︸
m−1

] in
place of N we obtain the result.

(b) This follows from (a), since gN ∈ 〈gpm
N〉 in the q-group G/N for q 6= p.

Lemma 4. If a finite abelian p-group A admits an automorphism ϕ of order p with centralizer
of rank r, then the rank of A is at most pr.

Proof. The rank of A is equal to the rank of Ω1(A), which can be regarded as a vector space
over the field of p elements. Since 0 = ϕp − 1 = (ϕ − 1)p, all eigenvalues of the linear
transformation ϕ are equal to 1. The number of blocks in the Jordan normal form of ϕ is
equal to the dimension of the centralizer CΩ1(A)(ϕ), while the size of each block does not
exceed p.
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The following lemma appeared independently and simultaneously in the papers of Gor-
chakov [3], Merzlyakov [30], and as “P.Hall’s lemma” in the paper of Roseblade [32].

Lemma 5. Let q be a prime number. The rank of a q-group of automorphisms of a finite
q-group of rank r is r-bounded.

Although in [3], [30], and [32] automorphisms of finite abelian q-groups were consid-
ered, the general result can be easily derived from this special case; see, for example, [33,
Lemma 4.2]. Lemmas 4 and 5 imply the following.

Lemma 6. If a finite p-group G admits an automorphism ϕ of order p with centralizer of
rank r, then the rank of G is (p, r)-bounded.

The following well-known fact can be easily derived from the theory of powerful q-groups.

Lemma 7. If a finite q-group has rank r and exponent qs, then its order is at most qf(r,s)

for some (r, s)-bounded number f(r, s).

3 Graded centralizers in group rings

Here we give a new proof of Theorem 3 — or rather, a new proof of the previous results
in [13]. This proof is simplified compared with [13] due to Theorem 2(b) on characteristic
subgroups. However, the construction of graded centralizers of various levels still remains
essential.

Definition. We define for brevity the co-rank of a normal subgroup N in a group G to be
the rank of G/N .

Recall that Theorem 3 deals with a finite nilpotent group G of derived length d admitting
an automorphism ϕ of prime order p with centralizer of rank r. Graded centralizers in group
rings are used to find a subgroup of (p, r, d)-bounded co-rank which is nilpotent of (p, r, d)-
bounded class. A required subgroup of p-bounded class is then obtained in the next section
using an analogue of the Lie ring theorem in [11].

Proposition 1. If a finite nilpotent group G of derived length d admits an automorphism ϕ
of prime order p with centralizer CG(ϕ) of rank r, then G has a characteristic subgroup C
of (p, d)-bounded nilpotency class and of (p, r, d)-bounded co-rank.

Proof. Since the rank of a finite nilpotent group is equal to the maximum rank of its Sylow
subgroups, we can assume that G is a finite q-group. If q = p, then the rank of G is
(p, r)-bounded by Lemma 6. Thus we assume in what follows that q 6= p.

We use induction on d. By the induction hypothesis, [G,G] has a characteristic subgroup
H of nilpotency class at most c(p, d− 1) such that [G,G]/H has rank at most f(p, r, d− 1).
Then C = CG([G,G]/H) is a characteristic subgroup of G with G/C of bounded rank by
Lemma 5. The quotient [C, C]H/H is central in C/H and has rank at most f(p, r, d− 1). If
X is a characteristic subgroup of C containing H such that X/[H, H] is nilpotent of class m,
then by Hall’s theorem [5] the group X is nilpotent of class bounded in terms of m and
c(p, d − 1). Therefore Proposition 1 will follow from the following proposition applied to
C/[H, H].
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Proposition 2. Let G be a finite q-group admitting an automorphism ϕ of prime order p 6= q
with centralizer CG(ϕ) of rank r. Suppose that G has an abelian characteristic subgroup V
such that the quotient group G/V is nilpotent of class 2, and let s be the rank of [G,G]V/V .
Then G contains a characteristic subgroup of (p, r, s)-bounded co-rank which contains V and
is nilpotent of class at most (2p− 1)2 + 2.

Definition. We say for short that S is a subnormal subgroup of (p, r, s)-bounded co-rank in
a group G if S is connected with G by a subnormal series of (p, r, s)-bounded length with
factors of (p, r, s)-bounded rank.

Proof of Proposition 2. By Theorem 2(b) it suffices to produce a subnormal subgroup of
(p, r, s)-bounded co-rank that is nilpotent of class at most (2p− 1)2 + 2, so this will be our
aim in what follows.

Since [[G,G], G] 6 V by hypothesis, a subgroup X containing V is nilpotent of class at
most t + 2 if [V,X, . . . , X︸ ︷︷ ︸

t

] = 1. The action of G by conjugation on V induces the action

of the quotient group Q = G/V on V . It suffices to find a subnormal subgroup Y 6 Q
of bounded co-rank such that [V, Y, . . . , Y︸ ︷︷ ︸

(2p−1)2

] = 1; then the full inverse image of Y in G will

be the required subgroup. We can regard V as a ZQ〈ϕ〉-module; in these terms the last
equality can be rewritten as [V, Y, . . . , Y︸ ︷︷ ︸

(2p−1)2

] = 0. Henceforth for an additive subgroup U ⊆ V

and a subgroup L 6 Q we denote by [U,L] the additive subgroup generated by all elements
of the form u(l − 1), u ∈ U , l ∈ L; this is precisely the mutual commutator subgroup of the
subgroups U and L in the semidirect product V Q.

The construction of the required subgroup is carried out in two stages. First certain
elements of levels 1, 2, . . . , 2p− 1 are fixed successively in certain subgroups Q(1) = [Q,ϕ],
Q(2), . . . , Q(2p − 1) of the centralizers of the elements of previous levels; these subnormal
subgroups Q(i) of (p, r, s)-bounded co-rank are constructed in parallel. Then the required
subgroup is constructed with the help of “graded centralizers” that are defined within the
enveloping algebra of a certain subgroup.

Definition (of subgroups and elements of levels at most 2p−1). We set Q(1) = [Q,ϕ]; since
Q = CQ(ϕ)Q(1) by Lemma 2, Q(1) is a ϕ-invariant normal subgroup of Q of co-rank at
most r. The rank of [Q(1), Q(1)] does not exceed s. By the Burnside Basis Theorem we can
choose s generators of [Q(1), Q(1)] of the form [y, a], where y, a ∈ Q(1). (Note that this is
formally true even if [Q(1), Q(1)] = 1.)

We shall need the following technical remark. Since Q(1) = [Q(1), ϕ] and p 6= q, the
abelian q-group Q(1)/[Q(1), Q(1)] consists of the images of the p-th powers of commutators
of the form [u, ϕ], u ∈ Q(1). Since [Q,Q] 6 Z(Q), it follows that the element y in a
commutator [y, a] can be chosen to be of the form y = xp, where x = [u, ϕ] for some
u ∈ Q(1) and therefore

xxϕxϕ2 · · · xϕp−1

= u−1uϕ(u−1)ϕuϕ2 · · · (u−1)ϕp−1

uϕp

= 1.

For further references we mark this property as

xxϕxϕ2 · · ·xϕp−1

= 1 for xp = y; (1)
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note that here x ∈ 〈y〉.
The elements y, a satisfying (1) fixed for our chosen generators of [Q(1), Q(1)] are called

elements of level 1 and denoted by y(1), a(1), with level indicated in parenthesis. To lighten
notation we do not distinguish elements y(1), a(1) by indices. Recall that the number of
elements y(1) is s.

For any y ∈ Q the centralizer CQ(y) is a normal subgroup of bounded co-rank. Indeed, the
mapping g → [g, y] is a homomorphism of the group Q into [Q,Q]. Its kernel is exactly CQ(y);
hence the rank of Q/CQ(y) is at most s. We set

D(2) =
⋂

y(1)

p−1⋂
i=1

CQ(1)(y(1)ϕi

),

where y(1) runs over the fixed elements of level 1. The subgroup D(2) is ϕ-invariant. Since
each subgroup involved in the intersection has co-rank at most s in Q(1) and the number
of these subgroups is (p, s)-bounded, the subgroup D(2) also has (p, r, s)-bounded co-rank.
We define the subgroup of level 2 to be Q(2) = [D(2), ϕ], which is a ϕ-invariant normal
subgroup of D(2). The co-rank of Q(2) in D(2) is at most r, since D(2) = CD(2)(ϕ)Q(2).

By construction, [y(1)ϕi
, Q(2)] = 1 for all elements y(1) of level 1 and for all i.

Since [Q(2), Q(2)] 6 [Q,Q] and [Q(2), ϕ] = Q(2), we can carry out the same construction
for Q(2). We fix s generators of [Q(2), Q(2)] of the form [y(2), a(2)], where y(2), a(2) ∈ Q(2)
and each element y = y(2) satisfies (1). We set

D(3) =
⋂

y(2)

p−1⋂
i=1

CQ(2)(y(2)ϕi

),

where y(2) runs over the elements of level 2. Then we set Q(3) = [D(3), ϕ].
Repeating this construction 2p− 1 times we obtain ϕ-invariant subnormal subgroups

Q(1) > Q(2) > · · · > Q(2p− 1)

of (p, r, s)-bounded co-rank. For each j = 1, 2, . . . , 2p − 2, generators of [Q(j), Q(j)] were
fixed of the form [y(j), a(j)], where y(j), a(j) ∈ Q(j), each element y = y(j) satisfies (1),
and their total number is bounded. By construction, subgroups of higher level centralize the
fixed elements of lower level: [y(j), Q(k)] = 1 for j < k.

We now discuss “graded action” in group rings, or rather in enveloping algebras. Ex-
tending the ground ring by a primitive p-th root of unity ω, we denote by the same letter V
the resulting Z[ω]Q〈ϕ〉-module. The rank of the additive group CV (ϕ) can increase only to
at most r(p − 1). Our aim remains the same: to find a subnormal subgroup Y of bounded
co-rank in Q such that [V, Y, . . . , Y︸ ︷︷ ︸

(2p−1)2

] = 0.

Let E = E(Q) be the subalgebra of HomZ[ω](V ) generated by Q; we call E the enveloping
algebra of Q. The action of ϕ on Q extends naturally to E. For any ϕ-invariant subgroup
N 6 Q its enveloping algebra E(N) is a ϕ-invariant subalgebra of E(Q).

8



Using the fact that the additive group of V is a q-group, which is p-divisible as q 6= p,
we can decompose V into the sum of the analogues of eigenspaces:

V = V0 ⊕ V1 ⊕ · · · ⊕ Vp−1,

where Vi = {v ∈ V | vϕ = ωiv}, since for each v ∈ V we have

v =

p−1∑
i=0

vi, where vi =
1

p

p−1∑

k=0

ω−kivϕk ∈ Vi.

We call the additive subgroups Vi for brevity ϕ-components of V , and the elements vi ϕ-
components of v. Clearly, V0 = CV (ϕ). Since the additive group of E is also a q-group,
similarly

E = E0 ⊕ E1 ⊕ · · · ⊕ Ep−1

is the sum of its ϕ-components Ei = {e ∈ E | eϕ = ωie}. (It would probably be better
to speak of V as a Qp[ω]Q〈ϕ〉-module, and E as a subalgebra of HomQp[ω](V ), where Qp =
{m/pn | m,n ∈ Z}.)

It is easy to see that ViEj ⊆ Vi+j (mod p): for v ∈ Vi and e ∈ Ej we have

(ve)ϕ = (vϕ)(ϕ−1eϕ) = (ωiv)(ωje) = ωi+jve.

Similarly, EiEj ⊆ Ei+j (mod p).

Definition (of graded centralizers in group rings). For a fixed v ∈ Vi the mapping ϑv : e →
ve of the component Ep−i into the component V0 is a homomorphism of additive groups.
Since the rank of V0 is at most r(p− 1), the rank of the additive quotient group Ep−i/Ker ϑv

is also at most r(p − 1). (Here we do not exclude the case of i = 0, where Ep = E0.) The
kernel Ker ϑv can be regarded as a “graded centralizer” of the element v.

We shall be constructing certain additive subgroups Cp−i 6 Ep−i as intersections Cp−i =⋂
v Ker ϑv of such kernels over certain sets of fixed elements in Vi. If the number of these

elements is bounded, then the rank of the additive quotient group Ep−i/Cp−i is also bounded,
since it is at most the sum of the co-ranks of the kernels involved in the intersection.

Suppose that an additive subgroup Ci of bounded co-rank is chosen in the ϕ-compo-
nent Ei for each i = 0, 1, . . . , p− 1. Let I be the two-sided ideal of the algebra E generated
by all the Ci. Then the additive group E/I has bounded rank. The group Q acts by right
multiplication on E, and therefore also on E/I. The kernel of this action K is a normal
subgroup of Q. By Lemma 5 the rank of Q/K is bounded in terms of the rank of E/I, since
this is a q-group of automorphisms of the additive q-group E/I.

Lemma 8. The following equality holds: K = {h ∈ Q | 1− h ∈ I}.
Proof. If h ∈ K, then 1h ≡ 1 (mod I), that is, 1−h ∈ I. If 1−h ∈ I, then u1−uh ∈ uI = I,
that is, uh ≡ u (mod I) for any u ∈ E, which means precisely that h ∈ K.

The same construction of the kernel of the action on the quotient algebra described above
can be carried out for any ϕ-invariant subgroup N 6 Q with respect to the ϕ-components
of the enveloping algebra E(N).
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We begin constructing the required subgroup. Let

F = {f ∈ E | fe = ef for all e ∈ Q(2p− 1)}
be the centralizer in E of the subgroup Q(2p − 1), and let Fj be its ϕ-components, j =
0, 1, . . . , p−1. For each j = 0, 1, . . . , p−1 we consider the additive subgroup of V0 generated
by the set Vp−jFj = {vf | v ∈ Vp−j, f ∈ Fj}. Since Vp−jFj ⊆ V0, the rank of Vp−jFj is at
most r(p−1). Since this is a q-group, we can choose r(p−1) elements generating this subgroup
from the original generating set Vp−jFj. We fix such a generating set of r(p − 1) elements
vp−j,ifj,i, where vp−j,i ∈ Vp−j, fj,i ∈ Fj, and the numbering indices i satisfy 1 6 i 6 r(p− 1).

For each of our fixed elements vp−j,i, let ϑvp−j,i
be the homomorphism of the ϕ-component

Ej(2p− 1) of the enveloping algebra E(2p− 1) = E(Q(2p− 1)) of the subgroup Q(2p− 1)
into V0 defined by the rule e → vp−j,ie for e ∈ Ej(2p− 1). For each j = 0, 1, . . . , p− 1 we set

Cj =

r(p−1)⋂
i=1

Ker ϑvp−j,i
.

All the additive quotient groups Ej(2p− 1)/Cj have (p, r)-bounded rank.
Now let I be the ideal of the algebra E(2p − 1) generated by the additive subgroups

C0, C1, . . . , Cp−1. The additive quotient group E(2p − 1)/I has (p, r)-bounded rank. By
Lemma 8 the set K = {x ∈ Q(2p − 1) | 1 − x ∈ I} is the kernel of the action of Q(2p − 1)
by right multiplication on E(2p− 1)/I. The rank of Q(2p− 1)/K is (p, r)-bounded.

It is technically convenient to consider separately the action of [K,K] on V and the case
where [Q,Q] = 1.

Lemma 9. We have
[V, [K, K], . . . , [K, K]︸ ︷︷ ︸

2p−1

] = 0. (2)

Proof. Equality (2) is equivalent to the fact that

v(1− z1)(1− z2) · · · (1− z2p−1) = 0 (3)

for any v ∈ V and zj ∈ [K,K] (here j is a numbering index). Since K 6 Q(2p − 1) 6
Q(2p − 2) 6 · · · , we can express each element zj ∈ [K, K] in (3) as a products of fixed
generators of the form [y(j), a(j)] of level j. We do this successively for j = 1, . . . , 2p− 2 —
saving the last factor 1− z2p−1 — performing certain transformations at each step.

First we replace the element z1 in the first bracket in (3) by a product of fixed generators
of the form [y(1), a(1)] of level 1. Then we apply repeatedly the formula

1− gh = (1− g)(1 + h)− (1− g) + (1− h), (4)

to express 1− z1 as a linear combination of products each of which has a factor of the form
1 − [y(1), a(1)]. Substituting this expression into (3) we can transfer all the “superfluous”
factors (like 1 + h) to the right end, since all the factors arising by formulae (4) have the
form 1± w with w ∈ [K,K] and therefore commute with any elements. We obtain a linear
combination of products each of which has an initial segment of the form

v(1− [y(1), a(1)])(1− z2) · · · (1− z2p−1). (5)
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We set temporarily y = y(1), a = a(1) and use the formula

1− [y, a] = 1− [y−1, a−1] = 1− yay−1a−1 = (ay − ya)y−1a−1 =

((1− a)(1− y)− (1− y)(1− a))y−1a−1.

Here [y, a] = [y−1, a−1] since the nilpotency class is 2. We substitute the expression for
1−[y, a] thus obtained instead of the first bracket in (5). The factor y−1a−1 can be transferred
to the right end of the product, since all elements zi ∈ [K, K] belong to the centre. We obtain
a linear combination of products each of which has an initial segment either of the form

v(1− a)(1− y)(1− z2)(1− z3) · · · (1− z2p−1)

or

v(1− y)(1− a)(1− z2)(1− z3) · · · (1− z2p−1) = v(1− y)(1− z2)(1− z3) · · · (1− z2p−1)(1− a)

(in the second case we used again the fact that all the zi are central). Re-denoting v(1− a)
by v in the first case, we see that it suffices to prove that every product of the form

v(1− y(1))(1− z2)(1− z3) · · · (1− z2p−1) (6)

is equal to 0.
Then we replace the element z2 in (6) by a product of fixed generators of the form

[y(2), a(2)] of level 2. Applying formula (4) in the same way we express the element 1 − z2

as a linear combination in which each summand has a factor of the form 1− [y(2), a(2)]. On
substituting this expression instead of (1 − z2) in (6) and transferring to the right end all
the “superfluous” factors (which have the form 1±w for w ∈ [K,K] and therefore commute
with any elements) we obtain a linear combination of products each of which has an initial
segment either of the form

v(1− y(1))(1− y(2))(1− a(2))(1− z3) · · · (1− z2p−1) =

= v(1− y(1))(1− y(2))(1− z3) · · · (1− z2p−1)(1− a(2))

or
v(1− y(1))(1− a(2))(1− y(2))(1− z3) · · · (1− z2p−1) =

= v(1− a(2))(1− y(1))(1− y(2))(1− z3) · · · (1− z2p−1).

In the first case we have used the fact that all the zi are central. In the second case we used
the fact that the element a(2) ∈ Q(2) centralizes the fixed element y(1) of smaller level by
the definition of the subgroup Q(2). Re-denoting in the second case v(1 − a(2)) by v we
obtain that it suffices to prove that any product of the form

v(1− y(1))(1− y(2))(1− z3) · · · (1− z2p−1)

is equal to 0. After 2p− 2 steps we obtain that it suffices to prove that any product of the
form

v(1− y(1))(1− y(2)) · · · (1− y(2p− 2))(1− z2p−1) (7)
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is equal to 0.
We now use the fact that the element z2p−1 in (7) belongs to K. Since K = {x ∈

Q(2p−1) | 1−x ∈ I}, where I is the ideal generated by C0, . . . , Cp−1, the element 1−z2p−1 is
equal to a linear combination of elements of the form gcjh, where cj ∈ Cj, j = 0, 1, . . . , p−1,
and g, h are arbitrary elements of E(2p−1). We substitute this expression instead of the last
bracket in (7). Since by definition the subgroup Q(2p− 1), and therefore also its enveloping
algebra, centralizes all elements y(i) of smaller levels i 6 2p−2, the elements g in the factors
gcjh can be transferred to the left over all the elements y(i). Expressing vg as a sum of ϕ-
components in each summand of the resulting linear combination we obtain that it suffices
to prove that every element of the form

vi0(1− y(1))(1− y(2)) · · · (1− y(2p− 2))cj (8)

is equal to zero, where vi0 ∈ Vi0 for some i0 = 0, 1, . . . , p− 1.
By the property (1) each element y = y(i) has the form y = x(i)p = xp, where

xxϕxϕ2 · · · xϕp−1
= 1. Then

1− y = xxϕ · · ·xϕp−1 − xp. (9)

(We have temporarily dropped the level indicator to lighten the notation.) We decompose
the element x in (9) into the sum of ϕ-components x = x0 + x1 + · · ·+ xp−1, substitute the

expressions xϕk
= x0 + ωkx1 + · · ·+ω(p−1)kxp−1, and expand all the brackets. This results in

a linear combination of monomes of degree p in the ϕ-components xi. Since the monomes
xp

0 in the decompositions of xxϕ · · ·xϕp−1
and xp cancel out, each summand of the resulting

linear combination involves at least one ϕ-component xi with non-zero index i 6= 0. We
substitute the corresponding expression instead of each bracket in (8) and expand all the
brackets. Using again the level indicators in parenthesis (and under the braces) and using
indices only to indicate the ϕ-components which the elements belong to, we obtain that it
suffices to prove that any product of the form

vi0 x0(1) · · · x0(1)xi1(1) · · ·︸ ︷︷ ︸
(1)

· · · x0(2p− 2) · · ·x0(2p− 2) · · · xi2p−2(2p− 2) · · ·︸ ︷︷ ︸
(2p−2)

cj (10)

is equal to zero, where x0(k) · · · x0(k)xik(k) · · ·︸ ︷︷ ︸
(k)

is a monome from the decomposition of the

bracket (1 − y(k)) described above, in which we distinguish the first from the left ϕ-com-
ponent xik(k) with non-zero index ik 6= 0 (there may not be preceding elements with zero
index). Let xik(k) denote the initial segment x0(k) · · · x0(k)xik(k) of this monome. Then the
product (10) takes the form

vi0 xi1(1) · · ·︸ ︷︷ ︸
(1)

· · · xi2p−2(2p− 2) · · ·︸ ︷︷ ︸
(2p−2)

cj, (11)

where dots over each brace of level k indicate factors of the form xt(k) for various t =
0, 1, . . . , p− 1.

We now recall the centralizer properties of the subgroups Q(i). If i < k, then by definition
y(k) ∈ Q(k) 6 CQ(y(i)ϕt

) for any t. If elements x(i), x(k) are such that x(i)p = y(i),
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x(k)p = y(k), then also [x(i)ϕt
, x(k)ϕu

] = 1 for any t, u, since x ∈ 〈y〉 if xp = y. Since the
ϕ-components of x are linear combinations of the elements xϕt

, we obtain that ϕ-components
xl(i), xm(k) of different levels i 6= k commute (for any l, m).

Similarly, the subgroup Q(2p−1) centralizes all elements of the form y(k)ϕt
for levels k 6

2p− 2 and therefore it centralizes also all the elements x(k)ϕt

. Hence all the ϕ-components
of the elements x(k), which are linear combinations of the elements xϕi

, are also centralized
by Q(2p− 1). In particular, the element cj, which belongs to the enveloping algebra of the
subgroup Q(2p− 1), commutes with all the ϕ-components xs(k) for k 6 2p− 2.

Every element xik(k) in (11), being a product of ϕ-components of level k, commutes
with ϕ-components of other levels and with the element cj; in this sense, xik(k) can also be
regarded as an element of level k.

We now collect all the elements xik(k) in (11) at the beginning after vi0 in the same order,
followed by cj. For that we transfer the elements xi2(2), xi3(3) . . . , xi2p−2(2p− 2), cj, one at
a time, successively to the left. Each of these elements xik(k) or cj is always transferred over
some ϕ-components xt(i) of smaller levels i < k, with which xik(k) commutes. As a result,
it is sufficient to prove that

vi0xi1(1)xi2(2) · · · xi2p−2(2p− 2)cj = 0. (12)

We shall need the following elementary lemma.

Lemma 10 ([21]). If j1, j2, . . . , jp−1 are any non-zero (not necessarily distinct) residues
modulo a prime number p, then every residue modulo p can be obtained as the sum over
some subset of the set {j1, j2, . . . , jp−1}.

All indices of the elements xik(k) in (12) are non-zero and these elements, being of
different levels, commute with each other, and they all commute with cj ∈ E(2p − 1),
since their levels are at most 2p − 2. First, applying Lemma 10 we permute the first p − 1
elements xik(k) in (12) to obtain an initial segment of the form

up−j = vi0xik1
(k1) · · ·xikt

(kt), where ik1 + · · ·+ ikt ≡ −j − i0 (mod p),

so that this initial segment belongs to Vp−j. Secondly, since there are at least p−1 remaining
elements xik (outside that initial segment up−j), we again apply Lemma 10 permuting these
elements and the element cj to obtain an initial segment

up−jxil1
(l1) · · ·xils

(ls)cj, where il1 + · · ·+ ils ≡ j (mod p), (13)

so that xil1
(l1) · · · xils

(ls) ∈ Ej.
As noted above, the subgroup Q(2p − 1) centralizes all the ϕ-components xs(k) for

k 6 2p − 2. In other words, all these ϕ-components centralize Q(2p − 1), that is, belong
to F , and therefore xl1 · · ·xls ∈ Fj. Hence the element up−jxl1 · · ·xls belongs to Vp−jFj and
therefore it is equal to a linear combination of the elements vp−j,ifj,i, where vp−j,i ∈ Vp−j and
fj,i ∈ Fj are our fixed elements. Thus the product (13) is equal to a linear combination of the
elements vp−j,ifj,icj. The elements fj,i and cj commute because cj belongs to Cj ⊆ E(2p−1)
and E(2p− 1) is centralized by fj,i ∈ F , since F centralizes Q(2p− 1). Therefore

vp−j,ifj,icj = vp−j,icjfj,i = 0,

since vp−j,icj = 0 for cj ∈ Cj by the construction of Cj ⊆ Ker ϑvp−j,i
.
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Lemma 11. If [Q,Q] = 1, then [V, [K, ϕ], . . . , [K, ϕ]︸ ︷︷ ︸
2p−1

] = 0.

Proof. The proof is similar to that of Lemma 9 but simpler due to the commutativity of Q.
We need to show that

v(1− z1) · · · (1− z2p−1) = 0 (14)

for any zi ∈ [K, ϕ]. Since 1 − z2p−1 ∈ I, the element 1 − z2p−1 is a linear combination
of elements of the form gcjh, where cj ∈ Cj for j = 0, 1, . . . , p − 1. We substitute this
into (14), transfer the elements g to the left over all the elements 1− zi, re-denote vg by v,
and then decompose v into the sum of ϕ-components. As a result, it suffices to prove that
any product of the form

vi0(1− z1) · · · (1− z2p−2)cj (15)

is equal to zero, where vi0 ∈ Vi0 for some i0 = 0, 1, . . . , p− 1.
Since [K, ϕ] is an abelian q-group, for each z = zi in (15) there is x ∈ [K, ϕ] such that

xp = z and x = [u, ϕ]. Then

xxϕ · · · xϕp−1

= u−1uϕ(u−1)ϕuϕ2 · · · (u−1)ϕp−1

uϕp

= 1

and therefore
1− z = xxϕ · · · xϕp−1 − xp. (16)

We decompose x into the sum of ϕ-components x = x0+· · ·+xp−1, substitute the expressions

xϕi
= x0+ωix1+ω2ix2 · · ·+ω(p−1)ixp−1 into (16), expand all brackets, and cancel out xp

0−xp
0.

The result is a linear combination of monomes of degree p in the elements xi such that each
of these monomes has a factor xi with non-zero index i 6= 0. We substitute the corresponding
linear combination instead of each of the brackets in (15). Since all the elements involved
commute, we can collect some of those factors xi with non-zero indices i 6= 0 at the beginning,
followed by cj. Since each of the 2p− 2 brackets in (15) contributes at least one such factor,
it is now sufficient to prove that any product of the form

vi0xi1 · · · xi2p−2cj, where ik 6≡ 0 (mod p) for all k. (17)

is equal to zero. Here the indices ik only indicate the ϕ-components which the elements
belong to.

We can apply to (17) the same kind of “collection process” as applied above to (12). We
arrive at the same conclusion using the fact that here Fj = Ej, since Q is abelian.

Completion of the proof of Proposition 2. Note that [K, ϕ] is a subnormal subgroup of co-
rank at most r in K by Lemma 2 and therefore of (p, r, s)-bounded co-rank in Q, since K
has (p, r, s)-bounded co-rank. Thus, Lemma 11 proves Proposition 2 in the case of abelian
Q.

The quotient group K/[K, K] acts on each of the quotient modules

Uk = [V, [K,K], . . . , [K, K]︸ ︷︷ ︸
k

]

/
[V, [K,K], . . . , [K,K]︸ ︷︷ ︸

k+1

]
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(starting with U0 = V/[V, [K, K]]). By Lemma 9 there are at most 2p − 1 non-trivial of
them. By Lemma 11 applied to Uk and K in place of V and Q there exist subgroups Lk of
(p, r, s)-bounded co-rank in K (and therefore in Q) such that

[Uk, Lk, . . . , Lk︸ ︷︷ ︸
2p−1

] = 0 for each k. (18)

Then the intersection Y =
⋂2p−2

k=0 Lk is the required subgroup, since its co-rank in Q is
(p, r, s)-bounded and [V, Y, . . . , Y︸ ︷︷ ︸

(2p−1)2

] = 0 by (18) and Lemma 9.

Thus Propositions 1 and 2 are proved.

4 Proof of the main results

Finite groups. First we finish the proof of Theorem 3 for completeness and for the benefit
of the reader.

Proof of Theorem 3. Recall that G is a finite nilpotent group of derived length d admitting
an automorphism ϕ of prime order p such that CG(ϕ) has rank r. By Proposition 1 we may
assume from the outset that the group G is nilpotent of (p, d)-bounded class c = c(p, d). This
allows us to use an analogue of the theorem in [11] on a Lie ring L with an automorphism
ϕ of prime order. Actually in [11] we were dealing either with the case of finite fixed-point
subring (centralizer) CL(ϕ) of order m, or the case of a Lie algebra L with centralizer of
finite dimension m. Then the Lie ring (algebra) L contains a subring (subalgebra) of (p,m)-
bounded index in the additive group (of (p,m)-bounded codimension) which is nilpotent of
p-bounded class at most g(p). However, an analysis of the proof in [11] shows that with
minimal changes it yields also the following theorem.

Theorem 4. If a Lie ring L the additive group of which is a q-group admits an automorphism
ϕ of prime order p such that the additive group of the fixed-point subring CL(ϕ) has finite
rank m, then L contains a ϕ-invariant subring M which is nilpotent of p-bounded class at
most g(p) such that the additive quotient group L/M has finite (p,m)-bounded rank.

We return to the proof of Theorem 3. Clearly, we can assume that G is a finite q-group
and, due to Lemma 6, that q 6= p. We can obviously assume that the nilpotency class c of
the group G is greater than the p-bounded number g(p) in Theorem 4.

Let L = L(G) =
⊕

γi(G)/γi+1(G) be the associated Lie ring of the group G. The
automorphism ϕ induces an automorphism of L, which we denote by the same letter. The
rank of the additive group CL(ϕ) is (p, r, d)-bounded, because CL(ϕ) =

⊕
Cγi(G)/γi+1(G)(ϕ),

where the number of summands is equal to the nilpotency class, which is (p, d)-bounded, and
Cγi(G)/γi+1(G)(ϕ) = Cγi(G)(ϕ)γi+1(G)/γi+1(G) by Lemma 2. Applying Theorem 4 we obtain
a subring M of bounded co-rank in the additive group of L such that the nilpotency class
of M is at most g(p).
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The image M of M in the additive quotient group L/γ2(L) can also be regarded as
a subgroup of the quotient group G/γ2(G). Let N be the full inverse image of M in G.
It follows from the definition of the operations in L = L(G) that the nilpotency of class
at most g(p) of the Lie subring M implies that γg(p)+1(N) 6 γg(p)+2(G), whence γc(N) 6
γc+1(G) = 1, since g(p) < c by our assumption.

Thus, N is a normal subgroup of (p, r, d)-bounded co-rank in G such that the nilpotency
class of N is at most c−1. Applying Theorem 2(b) we replace N by a characteristic subgroup
of nilpotency class at most c− 1 and of bounded co-rank (recall that c is (p, d)-bounded). If
c − 1 > g(p), the same argument can be applied to N in place of G, and so on. We repeat
this procedure until we arrive at a characteristic subgroup of nilpotency class at most g(p);
this subgroup will have (p, r, d)-bounded co-rank, since the number of steps in this process
is (p, d)-bounded.

We now prove the main result of the paper, which is derived from the “weak” Theorem 3,
a little short of a miracle, like lifting oneself by pulling one’s own hair.

Proof of Theorem 1. Recall that G is a finite nilpotent group admitting an automorphism
ϕ of prime order p such that CG(ϕ) has rank r; we need to find a characteristic subgroup
C of p-bounded nilpotency class and of (p, r)-bounded co-rank. Since the rank of a finite
nilpotent group is equal to the maximum of the ranks of its Sylow subgroups, we can assume
from the outset that G is a finite q-group. Here we do not exclude the case q = p.

Let M be a subgroup of maximum order among normal ϕ-invariant subgroups of nilpo-
tency class at most g(p), where g(p) is the function in Theorem 3. We claim that the rank
of G/M is (p, r)-bounded. Let K be a Thompson critical subgroup of G/M , which is a
characteristic subgroup of class at most 2 containing its centralizer (see, for example, [4,
Theorem 5.3.11]). Since (G/M)/Z(K) acts faithfully on K, the rank of (G/M)/Z(K) is
bounded in terms of the rank of K by Lemma 5. Hence it suffices to prove that the rank of
K is (p, r)-bounded.

Let L be the full inverse image of Ω1(K). It is sufficient to prove that the rank of L/M
is (p, r)-bounded, because then the rank of a maximal abelian normal subgroup A/M of K
will also be (p, r)-bounded and the rank of K is bounded in terms of the rank of A/M by
Lemma 5.

Note that the exponent of L/M is at most q or 4, since this group is nilpotent of class
at most 2 and is generated by elements of order q.

The derived length of L is at most 3 + log2 g(p). By Theorem 3 the group L contains
a characteristic subgroup N of nilpotency class at most g(p) such that the rank of L/N is
(p, r)-bounded, say, by f1(p, r).

By Lemma 7, |L/MN | 6 qf2(p,r) for some (p, r)-bounded number f2(p, r), since the
exponent of L/MN is q (or 4), while the rank is at most f1(p, r).

The group MN is nilpotent of class at most 2g(p) being the product of two normal
subgroups of class at most g(p). Since N q (or N4) is contained in M , the product MN q (or
MN4) is nilpotent of class at most g(p). Hence, by Lemma 1, for some p-bounded number

g2(p) the subgroup M qg2(p)
N is nilpotent of class at most g(p).

By the maximal choice of M we now have |M qg2(p)
N | 6 |M |. To simplify notation, let the

bar denote images in G = G/M qg2(p)
. Then the last inequality becomes |N | 6 |M |, which
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implies
|N/(N ∩M)| 6 |M/(N ∩M)|. (19)

The right-hand side is equal to |MN/N |, which is at most qf3(p,r) for some (p, r)-bounded
number f3(p, r) by Lemma 7, since the rank of MN/N is (p, r)-bounded, while the exponent
is at most qg2(p). The left-hand side of (19) is equal to |MN/M | and MN/M ∼= MN/M .
Thus, |MN/M | 6 qf3(p,r).

We finally have

|L/M | 6 |L/MN | · |MN/M | 6 qf2(p,r)qf3(p,r).

Hence the rank of L/M is at most f2(p, r) + f3(p, r).
Thus, the rank of G/M is (p, r)-bounded, while the nilpotency class of M is at most g(p).

By Theorem 2(b) the group G has also a characteristic subgroup C of nilpotency class at
most g(p) such that the rank of G/C is (p, r)-bounded.

Infinite groups. First we show that Theorem 1 cannot be extended to infinite nilpotent
groups, even for an automorphism of order 2.

Example. Let qij be pairwise different odd primes, i, j = 1, 2, . . . We fix a positive integer n.
Let 〈bij1〉 × 〈bij2〉 be an abelian homocyclic group with |bij1| = |bij2| = qn

ij. Let 〈ai〉 be an
infinite cyclic group. We define the action of ai on 〈bij1〉 as that of an automorphism of order

qn−1
ij so that bai

ij1 = bq+1
ij1 , and on 〈bij2〉 as the inverse automorphism: bai

ij2 = b
1/(q+1)
ij2 , where

1/(q+1) is the inverse of q+1 modulo qn. The semidirect product (〈bij1〉×〈bij2〉)〈ai〉 admits
an automorphism ϕ of order 2 that inverts ai and transposes bij1 and bij2; the centralizer of
ϕ is cyclic of order qn

ij. We define the diagonal action of the semidirect product 〈ai〉〈ϕ〉 on
the direct product

∏
j〈bij1〉 × 〈bij2〉. Then we define the diagonal action of 〈ϕ〉 on the direct

product G =
∏

i

∏
j(〈bij1〉 × 〈bij2〉)〈ai〉. The group G is nilpotent of class n. The centralizer

CG(ϕ) is locally cyclic. However, with n varying, it is clear that there can be no normal
subgroup of bounded nilpotency class with quotient of finite rank.

Proof of Corollary 1. Now G is a locally nilpotent group admitting an automorphism ϕ of
prime order p such that CG(ϕ) has rank r. Recall that T = T (G) is the torsion part of G.

First we consider the torsion-free locally nilpotent group G/T . Let Ĝ be the Mal’cev comple-
tion of G/T , which is obtained by adjoining all roots of non-trivial elements of G/T (see [27]

or [2]); the automorphism ϕ has a unique extension to an automorphism of Ĝ, denoted by the
same letter. Since the roots are unique, the centralizer CĜ(ϕ) is the completion of the cen-

tralizer CG/T (ϕ). If gϕ = gt for t ∈ T , then H = 〈g, t, tϕ, . . . , tϕ
p−1〉 is a ϕ-invariant nilpotent

subgroup and g ∈ CH/(H∩T )(ϕ). By Lemma 3(a) we have gpm ∈ CH(ϕ)(T ∩H) ⊆ CG(ϕ)T .
Hence CG/T (ϕ) is contained in the completion of CG(ϕ)T/T . Thus, CĜ(ϕ) is the completion
of CG(ϕ)T/T .

The rank of a radicable locally nilpotent torsion-free group is equal to the length of a
normal series with factors isomorphic to Q; see [2]. Hence the rank of CĜ(ϕ) is at most
the rank of CG(ϕ), and therefore the rank of CG/T (ϕ) is at most r. By Makarenko’s result
[22, Theorem 2], the group G/T has a normal subgroup of p-bounded nilpotency class c(p)
and of (p, r)-bounded co-rank. By Theorem 2(a) we can replace this normal subgroup by a
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characteristic one with the same properties, which gives the required subgroup C0 in part (a)
of the corollary.

Since the group T is locally finite, by the inverse limit argument Theorem 1 implies
the existence of a normal subgroup D 6 T such that T/D has (p, r)-bounded rank and
D is nilpotent of p-bounded class (see, for example, the proof of Corollary 1 in [17]). By
Theorem 2(b) we can replace this normal subgroup by a characteristic one with the same
properties, which gives the required subgroup C1 in part (a).

In part (b) of the corollary, G is a finitely generated nilpotent group. Then the periodic
part T = T (G) is a finite group. Let Tq be the Sylow q-subgroups of T for primes q.

We can replace G by the inverse image of the characteristic subgroup C0 given by part (a)
and thus assume from the outset that G/T is nilpotent of p-bounded class at most g(p).

By Lemma 6 the rank of Tp is (p, r)-bounded and the rank of G/CG(Tp) is then also
(p, r)-bounded by Lemma 5. Since CG(Tp) is a characteristic subgroup of G, we can replace
G by CG(Tp) and assume from the outset that Tp 6 Z(G).

The periodic part T̄ of the quotient G/Tp is clearly isomorphic to the Hall p′-subgroup
of T , while (G/Tp)/T̄ is isomorphic to G/T . As shown above, the rank of CG/T (ϕ) is at
most r. Therefore the rank of CG/Tp(ϕ) is at most 2r. Indeed, in a finitely generated
nilpotent group all subgroups are finitely generated. If H is a subgroup of CG/Tp(ϕ), the
quotient H/(H ∩ T̄ ) is generated by r elements as a section of CG/T (ϕ), while H ∩ T̄ is also
generated by r elements as a subgroup of CT/Tp(ϕ).

If we prove the assertion for G/Tp, with the rank of CG/Tp(ϕ) being at most 2r, finding
a characteristic subgroup C such that G/C has (p, 2r)-bounded rank and C/Tp is nilpotent
of p-bounded class d(p), then C is nilpotent of class at most d(p) + 1, since Tp 6 Z(G) by
our assumption. Therefore we can assume from the outset that Tp = 1; we re-denote by the
same letter r the rank of CG(ϕ).

Since G is now a finitely generated nilpotent group with periodic part being a finite p′-
group, there exists a p′-number m such that Gm ∩ T = 1. Since G/T is nilpotent of class
g(p), we have

[Gm, G, . . . , G︸ ︷︷ ︸
g(p)

] 6 Gm ∩ T = 1. (20)

By Lemma 3(b) we have CG/Gm(ϕ) = CG(ϕ)Gm/Gm and therefore CG/Gm(ϕ) has rank at
most r. By Theorem 1 applied to the finite group G/Gm we obtain a characteristic subgroup
C such that G/C has (p, r)-bounded rank and C/Gm is nilpotent of p-bounded class c(p). In
view of (20), then C is nilpotent of class c(p) + g(p) and is thus the required subgroup.

Proof of Corollary 2. As noted in [17], in the soluble case the rank of G/Op′(G) is (p, r)-
bounded. Therefore we can assume from the outset that G = Op′(G). By the main results
of [17], there exist characteristic subgroups R 6 N1 6 G such that the ranks of R and G/N1

are (p, r)-bounded, while N1/R is nilpotent. By Lemma 2 we have CN1/R(ϕ) = CN1(ϕ)R/R
and therefore the rank of CN1/R(ϕ) is at most r. It remains to apply Theorem 1 to the group
N1/R.

Proof of Corollaries 3 and 4. These results follow from Corollary 2 by the inverse limit ar-
gument as in [17]. The improvement for locally nilpotent groups is already established in
Corollary 1(a).
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